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Abstract. Standard approaches for inference in probabilistic relational models
include lifted variable elimination (LVE) for single queries. To efficiently handle
multiple queries, the lifted junction tree algorithm (LJT) uses a first-order cluster
representation of a model, employing LVE as a subroutine in its steps. LVE and
LJT can only handle certain evidence. However, most events are not certain. The
purpose of this paper is twofold, (i) to adapt LVE, presenting LVEevi, to handle
uncertain evidence and (ii) to incorporate uncertain evidence for multiple queries
in LJT, presenting LJTevi. With LVEevi and LJTevi, we can handle uncertain ev-
idence for probabilistic relational models, while benefiting from the lifting idea.
Further, we show that uncertain evidence does not have a detrimental effect on
completeness results and leads to similar runtimes as certain evidence.

1 Introduction

Areas such as health care or logistics involve probabilistic data with relational aspects
where many objects are in relation to each other with uncertainties about object exis-
tence, attribute value assignments, or relations between objects. E.g., health care sys-
tems involve electronic health records (EHRs) (the relational part) for many patients
(the objects) and uncertainties [22] due to, e.g., missing information. Additionally, ev-
idence or events are not always certain due to different sensors or where the tests are
performed. Automatically analysing EHRs can improve the care of patients and save
time for medical professionals to spend on other important tasks.

Answering queries in probabilistic, relational environments, like predicting out-
comes of treatments, needs efficient exact inference algorithms, which is particularly
true for health care as approximations might not be good enough [24]. Probabilistic
databases (PDBs) can answer queries for relational models with uncertainties [8,19].
However, each query can contain redundant information, resulting in huge queries. In
contrast to PDBs, we build more expressive and compact models (offline) enabling ef-
ficient answering of more compact queries (online). Currently, these compact models
cannot handle uncertain evidence. Therefore, in this paper, we study the problem of
exact inference in relational temporal probabilistic models with uncertain evidence.

Research in the field of lifted inference has lead to efficient algorithms for rela-
tional models. lifted variable elimination (LVE), first introduced in [16] and expanded
in [17,12,21], saves computations by reusing intermediate results for isomorphic sub-
problems when answering a query. The lifted junction tree algorithm (LJT) sets up a
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first-order junction tree (FO jtree) to handle multiple queries efficiently [2] using LVE
as a subroutine. Van den Broeck et al. apply lifting to weighted model counting and
knowledge compilation [6]. To scale lifting, Das et al. use graph databases storing com-
piled models to count faster [9]. Lifted belief propagation (BP) provides approximate
solutions to queries, often using lifted representations, e.g. [1]. But, to the best of our
knowledge, none of the approaches handle uncertain evidence.

We focus on exact inference for multiple queries and present an efficient algorithm
for based on LJT, called LJTevi, handling uncertain evidence. For Bayesian networks,
work on uncertain evidence exists, sometimes called soft evidence in contrast to cer-
tain, i.e., hard evidence [7,14,13,10,15]. In this paper, we interpret uncertain evidence
in the sense of a priori distributions, which is closely related to Pearl’s method of virtual
evidence [13]. This paper includes two main contributions, (i) an algorithm, LVEevi,
handling uncertain evidence for probabilistic relational models and (ii) LJTevi, han-
dling uncertain evidence for multiple queries. Additionally, we show soundness and
completeness results for LVEevi and LJTevi and a brief empirical case study.

The remainder of this paper is structured as follows: First, we introduce basic no-
tations and recap LVE and LJT. Then, we show how to handle uncertain evidence and
present LJTevi, followed by a discussion. We conclude with upcoming work.

2 Preliminaries

This section specifies notations and recaps LJT. Based on [17], a running example mod-
els the interplay of natural or man-made disasters, an epidemic, and people being sick,
travelling, and being treated. Parameters represent disasters, people, and treatments.

2.1 Parameterised Probabilistic Models

Parameterised models compactly represent models using logical variables (logvars) to
parameterise random variables (randvars), so called parameterised randvars (PRVs).

Definition 1. Let L, Φ, and R be sets of logvar, factor, and randvar names respectively.
A PRVR(L1, . . . , Ln), n ≥ 0, is a syntactical construct withR ∈ R and L1, . . . , Ln ∈
L to represent a set of randvars. For PRV A, the term range(A) denotes possible
values. A logvar L has a domainD(L). A constraint (X, CX) is a tuple with a sequence
of logvars X = (X1, . . . , Xn) and a set CX ⊆ ×n

i=1D(Xi) restricting logvars to
values. The symbol > marks that no restrictions apply and may be omitted. For some
construct P , the term lv(P ) refers to its logvars, the term rv(P ) to its PRVs with
constraints, and the term gr(P ) to all instances of P , i.e. P grounded w.r.t. constraints.

For the example, we build the boolean PRVs Epid, Sick(X), and Travel(X) from
R = {Epid, Sick, Travel} and L = {X}, D(X) = {alice, eve, bob}. Epid holds if
an epidemic occurs. Sick(X) holds if a personX is sick, Travel(X) holds ifX travels.
With a constraint C = (X, {eve, bob}), gr(Sick(X)|C) = {Sick(eve), Sick(bob)}.
gr(Sick(X)|>) also contains Sick(alice). Parametric factors (parfactors) link PRVs. A
parfactor describes a function, identical for all argument groundings, mapping argument
values to real values (potentials), of which at least one is non-zero.
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Fig. 1: Parfactor graph for Gex
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Fig. 2: FO jtree for Gex

Definition 2. Let X be a set of logvars, A = (A1, . . . , An) a sequence of PRVs with
lv(A) ⊆ X,C a constraint on X, and φ : ×n

i=1range(Ai) 7→ R+ a function with name
φ ∈ Φ, identical for gr(A|C ). We denote a parfactor g by ∀X : φ(A)|C . We omit (∀X :)
if X = lv(A) and |C if C = >. A set of parfactors forms a model G := {gi}ni=1.

We define a model Gex as our running example. Let L = {D,W,M,X}, Φ =
{φ0, φ1, φ2, φ3}, and R = {Epid,Nat,Man, Sick, Travel, T reat}. We build three
more boolean PRVs. Nat(D) holds if a natural disaster D occurs, Man(W ) if a man-
made disaster W occurs. Treat(X,T ) holds if a person X is treated with treatment
T . The other domains are D(D) = {earthquake, flood}, D(W ) = {virus, war},
and D(T ) = {vaccine, tablet}. The model reads Gex = {gi}3i=0, g0 = φ0(Epid),
g1 = φ1(Epid,Nat(D),Man(W ))|>, g2 = φ2(Epid, Sick(X), T ravel(X))|>, and
g3 = φ3(Epid, Sick(X), T reat(X,T ))|>. Parfactors g1 to g3 have eight input-output
pairs, g0 has two (omitted here). Figure 1 depictsGex as a graph with six variable nodes
for the PRVs and four factor nodes for the parfactors with edges to arguments.

Evidence displays symmetries if observing the same value for n instances of a
PRV [21]. In a parfactor gE = φE(R(X))|CE

, a potential function φE and constraint
CE encode the observed values and instances for PRV R(X). Assume we observe
the value true for ten randvars of the PRV Sick(X). The corresponding parfactor is
φE(Sick(X))|CE

. CE represents the domain of X restricted to the 10 instances and
φE(true) = 1 and φE(false) = 0. A technical remark: To absorb evidence, we split
all parfactors gi that cover R(X), called shattering [17], restricting Ci to those tuples
that contain gr(R(X)|CE

) and a duplicate of gi to the rest. gi absorbs gE (cf. [21]).
The semantics of a model G is given by grounding and building a full joint distribu-

tion PG. With Z as the normalisation constant, G represents PG = 1
Z

∏
f∈gr(G) f . The

query answering (QA) problem asks for a marginal distribution of a set of randvars or
a conditional distribution given events, which boils down to computing marginals w.r.t.
a model’s joint distribution, eliminating non-query terms. Formally, P (Q|E) denotes
a query with Q a set of grounded PRVs and E = {Ei = ei}ni=1 a set of events. An
example query for Gex is P (Epid|Sick(eve) = true). Next, we look at LJT, a lifted
QA algorithm, which seeks to avoid grounding and building a full joint distribution.

2.2 Query Answering Algorithms

LVE and LJT answer queries for probability distributions. LJT uses an FO jtree with
LVE as a subroutine. We briefly recap LVE and LJT.
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Algorithm 1 Outline of LVE
1: LVE(Model G, Query Q, Evidence E)
2: Absorb E in G
3: while G has non-query PRVs do
4: if PRV A fulfils sum-out prec. then
5: Eliminate A using sum-out
6: else
7: Apply transformator
8: Multiply and normalise G

Algorithm 2 Outline of LJT
1: LJT(M. G, Queries {Qi}mi=1, Evidence E)
2: Construct FO jtree J
3: Enter E into J
4: Pass messages on J
5: for each query Qi do
6: Find subtree Ji for Qi

7: Extract submodel Gi from Ji
8: LVE(Gi, Qi, ∅)

Lifted Variable Elimination: In essence, LVE computes variable elimination for one
case and exponentiates the result for isomorphic instances (lifted summing out), avoid-
ing duplicate calculations. Taghipour et al. implement LVE through an operator suite
(cf. [21] for details). Its main operator sum-out realises lifted summing out. An operator
absorb handles evidence in a lifted way. The remaining operators (count-convert, split,
expand, count-normalise, multiply, ground-logvar) aim at enabling a lifted summing
out, transforming part of a model. All operators have pre- and post-conditions to en-
sure computing a result equivalent to one computed on gr(G). Algorithm 1 shows an
outline. To answer a query, LVE eliminates all non-query randvars from the model.

Lifted Junction Tree Algorithm: Algorithm 2 outlines LJT for a set of queries {Qi}mi=1

given a model G and evidence E. First, LJT builds an FO jtree, which clusters a model
into submodels that LJT uses to answer queries after preprocessing. We define a mini-
mal FO jtree with parameterised clusters (parclusters) as nodes, which are sets of PRVs
connected by parfactors, as follows.

Definition 3. Let X be a set of logvars, A a set of PRVs with lv(A) ⊆ X, and C a
constraint on X. Then, ∀X:A|C denotes a parcluster. We omit (∀X:) if X = lv(A)
and |>. An FO jtree for a model G is a cycle-free graph J = (V,E), where V is the
set of nodes, i.e., parclusters, and E the set of edges. J must satisfy three properties:
(i) ∀Ci ∈ V : Ci ⊆ rv(G). (ii) ∀g ∈ G: ∃Ci ∈ V s.t. rv(g) ⊆ Ci. (iii) If ∃A ∈
rv(G) s.t. A ∈ Ci ∧ A ∈ Cj , then ∀Ck on the path between Ci and Cj: A ∈ Ck

(running intersection property). J is minimal if by removing a PRV from any parcluster,
J ceases to be an FO jtree, i.e., no longer fulfils at least one of the three properties. The
parameterised set Sij , called separator of edge {i, j} ∈ E, is given by Ci ∩Cj . Each
Ci ∈ V has a local model Gi and ∀g ∈ Gi: rv(g) ⊆ Ci. The Gi’s partition G.

In a minimal FO jtree, no parcluster is a subset of another parcluster. Figure 2
shows a minimal FO jtree for Gex with parclusters C1 = {Epid,Nat(D),Man(W )},
C2 = {Epid, Sick(X), T ravel(X)}, and C3 = {Epid, Sick(X), T reat(X,T )}.
S12 = {Epid} and S23 = {Epid, Sick(X)} are the separators. Parfactor g0 appears at
C1 but could be in any local model as rv(g0) = {Epid} ⊂ Ci ∀ i ∈ {1, 2, 3}.

During construction, LJT assigns the parfactors in G to local models (cf. [2]). LJT
enters E into each parcluster Ci where rv(E) ⊆ Ci. Local model Gi at Ci absorbs E
as described above. Message passing distributes local information within the FO jtree.
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Two passes from the periphery to the center and back suffice [11]. If a node has received
messages from all neighbours but one, it sends a message to the remaining neighbour
(inward pass). In the outward pass, messages flow in the opposite direction. Formally, a
message mij from node i to node j is a set of parfactors, with arguments from Sij . LJT
computesmij by eliminating Ci\Sij fromGi and the messages of all other neighbours
with LVE. A minimal FO jtree enhances the efficiency of message passing. Otherwise,
messages unnecessarily copy information between parclusters. To answer a query Qi,
LJT finds a subtree J ′ covering Qi, compiles a submodel G′ of local models in J ′ and
messages from outside J ′, and sums out all non-query terms in G′ using LVE.

3 LVE for Uncertain Evidence

Currently, evidence in LVE and therefore LJT is always certain. However, often sensors
are not completely reliable or some test may be more precisely performed in a hospital
compared to a test in a general practice [18]. Before we incorporate uncertain evidence
in LVE, we take a closer look at how LVE handles certain evidence.

3.1 Evidence in LVE

In Alg. 1, handling evidence appears as “absorb evidence”. Thus, let us now have a look
at lifted absorption, which is outlined in Alg. 3, without including counting PRVs for
ease of explanation. The operator uses a count function defined as follows.

Definition 4. Given a constraint C = (X, CX), for any Y ⊆ X and Z ⊆ X \Y, the
function COUNTY|Z : CX → N is defined by

COUNTY|Z(t) = |πY(CX ./Z πZ(t))|.

i.e., for a tuple t ∈ CX, it outputs how many constants for Y co-occur with the value of
Z in t. We define COUNTY|Z(t) = 1 for Y = ∅. Y is count-normalised w.r.t. Z in C iff

∃n ∈ N : ∀t ∈ CX : COUNTY|Z(t) = n.

If n exists, we call it the conditional count of Y given Z inC, denoted by COUNTY|Z(C).

Before we take a closer look at the operator, we illustrate the count function. Con-
sider the constraint C = ((X,T ), {(eve, tablet), (alice, vaccine), (alice, tablet),
(bob, vaccine), (bob, tablet)}). With X = {X,T}, Y = {T}, and Z = {X}, the count
function calculates the following for tuple (eve, tablet): First, it projects (eve, tablet)
onto {X}, which leaves (eve). Then, it joins eve with the tuples from C, i.e.,
(eve, tablet), and projects the tuples onto {T}, which results in a set with one element,
(tablet). Last, it outputs the cardinality of the set, here 1. For (alice, vaccine), the first
projection yields (alice), with the join resulting in (alice, vaccine) and (alice, tablet)
and the second projection resulting in (vaccine) and (tablet), yielding a cardinality
of 2. Thus, there does not exist a unique n for all tuples in C, that is, M is not count-
normalised. Now, assume the constraint C ′ = ((X,T ), {(alice, vaccine),
(alice, tablet), (bob, vaccine), (bob, tablet)}). Here, each tuple leads to a count of 2
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Algorithm 3 Lifted Absorption [21].
Operator ABSORB

Inputs:
(1) g = φ(A)|C : a parfactor in G
(2) Ai ∈ A with Ai = R(X)
(3) gE = φE(R(X))|CE

: an evidence parfactor
Let Xexcl = X \ lv(A \Ai);
L′ = lv(A) \Xexcl;
o = the observed value for R(X) in gE

Preconditions:
(1) gr(Ai|Ci

) ⊆ gr(Ai|CE
)

(2) Xexcl is count-normalised w.r.t. L′ in C.
Output: φ′(A′)|C′ , with

(1) A′ = A \Ai

(2) C′ = πlv(C)\Xexcl(C)
(3) φ′(. . . , ai−1, ai+1, . . . ) = φ(. . . , ai−1, o, ai+1, . . . )

r with r = COUNTXexcl|L′(C)

Postcondition: G ∪ {gE} ≡ G \ {g} ∪ {gE , ABSORB(g,Ai, gE)}

given X = {X,T}, Y = {T}, and Z = {X} and thus, M is count-normalised w.r.t.
X in C ′. The conditional count of T given X in C ′ is 2. In case, alice and bob would
additionally receive another treatment, the count would be 3. The count in this case
is important as absorbing evidence eliminates as many instances as the count function
yields, and thus, LVE needs to exponentiate the result with the count.

ABSORB has as inputs an evidence parfactor gE with evidence for a PRV Ai and
a parfactor g, which contains Ai. As a precondition, Ai covers at most the randvars of
gE in g. Thus, LVE often performs a shattering before absorption to split parfactors
into parts with evidence and without evidence. The other precondition relates to logvars
being eliminated during absorption. For the output parfactor, the operator deletes Ai

from g, reducing the dimensions in g. The operator also projects the constraint C of g
onto the remaining logvars. Lastly, it collects all potentials that agree with the evidence,
i.e., where Ai = o, and exponentiates them accordingly. As the operator performs a di-
mension reduction by deleting Ai from the argument sequence, rather than keeping the
argument and setting all potentials where Ai 6= o to 0, LVE has to apply the absorption
operator to each parfactor that contains Ai.

To illustrate the ABSORB operator, assume that eve is sick, i.e. Sick(eve) = true.
LVE builds an evidence parfactor gE = φE(Sick(X))|CE

, with CE = (X, {eve}).
As g2 and g3 also contain Sick(X), both need to absorb gE . To absorb gE in g2, LVE
first splits g2 into g′2 for eve and g′′2 for all other instances, i.e., alice and bob. With
gE and g′2 as inputs, the first precondition holds as both gE and g′2 have X restricted
to eve. Since Xexcl = X \ lv(Epid, Travel(X)) = ∅, i.e., no logvars are eliminated,
Xexcl is count-normalised and r = 1. Hence, the operator can proceed. It removes
Sick(X) from g′2. The constraint remains unchanged. Lastly, all potentials that agree
with Sick(eve) = true remain and are exponentiated to the power of 1. Similarly gE
gets absorbed in g3. One could also perform lifted absorption by multiplying gE into
g, which leads to potentials of 0 whenever Ai 6= o. Afterwards, one could drop the
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mappings with potentials of 0 and then eliminate Ai from the argument sequence as
after dropping the mappings, Ai = o in all remaining mappings, holding no further
information. However, absorption as in Alg. 3 only works for certain evidence.

3.2 Uncertain Evidence in LVEevi

The main differences to certain evidence and its handling are in specifying evidence,
constructing evidence parfactors, and handling evidence parfactors within LVE. Cur-
rently, one event has a potential of 1, while all others have a potential of 0 in evidence.
With uncertain evidence, we need to be able to specify potentials different from 0 for
possible events of a PRV. However, evidence should not incur a scaling factor. There-
fore, individual events of a PRV A have assigned a potential p with p ∈ [0, 1] and the
potentials of all possible events of A add up to 1. We allow for two options to specify
potentials for events. The first option is to specify the potential for each possible event
of a PRV Ai with the sum of the potentials being 1. LVEevi then constructs an evidence
parfactor gE = φE(Ai)|CE

accordingly. The second option is to specify a subset of the
events with the sum of the potentials s being at most 1. LVEevi constructs an evidence
parfactor gE = φE(Ai)|CE

, distributing the residual potential 1 − s on the remaining
range values in a max-entropy style [23]. Constructing evidence parfactors in such a
way ensures that all range values have a potential and that the potentials add up to 1.

Assume the potential of eve being sick is 0.9. We may specify the evidence using
a complete distribution, Sick(eve) = ((true, 0.9), (false, 0.1)). The other option is
to only specify Sick(eve) = (true, 0.9), a subset of the distribution. Then, LVEevi

would distribute the remaining 0.1 max-entropy alike on the remaining range values,
while constructing the evidence parfactor. With Sick(X) being boolean, there is only
one other range value, namely false, which would be assigned a potential of 0.1. In
case of another range value, e.g., immune, then both would be assigned a potential of
0.05. Assigning a distribution to evidence still allows for specifying certain evidence.
Given Sick(eve) = ((true, 1)), all other range values would be assigned the potential
0, which is identical to the evidence so far in LVE.

We now present LVEevi to handle uncertain evidence while answering a query. The
workflow of LVEevi is identical to LVE as given in Alg. 1 with line 2 changing. Instead
of absorbing all evidence E in affected parfactors, a case distinction occurs, which is
specified in Alg. 4, for each evidence parfactor gE constructed for E. If gE contains
certain evidence, gE is absorbed in G as before. If gE is uncertain evidence, gE is
added to G. During query answering, the uncertain evidence is then properly accounted
for since gE is multiplied into the model at one point and therefore, influences a queried
distribution accordingly. Next, we consider soundness and completeness of LVEevi.

Algorithm 4 Evidence Handling in LVEevi

1: procedure ADDEVIDENCE(G, gE)
2: if gE is uncertain then
3: Add gE to G
4: else
5: Absorb gE in G
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Theorem 1. LVEevi is sound, i.e., computes a correct result for a query Q given an
input model G and evidence E.

Proof sketch. Since both LVEevi and LVE handle certain evidence in the same way and
LVE is correct [21], LVEevi is correct w.r.t. certain evidence. We interpret uncertain
evidence as an a priori distribution for events. LVEevi simply adds evidence parfactors
of uncertain evidence to a model. During query answering, LVEevi then handles these
parfactors as part of the model, multiplying evidence parfactors into other parfactors
accordingly, thus, accounting for evidence as a form of a priori distribution. �

Theorem 2. LVEevi is complete for unary evidence, i.e., the time complexity is polyno-
mial in the domain sizes of the model logvars.

Proof sketch. Given certain, unary evidence, i.e., evidence which can be represented in
a parfactor with an evidence PRV using one-logvar, LVE is complete [5,20]. Replacing
certain, unary evidence with uncertain, unary evidence with a given distribution leads
to the same number of splits during shattering and the number of splits is linear per
evidence PRV and model parfactor [21]. Thus, LVEevi still has a time complexity poly-
nomial in the domain sizes of the model logvars given uncertain, unary evidence and
the completeness results for unary evidence from LVE also hold for LVEevi. �

4 LJT for Uncertain Evidence

LVEevi handles uncertain evidence efficiently for single queries. To handle multiple
queries efficiently, we incorporate uncertain evidence into LJT based on the same prin-
ciples that have guided the adaptation of LVE to handle uncertain evidence. Before we
present LJTevi, we first take a closer look at how LJT handles evidence.

4.1 Evidence in LJT

Evidence handling in LJT generally works by performing the following steps: (i) Con-
struct evidence parfactors. (ii) Enter evidence parfactors into FO jtree. (iii) Shatter local
models on entered evidence parfactors. (iv) Absorb evidence parfactor in local models.
Basically, LJT handles evidence in each local model as LVE does in its input model.
In each parcluster that covers an evidence PRV, LJT tests each parfactor for evidence
absorption. If a parfactor in a local model covers the evidence PRV, LJT shatters the
parfactor on the evidence and lets the affected parfactor absorb the evidence parfac-
tor. Whenever a separator no longer covers an evidence PRV, LJT can omit checking
the subtree behind the neighbour associated with the separator based on the running
intersection property.

Again, assume that eve is sick as certain evidence with an evidence parfactor gE =
φE(Sick(X))|CE

, with CE = (X, {eve}). Then, LJT enters gE in Jex, which is shown
in Fig. 1. The PRV Sick(X) occurs in C2 and C3. LJT shatters the local models G2

and G3, i.e., g2 and g3. LJT splits g2 into g′2 for eve and g′′2 for all other instances, in
this case, alice and bob. Analogously, LJT splits g3 into g′3 and g′′3 . Finally, LJT absorbs
gE in g′2 and g′3. After the absorption, all local models encode information about certain
evidence and the overall model.
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Algorithm 5 Evidence Handling in LJTevi

1: procedure ENTEREVIDENCE(J, gE)
2: if gE is uncertain then
3: Add gE to the local model of one parcluster, which contains the PRV of gE
4: Shatter local model (optional)
5: Multiply gE into local model (optional)
6: else
7: Enter gE in all parclusters, which contain the PRV of gE
8: Shatter local models
9: Absorb gE

4.2 Uncertain Evidence in LJT

LJTevi is based on LJT and is able to handle uncertain evidence as well. Evidence may
be specified in the same manner as for LVEevi, which allows for certain evidence as
well as uncertain evidence, partially or fully specified with distributions, whose poten-
tials add up to 1. LJTevi has the same workflow as LJT, outlined in Alg. 2. Only line 3
now references steps that incorporate uncertain evidence. Algorithm 5 describes the
steps to enter an evidence parfactor gE in an FO jtree J . Again, a case distinction oc-
curs. If gE encodes certain evidence, LJTevi works as LJT, absorbing gE in the affected
parfactors of all parclusters that cover the evidence PRV. If gE encodes uncertain evi-
dence, LJTevi adds gE to one local model of a parcluster that covers the evidence PRV.
During message passing, the information about the evidence is distributed to all other
parclusters, which makes it apparent, why uncertain evidence should only be added to
one local model. In case LJTevi would add the uncertain evidence parfactor to all par-
clusters containing the evidence PRV, then the evidence would be distributed during
message passing and accounted for multiple times. One could directly shatter a local
model of the chosen parcluster and multiply gE into it. But, the operations are optional:
LJTevi uses LVE for its calculations, which is able to handle gE accordingly and multi-
ply gE into other parfactors when necessary, resulting in more efficient multiplications.

Let us consider uncertain evidence and LJTevi. Assume that eve is sick with a
potential of 0.9. So, LJTevi builds an evidence parfactor gE = φE(Sick(X))|CE

=
((true, 0.9), (false, 0.1), with CE = (X, {eve}), as would LVEevi. Now, LJTevi only
needs to find one parcluster containing Sick(X), instead of all parclusters containing
Sick(X). Both parclusters C2 and C3 contain Sick(X). LJTevi randomly chooses to
add gE to C3. As the remaining part is optional, we choose against it for efficiency
reasons. Evidence entering now is complete.

During message passing, LJTevi sends a message m32 from C3 to C2. To calculate
m32, LJTevi splits g3 into g′3 for eve and g′′3 for all other instances. Then, LJTevi elimi-
nates Treat(X,T ) from g′3 and g′′3 . Afterwards, LJTevi sends m32, which contains gE ,
g′3, and g′′3 , to C2. In m32, we can easily see that LJTevi propagates evidence to all
parclusters containing the PRV of the evidence parfactor as it is an explicit part of the
message. Next, we consider soundness and completeness of LJTevi.

Theorem 3. LJTevi is sound, i.e., computes a correct result for a query Q given an
input model G and evidence E.
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Proof sketch. For certain evidence, LJTevi computes the same result as LJT since they
perform the same steps. Given that LJT is correct [3], LJTevi is correct. For uncer-
tain evidence, LJTevi adds evidence parfactors once to a local model of one parcluster.
During message passing and query answering, LJTevi then properly accounts for the
evidence as an a priori distribution for the given events. �

Theorem 4. LJTevi is complete for unary evidence, i.e., the time complexity is polyno-
mial in the domain sizes of the model logvars.

Proof sketch. The completeness results for unary evidence and LVE [5,20] extend also
to LJT. Following the same argument as in the proof sketch of completeness for LVEevi,
the change from certain to uncertain evidence over one distribution does not lead to
groundings, which means the runtime complexity is still polynomial in the domain sizes
of the model logvars and the completeness results extend to LJTevi. �

5 Empirical Case Study

We have implemented a prototype version of LJTevi and adapted an LVE implemen-
tation by Taghipour (https://dtai.cs.kuleuven.be/software/lve) for uncertain evidence.
Given the changes from certain to uncertain events in LVE and LJT and their effects
on completeness, we expect implementations of the algorithms to accomplish simi-
lar runtimes for certain and uncertain evidence given certain evidence does not cancel
out a majority of the model. If certain evidence exists for a majority of the PRVs in
a model, the dimension reduction during absorption leaves a very small model, en-
abling fast query answering. Thus, we use the running example with a domain size of
1000 and add certain evidence Sick(X) = ((true, 1)) as well as uncertain evidence
Sick(X) = ((true, 0.8), (false, 0.2)), covering 0% to 100% of gr(Sick(X)) in 10%
steps. The query randvar is Travel(x1000). We look at two aspects, (i) runtimes for
answering a single query with LVEevi and LJTevi and (ii) runtimes of the LJTevi steps.

Figure 3 shows runtimes in milliseconds [ms] for answering a single query with
LVEevi (triangles) and LJTevi (circles) with evidence coverage ranging from 0% to
100% on the x-axis. The filled symbols show runtimes for certain evidence. The hollow
symbols show runtimes for uncertain evidence. As expected, LJT runtimes are shorter
than LVE runtimes since LJT is able to use a smaller submodel compared to the original

Evidence coverage in %

R
un

tim
es

 [m
s]

100

101

102

103

0 20 40 60 80 100

LVE certain
LVE uncertain

LJT certain
LJT uncertain

Fig. 3: Runtimes for query answering
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input model. For LJTevi, certain evidence leads to shorter runtimes than uncertain evi-
dence due to the dimension reduction as well as its preprocessing. Evidence is already
handled when LJTevi starts answering the query. And as the submodel for query an-
swering is rather small, the dimension reduction has a comparatively large impact. For
LVE, certain evidence leads to larger runtimes as the overall impact of the dimension
reduction is not as large and absorption in itself is a rather expensive operation, even
though is leads to faster runtimes afterwards. The increase in runtimes from 0% to 10%
evidence as well as the decrease in runtimes from 90% to 100%, which occurs for both
certain and uncertain evidence, comes from the shattering on the evidence. With 0%
and 100% evidence, no splits are necessary, which means smaller models in terms of
the number of parfactors to handle.

Figure 4 shows runtimes in milliseconds [ms] of the steps construction (diamond),
evidence entering (squares), and message passing (triangles) of LVEevi with evidence
coverage ranging from 0% to 100% on the x-axis (filled = certain, hollow = uncertain).
Evidence has no influence on construction. Therefore, runtimes are nearly the same for
certain and uncertain evidence. Certain evidence leads to larger runtimes as LJTevi ab-
sorbs the evidence during this step. Uncertain evidence is simply added to a local model
and thus, entering uncertain evidence does not depend on evidence coverage. Message
passing with uncertain evidence takes slightly longer than with certain evidence as the
dimension reduction also helps during message calculation.

Overall, the case study shows that uncertain evidence leads to similar runtimes for
LVEevi and LJTevi compared to certain evidence with a limited scope. Comparing run-
times for domain sizes of 10 to domain sizes of 1000 shows that even though the domain
sizes rise by a factor of 100, runtimes only rise by a factor of 2.7 to 8.6 for uncertain
evidence and LJTevi. As uncertain evidence basically leads to an additional parfactor
and a limited number of splits, we expect further empirical results from [4,3] to also
hold for LVEevi and LJTevi, with both algorithms outperforming the ground case.

6 Conclusion

We present LVEevi and LJTevi, versions of LVE andLJT, which incorporate uncertain
evidence and allow for similar runtimes as before. We specify how to construct and
handle uncertain evidence. LVEevi and LJTevi close the gap to PDBs to also allow for
uncertain evidence in probabilistic relational models.

We currently work on learning lifted models. Other interesting algorithm exten-
sions include parallelisation, construction using hypergraph partitioning, and different
message passing strategies. Additionally, we look into areas of application to see its
performance on real-life scenarios.
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