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Abstract. The lifted dynamic junction tree algorithm (LDJT) answers
filtering and prediction queries efficiently for probabilistic relational tem-
poral models by building and then reusing a first-order cluster represen-
tation of a knowledge base for multiple queries and time steps. We ex-
tend LDJT to answer conjunctive queries over multiple time steps, while
keeping the complexity to answer a conjunctive query low, by avoiding
eliminations. The extended version of saves computations compared to
an existing approach to answer multiple lifted conjunctive queries.

1 Introduction

Areas like healthcare and logistics involve probabilistic data with relational and
temporal aspects and need efficient exact inference algorithms. These areas in-
volve many objects in relation to each other with changes over time and un-
certainties about object existence, attribute value assignments, or relations be-
tween objects. More specifically, healthcare systems involve electronic health
records (relational) for many patients (objects), streams of measurements over
time (temporal), and uncertainties [21] due to, e.g., missing information caused
by data integration. Probabilistic databases (PDBs) can answer queries for re-
lational temporal models with uncertainties [5,6]. However, each query possibly
contains redundant information, resulting in huge queries. In contrast to PDBs,
we build more expressive and compact models including behaviour (offline) en-
abling efficient answering of more compact queries (online). For query answering,
our approach performs deductive reasoning by computing marginal distributions
at discrete time steps. In this paper, we study the problem of exact inference for
answering multiple conjunctive queries in temporal probabilistic models.

We propose the lifted dynamic junction tree algorithm (LDJT) to exactly
answer multiple filtering and prediction queries for multiple time steps efficiently
[7]. LDJT combines the advantages of the interface algorithm [13] and the lifted
junction tree algorithm (LJT) [2]. Specifically, this paper presents LDJTcon to
answer multiple conjunctive queries efficiently. In the static case, LJT answers
conjunctive queries by merging a subtree of a first-order junction tree (FO jtree),
which contains all query terms. For the temporal case, merging multiple time
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steps, increases the complexity to answer multiple conjunctive query. Therefore,
we propose to avoid eliminations of query terms to answer multiple conjunctive
queries efficiently. Answering multiple conjunctive queries over different time
steps can be used to perform probabilistic complex event processing (CEP) [25].
CEP is a hard problem and also for healthcare, a series of events is of interest.

The remainder of this paper has the following structure: We begin by recapit-
ulating parameterised probabilistic dynamic models (PDMs) as a representation
for relational temporal probabilistic models and LDJT. Afterwards, we present
how LJT answers static conjunctive queries and propose an approach to answer
temporal conjunctive queries. Lastly, we evaluate the computational savings of
our approach and conclude by looking at possible extensions.

2 Related Work

We take a look at inference for propositional temporal models, relational static
models, and give an overview about research on relational temporal models.

For exact inference on propositional temporal models, a naive approach is to
unroll the temporal model for a given number of time steps and use any exact
inference algorithm for static, i.e., non-temporal, models. Murphy [13] proposes
the interface algorithm consisting of a forward and backward pass using temporal
d-separation to apply static inference algorithms to the dynamic model.

First-order probabilistic inference leverages the relational aspect of a static
model. For models with known domain size, it exploits symmetries in a model
by combining instances to reason with representatives, known as lifting [16].
Poole [16] introduces parametric factor graphs as relational models and proposes
lifted variable elimination (LVE) as an exact inference algorithm on relational
models. Further, de Salvo Braz [18], Milch et al. [11], and Taghipour et al. [20]
extend LVE to its current form. Lauritzen and Spiegelhalter [9] introduce the
junction tree algorithm. To benefit from the ideas of the junction tree algorithm
and LVE, Braun and Möller [2] present LJT, which efficiently performs exact
first-order probabilistic inference on relational models given a set of queries.

To handle inference for relational temporal models most approaches are ap-
proximative. Additional to being approximative, these approaches involve un-
necessary groundings or are not designed to handle multiple queries efficiently.
Ahmadi et al. [1] propose lifted (loopy) belief propagation. From a factor graph,
they build a compressed factor graph and apply lifted belief propagation with
the idea of the factored frontier algorithm [12], which is an approximate counter-
part to the interface algorithm. Thon et al. [22] introduce CPT-L, a probabilistic
model for sequences of relational state descriptions with a partially lifted infer-
ence algorithm. Geier and Biundo [8] present an online interface algorithm for
dynamic Markov logic networks (DMLNs), similar to the work of Papai et al. [15].
Both approaches slice DMLNs to run well-studied MLN inference algorithms [17]
on each slice. Two ways of performing online inference using particle filtering are
described in [10,14]. Vlasselaer et al. [24,23] introduce an exact approach for re-
lational dynamic models, but perform inference on a ground knowledge base.
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However, by using efficient inference algorithms we calculate exact solutions
for relational temporal models. Therefore, we extend LDJT, which leverages the
well-studied LVE and LJT algorithms, to answer multiple conjunctive queries.

3 Parameterised Probabilistic Models

Based on [4], we present parameterised probabilistic models (PMs) for relational
static models. Afterwards, we extend PMs to the temporal case, resulting in
PDMs for relational temporal models, which, in turn, are based on [7].

3.1 Parameterised Probabilistic Models

PMs combine first-order logic with probabilistic models, representing first-order
constructs using logical variables (logvars) as parameters. Let us assume, we
would like to remotely infer the condition of patients with regards to water
retaining. To determine the condition of patients, we use the change of their
weights. An increase in weight could either be caused by overeating or retaining
water. Additionally, we use the change of weights of people living with the patient
to reduce the uncertainty to infer conditions. In case both persons gain weight,
overeating is more likely, while otherwise retaining water is more likely. If a water
retention is undetected, it can be an acute life-threatening condition.

Definition 1. Let L be a set of logvar names, Φ a set of factor names, and
R a set of random variable (randvar) names. A parameterised randvar (PRV)
A = P (X1, ..., Xn) represents a set of randvars behaving identically by combining
a randvar P ∈ R with X1, ..., Xn ∈ L. If n = 0, the PRV is parameterless. The
domain of a logvar L is denoted by D(L). The term range(A) provides possible
values of a PRV A. Constraint (X, CX) allows to restrict logvars to certain
domain values and is a tuple with a sequence of logvars X = (X1, ..., Xn) and a
set CX ⊆ ×ni=1D(Xi). > denotes that no restrictions apply and may be omitted.
The term lv(Y ) refers to the logvars in some element Y . The term gr(Y ) denotes
the set of instances of Y with all logvars in Y grounded w.r.t. constraints.

To model our scenario, we use the randvar names C, LT , S, and W for
Condition, LivingTogether, ScaleWorks, and Weight, respectively, and the logvar
names X and X ′. From the names, we build PRVs C(X), LT (X,X ′), S(X),
and W (X). The domain of X and X ′ is {alice, bob, eve}. The range of C(X)
is {normal, deviation, retains water}. LT (X,X ′) and S(X) have range {true,
false} and W (X) has range {steady, falling, rising}. With κ = (X, {alice,
bob}), gr(C(X)|κ) = {C(alice), C(bob)}. gr(C(X)|>) also contains C(eve).

Definition 2. We denote a parametric factor (parfactor) g with ∀X : φ(A) |C.
X ⊆ L being a set of logvars over which the factor generalises and
A = (A1, ..., An) a sequence of PRVs. We omit (∀X :) if X = lv(A). A function
φ : ×ni=1range(A

i) 7→ R+ with name φ ∈ Φ is defined identically for all grounded
instances of A. A list of all input-output values is the complete specification for
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Fig. 1. Parfactor graph for Gex
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φ. C is a constraint on X. A PM G := {gi}ni=0 is a set of parfactors and seman-
tically represents the full joint probability distribution PG = 1

Z

∏
f∈gr(G) f where

Z is a normalisation constant.

Now, we build the model Gex of our example with the parfactors:

g0 = φ0(C(X), S(X),W (X))|> and g1 = φ1(C(X), C(X ′), LT (X,X ′))|κ1

We omit the concrete mappings of φ0 and φ1. Parfactor g0 has the constraint
>, meaning it holds for alice, bob, and eve. The constraint κ1 of g1 ensures that
X 6= X ′ holds. Fig. 1 depicts Gex as a parfactor graph and shows PRVs, which
are connected via undirected edges to parfactors.

The semantics of a model is given by grounding and building a full joint
distribution. In general, queries ask for a probability distribution of a randvar
using a model’s full joint distribution and fixed events as evidence.

Definition 3. Given a PM G, a ground PRV Q, and grounded PRVs with fixed
range values E = {Ei = ei}i, the expression P (Q|E) denotes a query w.r.t. PG.

3.2 Parameterised Probabilistic Dynamic Models

We define PDMs based on the first-order Markov assumption, i.e., a time slice
t only depends on the previous time slice t− 1. Further, the underlying process
is stationary, i.e., the model behaviour does not change over time.

Definition 4. A PDM is a pair of PMs (G0, G→) where G0 is a PM repre-
senting the first time step and G→ is a two-slice temporal parameterised model
representing At−1 and At where Aπ is a set of PRVs from time slice π.

Ct−1(X)

g0t−1

St−1(X)Wt−1(X)

g1t−1

LTt−1(X,X ′)Ct−1(X ′)

Ct(X)
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g1t

LTt(X,X
′)Ct(X

′)

gC
gLT

gS

Fig. 3. Gex
→ the two-slice temporal parfactor graph for model Gex
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Figure 3 shows how the model Gex behaves over time. Gex→ consists of Gex for
time step t − 1 and for time step t with inter-slice parfactors for the behaviour
over time. In this example, gLT , gC , and gS are the inter-slice parfactors.

Definition 5. Given a PDM G, a ground PRV Qt, and grounded PRVs with
fixed range values E0:t = {Eit = eit}i,t, P (Qt|E0:t) denotes a query w.r.t. PG.

The problem of answering a marginal distribution query P (Aiπ|e0:t) w.r.t.
the model is called prediction for π > t and filtering for π = t.

4 Lifted Dynamic Junction Tree Algorithm

In this section, we recapitulate LJT [3] to answer queries for PMs and LDJT [7]
a filtering and prediction algorithm to answer queries for PDMs.

4.1 Lifted Junction Tree Algorithm

LJT provides efficient means to answer queries P (Qi|E), with Qi ∈ Q a set
of query terms, given a PM G and evidence E, by performing the following
steps: (i) Construct an FO jtree J for G. (ii) Enter E in J . (iii) Pass messages
(iv) Compute answer for each query Qi ∈ Q.

We first define an FO jtree and then go through each step. To define an
FO jtree, we define parameterised clusters (parclusters), nodes of an FO jtree.

Definition 6. A parcluster C is defined by ∀L : A|C. L is a set of logvars, A
is a set of PRVs with lv(A) ⊆ L, and C a constraint on L. We omit (∀L :) if
L = lv(A). A parcluster Ci can have parfactors φ(Aφ)|Cφ assigned given that
(i) Aφ ⊆ A, (ii) lv(Aφ) ⊆ L, and (iii) Cφ ⊆ C holds. We call the set of assigned
parfactors a local model Gi.
An FO jtree for a PM G is J = (V,P) where J is a cycle-free graph, the nodes V
denote a set of parclusters, and P is a set of edges between parclusters. J must
satisfy the following properties: (i) A parcluster Ci is a set of PRVs from G.
(ii) For each parfactor φ(A)|C in G, A must appear in some parcluster Ci. (iii) If
a PRV from G appears in two parclusters Ci and Cj, it must also appear in every
parcluster Ck on the path connecting nodes i and j in J (running intersection).
The separator Sij of edge i− j is given by Ci ∩Cj containing shared PRVs.

LJT constructs an FO jtree using a first-order decomposition tree, enters
evidence in the FO jtree, and to distribute local information of the nodes through
the FO jtree, passes messages through an inbound and an outbound pass. To
compute a message, LJT eliminates all non-separator PRVs from the parcluster’s
local model and received messages. After message passing, LJT answers queries.
For each query, LJT finds a parcluster containing the query term and sums out
all non-query terms in its local model and received messages.

Figure 2 shows an FO jtree ofGex with the local models of the parclusters and
the separators as labels of edges. During the inbound phase of message passing,
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LJT sends messages from C1 to C2 and for the outbound phase a message from
C2 to C1. If we would like to know whether S(bob) holds, we query P (S(bob)) for
which LJT can use parcluster C1. LJT sums out C(X), W (X), and S(X) where
X 6= bob from C1’s local model G1, {g0}, combined with the received messages.

4.2 LDJT: Overview

LDJT efficiently answers queries P (Qiπ|E0:t), with Qiπ ∈ Qt and Qt ∈ {Qt}Tt=0,
given a PDMG and evidence {Et}Tt=0, by performing the following steps: (i) Con-
struct offline two FO jtrees J0 and Jt with in- and out-clusters from G. (ii) For
t = 0, enter E0 in J0, pass messages, answer each query term Qiπ ∈ Q0, and
preserve the state in message α0. (iii) For t > 0, instantiate Jt for the current
time step t, recover the previous state from αt−1, enter Et in Jt, pass messages,
answer each query term Qiπ ∈ Qt, and preserve the state in message αt.

Next, we show how LDJT constructs the FO jtrees J0 and Jt with in- and
out-clusters, which contain a minimal set of PRVs to m-separate the FO jtrees.
M-separation means that information about these PRVs make FO jtrees in-
dependent from each other. Afterwards, we present how LDJT connects the
FO jtrees for reasoning to solve the filtering and prediction problems efficiently.

4.3 LDJT: FO Jtree Construction for PDMs

LDJT constructs FO jtrees for G0 and G→, both with an incoming and outgoing
interface. To be able to construct the interfaces in the FO jtrees, LDJT uses the
PDM G to identify the interface PRVs It for a time slice t.

Definition 7. The forward interface is defined as It = {Ait | ∃φ(A)|C ∈ G :
Ait ∈ A ∧ ∃A

j
t+1 ∈ A}, i.e., the PRVs which have successors in the next slice.

For Gex→ , which is shown in , PRVs Ct−1(X), LTt−1(X,X ′), and St−1(X)
have successors in the next time slice, making up It−1. To ensure interface PRVs
I ending up in a single parcluster, LDJT adds a parfactor gI over the interface to
the model. Thus, LDJT adds a parfactor gI0 over I0 to G0, builds an FO jtree J0
and labels the parcluster with gI0 from J0 as in- and out-cluster. For G→, LDJT
removes all non-interface PRVs from time slice t − 1, adds parfactors gIt−1 and
gIt , constructs Jt, and labels the parcluster containing gIt−1 as in-cluster and the
parcluster containing gIt as out-cluster.

The interface PRVs are a minimal required set to m-separate the FO jtrees.
LDJT uses these PRVs as separator to connect the out-cluster of Jt−1 with the
in-cluster of Jt, allowing to reusing the structure of Jt for all t > 0.

4.4 LDJT: Proceeding in Time with the FO Jtree Structures

Since J0 and Jt are static, LDJT uses LJT as a subroutine by passing on a
constructed FO jtree, queries, and evidence for time step t to handle evidence
entering, message passing, and query answering using the FO jtree. Further, for
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Fig. 4. Forward pass of LDJT without C1
3 (local models and labeling in grey)

proceeding to the next time step, LDJT calculates an αt message over the inter-
face PRVs using the out-cluster to preserve the information about the current
state. Afterwards, LDJT increases t by one, instantiates Jt, and adds αt−1 to
the in-cluster of Jt. During message passing, αt−1 is distributed through Jt.

Figure 4 depicts how LDJT uses the interface message passing between time
step three to four. First, LDJT sums out the non-interface PRVs from C2

3’s
local model and the received messages and saves the result in message α3. Af-
ter increasing t by one, LDJT adds α3 to the in-cluster of J4, C3

4. α3 is then
distributed by message passing and accounted for during calculating α4.

5 Conjunctive Queries

We begin with recapitulating how LJT answers conjunctive queries in the static
case [4]. Afterwards, we introduce LDJTcon to efficiently answer multiple con-
junctive queries with query terms from different time steps.

5.1 Conjunctive Queries in LJT

We extend Def. 3 to allow for multiple query terms in a static query.

Definition 8. Given a PM G, grounded PRVs Q and grounded PRVs with fixed
range values E = {Ei=ei}i, the expression P (Q|E) denotes a query w.r.t. P (G).

Each query of the set of queries Q that LJT answers can be a conjunctive
query. Since the query terms are not necessarily contained in a single parcluster,
LJT builds for that conjunctive query a parcluster containing all query terms
to leverage its default query answering behaviour. Therefore, LJT identifies a
subtree containing all query terms. LJT merges the subtree into one parcluster
to answer the query. Further, LJT can still use the messages calculated during
the initial message pass, which enter the subtree from the outside. Thus, after
merging the subtree, LJT can directly use LVE on the local model of the merged
subtree with the messages to answer a conjunctive query.

5.2 Conjunctive Queries in LDJT

Now, we introduce LDJTcon to answer multiple conjunctive queries. In case
LDJT answers conjunctive filtering queries, meaning that all query terms are
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from the same time step, LDJT can just use LJT’s merging approach. However,
in case the query terms of a conjunctive query are from time step t up to time
step t+ δ, LDJT would need to instantiate FO jtrees for δ time steps and iden-
tify a subtree for the combination of δ FO jtrees. The subtree contains at least
(δ − 2) ×m + 2 parclusters, where m is the number of parclusters on the path
between in- and out-cluster. Thus, merging the parclusters of the subtree, leads
to a parcluster with many PRVs. Further, the asymptotic complexity of LVE
is exponential in the number of PRVs [19]. Hence, we propose an approach to
answer temporal conjunctive queries, which merges fewer PRVs in a parcluster.
First, we extend Def. 5 to allow for multiple query terms in a temporal query.

Definition 9. Given a PDM G, grounded PRVs Qt and grounded PRVs with
fixed range values E0:t = {Eit = eit}i,t, P (Qt|E0:t) denotes a query w.r.t. P (G).

Now, each query that LDJTcon answers can be a conjunctive query. To answer
a conjunctive query, LDJTcon needs a parcluster containing all query terms. We
construct this parcluster without over-approximating the number of PRVs as
much as merging a subtree. Thus, we develop an approach to avoid eliminations
of query terms to obtain one parcluster with all query terms. To send a message
from parcluster C1 to C2, LDJT eliminates all PRVs from C1 that are not
included in the separator S12. Hence, LDJT extends separators with query terms.
A PRV is in a separator iff the PRV is contained in both parclusters, which the
separator connects. Therefore, to avoid the elimination of a PRV, LDJTcon adds
the PRV to all parclusters on the path from the parcluster, where the PRV
would be eliminated, to a designated parcluster. By extending parclusters with
the query PRVs, LDJT can avoid the elimination of the query terms to answer
conjunctive queries by leveraging LDJT’s behaviour to answer a query.

A naive approach to extend parclusters is to add the query PRVs to all
parclusters of the relevant time steps. Unfortunately by over-approximating the
extension of parclusters, LDJT increases the number of PRVs in each parcluster.
However, the complexity of LVE depends on the PRVs parclusters. Thus, we
propose to add the query PRVs on demand, which is outlined in Alg. 1. Basically,
LDJT adds all query PRVs to a designated parcluster. Therefore, the number of
PRVs in parclusters is only extended by the necessary number of PRVs.

Using Alg. 1 LDJTcon ensures that one parcluster contains all query terms.
Then LDJT performs a message pass, and answers the conjunctive query Q. To
answer a conjunctive query, LDJTcon instantiates FO jtree J for the time steps
t to t+δ of Q. From J LDJTcon selects a root parcluster, which contains most of
the query terms fromQ and is from the last time step of J , as designated receiver
of all query PRVs. Now, LDJTcon needs to avoid the elimination of the query
terms of Q to the root parcluster. Therefore, starting from each leaf parcluster,
LDJTcon traverses the path to the root parcluster. As FO jtrees are cycle-free
graphs, there is exactly one path from each leaf parcluster to the root parclus-
ter. While traversing the paths, LDJTcon checks whether a parcluster contains
query PRVs and adds the query PRVs to all parclusters on the path to the root
parcluster. Thereby, LDJT delays the elimination of query terms to the root
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Algorithm 1 Answer Conjunctive Query for Unrolled FO Jtrees for Time Steps
t to t+ δ J and Conjunctive Query Q

procedure AnswerConjunctiveQuery(J ,Q)
root := Parcluster with the most query terms from time step t+ δ
for all Leaf parcluster p ∈ J do

current := p
while current 6= root do

qt := Q∩ current
next := next parcluster on the path to root
next := next+ qt
current := next

J := LJT.PassMessages(J )
LVE.AnswerQuery(root,Q)

parcluster. Another way of interpreting the extension of the root parcluster is to
add all the query terms of Q to the root parcluster and then to ensure the run-
ning intersection property of an FO jtree. After root is extended, LDJTcon has
to repeat a message pass, as the PRVs in parclusters changed. Lastly, LDJTcon

can use LVE to answer the conjunctive query with the root parcluster’s local
model, which contains at least the query terms, and the incoming messages.

Unfortunately, by avoiding eliminations of query terms, LDJT needs to per-
form an extra message pass as outlined in Alg. 1. Nonetheless, the approach is
still advantageous over identifying a subtree and merge the subtree into one par-
cluster for conjunctive queries over multiple time steps. Even though the work
to answer one conjunctive query is the same, our approach is parallelisable and
the search space for the elimination order is smaller. Further, for a second con-
junctive query with the same query PRVs but different grounding, the work of
the message pass can be reused and thereby redundant computations prevented.

To perform CEP, events from different time steps are queried. For example,
we are interested whether there is an influence from LTt(x1, x2), Ct+2(x1), and
Ct+2(x2). Figure 4 shows our example model unrolled for time step 3 and 4, with-
out parcluster C1

3. Assuming, we have the conjunctive query P (LT2(eve, bob),
C4(bob), C4(eve)), then LDJTcon can apply the steps of Alg. 1 to answer the
query. First, LDJTcon selects C1

4 as root parcluster, because C1
4 is from the

latest time step and is a parcluster containing most of the query terms. After-
wards, LDJTcon extends the parclusters on the path from the leaf parclusters
C1

3 and C3
3 to root. C3

3 includes the query term LT2(eve, bob). Hence, LDJT
adds LT2(X,X ′) to all parclusters on the path to the root parcluster, namely
C2

3, C3
4, C2

4, and to the root parcluster C1
4. No additional parcluster on the path

from C3
3 to root contain any query terms. The same holds for the path from C1

3

to root. Second, LDJTcon performs a message pass on the extended FO jtree.
Last, LDJTcon uses root to answer the conjunctive query. LDJTcon increases the
maximum number of PRVs in a parcluster from 6 to 7, allowing us to efficiently
answer multiple conjunctive query, e.g., also for alice and bob. By performing
merging, all parclusters would be merged in a parcluster with 12 PRVs.
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Theorem 1. LDJTcon’s answering of conjunctive queries is correct.

Proof. While extending a parcluster P to contain at least all query terms, LDJT
ensures the running intersection property of FO jtrees. Thus, after the extension,
the FO jtree is still valid, only with a changed elimination order. Further, LDJT
performs a complete message pass after the FO jtree structure is changed to
distribute information. Therefore, LDJT still has a valid FO jtree with P con-
taining all query terms and the local model of P received the incoming messages.
Hence, given that LVE is correct, using LVE to answer the conjunctive query
with P ’s local model produces a correct answer to the conjunctive query.

Algorithm 1 still has room for improvement, e.g., currently, in case paths to
the root parclusters merge, they are traversed multiple times. Further, LDJT
could directly perform the message passing, while extending the parclusters and
in case one only wants to use the unrolled FO jtree to answer conjunctive query
with different grounding of the query PRVs, an inbound pass to the root par-
cluster would suffice to answer the conjunctive query. Furthermore, instead of
unrolling FO jtrees, LDJT could also always only instantiate an FO jtree for
one time step and proceed in time as described in Section 4.4, and one could in-
creased parclusters to prevent groundings [3]. Nonetheless, Alg. 1 in the current
form allows for answering conjunctive queries from time step t − π to t + δ in
case one extends LDJT to answer hindsight queries by performing smoothing.

6 Evaluation

For the evaluation, we use the example model Gex and evaluate computations
LDJTcon can save. Therefore, we compare the maximum number of PRVs in a
parcluster for LDJTcon against merging a subtree containing all query terms. We
evaluate the influence the number of PRVs and the time interval in a conjunctive
query have on the maximum number of PRVs in a parcluster. An example query
is P (Wt−δ(eve), Ct(eve)), which has two PRVs and the time interval is δ.

Figure 5 shows the maximum number of PRVs in a parcluster for different
time intervals dependent on the maximum number of PRVs queried in a time
step. The line for 2 PRVs (filled diamond) shows the parcluster size for conjunc-
tive queries with at most 2 different PRVs queried in a time step, analogous for
1,3, 4, and 5. For example our query P (Wt−δ(eve), Ct(eve)) has 1 PRV in each
time step, relating to the 1 PRV line.

In Fig. 5 the 5 PRVs line (filled triangle) correspond to merging a subtree.
Further, with merging one merges all time step in the time interval. Therefore,
for our example query with a δ of 10, the size of the maximum parcluster grows to
55 PRVs. For LDJTcon there are only two different time steps involved with only
one PRV for each time step involved. Therefore, the size of the largest parcluster
only grows from 5 to 6 PRVs. Overall the size of the largest parcluster is always
smaller by using LDJTcon compared to merging a subtree.

We desire small parclusters, as the complexity of LVE is exponential to the
number of PRVs [19]. For example with our query, with LDJTcon, the largest
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Fig. 5. Y-axis: maximum number of PRVs in a parcluster, x-axis: δ

parcluster has 6 PRVs and with merging a subtree has 55 PRVs. Further, per-
forming CEP could lead to asking the same conjunctive query at least for a
subset of our individuals. Hence, starting with a second query only with dif-
ferent groundings, LDJTcon saves the elimination of 49 PRVs, by reusing the
computations performed during message passing by LDJTcon.

7 Conclusion

We present how LDJTcon answers conjunctive queries by avoiding eliminations.
To avoid eliminations, LDJTcon increases parclusters with query PRVs until
all query PRVs are in one parcluster. Results show that extending significantly
reduces computations for multiple conjunction queries compared to merging.

We are currently working on extending LDJT to also calculate the most prob-
able explanation. Other interesting future work includes a tailored automatic
learning for PDMs, parallelisation of LJT, and improved evidence entering.
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