
Which Patient to Treat Next?
Probabilistic Stream-based Reasoning
for Decision Support and Monitoring

Marcel Gehrke, Simon Schiff, Tanya Braun, and Ralf Möller
Institute of Information Systems

University of Lübeck
Lübeck, Germany

{gehrke, schiff, braun, moeller}@ifis.uni-luebeck.de

Abstract—Providing decision support for questions such as
“Which Patient to Treat Next?” requires a combination of
stream-based reasoning and probabilistic reasoning. The former
arises due to a multitude of sensors constantly collecting data
(data streams). The latter stems from the underlying decision
making problem based on a probabilistic model of the scenario
at hand. The STARQL engine handles temporal data streams
efficiently and the lifted dynamic junction tree algorithm handles
temporal probabilistic relational data efficiently. In this paper, we
leverage the two approaches and propose probabilistic stream-
based reasoning. Additionally, we demonstrate that our proposed
solution runs in linear time w.r.t. the maximum number of time
steps to allow for real-time decision support and monitoring.

I. INTRODUCTION

Which patient to treat next is not an easy question, not
only on a personal level but also on a computer science
level. Answering the question (again and again) falls into
the area of online decision making on probabilistic temporal
models where actions influence obtainable utilities and one
is interested in those actions that maximise overall utilities
(maximum expected utility problem, MEU for short). While
there already exist algorithms to solve a decision making
problem, two kinds of obstacles arise. One, the real world
presents challenges when trying to implement existing algo-
rithms. Whether at home or in a ward, several sensors gather
data continuously for each patient, yielding multiple streams of
data that need to be fed into an underlying model as evidence.
Further, different sensors can have different sampling rates
and store information in different ways, e.g., under varying
attribute names in different tables. Two, such algorithms are
not designed to allow for monitoring of query results and
issuing alerts when certain conditions are met. Therefore,
in this paper, we study the problem of stream-based and
probabilistic reasoning on temporal uncertain data streams.

To the best of our knowledge, so far there only exists theo-
retical work on answering various types of queries on temporal
uncertain data streams [1]. An existing algorithm for exact
reasoning in probabilistic temporal models is lifted dynamic
junction tree algorithm (LDJT) [2], [3] for answering a set

This research originated from the Big Data project as part of Joint Lab 1,
funded by Cisco Germany, at the centre COPICOH, University of Lübeck.

of queries for probability distributions of random variables
(randvars). LDJT builds a helper structure to efficiently handle
temporal aspects as well as multiple queries. A generalisation
of LDJT to also answer MEU queries is meuLDJT [4], [5].
LDJT and meuLDJT also incorporate the lifting idea, in which
an algorithm treats a pool of individuals as indistinguishable
during calculations as long as no contrary evidence arises.
But, they cannot handle streams of data and the problems the
streams incur. Additionally, monitoring of streams of data or
query results over time is also not part of the algorithm, which
falls under stream-based reasoning. The streaming and tem-
poral ontology access with a reasoning-based query language
(STARQL) [6] is currently a state of the art for reasoning with
temporal data streams from multiple sources, meaning, it can
handle streams of data with varying sampling rate or different
storing format. Varying attribute names are handled using
the ontology-based data access (OBDA) paradigm [7], which
maps the names of the different sources to a unified vocab-
ulary. Additionally, STARQL allows for monitoring streams:
If given a window size and an update frequency, STARQL is
able to calculate queries on sliding windows, e.g., if values
of a stream are rising or if a value exceeds a given threshold.
However, STARQL currently does not support probabilistic
reasoning including decision making.

The contribution of this paper is probabilistic stream-based
reasoning (PSR), combining meuLDJT and STARQL. PSR
is able to run in linear time w.r.t. the maximum number
of time steps to allow for real-time decision support and
monitoring. PSR is able to (i) calculate an MEU using
current data from the incoming data streams, providing the
key functionality of decision making, (ii) calculate additional
queries for marginal distributions or probabilities, yielding
query streams (a stream of query results for each query),
(iii) calculate additional queries on data streams and query
streams, enabling a monitoring of data and query results.
The first two items require meuLDJT functionality, the third
item requires STARQL functionality. The OBDA approach of
STARQL automatically enables PSR to map the vocabulary of
the data streams to the vocabulary of the underlying model.
Additionally, meuLDJT requires a discretisation of continuous

values in streams as well as an alignment of sampling rates,
which STARQL also provides.

As a combination of meuLDJT and STARQL, PSR is able
to provide decision support regarding the query “Which patient
to treat next?”. An empirical evaluation of PSR highlights how
changes in parameters that influence the runtime of either
meuLDJT or STARQL affect PSR as a whole. Of course,
answering the question above requires reasoning over the
“utility”, i.e., health, of patients while only a limited amount
of actions, i.e., the time and resources of medical personell,
is available. Thus, setting up an appropriate model is not an
easy task as utilities have to reflect that it is not acceptable to
let one patient die in exchange for others to live.

In the following, we first look at related work. Afterwards,
we recapitulate parameterised probabilistic dynamic models
(PDMs), which is the underlying representation of meuLDJT,
the algorithm itself, and STARQL. Then, we present PSR as a
combination of meuLDJT and STARQL. Lastly, we evaluate
the performance of PSR w.r.t. runtimes and conclude.

II. RELATED WORK

First, we take a look at temporal data stream reasoning,
with a focus on previous STARQL versions. Then, we consider
inference in temporal probabilistic relational models. Last, we
look into reasoning with probabilistic streams.

The STARQL engine complements the collection of state-
of-the-art RDF stream processing engines, among them the
engines for the languages C-SPARQL [8], CQELS [9], SPAR-
QLStream [10], EP-SPARQL [11], TEF-SPARQL [12], and
StreamQR [13]. An overview of all features supported by
STARQL in comparison to other RDF stream engines can be
found in [14]. STARQL is the only engine that does not require
an RDF stream as input and allows for reasoning, though.
STARQL uses OBDA [7], which has become of interest also
for the industry [14], mainly due to recent research efforts
of extending OBDA for handling temporal data [15], [16]
and stream data [6], [9], [10], [14], [17] as well as efforts
of addressing the needs for enabling statistical analytics [18].

Most approaches to inference in temporal relational models
are approximate. Additionally, these approaches involve un-
necessary groundings or are not designed to handle multiple
queries efficiently. Ahmadi et al. [19] propose lifted belief
propagation for dynamic Markov logic networks (DMLNs).
Thon et al. [20] introduce CPT-L, a probabilistic model for
sequences of relational state descriptions with a partially lifted
inference algorithm. Geier and Biundo [21] present an online
interface algorithm for DMLNs, similar to the work of Papai
et al. [22]. Both approaches slice DMLNs to run well-studied
MLN inference algorithms [23] on each slice. Two ways
of performing online inference using particle filtering are
described in [24], [25]. Vlasselaer et al. [26], [27] introduce
an exact approach for temporal relational models, but perform
inference on a ground knowledge base.

P. Koopmann [1] and S. Borgwardt, I. I. Ceylan, and T.
Lukasiewicz [28] present first theoretical results for reasoning
with probabilistic streams. However, they do not present an

Sick(X)
g0 g1

Travel(X)Treat(X,P)

Epid

Fig. 1: Parfactor graph of Gex

implementation of their work. Thus, stream-based and prob-
abilistic reasoning on temporal uncertain data streams still
requires work that accounts for practical considerations.

III. PARAMETERISED PROBABILISTIC MODELS

We shortly present parameterised probabilistic models
(PMs) for relational static models, based on [29], and extend
PMs to the temporal case, resulting in PDMs, based on [2].

A. Parameterised Probabilistic Models

PMs combine first-order logic with probabilistic mod-
els, representing first-order constructs using logical variables
(logvars) as parameters. For illustrative purposes, we use an
example of an epidemic. In the example, we model epidemic
as a randvar. Further, we model persons being sick as a param-
eterised randvar (PRV) of a randvar for sick combined with a
logvar for persons. In case, we are interested in whether there
currently is an epidemic, it only matters whether a person is
sick or not. Thus, all persons behave the same in our example
and are, without additional evidence, indistinguishable.

Definition 1. Let R be a set of randvar names, L a set
of logvar names, Φ a set of factor names, and D a set of
constants. All sets are finite. Each logvar L has a domain
D(L) ⊆ D. A constraint is a tuple (X , CX) of a sequence
of logvars X = (X1, . . . , Xn) and a set CX ⊆ ×ni=1D(Xi).
The symbol > for C marks that no restrictions apply, i.e.,
CX = ×ni=1D(Xi). A PRV R(L1, . . . , Ln), n ≥ 0 is a
construct of a randvar R ∈ R possibly combined with logvars
L1, . . . , Ln ∈ L. If n = 0, the PRV is parameterless and
forms a propositional randvar. The term R(A) denotes the
possible values (range) of a PRV A. An event A = a denotes
the occurrence of PRV A with range value a ∈ R(A). We
denote a parametric factor (parfactor) g by φ(A)|C with A =
(A1, . . . , An) a sequence of PRVs, φ : ×ni=1R(Ai) 7→ R+ a
function with name φ ∈ Φ, and C a constraint on lv(A). A
PRV A or logvar L under constraint C is given by A|C or
L|C , respectively. We may omit |> in A|>, L|>, or φ(A)|>.
A PM G is a set of parfactors {gi}ni=1.

The term lv(P) refers to the logvars in P , which may be
a PRV, a constraint, a parfactor, or a model. The term gr(P)
denotes the set of all instances of P w.r.t. given constraints. An
instance is an instantiation (grounding) of P , substituting the
logvars in P with a set of constants from given constraints. If
P is a constraint, gr(P) refers to the second component CX.
Given a parfactor φ(A)|C , φ is identical for gr(A|C).

Given R = {Sick,Epid, Travel, T reat} and L = {X,P},
D(X) = {x1, x2, x3} and D(P) = {p1, p2}, we can build

Sickt−1(X)
g0t−1 g1t−1

Travelt−1(X)Treatt−1(X,P)

Epidt−1

Sickt(X)
g0t g1t

Travelt(X)Treatt(X,P)

Epidt
gE

Fig. 2: Parfactor graph of the PDM based on Gex

Sickt−1(X)

g0t−1 g1t−1
Travelt−1(X)Treatt−1(X,P)

Epidt−1

gat−1

Utilt−1

A(X)t−1 Sickt(X)

g0t g1t
Travelt(X)Treatt(X,P)

Epidt

gat

Utilt

A(X)t

gE

gU

Fig. 3: Parfactor graph of the PDDecM based on Gex

a boolean PRV Sick(X). With C = ((X), {(x1), (x2)}),
gr(Sick(X)|C) = {Sick(x1), Sick(x2)}. The set of
gr(Sick(X)|>) also contains Sick(x3). Adding boolean
PRVs Epid, Travel(X), and Treat(X,P), we build a PM
Gex={gi}1i=0, with g0=φ0(Epid, Sick(X), T reat(X,P))|>
and g1=φ1(Epid, Sick(X), T ravel(X))|>. Parfactors g0 and
g1 have eight input-output pairs (omitted). Constraints are >.
Figure 1 depicts Gex as a parfactor graph.

The semantics of a model is given by grounding and
building a full joint distribution. In general, a query asks for a
probability distribution of a randvar using a model’s full joint
distribution and given fixed events as evidence.

Definition 2. With Z as normalising constant, a model G
represents the full joint distribution PG = 1

Z

∏
f∈gr(G) f . The

term P (Q|E) denotes a query w.r.t. G with Q a grounded PRV
and E a set of events. Answering P (Q|E) requires eliminating
all randvars in G not occurring in P (Q|E).

B. Parameterised Probabilistic Dynamic Models
We define PDMs based on the first-order Markov assump-

tion. Further, the underlying process is stationary.

Definition 3. A PDM is a pair of PMs (G0, G→) where G0

is a PM representing the first time step and G→ is a two-
slice temporal parameterised model representing At−1 and At

where Aπ is a set of PRVs from time slice π.

Figure 2 shows Gex→ consisting of Gex for time step t − 1
and t with inter-slice parfactors for the behaviour over time.
In this example, the parfactors gA and gU are the inter-slice
parfactors, modelling the temporal behaviour.

Definition 4. Given a PDM G, a query term Q, and events
E0:t = {Eit = eit}i,t, P (Qt|E0:t) denotes a query w.r.t. G.

The problem of answering a marginal distribution query
P (Aiπ|E0:t) w.r.t. the model is called prediction for π > t,
filtering for π = t, and smoothing for π < t.

C. Parameterised Probabilistic Dynamic Decision Models

Let us extend PDMs with action and utility nodes, which
we represent using PRVs, resulting in PDDecMs.

Definition 5. Let Φu be a set of utility factor names. The range
of action PRVs is disjoint actions and the range of utility PRVs
is R. A parfactor with a utility PRV U is a utility parfactor u.
We denote u with µ(A)|C , where U ∈ A and C a constraint
on lv(u). Function µ : ×Ai∈(A\{U})R(Ai) 7→ R, µ ∈ Φu, is
identical for gr(A|C). Its output is the additive change of U ’s
value. The default initial utility value is 0. A parameterised
probabilistic decision model (PDecM) G is a PM that also
contains utility parfactors. Let Gu refer to the utility parfactors
in G and rv(Gu) refer to all probability PRVs in Gu. Gu

represents the combination of all utilities UG =
∑
f∈gr(Gu) f .

The µ functions output a utility, i.e., a scalar, which makes
comparing utility values easy. After the evaluation of a µ
function, the initial value U = i is changed by the output
value, j, resulting in the new value U = i+ j. Hence, we can
easily test how discriminable actions are.

Definition 6. A utility transfer function λ has utility PRVs
U as input and one utility PRV Uo as output. Additionally, λ
can have non utility PRVs as input. λ specifies how the value
of Uo is additively changed when transferring from time step
t to t + 1. A PDDecM is a pair of PDecMs (G0, G→) with
Gu→ also possibly containing utility transfer functions. Given
a PDDecM G, a temporal MEU query asks for the action
sequence (range values for each action PRV in G over time)
that maximises the overall expected utility in G.

Figure 3 shows our example with one action (square) and
one utility (diamond) PRV in grey, utility parfactors (crosses),
and a utility transfer parfactor gU in black. Further, assume
that actions are: A1 is treat patient and A2 is do nothing.

Epid2,
Sick2(X),
Epid3
{gE}

in-cluster C1
3

Epid3,
Sick3(X),
T reat3(X)

out-cluster

{g13}

C2
3

C3
3

α3

Epid3,
Sick3(X),
Epid4
{gR}

in-cluster C1
4

Epic4,
Sick4(X),
T reat4(X)

out-cluster

{g14}

C2
4

Epid4,
Sick4(X),

T reat4(X,P)

{g04}

C3
4

{Epid3} {Epid4} {Epid4, Sick4(X)}

Fig. 4: FO jtree J3 without C3
3 and FO jtree J4 connected with α3

Epid, Sick(X),
T reat(X,P)

{g0}

C1

Epid, Sick(X),
T ravel(X)

{g1}

C2

{Epid, Sick(X)}

Fig. 5: An FO jtree for Gex

IV. LIFTED INFERENCE ALGORITHM

We recapitulate the lifted junction tree algorithm (LJT) [29]
to answer queries for PMs, LDJT [2], [3] to answer hindsight,
filtering, and prediction queries for PDMs, and meuLDJT to
answer temporal MEU queries [5]. LJT works as a subroutine
of LDJT and meuLDJT is an extension of LDJT that is able
to handle utilities and actions.

A. Lifted Junction Tree Algorithm

LJT provides efficient means to answer queries P (Qi|E),
with Qi ∈ Q a set of query terms, a PM G, and evidence
E as input. LJT builds a helper structure called an FO jtree
(cf. [30] for details). An FO jtree is a directed, acyclic graph
whose nodes consist of PRVs, called parclusters. Its most
important feature is that if a PRV appears into two nodes,
it appears in every node on the path between the two nodes.
The set of shared PRVs between two neighbouring nodes is
called separator. Each node has parfactors associated whose
arguments appear in the node (local model). Figure 5 shows
an FO jtree of Gex with the local models of the parclusters
and the separators as labels of edges.

LJT performs the following steps: (i) Construct an FO jtree
J for G. (ii) Enter E in J . (iii) Pass messages. (iv) Compute
answer for each query Qi ∈ Q. Entering evidence adds the
events in E to those nodes that contain the event PRV. LJT
sends messages in two passes, from the periphery to the center
and back (inbound/outbound). To compute a message, LJT
eliminates all non-separator PRVs from the parcluster’s local
model and received messages. After message passing, the
nodes are independent of each other and LJT answers queries
based on the nodes. For each query, LJT finds a parcluster
containing the query term and sums out all non-query terms
in its local model and received messages.

In Fig. 5, LJT sends a message from C1 to C2 and
back. If we want to know whether Epid holds, we query for
P (Epid) for which LJT can use parcluster C1. LJT sums out
Treat(X,P) and Sick(X) from C1’s local model G1, {g0},
combined with the received messages, one message from C2.

B. Lifted Dynamic Junction Tree Algorithm

LDJT efficiently answers queries P (Qiπ|E0:t), with Qiπ ∈
Qt and Qt ∈ {Qt}Tt=0, given a PDM G and evidence
{Et}Tt=0. LDJT uses the fact that only some PRV influence
the next time step (interface PRVs). In our example PDM,
Epidt and Sickt(X) influence the next time step. Using the
interface PRVs, LDJT constructs FO jtree structures that are
time independent by having the interface PRVs appear in one
parcluster for t− 1 and one for t (in- and out-clusters). Thus,
LDJT can always only reason over one time step at once.
Further, LDJT only needs to store the state of the interface
PRVs while proceeding in time.

LDJT performs the following steps: (i) Construct two
FO jtrees J0 and Jt with in- and out-clusters from G. (ii) For
t = 0, use J0, enter E0, pass messages, answer each query
term Qiπ ∈ Q0, and preserve the state in message α0. (iii) For
t > 0, instantiate Jt for the current time step t, add αt−1 to
the incluster, enter Et in Jt, pass messages, answer each query
term Qiπ ∈ Qt, and preserve the state in message αt.

Figure 4 depicts the passing on of the current state from time
step three to four. As mentioned, only the PRVs Epid3 and
Sickt(X) are interface PRVs. To capture the state at t = 3,
LDJT sums out the non-interface PRV Treat3(Y) from C2

3’s
local model and the received messages and saves the result in
message α3. After increasing t by one, LDJT adds α3 to C2

4.
α3 is then distributed by message passing and accounted for
during calculating α4. Thus, LDJT can efficiently handle the
temporal aspects while having the benefit of LJT including a
rather small FO jtree to perform inference on.

C. meuLDJT for Decision Support

LDJT efficiently answers multiple marginal queries for
temporal probabilistic relational models. However, solely with
marginal queries, LDJT cannot support decision making. Here,
a temporal MEU query comes into play.

To answer a temporal MEU query, Gehrke, Braun, and
Möller introduce meuLDJT [31]. The basic idea of meuLDJT
is to calculate a belief state and combine the belief state with
corresponding utilities. Thus, meuLDJT calculates an action
sequence for groups behaving the same that maximises the
expected utility for a finite horizon. Finite horizon in this
case means that we only plan a given number of time steps
into the future. Further, in addition to solving the temporal
MEU problem, meuLDJT still can efficiently answer multiple
queries efficiently by using the FO jtree structures. To obtain
an exact solution for a temporal MEU query, the computation
is exponential in the number of time steps we plan ahead.

For the scenario in Fig. 3, assume that we are interested in
the best action for the current time step. Then, meuLDJT has
to check each possible action for each indistinguishable group
of the logvar X . In case X is not split, meuLDJT can set
A(X) to A1 and compute an expected utility and afterwards,
set A(X) to A2 and again compute an expected utility to
determine which action maximises the utility. In case we are
also interested in the next time step, then meuLDJT needs to
check 4 actions as for both actions in the current time step
there again are 2 possible actions in the next time step. With
evidence that splits X into more groups, meuLDJT also needs
to check each possible combination of action assignments for
the different groups, making the MEU problem a hard problem
to solve. Nonetheless, with the lifting idea the problem already
becomes manageable.

Let us now have a look at STARQL, which efficiently deals
with temporal data streams.

V. STARQL

Based on [32], we recapitulate STARQL. STARQL is a
stream-temporal query framework that was implemented as
a submodule of the OPTIQUE software platform [14], [18],
[33] and in stand-alone prototypes described in [34], [35]. It
extends OBDA [7] to temporal and streaming data.

The main idea of OBDA query answering is to represent
the knowledge of the domain of interest in a declarative
knowledge, aka ontology, and access the data via a high-level
query that refers to the ontology’s vocabulary, aka signature.
The non-terminological part of the ontology, called the abox,
is a virtual view of the data produced by mapping rules.
Formulated in a description logic, the abox can have many
different first-order logic models that represent the possible
worlds for the domain of interest. These can be constrained
to intended ones by the so-called tbox, which contains the
terminological part of the ontology. In an OBDA system,
different components have to be set up, fined-tuned, and
co-ordinated in order to enable robust and scalable query
answering: (i) a query-engine which allows formulating ontol-
ogy-level queries; (ii) a reformulation engine, which rewrites
ontology-level queries into queries covering the entailments of
the tbox; (iii) an unfolding mechanism that unfolds the queries
into queries for the backend data sources, and, (iv) the backend
sources which contain the data.

As one cannot reason over all data points in a stream,
which is normally assumed to be infinite, STARQL provides
a window operator with a range parameter range (width of
window) and a slide parameter slide (update frequency). The
range value defines a time interval STARQL reasons over at
once and the slide value defines how fast the window proceeds
over the data points. Together, the range and slide parameter
allow for constructing a sliding window over a sequence of
temporal data points. In case range ≥ slide, the windows
are overlapping. Otherwise, the windows do not overlap. For
example, with range = 5s and slide = 1s, STARQL starts
with a window from [−5s, 0s], then slides the window to
[−4s, 1s], and continues in this fashion.

VI. PROBABILISTIC STREAM-BASED REASONING

STARQL can efficiently reason over temporal streams from
multiple sources. However, STARQL cannot handle uncer-
tainties and perform probabilistic inference. meuLDJT can
efficiently answer multiple queries for temporal probabilistic
relational models and support decision making. However,
meuLDJT currently cannot handle data streams with different
sampling rates, not unified data streams, or data streams that
are not discretised. Therefore, we combine meuLDJT and
STARQL, presenting in PSR. PSR leverages the benefits of
both STARQL and meuLDJT.

PSR consists of a STARQL and a meuLDJT component.
Figure 6 gives an overview about the data flow and tasks
within PSR. The figure shows the data sources on the left,
the STARQL component in the middle, and the meuLDJT
component on the right. The main steps that PSR performs for
each time step t are (i) input processing, (ii) input preparation,
(iii) query answering, and (iv) monitoring.

PSR requires additional inputs next to data from sources,
which we present first before diving into the steps themselves.
The following inputs need to be defined:
• a PDDecM G as specified in Definition 6,
• queries Q1

π, . . . , Q
m
π for G to evaluate at each time step,

• an ontology that unifies the vocabulary of the different
sources of data streams into the vocabulary of G,

• thresholds for discretisation of continuous ranges,
• functions for combining multiple data points into one,
• window parameters range and slide,
• monitoring queries for streams, and
• alert queries for streams.

The first input is passed to meuLDJT to build FO jtrees.
The second input, queries for G, goes to STARQL such that
STARQL can assemble evidence and queries as inputs for
meuLDJT. The queries Q1

π, . . . , Q
m
π are evaluated each time

step, yielding streams of query results over time. With the
ontology, STARQL is able to present a unified view of the data
and meuLDJT is able to process the incoming data as evidence.
The next two inputs provide STARQL with information about
how to prepare incoming data from the streams for meuLDJT
to be able to process the data as evidence. The last two inputs
are queries that STARQL evaluates on the data streams as
well as query streams given range and slide. The results of
monitoring queries are simply displayed. Alert queries lead
STARQL to issue an alert to the user, which means the user
can issue some more queries online. Next, we go through the
steps and consider the specific tasks to perform.

During input processing, STARQL performs the following
tasks for each t:

(i) Gather data vi from different sources/devices devi.
(ii) Access vi using OBDA.

Data vi can be a single data point or a collection of points
for t, depending on the sampling rate of devi. With OBDA,
STARQL can use a terminology defined in an ontology inde-
pendent of the actual terminology of the devices. To be more
precise, the terminology in an ontology needs to map to the

Sources STARQL meuLDJT

dev1
. . .

devn

v1

vi

vn

Input processing
• Map input to

vocabulary

ṽ1

ṽi

ṽn

Input preparation
• Align sampling rates
• Discretise values
• Assemble queries

ṽ1
ṽi

ṽn

Monitoring
• Evaluate monitoring queries
• Evaluate alert queries
• Pass on online queries

ṽ′1

ṽ′i

ṽ′n

Query answering
• Update FO jtrees
• Compute queries

Q1
π, . . . , Q

m
π

q1π

qmπ

User

Issue alerts
Display results

Upon alert:
Issue online queries

Qkt

qkt

Fig. 6: PSR overview

randvar names R from G. By mapping the input sources to R,
STARQL can directly pass the data onwards to meuLDJT as
evidence. To be able to pass on the data, STARQL also needs
to map the individuals or input streams to instances in G, i.e.,
STARQL needs a mapping to the corresponding instance from
D. At the end of input processing, the different vi are mapped
to a unified vocabulary, leading to ṽi.

The next step is input preparation, which works on the ṽi
data. STARQL performs the following tasks for each t.

(i) Discretise those ṽi that have continuous ranges given
predefined thresholds.

(ii) Align those ṽi with a different sampling rate given
predefined functions.

(iii) Assemble corresponding queries Q1, . . . , Qm and evi-
dence to pass on to meuLDJT.

The first task is due to meuLDJT only handling discrete
ranges. The second task arises as sampling rates of sensors
might differ and each randvar in G can only be assigned at
most one value for each time step. In case some sensors or
devices have a higher sampling rate than others, leading to
more than one measurement in a time period, STARQL can,
for example, average the information to obtain time discretised
information. That is to say, STARQL produces an assignment
of at most one event for each randvar for each time step,
yielding data points ṽ′i of the form E = {Ei = ei}i that
meuLDJT can process as evidence.

The next step is query answering, which meuLDJT per-
forms. The step includes the tasks

(i) Update the internal state of the FO jtrees.
(ii) Answer given queries Q1

π, . . . , Q
m
π .

(iii) Send query results q1π, . . . , q
m
π back to STARQL.

The first task means that meuLDJT stores the current model
state in αt, increases its internal time from t to t ← t + 1,
recovers the previous model state, enters the new evidence,
and passes messages. Then, meuLDJT calculates a best action

sequence for a finite horizon for an MEU query. For that best
action sequence, meuLDJT then answers additional marginal
queries. The results of the different queries are sent back to
STARQL for monitoring and display.

The last step is monitoring by STARQL. The tasks are:
(i) Based on range and slide, evaluate monitoring and alert

queries on data and query streams.
(ii) Send online queries on to meuLDJT to evaluate.

STARQL evaluates monitoring and alert queries on the streams
in a sliding window. STARQL displays the action sequence
from meuLDJT as well as the results of the monitoring queries.
If all alert queries evaluate to false, PSR continues with
new data points arriving from the sources. If an alert query
evaluates to true, PSR basically freezes the current state to
allow for further query answering. If an alert query evaluates
to true, STARQL issues an alert to the user. Upon an alert, a
user may issue further queries Qkt for the current model state
(online queries), which STARQL passes on to meuLDJT to
evaluate. After answering the new queries, meuLDJT sends
the query results qkt back to STARQL for display.

Monitoring can be used for different aspects. For example,
we can use it for pattern recognition. Another idea would be
to see if the probabilities for a certain event are increasing
within a window. Further, we could also be interested in if the
probabilities are over a certain threshold for a given number
of time step in a window and request STARQL to issue an
alert if true. Thus, with STARQL, we can reason over the
inference results of meuLDJT to see how the probabilities
change over time, providing another indication which action
should be performed next.

VII. EVALUATION

In this empirical evaluation, we analyse the efficiency and
scalability of PSR. The window parameters, which depend
on user requirements, influence the efficiency of STARQL

●

●

●

●

●

●

●

●

●

●

●
●

500 1000 1500 2000 2500 3000 3500

0
10

00
30

00
Total

●

STARQL LDJT
n = 10
n = 100
n = 1000

Fig. 7: Runtimes for range = 5 and slide = 1 with changing
domain sizes, y-axis: [seconds], x-axis: maximum time steps

as small windows with high frequency mean more frequent
calculations. For meuLDJT, the domain size and the maximum
number of time steps are the largest contributing factors, the
former depending on the problem at hand, the latter on user
requirements. Therefore, we look at these parameters. We
expect meuLDJT to take up a large part of the runtime as
reasoning takes time. Nonetheless, we expect PSR runtimes to
depend only linearly on the maximum number of time steps
and only polynomially on domain sizes (not exponentially).

For the evaluation, we use Gex with domain sizes |D(X)|
set to 10, 100, and 1000. We assume that we obtain stream
data from one source with the terminology of Gex. Further, we
split the evidence into two uniform groups, i.e., after evidence
entering, there are two groups of persons in Gex that has
indistinguishable members. Queries for meuLDJT are an MEU
query for a current time step as well as filtering queries for
Epid and Sick(X) for each group of persons. Based on the
query results, STARQL checks whether the probability of an
epidemic is above 80%. We test the parameter range with 5
and 300 and the parameter slide with 1 and 60.

Figure 7 shows the runtimes of PSR with range = 5 and
slide = 1 and |D(X)| to 10, 100, and 1000. We can see
multiple aspects in the figure. The first aspect is that PSR
runs in linear time w.r.t. the maximum number of time steps.
The next aspect is that most time is spent inside of meuLDJT.
meuLDJT has to solve an MEU query for the current time step
and answer 3 filtering queries. Thus, meuLDJT has to perform
4 − 5 message passes for each time step and answer overall
11 queries. With the evidence, we split the logvar X into two
groups. Thus, we need to iterate over 4 actions for each time
steps, as for both groups we can perform both actions. Hence,
we have at least 4 message pass and might need 5 in case the
last action assignment does not lead to the maximum utility.
The 11 queries are a combination of 3 filtering and 8 utility
queries for each time step. STARQL only needs to reason
over the query results of meuLDJT. Further, as meuLDJT is
a lifted algorithm, it suffices to reason over representatives.
Thus, STARQL also only needs to reason over representatives
instead of each individual. Lastly, we can see that PSR is
highly scalable due to meuLDJT. When increasing |D(X)|
from 10 to 100, runtimes only need about 3 times longer.

●
●

●

●

●

●
●

●
●

●

●

●

500 1000 1500 2000 2500 3000 3500

0
10

20
30

40
50

●

r=5s,s=1s
r=5s,s=60s
r=300s, s=1s
r=300s, s=60s

Fig. 8: Runtimes for n = 10 with changing range and sliding
values, y-axis: [seconds], x-axis: maximum time steps

Therefore, PSR is polynomial w.r.t. the domain sizes instead
of exponential, which applies for a ground inference algorithm.

How changing range and slide influences the runtime of
STARQL is depicted in Fig. 8 for a domain size of 10. We
only show the runtimes of STARQL since the runtimes of
meuLDJT remain as shown in Fig. 7. In Fig. 8, we see that
the slide value has the biggest impact on the reasoning times
of STARQL. The slide value basically determines over how
frequent STARQL has to reason in a window. With slide = 1s
and range = 5s, STARQL frequently moves along its sliding
window. By setting the range value to a high value, in this case,
300s, STARQL has huge windows to reason over each second,
leading to the highest runtime. If STARQL only reasons over
a few small windows, e.g., slide = 60s and range = 5s, the
runtimes are dominated by providing meuLDJT with the input
and the reasoning aspect hardly plays any role.

As mentioned, due to meuLDJT, STARQL also only needs
to reason over representatives. Hence, increasing the domain
sizes of the logvar X does not increase the reasoning time of
STARQL and the STARQL reasoning times remain the same
for n = 100 and n = 1000. Nonetheless, the time STARQL
requires to provide meuLDJT with inputs increases as more
evidence needs to be passed along.

Overall, PSR is efficient and scalable given our setup as
it runs in linear time w.r.t. the maximum number of time
steps and in polynomial time w.r.t. domain sizes. Real-time
processing with one second corresponding to one time step
is possible depending on domain sizes. E.g., meuLDJT only
takes around 0.12s to evaluate all queries for one time step
with a domain size of 100. With PSR, STARQL and meuLDJT
benefit from the strengths of the other approach, allowing
for performing inference and supporting decision making on
temporal uncertain data streams.

VIII. CONCLUSION

We show how one combines a stream-based reasoning
approach, in this case STARQL, and an approach to perform
inference on temporal probabilistic relational models, in this
case meuLDJT, to perform reasoning on temporal uncertain
data streams, resulting in PSR. PSR also reasons over a sliding
window, allowing for monitoring. Thus, with PSR, we can

easily identify the next best action and also perform a long
term monitoring, which could be used to identify the next
patient to treat. First results demonstrate that PSR runs in
linear time w.r.t. the maximum number of time steps.

Future work includes to extend STARQL with an incremen-
tal reasoning over a sliding window. That is to say, STARQL
only adjusts for the data that is new in a window and the data
that is removed from the window.

REFERENCES

[1] P. Koopmann, “Ontology-Based Query Answering for Probabilistic
Temporal Data,” in Proceedings of the 33rd AAAI Conference on
Artificial Intelligence (AAAI’19), P. V. Hentenryck and Z.-H. Zhou, Eds.
Honolulu, USA: AAAI Press, 2019.

[2] M. Gehrke, T. Braun, and R. Möller, “Lifted Dynamic Junction Tree
Algorithm,” in Proceedings of the 23rd International Conference on
Conceptual Structures. Springer, 2018, pp. 55–69.

[3] M. Gehrke, T. Braun, and R. Möller, “Relational Forward Backward Al-
gorithm for Multiple Queries,” in Proceedings of the 32nd International
Florida Artificial Intelligence Research Society Conference (FLAIRS-
19). AAAI Press, 2019.

[4] M. Gehrke, T. Braun, R. Möller, A. Waschkau, C. Strumann, and
J. Steinhäuser, “Lifted Maximum Expected Utility,” in Artificial Intelli-
gence in Health. Springer International Publishing, 2019, pp. 131–141.

[5] M. Gehrke, T. Braun, and R. Möller, “Lifted Temporal Most Probable
Explanation,” in Proceedings of the International Conference on Con-
ceptual Structures 2019. Springer, 2019.

[6] Özgür. L. Özçep, R. Möller, and C. Neuenstadt, “A stream-temporal
query language for ontology based data access,” in KI 2014, ser. LNCS,
vol. 8736. Springer International Publishing Switzerland, 2014, pp.
183–194.

[7] D. Calvanese, G. De Giacomo, D. Lembo, M. Lenzerini, A. Poggi,
M. Rodrı́guez-Muro, and R. Rosati, “Ontologies and databases: The DL-
Lite approach,” in 5th Int. Reasoning Web Summer School (RW 2009),
ser. LNCS. Springer, 2009, vol. 5689, pp. 255–356.

[8] D. F. Barbieri, D. Braga, S. Ceri, E. D. Valle, and M. Grossniklaus,
“C-sparql: a continuous query language for rdf data streams,” Int. J.
Semantic Computing, vol. 4, no. 1, pp. 3–25, 2010.

[9] D. L. Phuoc, M. Dao-Tran, J. X. Parreira, and M. Hauswirth, “A native
and adaptive approach for unified processing of linked streams and
linked data,” in The Semantic Web - ISWC 2011 - 10th International
Semantic Web Conference, Bonn, Germany, October 23-27, 2011, Pro-
ceedings, Part I, ser. Lecture Notes in Computer Science, L. Aroyo,
C. Welty, H. Alani, J. Taylor, A. Bernstein, L. Kagal, N. F. Noy, and
E. Blomqvist, Eds., vol. 7031. Springer, 2011, pp. 370–388.

[10] J.-P. Calbimonte, O. Corcho, and A. J. G. Gray, “Enabling
ontology-based access to streaming data sources,” in Proceedings
of the 9th international semantic web conference on The
semantic web - Volume Part I, ser. ISWC’10. Berlin,
Heidelberg: Springer-Verlag, 2010, pp. 96–111. [Online]. Available:
http://dl.acm.org/citation.cfm?id=1940281.1940289

[11] D. Anicic, P. Fodor, S. Rudolph, and N. Stojanovic, “Ep-sparql: a unified
language for event processing and stream reasoning,” in WWW, 2011,
pp. 635–644.

[12] J.-U. Kietz, T. Scharrenbach, L. Fischer, M. K. Nguyen, and A. Bern-
stein, “Tef-sparql: The ddis query-language for time annotated event
and fact triple-streams,” University of Zurich, Department of Informatics
(IFI), Tech. Rep. IFI-2013.07, 2013.

[13] J.-P. Calbimonte, J. Mora, and O. Corcho, “Query rewriting in rdf stream
processing,” in Proceedings of the 13th International Conference on
The Semantic Web. Latest Advances and New Domains - Volume 9678.
Berlin, Heidelberg: Springer-Verlag, 2016, pp. 486–502.

[14] E. Kharlamov, T. Mailis, G. Mehdi, C. Neuenstadt, O. L. Özçep,
M. Roshchin, N. Solomakhina, A. Soylu, C. Svingos, S. Brandt,
M. Giese, Y. Ioannidis, S. Lamparter, R. Möller, Y. Kotidis, and
A. Waaler, “Semantic access to streaming and static data at Siemens,”
Web Semantics: Science, Services and Agents on the World Wide Web,
vol. 44, pp. 54–74, 2017.

[15] S. Borgwardt, M. Lippmann, and V. Thost, “Temporal query answering
in the description logic DL-Lite,” in FroCos 2013, ser. LNCS, vol. 8152,
2013, pp. 165–180.

[16] A. Artale, R. Kontchakov, F. Wolter, and M. Zakharyaschev, “Temporal
description logic for ontology-based data access,” in IJCAI 2013, 2013,
pp. 711–717.

[17] E. Della Valle, S. Ceri, D. Barbieri, D. Braga, and A. Campi, “A first step
towards stream reasoning,” in Future Internet – FIS 2008, ser. LNCS.
Springer, 2009, vol. 5468, pp. 72–81.

[18] E. Kharlamov, Y. Kotidis, T. Mailis, C. Neuenstadt, C. Nikolaou,
Ö. L. Özçep, C. Svingos, D. Zheleznyakov, S. Brandt, I. Horrocks,
Y. E. Ioannidis, S. Lamparter, and R. Möller, “Towards analytics aware
ontology based access to static and streaming data,” in The Semantic
Web - ISWC 2016 - 15th International Semantic Web Conference, Kobe,
Japan, October 17-21, 2016, Proceedings, Part II, ser. Lecture Notes in
Computer Science, P. T. Groth, E. Simperl, A. J. G. Gray, M. Sabou,
M. Krötzsch, F. Lécué, F. Flöck, and Y. Gil, Eds., vol. 9982, 2016, pp.
344–362.

[19] B. Ahmadi, K. Kersting, M. Mladenov, and S. Natarajan, “Exploiting
Symmetries for Scaling Loopy Belief Propagation and Relational Train-
ing,” Machine learning, vol. 92, no. 1, pp. 91–132, 2013.

[20] I. Thon, N. Landwehr, and L. De Raedt, “Stochastic relational processes:
Efficient inference and applications,” Machine Learning, vol. 82, no. 2,
pp. 239–272, 2011.

[21] T. Geier and S. Biundo, “Approximate Online Inference for Dynamic
Markov Logic Networks,” in Proceedings of the 23rd IEEE International
Conference on Tools with Artificial Intelligence (ICTAI). IEEE, 2011,
pp. 764–768.

[22] T. Papai, H. Kautz, and D. Stefankovic, “Slice Normalized Dynamic
Markov Logic Networks,” in Proceedings of the Advances in Neural
Information Processing Systems, 2012, pp. 1907–1915.

[23] M. Richardson and P. Domingos, “Markov Logic Networks,” Machine
learning, vol. 62, no. 1, pp. 107–136, 2006.

[24] C. E. Manfredotti, “Modeling and Inference with Relational Dynamic
Bayesian Networks,” Ph.D. dissertation, Ph. D. Dissertation, University
of Milano-Bicocca, 2009.

[25] D. Nitti, T. De Laet, and L. De Raedt, “A particle Filter for Hybrid
Relational Domains,” in Proceedings of the IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS). IEEE, 2013,
pp. 2764–2771.

[26] J. Vlasselaer, W. Meert, G. Van den Broeck, and L. De Raedt, “Efficient
Probabilistic Inference for Dynamic Relational Models,” in Proceed-
ings of the 13th AAAI Conference on Statistical Relational AI, ser.
AAAIWS’14-13. AAAI Press, 2014, pp. 131–132.

[27] J. Vlasselaer, G. Van den Broeck, A. Kimmig, W. Meert, and
L. De Raedt, “TP-Compilation for Inference in Probabilistic Logic
Programs,” International Journal of Approximate Reasoning, vol. 78,
pp. 15–32, 2016.

[28] S. Borgwardt, I. I. Ceylan, and T. Lukasiewicz, “Ontology-Mediated
Query Answering over Log-linear Probabilistic Data,” in Proceedings
of the 33rd AAAI Conference on Artificial Intelligence (AAAI’19), P. V.
Hentenryck and Z.-H. Zhou, Eds. Honolulu, USA: AAAI Press, 2019.

[29] T. Braun and R. Möller, “Parameterised Queries and Lifted Query
Answering,” in Proceedings of IJCAI 2018, 2018, pp. 4980–4986.

[30] ——, “Lifted Junction Tree Algorithm,” in Proceedings of the Joint
German/Austrian Conference on Artificial Intelligence (Künstliche In-
telligenz). Springer, 2016, pp. 30–42.

[31] M. Gehrke, T. Braun, and R. Möller, “Lifted Temporal Maximum
Expected Utility,” in Proceedings of the 32nd Canadian Conference on
Artificial Intelligence, Canadian AI 2019. Springer, 2019.

[32] S. Schiff, Ö. L. Özçep, and R. Möller, “Ontology-based Data Access
to Big Data,” Open Journal of Databases (OJDB), vol. 6, pp. 21–32,
2018, postproceeding of Hidest’18.

[33] M. Giese, A. Soylu, G. Vega-Gorgojo, A. Waaler, P. Haase, E. Jiménez-
Ruiz, D. Lanti, M. Rezk, G. Xiao, Ö. L. Özçep, and R. Rosati,
“Optique: Zooming in on big data,” IEEE Computer, vol. 48, no. 3, pp.
60–67, 2015. [Online]. Available: http://dx.doi.org/10.1109/MC.2015.82

[34] R. Möller, C. Neuenstadt, and Özgür. L. Özçep, “Deliverable D5.2
– OBDA with temporal and stream-oriented queries: Optimization
techniques,” EU, Deliverable FP7-318338, October 2014.

[35] C. Neuenstadt, R. Möller, and Özgür. L. Özçep, “OBDA for temporal
querying and streams with STARQL,” in HiDeSt ’15—Proceedings of
the First Workshop on High-Level Declarative Stream Processing (co-
located with KI 2015), ser. CEUR Workshop Proceedings, D. Nicklas
and Özgür. L. Özçep, Eds., vol. 1447. CEUR-WS.org, 2015, pp. 70–75.

