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Abstract. Probabilistic Doxastic Temporal (PDT) Logic is a formalism
to represent and reason about belief evolutions in multi–agent systems.
In this work we develop a theory of abduction for PDT Logic. This gives
means to novel reasoning capabilities by determining which epistemic
actions can be taken in order to induce an evolution of probabilistic
beliefs into a desired goal state. Next to providing a formal account of
abduction in PDT Logic, we identify pruning strategies for the solution
space, and give a sound and complete algorithm to find minimal solutions
to the abduction problem.

1 Introduction and Related Work

Epistemic and doxastic logics are used to reason about agents’ knowledge. For-
malizing the analysis of knowledge and belief through such logics has been an
active topic of research in diverse fields. Numerous extensions to modal epis-
temic logic have been made to reason about knowledge in multi–agent settings
(e.g., [8]), to add probabilistic knowledge (e.g., [7]), and to analyze the dynamic
evolution of knowledge (e.g., [4]).

In realistic scenarios an agent usually has only incomplete and inaccurate
information about the actual state of the world, and thus considers several dif-
ferent situations as actually being possible. As it receives new information (e.g.,
it observes some facts), it has to update its beliefs about these possible worlds
such that they are consistent with the new information. These updates can for
example result in regarding some worlds as impossible, or judging some worlds
to be more likely than before. Thus, in addition to analyzing the set of worlds
an agent believes to be possible, it is also expedient to quantify these beliefs in
terms of probabilities. This provides means to specify fine–grained distinctions
between the range of worlds that an agent considers possible but highly unlikely,
and worlds that seem to be almost certainly the actual world.

When multiple agents are involved in such a setting, an agent may not only
have varying beliefs regarding the facts of the actual world, but also regarding
the beliefs of other agents. In many scenarios, the actions of one agent will not
only depend on its belief in facts of the actual world, but also on its beliefs in
some other agent’s beliefs.
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To analyze the belief evolution of multiple agents, problem domains can be
modeled using Probabilistic Doxastic Temporal (PDT) Logic [12]. When analyz-
ing these problem domains, one is often interested in determining what could
be done to bring about a certain belief state of some agent. To illustrate this,
consider the following example:

Example 1 (Cyber security). Suppose that an adversary is trying to break into
a computer system. This is usually done by using an attack graph to detect
and exploit potential vulnerabilities of the system. An attack graph specifies a
set of paths (i.e., sequences of actions) to carry out an attack. Several paths of
the attack graph might be used in parallel, potentially by different agents (for
instance, a number of infected computers controlled by a botnet). Usually, attack
patterns specified by one attack graph are used multiple times. This has two
important ramifications. The adversary will learn from experience which of the
paths yield a high probability of successful attacks to a system. Defenders in turn
will be able to gain knowledge of the attack graph through the repeated obser-
vation of certain patterns. Thus, when a system is under attack, the defender
will have beliefs about both the chosen attack paths and the adversary’s belief
regarding the success of the respective path. Naturally, the defender’s goal is to
choose countermeasures such that the attacker believes that further attacks are
useless.

A formal analysis of belief evolutions in such a cyber security setting using
PDT Logic has been presented in [14]. However, previous work only provides
means for deductive reasoning about the consequences of given events. In this
paper, we show how abduction can be formalized in PDT Logic. This enables
us to determine a required minimal set of actions that one has to take in order
to bring about a desired goal belief state. Next to cyber security settings as in
the above example, this approach may be useful in various domains. To name
only a few examples, in financial markets it might be critical for a company to
determine what kind of information has to be released to the public such that
the shareholders’ belief in a positive outlook is sufficiently high. In cooperative
multi–agent scenarios, it is useful to determine minimal required communication
acts among agents, such that all agents obtain all relevant information. In this
work, we focus on the theoretical aspects of the abduction problem. Due to space
constraints, we can only provide examples to a very limited extend. However,
detailed modeling examples using PDT Logic can be found for example in [12,14].

Abduction has been a subject of extensive research (e.g., [5,9]), with exten-
sions to temporal logic (e.g., [3]) and uncertainty (e.g., [16]). However, there
is little work that studies abduction in the context of both time and uncer-
tainty. A recent study of abduction in settings involving both time and uncer-
tainty has been introduced in [15]. This approach considers abduction for the
single–agent case and uses time-invariant probabilities. By extending this work
such that probabilistic multi–agent beliefs and their dynamic evolution can be
represented, we develop a novel abductive formalism that is able to determine
necessary actions to induce desired beliefs in a multi–agent scenario.
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The remainder of this paper is structured as follows. In the next section, a
brief overview of PDT Logic as introduced in [12] is given. Section 3 shows how
abduction can be formalized using PDT Logic and — after deriving some condi-
tions to prune the search space — presents an algorithm to solve the abduction
problem. Finally, Sect. 4 concludes this work.

2 PDT Logic

We now briefly summarize the syntax and semantics of PDT Logic from [12].
A function–free first order logic language L with finite sets of constant symbols
Lcons and predicate symbols Lpred, and an infinite set of variable symbols Lvar

is given. Every predicate symbol p ∈ Lpred has an arity. A term is any member
of the set Lcons ∪Lvar. A term is called a ground term if it is a member of Lcons.
If t1, .., tk are (ground) terms and p is a predicate symbol in Lpred with arity n,
then p(t1, ..., tk) with k ∈ {0, ..., n} is a (ground) atom. If a is a (ground) atom,
then a and ¬a are (ground) literals. The set of all ground literals is denoted by
Llit. As usual, B denotes the Herbrand Base of L.

Time is modeled as a set τ of discrete time points τ = {1, ..., tmax}. The set
of agents is denoted by A. To describe what a group of agents G ⊆ A observes,
observation atoms are defined as follows:

Definition 1. For a non-empty group of agents G ⊆ A and ground literal l ∈
Llit, ObsG(l) is an observation atom. The set of all observation atoms is denoted
by Lobs.

Both atoms and observation atoms are formulae. If F and G are formulae, then
F ∧ G, F ∨ G, and ¬F are formulae.

Note that the formal concept of observations is not limited to express passive
acts of observing facts, but can instead be used to model a wide range of actions:
for instance, communication between agents could be modeled as group obser-
vations for the respective agents — the ramifications of the communication act
are exactly the same as they would be in a shared observation (assuming that
agents do not lie). In this sense, observations in PDT Logic represent the effects
of epistemic actions in the line of [2] and are used to alter the belief state of
agents — we will build on this below when formalizing the abduction problem.

Ontic facts and according observations form worlds (or states in the termi-
nology of [8]). A world ω consists of a set of ground atoms and a set of obser-
vation atoms, i.e., ω ∈ 2B ∪ 2Lobs With a slight abuse of notation, a ∈ ω and
ObsG(l) ∈ ω are used to denote that an atom a (resp. observation atom ObsG(l))
holds in world ω. Since agents can only observe facts that actually hold in the
respective world, admissibility conditions of worlds w.r.t. the set of observations
can be defined:

Definition 2. A world ω is admissible, iff for every observation ObsG(l) ∈ ω
the observed fact holds (i.e., x ∈ w if l is a positive literal x, and x �∈ w if l is a
negative literal ¬x) and for every subgroup G′ ⊂ G, ObsG′(l) ∈ ω.
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We use Ω to denote the set of all admissible worlds. Satisfaction of a ground
formula F by a world ω (denoted by ω |= F ) is defined the usual way [11].

Example 2. In a (highly simplified) formalization of 1, we could have a set of two
agents A = A,D, representing an attacker and defender, respectively. We assume
that we have two different computer systems C1, C2, and actions att(c), def(c) to
represent that system c is attacked resp. defended. In this scenario, possible ontic
facts could for example be att(C1) and def(C1). Corresponding observations
to this could for example be Obs{D}(att(C1)), representing that the defender
observes an attack on system C1, or Obs{A}(def(C1)), representing that the
attacker observes a defensive action to protect system C1. In this scenario, the
following could be examples of possible worlds:

ω1 = {att(C1), Obs{A}(att(C1))}},

ω2 = {att(C1), Obs{A}(att(C1)), Obs{D}(att(C1))},

ω3 = {att(C1), Obs{A,D}(att(C1))},

Naturally, if the attacker carries out an attack, she observes this attack,
represented by Obs{A}(att(C1)) in all worlds. In ω1, her attack is undetected,
as the defender does not observe it. In worlds ω2 and ω3, the defender detects
this attack. The difference between the latter two worlds is that in ω3, there is a
shared observation about the attack, i.e., both agents know that the respective
opponent has the same observation, while in ω2, the defender observes the attack,
but the attacker is unaware of this.

Using the concept of admissible worlds, we can represent the evolution of
time as sequences of worlds:

Definition 3. A thread is a mapping Th : τ → Ω

Thus, a thread is a sequence of worlds and Th(i) identifies the actual world
at time i according to thread Th. The set of all possible threads (i.e., all possible
sequences constructible from τ and Ω) is denoted by T . A method of constructing
such a set of threads induced by a set of PDT Logic belief formulae B is described
in [13]. Due to space constraints, we do not discuss this method here and instead
simply assume that a specification of possible threads T induced by a set of
PDT Logic belief formulae B is given. For notational convenience, we assume
that there is an additional prior world Th(0) for every thread.

Temporal relationships between events can be expressed through temporal
rules:1

Definition 4. Let F,G be two formulae, and Δt a time interval. Then rΔt(F,G)
is called a temporal rule.

The meaning of such an expression is to be understood as “F is followed by G
after exactly Δt time units”.
1 The introduction of PDT Logic in [12] enables the expression of a variety of temporal

relationships through an axiomatic definition. Due to space constraints, we present
an adapted simplified version that suffices for the purpose of this work.



402 K. Martiny and R. Möller

2.1 Kripke Structures

With the definition of threads, a slightly modified version of Kripke structures
[10] can be adopted. For a set A of n agents, a Kripke structure is defined as
a tuple 〈Ω,K1(t), ...,Kn(t)〉, with the set of admissible worlds Ω and binary
relations Ki on Ω for every agent i ∈ A and every time point t ∈ τ . Intuitively,
(ω, ω′) ∈ Ki specifies that at time t in world ω, agent i considers ω′ as a possible
world as well.

These Kripke structures are initialized for each agent such all worlds that
occur at time t = 1 in some thread Th′ are considered possible.

∀Th ∈ T : Ki(Th(0)) =
⋃

Th′∈T
{Th′(1)}, i = 1, ..., n (1)

Note that the set of time points τ ranges over 1, ..., tmax. We use the auxiliary
time point t = 0 only to simplify the subsequent presentation: by initializing the
Kripke structures as specified above, we can express the Kripke structures for
all time points t ∈ τ as results of successive updates to the respective Ki.

With the evolution of time, each agent can eliminate the worlds that do
not comply with its respective observations. Through the elimination of worlds,
an agent will also reduce the set of threads it considers possible (if — due to
some observation — a world ω is considered impossible at a time point t, then
all threads Th with Th(t) = ω are considered impossible). It is assumed that
agents have perfect recall and therefore will not consider some thread possible
again if it was considered impossible at one point. Thus, Ki is updated w.r.t. the
agent’s respective observations such that it considers all threads possible that
both comply with its current observations and were considered possible at the
previous time point:

Ki(Th(t)) := {Th′(t) : (Th′(t − 1) ∈ Ki(Th(t − 1))∧
{ObsG(l) ∈ Th(t) : i ∈ G} = {ObsG(l) ∈ Th′(t) : i ∈ G})} (2)

Note that — depending on the actual observations — different Kripke struc-
tures Ki may occur at a specific time point t. Ki(t) is used to denote the set of
all possible Kripke structures for agent i at time t.

Example 3. Consider the set of worlds ω1, ..., ω3 from the previous example. In
the absence of any other information, the resulting Kripke structures in this case
would be

KA(ω1) = KA(ω2) = {ω1, ω2},KA(ω3) = {ω3},

KD(ω1) = {ω1},KD(ω2) = {ω2},KD(ω3) = {ω3},

i.e., the attacker cannot distinguish between the worlds where her attack went
undetected and where the attack was detected without her knowing about this.
The defender in turn is able to distinguish between all three worlds, as his
respective observations are unique in each of these worlds.
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2.2 Subjective Posterior Temporal Probabilistic Interpretations

Each agent has probabilistic beliefs about the expected evolution of the world
over time. This is expressed through subjective temporal probabilistic interpre-
tations:

Definition 5. Given a set of possible threads T , some thread T̊ h ∈ T , a time
point t′ and an agent i, I T̊ h

i,t′ : T → [0, 1] specifies the subjective posterior prob-
abilistic temporal interpretation from agent i’s point of view at time t′ in thread
T̊ h, i.e., a probability distribution over all possible threads:

∑
Th∈T I T̊ h

i,t′ (Th) = 1.

T̊ h is called the point of view (pov) thread of interpretation I T̊ h
i,t′ .

The prior probabilities of each agent for all threads are then given by
I T̊ h

i,0 (Th). Since all threads are indistinguishable a priori, there is only a sin-
gle prior distribution for each agent. Furthermore, in order to be able to reason
about nested beliefs, it is assumed that prior probability assessments of all agents
are commonly known (i.e., all agents know how all other agents assess the prior
probabilities of each thread). This in turn requires that all agents have exactly
the same prior probability assessment over all possible threads: if two agents have
different, but commonly known prior probability assessments, we essentially have
an instance of Aumann’s well-known problem of “agreeing to disagree” [1]. Intu-
itively, if differing priors are commonly known, it is common knowledge that (at
least) one of the agents is at fault and should revise its probability assessments.
As a result, there is only one prior probability distribution which is the same
from all viewpoints, denoted by I.

Even though there is only a single prior probability distribution over the set
of possible threads, it is still necessary to distinguish the viewpoints of different
agents in different threads, as the definition of interpretation updates shows:

Definition 6. Let i be an agent, t′ a time point, and T̊ h a pov thread. Then, if
the system is actually in thread T̊ h at time t′, agent i’s probabilistic interpretation
over the set of possible threads is given by the update rule:

I T̊ h
i,t′ =

⎧
⎨

⎩

1

αT̊ h
i,t′

· I T̊ h
i,t′−1(Th) if Th(t′) ∈ Ki(T̊ h(t′))

0 if Th(t′) �∈ Ki(T̊ h(t′))
(3)

with 1

αT̊ h
i,t′

being a normalization factor to ensure that
∑

Th∈T I T̊ h
i,t′ (Th) = 1:

αT̊ h
i,t′ =

∑

T h∈T ,

Th(t′)∈Ki(T̊ h(t′))

I T̊ h
i,t′−1(Th) (4)

Essentially, the update rule assigns all impossible threads a probability of
zero and scales the probabilities of the remaining threads such that they are
proportional to the probabilities of the previous time point.
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2.3 The Belief Operator

Now, with the definitions of subjective posterior probabilistic temporal inter-
pretations, the belief operator B�,u

i,t′(ϕ) to express agents’ beliefs can be defined.
Intuitively, B�,u

i,t′(ϕ) means that at time t′, agent i believes that some fact ϕ is
true with a probability p ∈ [�, u]. The probability interval [�, u] is called the
quantification of agent i’s belief. Ft is used to denote that formula F holds at
time t and, accordingly, ObsG(l)t to denote that an observation ObsG(l) occurs at
time t. These expressions are called time–stamped formulae and time–stamped
observation atoms, respectively.

Definition 7. Let i be an agent, t′ a time point, and [�, u] ⊆ [0, 1]. Then, belief
formulae are inductively defined as follows:

1. If F is a formula and t is a time point, then B�,u
i,t′(Ft) is a belief formula.

2. If rΔt(F,G) is a temporal rule, then B�,u
i,t′(rΔt(F,G)) is a belief formula.

3. If F and G are belief formulae, then so are B�,u
i,t′(F ), F ∧ G, F ∨ G, and ¬F .

For a belief B�,u
i,t′(ϕ) about something, ϕ is called the belief object.

The semantics of this operator is defined as follows:

Definition 8. Let i be an agent and I T̊ h
i,t′ (Th) be agent i’s interpretation at time

t′ in pov thread T̊ h. Then, it follows from this interpretation that agent i believes
at time t′ with a probability in the range [�, u] that

1. (Belief in ground formulae)
a formula F holds at time t (denoted by I T̊ h

i,t′ |= B�,u
i,t′(Ft)) iff:

� ≤
∑

Th∈T ,Th(t)|=F

I T̊ h
i,t′ (Th) ≤ u. (5)

2. (Belief in rules)
a temporal rule rΔt(F,G) holds (denoted by I T̊ h

i,t′ |= B�,u
i,t′(rΔt(F,G))) iff:

� ≤
∑

Th∈T
I T̊ h

i,t′ (Th) · fr(Th, F,G,Δt) ≤ u. (6)

with the function fr giving the frequency of rule rΔt(F,G), i.e., fr divides the
number of occurrences where F is followed by G in Δt time units by the total
number of occurrences of F in thread Th.

3. (Nested beliefs)
a belief B

�j ,uj

j,t (ϕ) of some other agent j holds at time t′ (denoted by

I T̊ h
i,t′ |= B�,u

i,t′(B
�j ,uj

j,t (ϕ))) iff:

� ≤
∑

T h∈T

IT h
j,t |=B

�j,uj
j,t (ϕ)

I T̊ h
i,t′ (Th) ≤ u. (7)
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Note that with respect to this semantics, a belief B1,1
i,t (ϕ) with a quantification

� = u = 1 represents certainty. Thus, B1,1
i,t (ϕ) represents knowledge regarding a

fact ϕ and is therefore equivalent to the established knowledge operator Ki(ϕ)
(cf. e.g., [8]).

As the semantics of the belief operator is defined with respect to the sub-
jective posterior interpretations of the respective agent, it is clear that beliefs
change according to the interpretation updates as given in Definition 6. As the
interpretations are updated with the occurrence of observations, it is clear that
the beliefs of an agent can be influenced by ensuring that the respective agent
makes certain observations. We will use this below to identify possible actions to
induce the abduction goal. A detailed analysis on the resulting belief evolutions
over time can be found in [12]. Further detailed examples that illustrate how
PDT Logic can be used as a modeling language to formally specify a problem
domain are discussed in [13].

A set of belief formulae B entails a belief formula G (denoted by B |= G),
iff every thread Th in the set of threads T induced by B satisfies G.

3 Abduction in PDT Logic

Given a set of PDT Logic formulae B describing a specific scenario, it is often
useful to know what actions one could take to induce a certain belief B�,u

i,t′(ϕ)
of some agent at a specific time t′. As the beliefs in PDT Logic change due to
observations, it is natural to define possible actions as a set of observations that
can be induced.

Definition 9. Let B be a set of PDT Logic formulae, H be a set of PDT Logic
formulae representing observations ObsG(l)t and let G ≡ B�,u

i,tg
(ϕ) be an atomic

belief formula. Then, the triple 〈B,H,G〉 is an instance of the PDT Abduction
Problem. S ⊆ H is a solution to the abduction problem iff B ∪ S is satisfiable
and B ∪ S |= G. A solution S is a minimal solution to the abduction problem if
there exists no solution S′ with |S′| < |S| so that B ∪ S′ |= G.

Intuitively, B constitutes the background knowledge that models a specific
environment, G describes the goal we want to achieve, and the hypotheses space
H represents information that we can share with the agents in order to induce
the belief described by G.

3.1 The Hypotheses Space H
As the background knowledge B induces a set of possible threads T (cf. [13]),
we do not need to specify the hypotheses space H explicitly, but instead we can
determine a set of hypothesis candidates H ′ from T as the set of all observations
that can possibly occur:

H ′ = {ObsG(l)t : (∃Th ∈ T : ObsG(l) ∈ Th(t))} (8)
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Before actually trying to solve the abduction problem specified in Definition 9, we
can identify necessary preconditions that an observation ObsG(l)t ∈ H ′ has to sat-
isfy in order to be able to contribute to a solution of the abduction problem: The
set H ′ collects all observations that can possibly occur in the situation described
by B. However, not all of these observations have the means to alter the quantifi-
cation of the goal belief G. With a slight abuse of notation, we use i ∈ G to denote
that agent i is involved in the goal belief G, i.e., G contains a belief operator B�,u

i,t′

(possibly as part of a nested belief). Then, we can define a dependency property
dep(G,ObsG(l)t) between the goal and an observation as follows:

Definition 10 (Goal dependency). Let G be the abduction goal and let
ObsG(l)t be an observation. G is dependent on ObsG(l)t, denoted by dep(G,
ObsG(l)t), iff

i ∈ G ∧ i ∈ G (9)

Naturally, any observation ObsG(l)t ∈ H ′ that does not satisfy this depen-
dency property is unable to contribute to achieving the goal and can therefore
be neglected when searching for a solution to the abduction problem. Thus, we
can define the set of relevant atomic hypotheses as

H = {ObsG(l)t ∈ H ′ : dep(G,ObsG(l)t)} (10)

Whenever an observation occurs for some agent i, the set of threads it consid-
ers possible is reduced such that only those threads remain where the respective
observation holds. We use KS

i (tg) to denote the set of possibility relations for
agent i at the time tg of the goal belief2 induced by a potential solution S ⊆ H.
We can then leverage the semantics of the belief operator (cf. Definition 8) to
obtain another necessary precondition: for G ≡ B�,u

i,tg
(ϕ) with 0 < � and u < 1,

in every distinguishable situation Ki(tg) that i considers possible at time tg,
there need to be two threads Th1, Th2 so that the respective belief object ϕ is
satisfied in one thread and unsatisfied in another. If the belief is quantified with
� = u = 1, all threads in all distinguishable situations Ki(tg) have to satisfy
the belief object ϕ. Otherwise, if these conditions are not met, it is clear that
the goal belief is not valid, independently of any specific probability assignment.
These conditions can be checked syntactically prior to evaluating the semantic
entailment B ∪ S |= G. Using sp(S) to denote the syntactic possibility of a
solution S, we can formally express these considerations as

sp(S) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

true if 0 < �, u < 1 and ∀Ki(tg) ∈ KS
i (tg) :

∃Th1, Th2 ∈ Ki(tg) : Th1(tg) |= ϕ ∧ Th2(tg) |= ¬ϕ

true if � = u = 1 and ∀Ki(tg) ∈ KS
i (tg) :

(∀Th ∈ Ki(tg) : Th(tg) |= ϕ)
false otherwise

(11)

2 To simplify the presentation, we assume that (even for nested beliefs) the goal for-
mula G involves only a single time point tg. The proposed methods are also applicable
to goal formulae involving multiple time points, but this will significantly increase
the complexity of presentation.
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With these considerations we can define the entire search space H for possible
solutions to the abduction problem as

H = {S ∈ 2H : sp(S)} (12)

3.2 The Abduction Process

To determine whether a candidate solution S ⊆ H is actually a solution to the
abduction problem, i.e., S together with the background knowledge B entails
the goal G, we can reformulate the entailment problem as a satisfiability problem
in the usual way [6], provided that B ∪ {G} is consistent:

B ∪ S |= {G} ≡ ¬sat(B ∪ S ∪ {¬G}) (13)

Checking satisfiability of a set of PDT Logic can be performed as described in
[13]. The complexity of satisfiability checking is as follows.

Theorem 1 (Complexity of PDT SAT). Reference [13] Checking satisfia-
bility of a set of PDT Logic belief formulae B is NP–complete.

Building on this result, we obtain the following complexity result for deciding
whether a solution exists for an instance of the PDT Logic abduction problem:

Theorem 2 (Complexity of PDT Abduction). Let A = 〈B,H,G〉 be an
instance of the PDT Logic abduction problem. Deciding whether a solution exists
is ΣP

2 –complete.

Proof. Due to space constraints, we only give a proof sketch here. The complete
proof works analogously to the proof of Theorem 4.2 in [15].

Showing membership is straightforward: We can guess a potential solution
S ⊆ H. Using (13) and Theorem 1, it is easy to see that this solution can be
verified in polynomial time by querying an NP oracle.

A known ΣP
2 –complete problem [17] is validity checking of a quantified

Boolean formula Φ of the form ∃X∀Y ψ(X,Y ) with mutually distinct Boolean
variables X = 〈x1, ..., xn〉 and Y = 〈y1, ..., ym〉, respectively and ψ(X,Y ) a
Boolean formula over the variables xi and yj . Intuitively, this problem has a
close connection to the PDT Logic abduction problem, as we need to find some
assignment to X (i.e., an abductive solution) such that the goal Y is always
satisfied. Thus, we use the respective xi as potential observation objects of the
abduction problem, and set ψ(X,Y ) as the abduction goal; i.e., we do not restrict
the set of possible threads by leaving the background knowledge B empty, pick
an arbitrary agent a and define hypotheses and goal belief for this agent as
follows:

B = ∅, H =
n⋃

i=1

{Obsa(xi)1, Obsa(¬xi)1}, S = B1,1
a,t (ψ(X,Y ))

Using this formulation, we can transform validity checks of any Boolean formula
Φ of the above form to an instance of the PDT Logic abduction problem and
thus show that the problem is ΣP

2 –hard. ��
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Adapting the approach from [15] by substituting geometric polytope opera-
tions with according satisfiability checks, we can identify several distinct cases
that will guide the abduction procedure:

Proposition 1. Let 〈B,H,G〉 be an instance of the PDT Logic abduction prob-
lem and let S ⊆ H be a potential solution to this problem. Then, the following
observations hold for the abduction problem:

1. ¬sat(B∪ {G}), background knowledge and goal are inconsistent. Then, there
is no solution to the abduction problem and no hypothesis S has to be tested.
Otherwise, if background knowledge and goal are consistent, we can identify
the following scenarios:

2. ¬sat(B ∪ {¬G}), the background knowledge always entails the goal. Then, ∅
is already a solution to the abduction problem and no hypothesis S has to be
tested.

3. ¬sat(B∪S), the potential solution is inconsistent w.r.t. the background knowl-
edge. Then, every potential solution S′ with S ⊆ S′ ⊆ H is also inconsistent,
and therefore cannot be a solution to the abduction problem. Then, we can
remove S′ from H to prune the hypotheses space when searching for solutions
to the abduction problem.

The first two checks determine whether it is at all required to search for a
solution to the abduction problem. The third case provides a pruning condi-
tion for the hypotheses search space H: if a solution candidate is not satisfiable
together with the background knowledge, it is futile to test any superset of this
solution. Using these properties, we obtain the abduction procedure depicted in
Algorithm 1: after checking whether it is required to search for a solution at
all (lines 2–5), the procedure iterates through all potential solutions from H,
ordered by their respective size (lines 4–15), and prunes the search space when-
ever some potential solution S is inconsistent w.r.t. the background knowledge
(line 14). The procedure terminates if a solution is found or the search space is
empty.

Remark 1. Reference [15] provides another pruning condition for abductive rea-
soning in APT Logic by arguing that for B ∪ S �|= G (with sat(B ∪ S)), any
subset S′ ⊆ S cannot solve the abduction problem, either. This is not applicable
in PDT Logic, because beliefs change with additional observations, and thus it
is possible that S′ is indeed a solution to the abduction problem, while S with
additional observations is not.

Iterating through the search space in increasing order with respect to the
solution size has to important ramifications: First, it is ensured that any pruning
operations due to inconsistent combinations of background knowledge and solu-
tion candidates are carried out as early as possible. The smaller the respective
solution, the larger is the respective pruned superset and thus, pruning opera-
tions are applied most effectively. Second, any solution S returned by Algorithm 1
is a minimal solution to the abduction problem.
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Algorithm 1. Abduction Algorithm for PDT Logic
1: procedure abduce(B,H,G)
2: if ¬sat(B ∪ G) then � case 1: B ∪ G is inconsistent
3: return false
4: if ¬sat(B ∪ ¬G) then � case 2: B |= G
5: return ∅
6: H ← {S ∈ 2H : sp(S)} � init search space as set of syntactically possible solutions
7: i ← 1
8: while (H �= ∅ and i ≤ |H|) do � test solutions in order of simplicity
9: for S ∈ H with |S| = i do

10: if ¬sat(B ∪ S ∪ ¬G) then � S is a solution
11: return S
12: else
13: if ¬sat(B ∪ S) then � case 3: B ∪ S is inconsistent, prune supersets
14: H ← H \ {S′ : S′ ∈ H ∧ S′ ⊇ S}
15: i ← i + 1
16: return false

Theorem 3. Let A = 〈B,H,G〉 be an instance of the PDT Logic abduction
problem. If A has a solution, then Algorithm 1 returns a minimal solution S so
that B ∪ S |= G. Otherwise, the algorithm returns false.

Proof. We start with showing that any set discarded in the pruning step (line
14) cannot be a solution to the abduction problem. If B∪S is unsatisfiable, this
set is already overly constrained so that no thread remains that could possibly
satisfy all formulae in this set. Then, as observed in Proposition 1, adding further
constraints will clearly still result in an empty set of possible threads. Thus, it
is unnecessary to test any set S′ ⊇ S for possible solutions to the abduction
problem.

If the abduction problem has a solution, it is clear that the loop in lines 4–15
will eventually find and return a solution, as all solution candidates are tested
iteratively unless they are discarded as above. Since the algorithm iterates over
the set of possible solutions by increasing size of the solution, any returned
solution S will necessarily be minimal. If there had been a smaller solution S′

with |S′| < |S, the algorithm would have terminated earlier by returning this
solution S′. ��

4 Conclusion

In this paper, we have presented how abduction can be formalized in the context
of Probabilistic Doxastic Temporal (PDT) Logic. We have discussed how relevant
hypotheses space can be determined automatically from a set of threads and have
developed a sound and complete algorithm to give a minimal solution to the
abduction problem. We have shown that the problem of searching for a solution
to the abduction problem is ΣP

2 –complete and we have derived several criteria
for effectively pruning the solution search space.

To the best of our knowledge, this is the first work that studies abduction in
the context of dynamically evolving beliefs for multi–agent systems, and thus, the
methods introduced in this work provide means for novel reasoning capabilities.
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12. Martiny, K., Möller, R.: A probabilistic doxastic temporal logic for reasoning about

beliefs in multi-agent systems. In: 2015 Proceedings of the 7th International Con-
ference on Agents and Artificial Intelligence, ICAART 2015. SciTePress (2015)
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