Preventing Unnecessary Groundings in the
Lifted Dynamic Junction Tree Algorithm™*

Marcel Gehrke, Tanya Braun, and Ralf Moller

Institute of Information Systems, University of Liibeck, Germany
{gehrke, braun, moeller}@ifis.uni-luebeck.de

Abstract. The lifted dynamic junction tree algorithm (LDJT) answers
filtering and prediction queries efficiently for probabilistic relational tem-
poral models by building and then reusing a first-order cluster representa-
tion of a knowledge base for multiple queries and time steps. Unfortunately,
a non-ideal elimination order can lead to groundings. We extend LDJT
(i) to identify unnecessary groundings and (ii) to prevent groundings by
delaying eliminations through changes in a temporal first-order cluster
representation. The extended version of LDJT answers multiple temporal
queries orders of magnitude faster than the original version.

1 Preventing Groundings in LJT

The elimination order in the lifted dynamic junction tree algorithm (LDJT) can
lead to unnecessary groundings [2]. In this paper, we propose an approach to
prevent unnecessary groundings and use the examples and definitions from [2].

A lifted solution to a query given a model means that we compute an answer
without grounding a part of the model. Unfortunately, not all models have a lifted
solution because lifted variable elimination (LVE), the basis for lifted junction
tree algorithm (LJT), requires certain conditions to hold. Therefore, these models
involve groundings with any exact lifted inference algorithm. Grounding a logical
variable (logvar) is expensive and, during message passing, may propagate through
all nodes. LJT has a few approaches to prevent groundings for a static first-order
junction tree (FO jtree). On the one hand, some approaches originate from LVE.
On the other hand, LJT has a fuse operator to prevent groundings, occurring
due to a non-ideal elimination order [I].

1.1 General Grounding Prevention Techniques from LVE

One approach to prevent groundings is to perform lifted summing out. The idea is
to compute VE for one case and exponentiate the result for isomorphic instances.
Another approach in LVE to prevent groundings is count-conversion, which
exploits that all random variables (randvars) of a parameterised randvar (PRV)
A evaluate to a value v of range(A). LVE forms a histogram by counting for
each v € range(A) how many instances of gr(A) evaluate to v.

* This research originated from the Big Data project being part of Joint Lab 1, funded
by Cisco Systems Germany, at the centre COPICOH, University of Liibeck

2 M. Gehrke, T. Braun, and R. Méller

Definition 1. #xcc[P(X)] denotes a counting randvar (CRV) with PRV P(X)
and constraint C, where lv(X) = {X}. Its range is the space of possible histograms.
If {X} C lwv(X), the CRV is a parameterised CRV (PCRV) representing a set
of CRVs. Since counting binds logvar X, lWw(#xec[P(X)]) = X\ {X}. We
count-convert a logvar X in a parametric factor (parfactor) g =L : ¢(A)|C by
turning a PRV A € A, X € lv(AY), into a CRV A" In the new parfactor ¢,
the input for A" is a histogram h. Let h(a®) denote the count of a* in h. Then,
¢ (...,a’=t h,at,) maps to Haierange(Ai) H(...,a’ 1 al, at L)MeD,

One precondition to count-convert a logvar X in g, is that only one input in g
contains X. To perform lifted summing out PRV A from parfactor g, lv(A) =
lv(g). For the complete list of preconditions for both approaches, see [3].

1.2 Preventing Groundings during Intra FO Jtree Message Passing

During message passing, LJT tries to eliminate PRVs by lifted summing out.
However, the messages LJT passes via the separators restrict the elimination
order, which can lead to groundings. LJT has three tests whether groundings
occur during message passing, namely: (i) check whether LJT can apply lifted
summing out, (ii) check whether count-conversion can prevent groundings, and
(iii) check that count-converting will not lead to groundings in another parcluster.

A parcluster C* = A!|C? sends a message m® containing the PRVs of the
separator S¥ to parcluster C’. To calculate the message m*, LJT eliminates
the PRVs not part of the separator, i.e., E¥ := A"\ S¥ from the local model
and all messages received from other nodes than j, i.e., G’ :== G*' N {m™},.;. To
eliminate a PRV from G’, LJT has to eliminate the PRV from all parfactors of
G’. By combining all these parfactors, LJT only has to check whether a lifted
summing out is possibile to eliminate the PRV. To eliminate E € E¥ by lifted
summing out from G’, we replace all parfactors ¢ € G’ that include E with
a parfactor g% = ¢(AF)|CF that is the lifted product of these parfactors. Let
S7 :=8Yn AP be the set of randvars in the separator that occur in g¥. For
lifted message calculation, it necessarily has to hold V.S € Sg,

w(S) C lv(E). (1)

Otherwise, E does not include all logvars in ¢¥. LJT may induce Eq. for a
particular S by count-conversion if S has an additional, count-convertible logvar:
lw(S)\ lw(E) = {L}, L count-convertible in ¢g%. (2)

In case Eq. (2)) holds, LJT count-converts L, yielding a (P)CRV in m¥, else, LJT
grounds. Unfortunately, a (P)CRV can lead to groundings in another parcluster.
Hence, count-conversion helps in preventing a grounding if all following messages
can handle the resulting (P)CRV. Formally, for each node k receiving S as a
(P)CRV with counted logvar L, it has to hold for each neighbour n of k that

S € ¥ v L count-convertible in ¢°. (3)

LJT fuses two parclusters to prevent groundings if Egs. to (3)) checks determine
unnecessary groundings would occur by message passing between these parcluster.

Preventing Unnecessary Groundings in LDJT 3

2 Preventing Groundings in LDJT

LDJT has an intra and inter FO jtree message passing phase. Intra FO jtree
message passing takes place inside of an FO jtree. Inter FO jtree message passing
takes place between two FO jtrees. In both cases unnecessary groundings can
occur. To prevent groundings during intra FO jtree message passing, LJT success-
fully proposes to fuse parclusters. Additionally, LDJT performs inter FO jtree
message passing using two instantiations of an FO jtree structure. Unfortunately,
having two FO jtrees, LDJT cannot fuse parclusters from different FO jtrees.
Hence, LDJT requires a different approach to preventing unnecessary groundings
during inter FO jtree message passing. In the following, we present how LDJT
prevents grounding and discuss preventing of groundings during intra and inter
FO jtree message passing as well as the implications for a lifted run.

2.1 Preventing Groundings during Inter FO Jtree Message Passing

As we desire a lifted solution, LDJT also needs to prevent unnecessary groundings
induced during inter FO jtree message passes. Therefore, LDJT’s expanding
performs two steps: (i) check whether inter FO jtree message pass induced
groundings occur, (ii) prevent groundings by extending the set of interface PRVs,
and prevent possible intra FO jtree message pass induced groundings.

Checking for Groundings To determine whether an inter FO jtree message
pass induces groundings, LDJT also uses Egs. to . For the forward pass,
LDJT applies the equations to check whether the a;_1 message from J;_; to
J: leads to groundings. More precisely, LDJT needs to check for groundings for
the inter FO jtree message passing between Jy and J; as well as between two
temporal FO jtree copy patters, namely J;_; to J; for £ > 1.

Thus, LDJT checks all PRVs E € E¥, where i is the out-cluster from J,_;
and j is the in-cluster from Jy, for groundings. In case Eq. holds, no additional
checks for E are necessary as eliminating E does not induce groundings. In case
Eq. holds, LDJT has to test whether Eq. (3) holds in J; at least on the path
from in-cluster to out-cluster. Hence, if Eqs. and ({3) both hold, eliminating
FE does not lead to groundings, but if Eq. or Eq. fail groundings occur.

Expanding Interface Separators In case eliminating F leads to groundings,
LDJT delays the elimination to a point where the elimination does no longer
lead to groundings. Therefore, LDJT adds E to the in-cluster of J;, which
results in E also being added to the inter FO jtree separator . Hence, LDJT does
not need to eliminate E in the out-cluster of J;_; anymore. Based on the way
LDJT constructs the FO jtree structures, the FO jtrees stay valid. Lastly, LDJT
prevents groundings in the extended in-cluster of J; as described in Section [1.2

Let us now have a look at Fig. [I| to understand the central idea of preventing
inter FO jtree message pass induced groundings. Fig. [1| shows J; instantiated for
time step 3 and 4. Using these instantiations, LDJT checks for groundings during

4 M. Gehrke, T. Braun, and R. Méller

C} in-cluster out-cluster C3 Cj in-cluster out-cluster C3 {Hot, [}
Hots, Hots, Hots, Hoty, AttCy(A)}
Pub2(X, P), AttC3(A), Pub3(X, P), AttCy(A), !
Pubs(X, P) Hoty Puby(X, P)

Hots

1 ; T -
{g", g2} {98.95} {97, g3} {94.91} {gi}

Fig. 1. Forward pass of LDJT without C3 (local models and labeling in grey)

inter FO jtree message passing for the temporal copy pattern. To compute as,
LDJT eliminates AttC3(A) from C2%’s local model. Hence, LDJT checks whether
the elimination leads to groundings. In this example, Eq. does not hold, since
AttC5(A) does not contain all logvars, X and P are missing. Additionally, Eq.
is not applicable, as the expression lv(S)\lv(E) = {X, P}\{C} = {X, P}, which
contains more than one logvar and therefore is not count-convertible.

As eliminating AttC3(A) leads to groundings, LDJT adds AttC3(A) to the
parcluster C}. Additionally, LDJT also extends the inter FO jtree separator with
AttC3(A) and thereby changes the elimination order. By doing so, LDJT does not
need to eliminate AttC3(A) in C3 anymore and therefore calculating ag does not
lead to groundings. However, LDJT has to check whether adding the PRV leads
to groundings in C}. For the extended parcluster C}, LDJT needs to eliminate
the PRVs Hots, AttCs(A), and Pub3(X, P). To eliminate Pub3(X, P), LDJT
first count-converts AttCs(A) and then Eq. holds for Pub3(X, P). Afterwards,
it can eliminate the count-converted AttCs(A) and the PRV Hots as Eq.
holds for both of them. Thus, by adding the PRV AttC;_1(A) to the in-cluster
of J; and thereby to the inter FO jtree separator, LDJT can prevent unnecessary
groundings. Additionally, as LDJT uses this FO jtree structure for all time steps
t > 0, i.e., the changes to the structure also hold for all ¢ > 0.

Theorem 1. LDJT’s expanding is correct and produces a valid FO jtree.

Proof. In the initial FO jtree structures, the separator between FO jtree J;_; and
Jy consists of exactly I; ;. Thus, by taking the intersection of the PRVs contained
in J;_1 and J;, we get the set of PRVs from I;_;. While LDJT calculates a;_1, it
only needs to eliminate PRVs E not contained in the separator and thereby I;_;.
Therefore, all £ € E are not contained in any parcluster of J;. Hence, by adding
E to the in-cluster of J;, LDJT does not violate any FO jtree properties. Further,
LDJT does not even have to validate properties like the running intersection
property, since it could not have been violated in the first place. Additionally,
LDJT extends the set of interface PRVs, resulting in an over-approximation of
the required PRVs for the inter FO jtree communication to be correct.

2.2 Discussion
In the following, we start by discussing workload and performance aspects of

the intra and inter FO jtree message passing. Afterwards, we present model
constellations where LDJT cannot prevent groundings.

Preventing Unnecessary Groundings in LDJT 5

Performance The additional workload for LDJT introduced by handling un-
necessary groundings is moderate. In the best case, LDJT checks Egs. to
for calculating two messages, namely for the a;_; message and for the message
LDJT passes from in in-cluster of J; in the direction of the out-cluster of J;.
In the worst case, LDJT needs to check 1+ (m — 1) messages, where m is the
number of parclusters on the path from the in-cluster to the out-cluster in J;.

From a performance point of view, increasing the size of the ov messages and of
a parcluster is not ideal, but always better than the impact of groundings, which
would result in ground calculations for each time step. By applying the intra
FO jtree message passing check, LDJT may fuse the in-cluster and out-cluster,
which most likely results in a parcluster with many model PRVs. Increasing the
number of PRVs in a parcluster, increases LDJT’s workload for query answering.
But even with the increased workload a lifted run is faster than grounding.
However, in case the checks determine that a lifted solution is not obtainable,
using the initial model with the local clustering is the best solution.

First, applying LJT’s fusion is more efficient since fusing the out-cluster with
another parclusters could increase the number of its PRVs. In case of changed
PRVs, LDJT has to rerun the expanding check. Therefore, LDJT first applies
the intra and then the inter FO jtree message passing checks.

Groundings LDJT Cannot Prevent Fusing the in-cluster and out-cluster
due to the inter FO jtree message passing check is one case for which LDJT
cannot prevent groundings. In this case, LDJT cannot eliminate E in the out-
cluster of J;_1 without groundings. Thus, LDJT adds F to the in-cluster of J;.
The checks whether LDJT can eliminate E on the path from the in-cluster to the
out-cluster of J; fail. Thereby, LDJT fuses all parclusters on the path between the
two parclusters and LDJT still cannot eliminate E. Even worse, LDJT cannot
eliminate F from time step ¢ — 1 and ¢ in the out-cluster to calculate ay. In
theory, for an unrolled model, a lifted solution might be possible, but with many
PRVs in a parcluster, since, in addition to other PRVs, one parcluster contains
FE for all time steps. Depending on the domain size and the maximum number of
time steps, either grounding or using the unrolled model is advantageous.

If S occurs in an inter-slice parfactor for both time steps, then another source
of groundings is a count-conversion of S to eliminate E. In such a case, LDJT
cannot count-convert S in the inter-slice parfactor, which leads to groundings.

3 Evaluation

For the evaluation, we use the example model G** with the set of evidence
being empty, for |[D(X)| = 10, |D(P)| = 3, |D(C)| = 20, and the queries
{Hoty, AttCy(c1), DoRi(x1)} for each time step. We compare the runtimes on
commodity hardware with 16 GB of RAM of the extended LDJT version against
the original version and then also against LJT for multiple maximum time steps.

Figure [2| shows the runtime in seconds for each maximum time step. We can
see that the runtime of the extended LDJT (diamond) and the original LDJT

6 M. Gehrke, T. Braun, and R. Méller

5
10 e

104 L — original LDJT
- extended LDJT
10° ><// — LT
10° x
1 —X
10 .
10° -
107 — -
I T T T T T T T T T T T T 1
ZD 21 22 23 24 25 26 27 28 29 210 211 212 213

Fig. 2. Y-axis: runtimes [seconds|, x-axis: maximum time steps, both in log scale

(filled triangle) is, as expected, linear, while the runtime of LJT (cross) roughly
is exponential, to answer queries for changing maximum number of time steps.
Further, we can see how crucial preventing groundings is. Due to the FO jtree
construction overhead, the extended version is about a magnitude of three faster
for first time steps, but the construction overhead becomes negligible with more
time steps. Overall, the extended LDJT is up to four orders of magnitude faster.

Additionally, we see the runtimes of LJT. LJT is faster for the initial time
steps, especially in case grounding are prevented by unrolling. Nonetheless, after
several time steps, the size of the parclusters becomes a big factor, which also
explains the exponential behaviour [3]. To summarise the evaluation results, on
the one hand, we see how crucial the prevention of groundings is and, on the
other hand, how crucial the dedicated handling of temporal aspects is.

4 Conclusion

We present how LDJT can prevent unnecessary groundings by delaying elimi-
nations to the next time step and thereby changing the elimination order. To
delay eliminations, LDJT increases the in-cluster of the temporal FO jtree struc-
ture and the separator between out-cluster and in-cluster with PRVs, which
lead to the groundings. First results show that the extended LDJT significantly
outperforms the orignal version and LJT if unnecessary groundings occur.

We currently work on extending LDJT to calculate the most probable expla-
nation. Other interesting future work includes a tailored automatic learning for
parameterised probabilistic dynamic models and parallelisation of LJT.

References

1. Braun, T., Moller, R.: Preventing Groundings and Handling Evidence in the Lifted
Junction Tree Algorithm. In: Proc. of the Joint German/Austrian Conf. on Artificial
Intelligence (Kiinstliche Intelligenz). pp. 85-98. Springer (2017)

2. Gehrke, M., Braun, T., Mdller, R.: Towards Preventing Unnecessary Groundings in
the Lifted Dynamic Junction Tree Algorithm. In: Proceedings of KI 2018: Advances
in Artificial Intelligence. Springer (2018)

3. Taghipour, N.: Lifted Probabilistic Inference by Variable Elimination. Ph.D. thesis,
KU Leuven (2013)

	Preventing Unnecessary Groundings in the Lifted Dynamic Junction Tree Algorithm

