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Abstract—An agent in pursuit of a task may work with a
reference library containing documents with linked subjective
content descriptions. Faced with a new document, an agent has
to decide whether to include the new document in its reference
library. Basing the decision on only words, topics, or entities
has shown not to lead to a balanced performance for varying
documents. Even a combination of words and descriptions does
not lead to a single indicator, requiring manual post-processing.
Therefore, in this paper, we build a single indicator by detecting
the type of a new document using sequential information about
descriptions, thus automating the decision. Specifically, an en-
semble of hidden Markov models for the document types detects
the type of a document. The agent then bases its decision on
the detected type. Using hidden Markov models also allows for
identifying positions of interest within a new document. A case
study shows the effectiveness of our approach.

I. INTRODUCTION

An agent in pursuit of a task, explicitly or implicitly defined,
may work with an individual set of documents (corpus) as a
reference library. A person assembling a set of scientific arti-
cles as related work describes such a setting, with the person as
the agent, the compiling of articles as the task, and the articles
as the corpus. From an agent-theoretic perspective, an agent
is a rational, autonomous unit acting in a world, perceived
through sensors, fulfilling a task, e.g., an agent providing
document retrieval services given requests from users. The
documents in the corpus may be annotated with subjective con-
tent descriptions (SCDs) to improve the agent’s performance,
i.e., SCDs are relevant to an agent’s task. SCDs can be notes,
automatically or manually appended to specific sentences of an
article, that may provide explanations, references, or additional
data. Thus, SCDs add data relevant for the agent’s task,
and that data has a connection to specific locations in the
document. But, what should an agent do if presented with a
new document, which typically has no SCDs? Without having
thoroughly processed the new document, the question for the
agent is: Does that document have anything of value to add in
the context of the given corpus? We call extending a corpus
with a document that adds value corpus enrichment. Kuhr et
al. [1] have introduced an approach for corpus enrichment by
estimating most probable SCDs (MPSCDs) for new documents
considering the composition of documents in a corpus and the
document-specific set of SCDs. The investigated features in [1]
do not provide a single indicator for the decision and manual
post-processing is necessary.

Therefore, we turn to fully automating corpus enrichment.
To this end, we consider document types and decide corpus
enrichment based on the document type detected. We extend
the approach in [1] by considering the sequence in which
SCDs appear in a document. For each document type, we learn
a hidden Markov model (HMM) where each slice concerns a
window in a document and the hidden state concerns whether
the SCD in the window is related to the task. Together, the
HMMs for all types form an ensemble. Given a new document,
we use the Viterbi algorithm [2] on each HMM to find the
most likely sequence of (un)relatedness and its probability.
The document type is then given by the type of the HMM that
has the sequence with the highest probability. Based on this
sequence, an agent can identify positions of interests (PoIs).
Identifying PoIs augments corpus enrichment with providing
location-specific information about new data. If the agent
decides to extend its library with the new document based
on the document type, it can even choose to retain initial
SCDs, possibly adapting them, and then use them as a basis
for enriching SCDs within the corpus, in an automatic [3], [4]
or manual way.

Specifically, the contributions of this paper are: (i) solving
the problem of identifying the type of a new document by
comparing the probabilities of the most likely sequences of
MPSCD similarity values generated from the different HMMs
learned for each type, (ii) providing a decision making proce-
dure for corpus enrichment based on the document type, and
(iii) a case study regarding document type detection learning
for three different corpora the respective four document type
specific HMMs. In this paper, we focus on the following four
types of documents: (i) similar documents, (ii) extensions
of existing documents, (iii) revisions of existing documents,
and (iv) unrelated documents. Using an ensemble allows for
adding further HMMs to the ensemble if other document
types become relevant. The ensemble also enables an agent to
weight individual HMMs if certain document types are more
interesting compared to others.

The remainder of this paper is structured as follows: We
start with a look at related work. Then, we specify notations
and recap estimating MPSCDs. Next, we present HMM-based
document type detection and the decision making procedure
for corpus enrichment. We also discuss finding PoIs in a most-
likely sequence, followed by a case study. The paper ends with
a conclusion and future work.



II. RELATED WORK

Over the past 20 years, a considerable number of auto-
matic (semantic) annotation systems have been developed. The
systems extract named entities from text of documents and
add so-called semantic annotations from externally available
common-sense knowledge bases, enriching the documents
with machine-processable data. Some well-known automatic
annotation systems are YEDDA [5], MINTE [6], Open-
Calais [7], YAGO[8], KDTA [9], or GATE [10]. However,
the output of available automatic annotation systems have
only very little agreement [11]. Some well-known sources
of common-sense knowledge are DBpedia [12], NELL [13],
and KnowledgeVault [14]. Named entities represent the link
between documents and common-sense knowledge and link
prediction is used to identify semantic annotations for an
entity. Generally, link prediction describes the task of estimat-
ing the likelihood of a link (relation) existing between nodes
(entities), given the links, and attributes of nodes within a
graph [15]. Annotation systems aim at developing a knowl-
edge graph augmented with data from external sources. The
systems efficiently solve their underlying problem. However,
we investigate a different problem, deciding if a new document
provides value to an agent by working with SCD. We consider
the context of documents and their content instead of focussing
on external data from common-sense knowledge bases.

Surveying methods of text mining, one can base a decision
on different aspects, e.g., (i) similarity of text in the spirit
of tf.idf [16], comparing a vector representation of a new
document with vector representations of the documents in
the corpus, (ii) similarity of topics in the spirit of latent
Dirichlet allocation (LDA) [17], comparing an estimated topic
distribution of a new document with topic distributions of
the documents in the corpus, or (iii) entity matching [18]
using named-entity recognition (NER), comparing entities
(and relations) retrieved from the new document with entities
(and relations) of the SCDs in the corpus. All three approaches
carry drawbacks: The first two, based on bag-of-words, ignore
SCDs and the order of words. Additionally, they make it
difficult to model that a document has to add value, i.e., not
be a rephrased copy of an existing document or contain only
unrelated data. The last approach has the problem that NER
tools might not output annotations in the context of the task,
which may lead to very few matches with SCDs of the corpus.
Additionally, the decision in each case is a one-dimensional
decision, based on one feature of the documents. Therefore, we
aim at providing an approach to automatically make a multi-
dimensional decision that considers the context of the task.

Another class of related work deals with HMM-based
classification. Classification and statistical learning by HMMs
has achieved remarkable progress in the past decade. Using a
HMM is a well-researched stochastic approach for modeling
sequential data, and it has been successfully applied in a
variety of fields, such as speech recognition [19], character
recognition [20], finance data prediction [21], [22], credit card
fraud detection [23], and workflow mining [24]–[26].

III. PRELIMINARIES

This section specifies notations and gives a brief overview
of MPSCDs we use as observations in the HMM.

A. Notation

We define the following terms to formalize the setting of a
corpus containing documents, each document associated with
a type label and a repository of additional data, i.e., SCDs.
• A word w is a basic unit of discrete data from a

vocabulary V=(w1, . . . , wV ). Each w is represented as a
unit-basis vector of length V that has a value of 1 where
w = wv and 0’s otherwise.

• A document d is a sequence of words (w1, . . . , wD)
where each wd is from V . The expression words(d) refers
to the number of words in d.

• A corpus D is a set of N documents {d1, . . . , dN}.
• For each document d ∈ D exists a document-specific

repository g containing a set of SCDs {(tj , {ρi}li=1)}sj=1.
SCDs can take any form. As such, their formats may
be highly diverse. A standardized format would be the
Resource Description Framework (RDF) but, for our
main contributions, the specific format is irrelevant. Each
SCD t is associated with a set of positions {ρi}li=1 in
document d where ρi refers to the ρi’th word in d. Given
a document d or repository g, the terms g(d) and d(g)
refer to the linked repository and document, respectively.
The set of all SCDs of documents in D is given by
g(D) =

⋃
d∈D g(d).

• A new document d′ has a specific type type(d′) ∈ T ,
T = {d′sim, d′ext, d′rev, d′unrel}, representing the fol-
lowing four types: 1) similar document, 2) document
extension, 3) revision of a document, and 4) and unrelated
document, respectively. The type of d′ is determined with
respect to the documents in D.

• An SCD window wind,t,ρ refers to the words in d that
surround the position ρ of t ∈ g(d), i.e., wind,t,ρ =
(w(ρ−i), ..., wρ, ..., w(ρ+i)), i ∈ N if ρ marks the middle
of the window. The position of a word w ∈ wind,t,ρ is
given by pos(w,wind,t,ρ) (0-based numbering). The size
of wind,t,ρ is given by s(wind,t,ρ), i.e., s(wind,t,ρ) =
2i+ 1 if ρ marks the middle of the window.

• Each word w ∈ wind,t,ρ is linked to an influence value
I(w,wind,t,ρ). The closer a word w is positioned to
the position ρ of t, the higher is the influence value
I(w,wind,t,ρ). The influence value I(w,wind,t,ρ) of w
is given by the probability of the Binomial distribution at
position pos(w,wind′,t,ρ), i.e.,

I(w,wind,t,ρ) =

(
n

k

)
· πk · (1− π)n−k, (1)

where n = s(wind′,t,ρ) − 1, k = pos(w,wind′,t,ρ), and
π = ρ

n , i.e., π = 0.5 if t is at the center of wind,t,ρ
and influence values to the left and right of ρ should be
symmetric. The binomial distribution yields a probability
for each word w ∈ wind,t,ρ that is higher the closer w is
to the position of t.



B. Subjective Content Descriptions

SCDs are assumed to generate the words in the docu-
ments [1]. An SCD can be represented with a vector of length
n, where n = |V(D)| and each vector entry refers to a word
in V(D). The entry itself is a probability that describes how
likely it is that the corresponding SCD generates the word,
yielding an SCD-word distribution for each SCD. The SCD-
word distribution for all m SCDs in g(D) are represented by
an m×n matrix δ(D), with the SCD-word distribution vectors
forming the rows of the matrix:

δ(D) =



w1 w2 w3 · · · wn

t1 v1,1 v1,2 v1,3 · · · v1,n

t2 v2,1 v2,2 v2,3 · · · v2,n
...

...
...

...
...

...
tm vm,1 vm,2 vm,3 · · · vm,n

 (2)

To fill δ(D) given D using a maximum-likelihood strategy,
one counts for each SCD t the number of occurrences of each
word w in the windows wind,t,ρ of t over all documents and
all positions. The occurrences are weighted by their influence
value I(w,wind,t,ρ). At the end, the rows are normalized to
yield a distribution again. See [1] for details.

For a new document d′, one can use δ(D) to estimate how
well the existing SCDs may generate the words in d′. To do so,
one computes M � m MPSCDs for d′ by building a vector
representation δ(wind′,t,ρ) of the words in the M windows in
d′ and finding the SCD that has a vector representation most
similar to δ(wind′,t,ρ). The SCD t most similar to δ(wind′,t,ρ)
(w.r.t. the cosine similarity) is given by:

arg max
t

δ(D)[t] · δ(wind′,t,ρ)
|δ(D)[t]| · |δ(wind′,t,ρ)|

. (3)

Algorithm 1 describes estimating MPSCDs for new document
d′ using δ(D) given M . The output of Alg. 1 includes the
set of MPSCDs g(d′), one for each window, as well as a set
of tuples of similarity value and window for each MPSCD.
Again, see [1] for details.

Algorithm 1 Estimating MPSCDs

1: function MPSCD(Document d′, Int M , Matrix δ(D))
2: σ ← words(d′)

M , ρ← σ
2 , W ← ∅

3: for ρ← σ
2 ; ρ ≤ words(d); ρ+ = σ do

4: Set up wind′,t,ρ of size σ around ρ with t = ⊥
5: δ(wind′,t,ρ)← new zero-vector of length n
6: for w ∈ wind′,t,ρ do
7: δ(wind′,t,ρ)[w]+ = I(w,wind′,t,ρ)

8: t← arg maxti
δ(D)[i]·δ(wind′,t,ρ)
|δ(D)[i]|·|δ(wind′,t,ρ)|

in wind′,t,ρ

9: sim← maxti
δ(D)[i]·δ(wind′,t,ρ)
|δ(D)[i]|·|δ(wind′,t,ρ)|

10: W ←W ∪ {(sim,wind′,t,ρ)}
11: g(d′)← g(d′) ∪ {t}
12: return g(d′), W

IV. AUTOMATIC CORPUS ENRICHMENT

This section presents an approach to automatic corpus
enrichment given a new document considering the documents
in a corpus. We introduce the document type detection problem
for a new document d′ given an individual composition of
documents, and present an HMM-based solution to estimate
the probability of the most likely sequence of hidden states
from the observable MPSCD similarity values in d′. We then
provide a decision making procedure and describe how to find
PoIs in d′, augmenting corpus enrichment. Before going into
details about document type detection, we take a look at the
output of Alg. 1, specifically at the similarity values, to show
how document type detection using the sequence of similarity
values actually has a chance at success.

A. Document Types and their Similarity Values

We assume that a document is labelled with a document
type and we follow the idea of [1] that the type of a document
depends on the MPSCD similarity values.

In Fig. 1, we present similarity values for documents
of the four different document types, d′sim, d

′
ext, d

′
rev, and

d′unrel. The values on the x-axis represent the SCD window
number in a document, and the values on the y-axis represent
the MPSCD similarity values. Generally, the similarity val-
ues change slightly between neighbouring windows for both
similar and unrelated documents. But, the MPSCD values
of similar documents are considerably higher compared to
unrelated documents (Fig. 1a). Some MPSCD similarity values
of unrelated documents can be higher than MPSCD similarity
values of similar documents, e.g., in the third window and
seventh window. Extending documents have high similarity
values in the beginning of the document followed by windows
with smaller similarity values. Revision documents have a
significant change in the similarity value of some neighbouring
windows (Fig. 1b), namely, those windows containing new
and unrelated content. Based on these observations, we can
describe the four types we consider in this paper as follows:
• Similar documents (dsim): Content of a new document is

similar to the content of a subset of documents in D, i.e.,
new document tells about the same event, same persons,
or topics. The values in the MPSCD similarity sequence
are mostly in the category yh or ym.

• Extensions (dext): The content of a new document is
mostly similar to the content of documents in D but con-
tains additional content, semantically unavailable in any
other document of corpus D, i.e., the new document is an
extended version of another document in corpus D. Thus,
the similarity values of the first t−1 observable MPSCD
values are mostly in category yh and ym, because the
content is similar. At some point, the similarity values
reduce and are mapped mostly to yl.

• Revisions (drev): The new document represents a revision
of another document in D. Thus, the content of the
new document contains modified content generated by
appending, replacing, or removing content. The values in
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(b) Revisions and extensions of documents.

Fig. 1: Representation of MPSCD similarity values of four documents of different document types.

the MPSCD similarity sequence are mostly in category
the ym and yh, but also few of them are in the category yl,
namely, those values representing the modified content.

• Unrelated documents (dunrel): The content of a new
document is unrelated to the content of all documents
in D. The values in the MPSCD similarity sequence are
in yl or ym but some similarity values can be in yh.

Next, we define the document type detection problem and
present an approach to solve it using an ensemble of HMMs.

B. Document Type Detection Problem

After estimating the MPSCDs of a new document d′ using
Alg. 1, we have a sequence of similarity values over the win-
dows in d′. Generally, the document type detection problem
asks for the most probable type of a new document d′ given
this observable sequence of similarity values:

arg max
t∈Y

P (t|W), (4)

As described in the previous section, the idea is that if the
contents in the window are (un)related to the agent’s task,
then (low) high similarity values occur, which may vary over
the course of a document, with known and unknown parts
mixing. The consequence of this consideration is that we
have a sequence of hidden states, encoding the relatedness
of the document’s content, and a sequence of observations
as similarity values. Together, we can model this setup as
an HMM. Therefore, we solve the document type detection
problem by learning HMMs, one for each document type,
determining the most likely sequence of hidden states for d′,
and then returning the type associated with the HMM with the
highest probability of its sequence.

C. An Ensemble of HMMs

To detect document types, we form an ensemble of HMMs,
one HMM for each document type, which we define next.

Definition 1. An HMM λ = (aij , bj , π) for classifying
documents of of some type consists of

• hidden states given by Ω = {s1, ..., sn}, where n = 2,
with state s1 representing related content and s2 repre-
senting unrelated content,

• an observation alphabet ∆ = {y1, . . . , ym}, where each
observation symbol represents a range of MPSCD simi-
larity values,

• a transition probability matrix A representing the proba-
bility between all possible state transitions ai,j between
the two hidden states s1, s2 ∈ Ω.

• an emission probability matrix B representing the prob-
ability to emit a symbol from observation alphabet ∆ for
each possible hidden state in Ω, and

• an initial state distribution vector π = π0.
With

∑n
j=1 ai,j = 1, the entries of transition probability

matrix A between states si, sj ∈ Ω, are given by

ai,j = P (sj |si).

The entries of emission probability matrix B represent the
probability to emit symbol yk ∈ ∆ in hidden state sj ∈ Ω
and, with

∑m
j=1 bj(yk) = 1, are given by

bj(yk) = P (yk|sj).

The semantics of λ is given by unrolling λ for a given number
of slices and building a full joint distribution.

For a set of document types T , an ensemble of HMMs H
contains an HMM for each document type type ∈ T . All
λ ∈ H have the same Ω and ∆ but different A and B.

For a new corpus, A and B are unknown and have to be
learned. One famous technique for learning both matrices of an
HMM is the Baum-Welch algorithm [27], which is a special
case of the well-known EM algorithm [28]. Using a set of
documents of a specific type, one can calculate for a hold-out
set MPSCDs and their similarity values and train the HMM
on this information using the Baum-Welch algorithm.

The discrete observation alphabet ∆ requires discretizing
similarity values. As a function f : [0, 1] 7→ ∆, it maps a
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Fig. 2: Hidden Markov model containing two hidden states
{s1, s2} emitting three observation symbols {yl, ym, yh}.
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Fig. 3: Trellis of O = (yl,ym,ym,ym), leading to the following
most likely sequence of hidden states: (s2, s1, s1, s1).

similarity value x to one of the m symbols in ∆:

f(x) =


y1 0 ≤ x < th1

y2 th1 ≤ y < th2
...
ym thm−1 ≤ y < 1

(5)

Algorithm 2 shows pseudocode, mapping the similarity values
inW for a new document d′ to the observation symbols in al-
phabet ∆ based on function f , returning a sequence of observ-
able symbols O. Generally, the discretization and its thresholds
depend on the task of an agent and can be adapted to each
problem individually. We follow the idea of Kuhr et al. [1],
using m = 3, and select th1 = 0.3 and th2 = 0.7 such that
f(x) maps MPSCD values to yl, ym, and yh, referring to
low, medium, and high values. Figure 2 contains a graphical
representation of a hidden Markov model λ = (aij , bj , π)
containing observation symbols {yl, ym, yh} ∈ ∆, and the two
hidden states {s1, s2} ∈ Ω.

Next, we present our approach for estimating the most
probable type of a new document by providing the sequence
of observable MPSCD similarity values to an ensemble of
type-specific HMMs.

D. Detecting the Type of a New Document

To solve the document type detection problem, we have to
find the most likely sequence of hidden states from alphabet Ω,
given a sequence of observation symbols from alphabet ∆, in
each HMM of the ensemble of document type-specific HMMs.
Each most likely sequence is associated with a probability. The
document type is then given by the type for which the HMM
with the highest probability for its sequence has been learned.

Algorithm 2 MPSCD Similarity Discretization

1: function DISCRETIZE(W , f )
2: O ← () . observation sequence
3: for each sim ∈ W do
4: yk ← f(sim) . yk ∈ ∆
5: O ← O ◦ yk
6: return O

Algorithm 3 Document Type Detection

1: function DOCTYPEDETECTION(W , H, f )
2: p← 0 . current highest probability
3: s← initialize . output tuple
4: O ← DISCRETIZE(W , f ) . observation sequence
5: for each λ ∈ H do
6: S ← VITERBI(λ,O)
7: y ← prob(S) . probability of S
8: if y > p then
9: p← y

10: s← (S, λ)

11: return s

The task of determining which sequence of variables is the
underlying source of some sequence of observations is called a
decoding task. We can calculate for each model the most likely
sequence of hidden states using the Viterbi algorithm [2]. The
Viterbi algorithm makes use of the dynamic programming
trellis for computing the most likely hidden state sequence S
for an observation sequence O. Before presenting a complete
specification of the document type detection approach, let us
consider an example of a most likely sequence given a set of
MPSCD similarity values.

Example 1. Assume that we have calculated a set of MPSCDs
for a new document d′ by using Alg. 1 and the corresponding
MPSCD similarity values are as follows:

(0.29, 0.41, 0.59, 0.48)

Using Alg. 2 leads to the following observation sequence:

O = (yl, ym, ym, ym)

Assume that the hidden state sequence for a specific config-
uration of the transition and emission probability matrices of
an HMM is given by

S = (s2, s1, s1, s1).

Figure 3 represents the trellis of the observation sequence O1,
where the thick arrows indicate the most probable transitions
between the hidden states and the dotted lines represent all
possible hidden state transitions.

Algorithm 3 describes how to estimate the most probable
type of a document using an ensemble of HMMs. The input
parameters are given by the MPSCD values in W and the
ensemble H. In line 2 and 3, Alg. 3 initializes a temporary



variable p and the output tuple s. In line 4, Alg. 3 calls Alg. 2
to set the observation sequence O to the sequence of the
similarity values in W discretised based on function f as in
Eq. (5). Afterwards, Alg. 3 iterates over the different HMMs in
H. In each iteration, the algorithm calculates a most probable
sequence S given O using the Viterbi algorithm (line 6). In
line 8 to 10, Alg. 3 tests if the probability prob(S) of the
current most likely sequence S is higher than the previously
seen highest probability. If the probability is higher, Alg. 3
saves the current most likely sequence S and the HMM λ in
s. After iterating over each HMM in H, Alg. 3 outputs the
most likely sequence that has exhibited the highest probability
among all most likely sequences as well as the corresponding
HMM. This output we then use as a basis for the decision
regarding corpus enrichment. Before moving on to decision
making, let us consider an example for how document types
and sequences may interact.

Example 2. Assume that we have an unrelated document with
similarity values that have led to the following observation
sequence as well as the most likely sequence as an output of
Alg. 3, meaning the HMM learned on unrelated documents has
produced the most likely sequence with the highest probability:

Ounrel = (yl, ym, yl, yl)

Sunrel = (s2, s2, s2, s2)

With observations of yl mainly, the most likely sequences of the
other HMMs have a much lower probability as the evidence
for unrelated content is very high, which is associated with low
probabilities in them. Given, e.g., an extension of a document,
the observation sequence may look as follows with the HMM
learned on extensions yielding the most likely sequence with
highest probability also given:

Oext = (yh, ym, yl, yl)

Sext = (s1, s1, s2, s2)

Here, the HMM trained on unrelated documents can only
explain the last part with high probability whereas the HMM
trained on extensions can explain both parts.

E. Automatic Decision Making: Corpus Enrichment

In this paper, we reduce corpus enrichment to making a
decision based on the estimated type of a new document d′.
Given a corpus D with SCDs g(D), the agent has to perform
the following steps offline:

(i) Build an SCD-word matrix δ(D) based on g(D).
(ii) Train an ensemble of HMMs H using D and δ(D).

(iii) Specify function f for discretizing similarity values.
(iv) Specify which document types are relevant for the task

and the current condition of corpus D.
The steps highly depend on the task at hand and differ from
one setting to the next. Relevant document types may be
extensions of documents for an agent to extend its knowledge
base. If a corpus is already very large, an agent may be
interested in updating its documents with newest revisions.

If a task changes and documents not longer appear to help
in solving its task, unrelated documents may provide the
most added value (without any further information about the
information need). As just indicated, specifications may even
change over time when a corpus grows and a need for specific
documents becomes apparent. Repeating the steps after many
changes in a corpus to update δ(D) orH may become prudent.

Faced with a new document d′ online, the agent performs
the following steps:

(i) Use Alg. 1 to estimate MPSCDs for d′.
(ii) Use Alg. 3 to estimate the document type type of d′.

(iii) Based on type and its own specification, add/forgo d′.
Basing the decision on most likely sequences enables an agent
to further process the most likely sequence with the highest
probability and analyze documents over “time”, i.e., sentence
by sentence. As such, this sequence allows for augmenting
corpus enrichment by being able to pinpoint interesting posi-
tions in a document, which we consider next.

F. Augmenting Enrichment: Positions of Interest
Detecting the type of a new document can help an agent

making a decision on extending a corpus with a new document
or not. However, the agent might be interested in more details
and not only in the type of a document. Let us assume that
the agent is interested in extending a given corpus D with new
documents that are classified as unrelated documents but share
at least one section of related content with one other document.
The output of document type detection (Alg. 3) includes the
most likely sequence of hidden states, representing for each
SCD window if the content is related or unrelated to the
content of documents in the corpus. We can use the sequence
of hidden states to get information about the content similarity
in a SCD window instead of only having information about the
similarity values of the MPSCD relating to a specific window.
If a new document d′ is unrelated to other documents in the
given corpus D but parts of the document contain related
content the agent might be interested in the parts containing
related content to identify if document d′ might contain new
content relating to an already-known topic. We define these
parts as PoIs in a document.

Identifying PoIs for d′ requires document type detection
using Alg. 3. Depending on the document type, the agent
might be interested in different positions within the new
document. Thus, we define the following positions of interest.
• For documents of type dsim, the sections containing

unrelated content are PoIs.
• Documents of type dext contain related content in the

beginning of the document, which changes to unrelated
content when the document extension starts. The position
of the change is the PoI in dext.

• For document of type drev , the PoI is given by those
positions containing modified (unrelated) content.

• For documents of type dunrel, the sections containing
related content are PoIs.

Detecting positions of interest in sequences relates to pattern
recognition [29]. Next, we present a case study.



TABLE I: Document type detection performance considering four document types and three corpora.

city corpus president corpus university corpus
Document Type Precision Recall F1-Score Precision Recall F1-Score Precision Recall F1-Score

dsim 0.72 0.65 0.68 0.77 0.71 0.74 0.70 0.71 0.70
dunrel 1.00 1.00 1.00 1.00 0.96 0.98 1.00 1.00 1.00
dext 0.93 0.86 0.89 0.91 0.84 0.87 0.86 0.92 0.89
drev 0.70 0.41 0.52 0.72 0.58 0.64 0.68 0.51 0.58

V. CASE STUDY

After introducing the document type detection approach, we
present a case study illustrating the potential of document type
detection using the sequence of observable MPSCD similarity
values as evidence in HMMs. We use the following three
corpora within the case study, each containing articles from
the free Wikipedia encyclopedia:

(i) Cities in Europe: documents about the largest cities in
Europe (https://bit.ly/2kOvmwD).

(ii) US presidents: documents about presidents of the U.S.
between 1789 and 2017 (https://bit.ly/2Z1v1G9), and

(iii) Universities: documents about the state and territorial
universities in the U.S. (https://bit.ly/2mOzXAW).

A. Preprocessing

We work with a Java-based implementation of Alg. 1
and use the results as input parameters of our Python-based
implementation of Alg. 2 and Alg. 3. Initially, we download
all necessary articles from Wikipedia for the three corpora
and preprocess the articles by: (i) lowercasing all charac-
ters, (ii) stemming the words, (iii) tokenizing the result, and
(iv) eliminating tokens from a stop-word list of 337 words.

For each corpus and each type of document, we then
generate a training set and test set in in the following way:
• Similar Documents (dsim): We choose 90% of the cor-

responding Wikipedia articles as training data, i.e., 90%
of the articles represent documents in the corpus. The
remaining 10% of articles from the same corpus are used
as a held-out set acting as the test data.

• Extending documents (dext): For each corpus, we choose
the training set by selecting the corresponding Wikipedia
articles and extend them with text from articles of the
other two corpora. We proceed the same way to generate
documents for the test set.

• Revision documents (drev): We use the view history func-
tion in Wikipedia. A current article represents a revision
of an older version of the same article. Current articles
contain modified sentences and additional content. We
proceed the same way for generating the test set.

• Unrelated documents (dunrel): We choose the training set
by randomly selecting 90% of the Wikipedia articles from
one corpus and randomly selecting articles from the two
other corpora to fill the test set.

We have chosen a ratio of 90:10 between the size of the train-
ing set and the test set because of the size of documents in each
corpus. However, we have performed additional evaluations
adjusting the ratios up to 75:25, leading to similar results.

B. Document Type Detection

For each type of document, we take its training set and
learn the transition and emission function of the HMM using
the Baum-Welch algorithm in each corpus. This process results
in four HMMs differing from each other in both the transition
probabilities and emission probabilities. Each HMM represents
exactly the configuration for one type of document. Now,
we use Alg. 3 to perform the document type detection of
documents in the test set. We use precision and recall to
evaluate the performance of Alg. 3 instead of accuracy, since
the application of accuracy is only meaningful for symmetric
datasets, where false negatives and false positives counts are
close, and false negatives and false positives have similar costs.

True positives (tp) refer to the number of documents whose
document types have been correctly estimated, false positives
(fp) to the number of documents whose document types have
been falsely estimated, and false negative (fn) to the number
of documents classified with a type of a document that was not
found. Based on these values, we can evaluate the performance
of Alg. 3 using precision and recall:

Precision =
tp

tp+ fp
Recall =

tp

tp+ fn
.

C. Results

We conduct experiments to test the performance of the doc-
ument type detection approach based on the earlier described
technique to generate corpora and the evaluation approach.
Table I represents the performance of Alg. 3 using both,
precision and recall for all three corpora. Generally, document
type detection performs best on unrelated and extending doc-
uments. The performance on similar documents and revisions
is worse than on unrelated and extending documents. For all
three corpora, it is not easy to distinguish similar documents
from the revision of a document. The transition probability and
emission probability are similar for both types of documents in
the corresponding HMMs. We have never classified revisions
and similar documents as unrelated documents or document
extensions, respectively, but sometimes we have classified
documents of type dsim as documents of type drev , and vice
versa. We assume an agent interested in similar documents
might accept document revisions because they are similar to
the documents in a corpus. If an agent is only interested in
similar documents or revisions, it must analyse documents
of both types in detail, e.g., by using positions of interest.
Generally, there exists no trivial approach in finding a solution
to distinguish both types, because documents from both types
behave similar, which leads to similar probabilities in their

https://bit.ly/2kOvmwD
https://bit.ly/2Z1v1G9
https://bit.ly/2mOzXAW


underlying HMMs. Kuhr et al. [1] have had the same problem
in distinguishing a new document from type dsim and drev .
Their introduced indicators were the same for similar and
revised documents in the president corpus, and only one of the
five indicators is different for both types in the city corpus.

VI. CONCLUSION

If an agent is presented with a new, unknown document,
this paper enables it to decide whether to extend its refer-
ence library with the new document or not by estimating
its document type in a context-specific way. Specifically,
we present how to model a window sequence with hidden
Markov models to find a most probable sequence of known
and unknown segments of a document. Instead of combining
different indicators identifying the type of a document, we
introduce HMMs, one for each type of document considered,
to identify the type of a new document based on the documents
in a given corpus. As such, the HMMs form an ensemble that
can be easily extended with HMMs for new document types
or weighted to prioritize documents of a certain type. As the
type detection is carried out using the most likely sequence
in the HMMs, we are able to use this sequence to pinpoint
locations in a document that may contain new data.

Future work includes transfer learning such that trained
models can be easily adapted for different corpora. Addition-
ally, we consider forming a probability distribution over the
ensemble of HMMs, leading to a distribution over distributions
allowing for soft decisions about the type of document. Cur-
rently, we focus on improving the performance of document
type detection regarding the distinction between documents
from dsim and drev .
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