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Abstract. An effective decision support system requires a user’s trust
in its results, which are based on expected utilities of different action
plans. As such, a result needs to be explainable and explorable, provid-
ing alternatives and additional information in a proactive way, instead
of retroactively answering follow-up questions to a single action plan as
output. Therefore, this paper presents LEEDS, an algorithm that com-
putes alternative action plans, identifies groups of interest, and answers
marginal queries for those groups to provide a comprehensive overview
supporting a user. LEEDS leverages the strengths of gate models, lifting,
and the switched lifted junction tree algorithm for efficient explainable
and explorable decision support.
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1 Introduction

Decision support systems provide users with an action plan that is the result
of considering expected utilities of various actions or learning a policy. A key
challenge to decision support is building trust in the system. Often only a sim-
ple explanation is provided in the form of the action being most probable or
leading to the highest utility, which may not be enough, especially if the result
contradicts with a user’s own assessment. Approximations may further hinder
trust building, as they may be alienating to users or not good enough in ap-
plications concerning, e.g., healthcare [22]. Instead, based on exact calculations,
further context, explanation, or alternatives are needed to explore the result.
The problem becomes especially apparent in the health care sector. For med-
ical professionals, understanding why they should take an action is crucial to
understanding proposed actions [19]. Retroactively answering follow-up ques-
tions about groups of interest or states of patients disrupts a user’s work flow.
Therefore, decision support systems need to provide a full picture of alternative
action plans with additional information about groups or queries registered in
advance. In addition to these human-centric requirements, decision support sys-
tems need to cope with vast amounts of probabilistic, relational data and still
provide results in a timely manner.
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Implementing such systems requires (i) a relational model compactly encod-
ing objects, relations, and uncertainties, incorporating actions and utilities to
solve a maximum expected utility (MEU) problem, asking not for a single but
top-k action plans, and (ii) exact, lifted inference (using a helper structure) for
accurate and timely results. Lifted inference handles groups of indistinguishable
objects efficiently using representatives, which makes inference tractable regard-
ing the number of objects [15]. Using lifted inference also enables a system to
identify groups or objects of interest that act differently than the remaining ob-
jects. Using a helper structure allows for efficient answering of multiple queries,
reusing calculations as much as possible.

Therefore, this paper presents Lifted Explainable and Explorable Decision
Support (LEEDS). Specifically, the contributions are (i) parameterised deci-
sion gate models (PDecGMs) as the modelling formalism, incorporating param-
eterised utilities as well as parameterised gates for actions and (ii) LEEDS as
the algorithm that outputs top-k action plans, groups of interest, and answers to
marginal queries given a PDecGM, k, evidence, and possibly registered queries.
LEEDS builds upon switched lifted junction tree algorithm (SLJT), which per-
forms exact lifted inference in parameterised gate models (PGMs) [7]. PGMs
represent a full joint probability distribution and consist of parameterised ran-
dom variables (PRVs) that are combined by parametric factors (parfactors),
which can be switched on or off using gates. We use the gates formalism [13]
to efficiently model actions, explicitly encoding impacts of actions on a model
by switching from one model representation to another. Modelling actions us-
ing gates also leads to fewer random variables, which has a positive effect on
inference complexity. Lifting allows for exploiting relational structures during
calculations [16]. SLJT performs lifted, exact inference in PGMs. A so-called
first-order junction tree (FO jtree) [12,4] as an underlying helper structure en-
ables efficient answering of multiple queries. Performance-wise, LEEDS exploits
relational structures for tractable inference w.r.t. domain sizes as well as the
behaviour encoded in gates, as evidenced by a small empirical case study. It
proceeds adaptively to save up to 50% of its computations compared to a naive
algorithm.

LEEDS as an algorithm belongs to a group of lifted algorithms aiming at per-
forming calculations on a lifted level, using grounding only as a last resort, start-
ing with lifted variable elimination (LVE) as the first lifted algorithm introduced
[16,20,6]. The lifted junction tree algorithm (LJT) [4], first-order knowledge com-
pilation [21], and probabilistic theorem proving [9] use a helper structure for ef-
ficient multi-query answering. Whereas the algorithms mentioned perform exact
inference, approximate algorithms also exist such as lifted belief propagation [1].
LEEDS also performs lifted decision making, for which two main approaches
exist: (i) finding a policy in a first-order (partially observable) Markov decision
process (FO (PO)MDP) [11,18] or (ii) solving a MEU problem in a relational
model that includes actions and utilities [14,2,8]. The main advantage of the
first approach is its efficiency regarding decision making as it reduces to looking
up the corresponding action in the policy online. The disadvantage lies in the
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decision coming from a black-box policy where an explanation is hard to find,
alternatives cannot be easily calculated, and an exploration of the decision and
a model state would be hard to achieve. In contrast, the second approach allows
for explaining and exploring a decision as the model allows for further queries
to provide additional information at the expense of online calculation time. To
the best of our knowledge, none of the existing algorithms tackle the combined
problem of decision making and query answering needed for explainable and
explorable decision support, using lifting for efficiency.

In the following, we begin by recapitulating PGMs as well as SLJT for infer-
ence on PGMs. Then, we add actions and utilities to the formalism for solving
MEU problems and present LEEDS. We end with a conclusion.

2 Preliminaries

This section defines PGMs [7], which combine parameterised probabilistic models
(PMs) [16] and gate models [13]. Then, it recaps SLJT.

2.1 Parameterised Gate Models

PGMs combine first-order logic with probabilistic models, using logical variables
(logvars) as parameters in random variables (randvars). For illustrative purposes,
we use an example of an epidemic based on [17]. In the example, we model an
epidemic as a randvar and persons being sick as a PRV by parameterising a
randvar for sick with a logvar for persons. In the larger scheme, all persons are
influenced in the same way in an epidemic without additional evidence and thus
are indistinguishable.

Definition 1. Let R be a set of randvar names, L a set of logvar names, Φ a set
of factor names, and D a set of constants. All sets are finite. Each logvar L has
a domain D(L) ⊆ D. A constraint is a tuple (X , CX) of a sequence of logvars
X = (X1, . . . , Xn) and a set CX ⊆ ×ni=1D(Xi). The symbol > for C marks that
no restrictions apply, i.e., CX = ×ni=1D(Xi), and may be omitted.

A PRV R(L1, . . . , Ln), n ≥ 0 is a syntactical construct of a randvar R ∈ R
possibly combined with logvars L1, . . . , Ln ∈ L. If n = 0, the PRV is param-
eterless and constitutes a propositional randvar. A|C denotes a PRV A under
constraint C. The term R(A) denotes the possible values (range) of A. An event
A = a denotes the occurrence of A with value a ∈ R(A).

The term lv(Γ ) refers to the logvars in some element Γ , e.g., a PRV or
parfactor. The term gr(Γ|C) denotes the set of instances of Γ with all logvars
in Γ grounded w.r.t. constraint C. Next, we define PGMs, which consist of
parfactors. A parfactor describes a function, mapping argument values to real
values (potentials). Arguments of parfactors are PRVs, compactly encoding pat-
terns, i.e., the function is identical for all instances. A parfactor can be gated,
meaning that using a selector the parfactors can be turned on or off [7].
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Fig. 2. FO jtree of Mex

Definition 2. We denote a parfactor g by φ(A)|C with A = (A1, . . . , An) a se-
quence of PRVs, φ : ×ni=1R(Ai) 7→ R+ a function with name φ ∈ Φ, and C a con-
straint on the logvars of A. Given a selector S and parfactors gi (i as the iterating
index), a gate is denoted by {gi}S,keyi , which is turned on if S has the value key
and off if S has any other value. Semantically, a gate represents (

∏
i gi)

δ(s=key)

with δ(s = key) denoting the Dirac impulse, which is 1 if s has the value key and
0 otherwise. An assignment to a set of selectors S is called a configuration {S =

s}S∈S, s for short. A PGM M := {gk}k ∪
⋃
S∈S{gi}

S,key
i consists of non-gated

parfactors gk and gated parfactors gi with selectors S. With Z as the normalisa-
tion constant, the semantics of M given s is given by grounding and building a
full joint distribution PM (s) = 1

Z

∏
s∈s(

∏
i

∏
f∈gr(gi) f)

δ(s=key)
∏
k

∏
f∈gr(gk) f.

Let us specify an example PGM for the epidemic scenario, which is depicted
in Fig. 1 withMex={gi}1i=0∪{g2}DoE,true∪{gE}DoE,false. Parfactors g0, g1, and
g2 have eight input-output pairs, gE has two (omitted). Constraints are > with
some finite domains (omitted). In the graph, PRVs are shown as ellipses and
parfactors as boxes with edges between them if the PRV occurs in the parfactor.
Gates are depicted as dashed boxes, one gate for gE and one gate for g2, both
with selector DoE. The gates are mutually exclusive, meaning when one gate is
on, the other is off. E.g., the gate for g2 allows for turning off the connection to
causes of an epidemic, e.g., based on value of information.

A query for a PGM M asks for a (conditional) marginal distribution of a
grounded PRV. Formally, a query is defined as follows.

Definition 3. Given a query term Q, a configuration s, and a set of events
E = {Ej = ej}mj=1, the expression P (Q | E, s) denotes a query.

Answering a query requires eliminating all instances of PRVs not occurring in the
query from a PGM M . Gehrke et al. show that LVE can be used for this, which
computes marginals lifted by summing out a representative as in propositional
variable elimination and then factoring in isomorphic instances [7]. Given another
query, LVE starts with the original model. For efficient multi-query answering,
SLJT incorporates gates into the FO jtree of LJT.
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2.2 Switched Lifted Junction Tree Algorithm

SLJT efficiently answers multiple queries in a PGM by building an FO jtree of
the PGM based on selectors. In the following, we examine how SLJT leverages
the FO jtree for automatically handling the effects of any given configuration.

Clusters An FO jtree consists of clusters as nodes, which are sets of PRVs di-
rectly connected by parfactors. Each cluster is conditionally independent of all
other clusters given the PRVs that are shared with neighbouring clusters. Each
parfactor is assigned to a cluster that covers its arguments as a local model. For
SLJT, clusters are based on selector values. Consider the FO jtree with four
clusters for Mex in Fig. 2. Cluster C1 is linked by g0. Cluster C3 is linked by
g1. Clusters C2 and C4 are based on the selector DoE. C2 contains Epid, based
on DoE = true, with gE assigned. C4 contains Epid, Nat(D), and Man(W ),
based on DoE = false, with g2 assigned. If DoE(X) = true, C2 is switched on.
If DoE(X) = false, C4 is switched on. C1 and C3 can be thought of as always
switched on.

At this point, local models hold state descriptions about their clus- ter PRVs,
which are not available at other clusters. To answer queries on an FO jtree, SLJT
first performs some preprocessing by making all necessary state descriptions
available for each cluster using so-called messages. After message passing, each
cluster has all descrip- tions available in its local model and received messages.
To answer a query with a query term Q, LJT finds a cluster containing Q and
answers P (Q) on the local model and messages with LVE.

Query Answering After construction, local models hold state descriptions on
their cluster PRVs not available at other clusters. SLJT uses so-called messages
to efficiently distribute the descriptions for correct query answering. Specifically,
SLJT takes a PGM M , a configuration s, evidence E, and a set of queries Q
and proceeds as follows: 1. Construct an FO jtree J . 2. Set up s in J . 3. Enter
evidence E in J . 4. Pass messages in J . 5. Answer queries in Q using J .

To set up s in J , SLJT switches clusters in J on and off based on s. Entering
E entails that, at each cluster covering (a part of) E, its local model absorbs
E in a lifted way [20]. Then, SLJT passes messages. A message m from one
cluster to a neighbour C transports state descriptions of its local model and
messages from other neighbours to C. SLJT uses LVE to calculate m, passing
on the shared PRVs as a query and the local model and respective messages
as a model. Messages depend on a given configuration. If a cluster is switched
on, SLJT calculates a message based on a cluster’s local model and messages
from neighbours. If a cluster is switched off, SLJT calculates a message based
only on messages from neighbours. The information from the neighbours have
to be passed on to the other clusters based on the message passing scheme.
For a switched off cluster, the local model of that cluster is turned off, but the
incoming messages still need to be proceeded. Thus, SLJT calculates a message
solely based on messages from neighbours. Given DoE = true in the FO jtree in
Fig. 2, the message from C4 to C3 is empty as no other neighbour exist. With
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DoE = false, the message from C2 to C1 is empty. Finally, SLJT answers the
queries in Q. To answer a query with a query term Q, SLJT finds a cluster
containing Q and answers P (Q) on the local model and messages with LVE.

SLJT allows for exploring a model state by answering queries. For decisions,
we incorporate utilities and actions into PGMs and solve MEU problems.

3 Explainable and Explorable Decision Support

For explainable and explorable decision support, we add actions and utilities to
PGMs, define the MEU problem in these models, and present LEEDS, which
solves the MEU problem along with queries for groups forming along the way.

3.1 PDecGMs: Adding Actions and Utilities to PGMs

To model actions, we could introduce an action PRV with the actions in its range,
enlarging parfactors. In contrast, PGMs allow for modelling context-specific in-
dependences, which can be seen as an action performed to change a model state
externally. Thus, we model actions using gates, allowing for high expressiveness
regarding the effect of actions on a model and keeping parfactors small, which
has a positive effect on inference complexity. As for utilities, in PDecGMs, PRVs
represent utilities, which are identical for groups of indistinguishable objects,
leading to utility parfactors, defined as follows.

Definition 4. Let Φu be a set of utility factor names. A parfactor that maps
to a utility PRV U is a utility parfactor gu, denoted by µ(A)|C where C is a
constraint on the logvars of A and µ is defined by µ : ×A∈A\{U}R(A) 7→ R, with
name µ ∈ Φu. The output of µ is the value of U . A PDecGM M is a PGM
with an additional set Mu of utility parfactors. The term rv(Mu) refers to all
probability PRVs in Mu. Let {gu,i}S,keyi denote the set of utility parfactors gu,i
in a gate with selector S, switched on with value key, and gu,k be ungated utility
parfactors. Given a configuration s,Mu represents the combination of all utilities
that are turned on, UM (s) =

∑
s∈s(

∑
i

∑
f∈gr(gu,i)

f)δ(s=key)+
∑
k

∑
f∈gr(gu,k)

f.

The semantics already shows how lifting can speed up performance: The
calculations for each f ∈ gr(gu,i) are identical, allowing for rewriting the sum
over f ∈ gr(gu,i) into a product of |gr(gu,i)| · f .

Figure 3 shows a PDecGM based on Mex. Compared to the original Mex, we
replace the PRV Treat(X,M) with two action gates and a selector DoT (X) to
model treatments as actions with different effects. The two actions for the gates
with the selector DoT (X) are treat patient, T1, and do nothing, T2. Additionally,
the PDecGM contains two action gates with a selector DoB(X), a utility Util
(grey diamond), and four utility parfactors (crossed boxes). The two actions for
the gates with the selector DoB(X) are travel ban, B1, and do nothing, B2. As
DoB(X) and DoT (X) select the executed action (action selector), we call the
assignment of DoB(X) and DoT (X) an action configuration. Given an action
configuration, either parfactors gU2, g1 or parfactor gU1 is on as well as either
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parfactors gU3, g0 or parfactors gU4, gT are on. All four actions influence the
utility, albeit differently based on the condition of patients as represented by the
utility parfactors. For example, sick people can infect other people. Hence, the
condition of people, i.e., how likely it is that a person is sick, influences the overall
utility. Sick people traveling can infect people in other areas, which increases the
probability of an epidemic. Further, travelling can also worsen the condition
of persons. In case many people are sick, an action is a travel ban. However,
a travel ban limits people’s freedom. Thus, a travel ban may also negatively
influence the utility. In case a person is sick, a medical professional can treat
that person. However, doctors have limited time to treat people. Additionally,
treating a healthy person could also cause more harm than good. Therefore, the
utility values after treating people also have to be chosen carefully.

3.2 Maximum Expected Utility

To define the MEU problem on a PDecGM, we need to define expected utilities
in a PDecGM.

Definition 5. Given a PDecGM M , a query term Q, a configuration s, events
E, the expression P (Q | E, s) denotes a probability query for PM (s). The ex-
pression U(Q,E, s) refers to a utility for UM . Given s and E, the expected
utility of M is defined by

eu(E, s) =
∑

v∈×r∈rv(M)R(r)

P (v | E, s) · U(v,E, s) (1)

LVE already answers probability queries efficiently in PGMs, which extends to
PDecGMs as utility parfactors are ignored when answering a probability query.
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LVE also allows for exactly computing an expected utility in a PDecGM based
on Eq. (1). The inner product in Eq. (1) calculates a belief state P (v | E, s) and
combines it with corresponding utilities U(v,E, s). By summing over the range of
all PRVs ofM , one obtains a scalar representing an expected utility. Equation (1)
also allows for analysing which constants are associated with high utilities and
computing marginal queries for these constants. For groups of indistinguishable
constants, one representative query is sufficient, which lifting renders possible.
Next, we show that LVE correctly computes expected utilities.

Proposition 1. Given a configuration s and evidence E, LVE correctly com-
putes eu(E, s) in a PDecGM M .

Proof. Computing eu(E, s) requires LVE to eliminate all non-utility PRVs, i.e.,
utility PRVs basically form the query terms. Eliminating PRVs in parfactors is
correctly implemented through LVE operators [20]. As utilities are PRVs, LVE
correctly handles them when applying operators. After eliminating all non-utility
PRVs, the remaining parfactor holds the expected utility.

The MEU problem asks for the action configuration leading to the maximum
expected utility as in Eq. (1), defined as follows:

Definition 6. Given a PDecGM M with fixed non-action selectors s and events
E, the MEU problem is given by

meu[M | E, s] = (argmax
a

eu(E, s,a),max
a

eu(E, s,a)) (2)

Equation (2) suggests a naive algorithm for calculating an MEU, namely by
iterating over all possible action configurations, solving Eq. (1) for each con-
figuration. Since the gates in M are parameterised, the complexity of comput-
ing Eq. (2) is no longer exponential in the number of ground actions, enabling
tractable inference in terms of domain sizes [15]. Instead of the domain sizes,
the complexity is exponential in the number of groups forming due to evidence,
which is usually very much lower than the number of constants. Assume that we
observe whether a person is sick. Evidence for instances can be in the range of
Sick(X): boolean. Thus, X can be split into three groups, with observed values
of true, of false, or no observation. For each group individualy, DoB(X) can be
set to either B1 or B2. The same holds for DoT (X). Thus, in our example, we
need to iterate over 41 to 43 action configurations depending on evidence.

Since LVE can compute expected utilities, one can also use LVE to solve an
MEU problem in a PDecGM. For an exact solution, one constructs all possible
action configurations Sa depending on splits due to evidence and then computes
the expected utility of each action configuration. The action configuration that
maximises the expected utility is selected. As the utility value is a scalar, we can
easily rank them to get the top-k action configurations.

When a configuration is changed to a new one, only parts of a model are
turned on or off, while the structure of the remaining model is unchanged.
Therefore, while solving the MEU problem, a naive algorithm eliminates the
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unchanged structure twice, which is very costly. With more actions, unchanged
structures are eliminated even more often. Therefore, we introduce LEEDS as a
means to efficiently handle changing configurations.

3.3 LEEDS

LEEDS provides lifted explainable and explorable decision support by outputting
top-k action plans and answers to marginal queries for groups of interest. Algo-
rithm 1 shows an outline. Inputs are a PDecGM M , a number k to set the k in
top-k, a configuration for non-action selectors s, evidence E, and queries Q. Our
example PDecGM in Fig. 3 would be M and k could be 3. There exists one non-
action selector, DoE, which we could set to false. Evidence may be that two
people x1 and x2 are travelling, i.e., Travel(X ′) = true for D(X ′) = {x1, x2}.
Providing queries allows for registering PRVs of interest in advance, such as
Epid or Sick(X). Then, LEEDS can answer marginal queries for propositional
randvars like Epid or answer representative queries for PRVs like Sick(X) based
on groups and constants identified by LEEDS because of evidence or high influ-
ence in expected utilities of Eq. (1).

Given these inputs, LEEDS begins by constructing an FO jtree for M based
on selectors comparable to SLJT. Then, LEEDS enters E and sets up s. LEEDS
proceeds with solving the MEU problem, which also includes answering Q. To
solve the problem and answer queries respectively, message passing is necessary.
Compared to SLJT, LEEDS has to handle utilities in its messages to pass around
not only the state descriptions of its standard PRVs but also to distribute in-
formation about its utility PRV. LEEDS also has to handle changing action
configurations efficiently. Therefore, we first look into how LEEDS handles utili-
ties in FO jtrees. Then, we present how LEEDS adapts to action configurations.
Last, we detail how LEEDS proceeds to compile the outputs of top-k action
plans and answers to marginal queries for groups of interest.

Utilities and Messages LEEDS builds an FO jtree based on selectors for non-
action and action selectors as before. Given a configuration for both types of
gates, a message from one cluster to a neighbour is calculated based on incoming
messages alone or together with its local model depending on whether the cluster
is switched off or on. An open question regards how to handle utilities.

Utilities are modelled as PRVs, which means they can be treated as such
in an FO jtree: Clusters are sets of PRVs, including utility PRVs, possibly ac-
companied by a selector S and a value key. Local models may also contain
utility parfactors. Consider the FO jtree in Fig. 4 for the example PDecGM.
Compared to the FO jtree of the PGM, the FO jtree of the PDecGM contains
two additional clusters C5 and C6 for two gates, with DoB(X) = true and
DoT (X) = true associated. Additionally, now C1 and C3 are also gated. The
local model of C6 contains only a utility parfactor, while the local model of C5

contains both types of parfactors. Another difference is that C1 and C3 now also
include utility parfactors. As DoB(X) and DoT (X) can be set to one action for
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Algorithm 1 Lifted Explainable and Explorable Decision Support
1: function LEEDS(PDecGM M , number k, configuration s, evidence E, queries Q)
2: Build an FO jtree J for M
3: Enter evidence E into J
4: Set up the (non-action) configuration s in J
5: Construct a Gray sequence of action configurations Sa
6: · ← empty sequence
7: Sorted list meu of length k with tuples ( · , 0, ∅) indexed 0 . . . k − 1
8: for each a ∈ Sa do
9: Adapt the selectors in J to a
10: Adapt messages in J
11: Calculate expected utility u
12: if u > eu(meu[k − 1]) then
13: V← Answer Q for groups in J
14: Update meu with (a, u,V)

15: return meu

some instances and to the other action for the remaining instances, based on
splits due to evidence, the four clusters can be switched on at the same time.

Message passing follows the same idea as before: If a cluster is switched off in
a given configuration, messages are calculated without its local model. The dif-
ference lies in the messages themselves, which also transport information about
utilities. Thus, LEEDS calculates a probability query over shared PRVs with its
neighbour (as before) and possibly a utility as given in Def. 5 over shared utility
PRVs. After such a message pass, LEEDS could already answer marginal queries
P (Q | E, s,a) or expected utility queries based on the current configurations s,a,
and evidence E. LEEDS answers P (Q | E, s,a) by finding a cluster containing Q
and eliminating all terms, except Q from the local model and messages, ignoring
utility parfactors. For expected utilities, LEEDS answers a conjunctive query
over utilities and sums out all non-utility PRVs from corresponding local models
and received messages to compute Eq. (1). In our example, we only have one
utility PRV, Util, and thus, a single term query.

Next, we show how LEEDS solves the MEU problem adaptively.

Solving the MEU Problem Solving the MEU problem requires maxing over ac-
tion configurations in a PDecGM. Again, naively, one would construct all pos-
sible action configurations Sa, which LEEDS also has to do to obtain the top-k
action configurations, over the groups elicited by evidence. The above setting
of evidence in the form of Travel(X ′) = true for D(X ′) = {x1, x2} leads to
two groups of X constants in the underlying model. Given the four possible
actions B1, B2, T1, T2 in gates with X as a parameter, there exist 42 = 16 pos-
sible action configurations. For each configuration a ∈ Sa, LEEDS would set
up a in the FO jtree, pass messages, and ask for the expected utility. At the
end, LEEDS would output those a with their expected utilities that have the k
highest expected utilities among all configurations in Sa.
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This method would compute each expected utility value for different config-
urations from scratch. But, we can arrange the configurations in Sa s.t. only one
selector for one group has a changed assignment, similar to Gray codes in cod-
ing theory [10]. Let us call such a sequence a Gray sequence. If a configuration
changes incrementally, many messages are still valid. Performing query answer-
ing with changing inputs falls under adaptive inference. For inputs that change
incrementally, adaptive inference aims at performing inference more efficiently
than starting from scratch. The adaptive LJT (aLJT) performs adaptive infer-
ence, handling changes in model or evidence, by adapting an FO jtree to changes
in a model and performing evidence entering and message passing adaptively [5].
We use the adaptive message passing scheme of aLJT to re-calculate only those
messages necessary based on the clusters that changed their status of being on
or off. As selector assignments change in only one place from one configuration
to the next, the changes in the FO jtree are locally restricted, which means that
only messages outbound from these clusters need adapting.

In line 5 of Alg. 1, LEEDS generates a Gray sequence of action configurations.
LEEDS executes the configurations in the order of the sequence in the following
for-loop, adapting selectors and messages accordingly. During the first iteration,
LEEDS has to set the action configuration for the first time and thus performs
a full message pass as no previous setting and pass exist to adapt. In line 10,
LEEDS calculates the expected utility given the current action configuration a
and then proceeds to test whether a belongs to the current top-k configurations,
which includes compiling further outputs for a if part of the top-k.

Next, we look into how LEEDS performs this compilation of outputs.

Compiling the Outputs The outputs of LEEDS are the top-k action plans, i.e.,
action configurations, their expected utilities as a form of explanation, and the
answers to the registered query PRV for groups or specific constants of interest.
To collect the outputs, a helper variable meu stores the current top-k MEU solu-
tions, their corresponding expected utilities, and answers to registered marginal
queries. The queries are instantiated with representatives for groups of indistin-
guishable constants, occurring due to evidence. Algorithmically, the variable is a
list of triples (a, u,V) of an action configuration a, an expected utility u, and a
set of answers V. The list is sorted to easily check if a new action configuration
has an expected utility in the top-k.

The body of the if-statement in line 11 in Alg. 1 concerns the compilation
of outputs in meu. It compiles the outputs here as the FO jtree is prepared
accordingly. Given the current action configuration a with expected utility u,
LEEDS tests whether u is higher than the lowest utility at the last position of
the sorted list. If so, LEEDS calculates marginals for the registered propositional
randvars and marginals for specific constants as well as groups occurring in a
or with large influence in u. To do so, LEEDS has to look at the constraints
in a to find groups and analyse Eq. (1) for calculating u, the result could be
{x1, x2} and {x3} in our example as a result of evidence. Given the groups
identified in this way and the registered queries for Epid and Sick(X), LEEDS
answers the queries Epid, Sick(x1) as a representative of the group {x1, x2},
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and Sick(x3). As the FO jtree is prepared to answer any marginal query given
the current configuration and evidence, no additional pre-processing has to be
performed to answer these queries and LEEDS is able to answer each query on
one of the clusters (instead of the complete model). LEEDS stores the answers
to the queries in a set V. The next step regards updating meu with the new
triple (a, u,V). Updating meu entails finding the position i to store the triple
at, deleting the last element meu[k − 1], and adding (a, u,V) at i.

After iterating over all action configurations in Sa, meu contains the top-k
action configurations including their expected utility and the answers to the reg-
istered query PRV for groups or specific constants of interest depending on the
corresponding configuration. At the end, LEEDS returns meu, which contains
the technical output for explainable and explorable decision support. Specifically,
meu is a list of length k of triples, each containing an action plan, an expected
utility, and further probability distributions. Together, the triples provide a com-
plete picture by providing k alternative action plans with high expected utility
as well as information about the context in terms of probability distributions
about PRVs that the user deems crucial for a decision.

Output Interpretation LEEDS produces a list of length k of triples, each con-
taining an action plan, an expected utility, and further probability distributions.
Together, the triples provide a complete pic- ture by providing k alternative ac-
tion plans with high expected utility as well as information about the context in
terms of probability distri- butions about PRVs that the user deems crucial for
a decision. Given an output, one can start interpreting the results.

For our running example with k = 3, DoE = false, and Travel(X ′) = true
for D(X ′) = {x1, x2}, meu may contain the following items with exemplary
values, with X referring to the remaining X constants and x′ and x to repre-
sentative instances of X ′ and X, respectively (per item with expected utility u:
action plan, answers):

– Position 0: expected utility of 100
• DoB(X ′) = B2, DoB(x3) = B1, DoT (X ′) = T2, DoT (X) = T1
• (Epid = true→ 0.3, Epid = false→ 0.7),

(Sick(x′) = true→ 0.2, Sick(x′) = false→ 0.8),
(Sick(x) = true→ 0.7, Sick(x) = false→ 0.3)

– Position 1: expected utility of 95
• DoB(X ′) = B1, DoB(x3) = B1, DoT (X ′) = T2, DoT (X) = T1
• (Epid = true→ 0.2, Epid = false→ 0.8),

(Sick(x′) = true→ 0.1, Sick(x′) = false→ 0.9),
(Sick(x) = true→ 0.8, Sick(x) = false→ 0.2)

– Position 2: expected utility of 40
• DoB(X ′) = B1, DoB(x3) = B1, DoT (X ′) = T1, DoT (X) = T1
• (Epid = true→ 0.2, Epid = false→ 0.8),

(Sick(x′) = true→ 0.3, Sick(x′) = false→ 0.7),
(Sick(x) = true→ 0.8, Sick(x) = false→ 0.2)



Explainable and Explorable Decision Support 13

The first two plans do not vary greatly in their expected utility, whereas the third
plan has an expected utility less than half of the expected utility of the preceding
plan. Since the first two plans have similar expected utilities, one may want to
compare the plans and realise that they only differ in the action for one group,
namely, the travel ban for {x1, x2}, which only the second plan proposes (B1).
Given the results, a user could now consider additional information beyond the
data encoded in the PDecGM for deciding which action plan to execute. E.g.,
on the one hand, a travel ban for all X may be easier to implement than a
travel ban only for subgroups. On the other hand, since x1 and x2 are observed
to be travelling, a travel ban may hit this group especially hard. Taking into
consideration the results of the additional queries, the probability of Epid = true
is lower with the second plan, the same can be said about the probabilities of
Sick(X) = true for both x′ and x3. Without investing effort to finding top-k
action plans and answering additional queries based on the result of an action
plan, only the first action plan with an expected utility of 100 would be returned,
providing few information and no alternatives.

Beyond the information compiled in meu, a user could still ask follow-up
queries, from different queries for specific top-k configurations to action configu-
rations apart from those in the top-k. The result in meu also allows for analysing
which information is actually used under an action configuration. Given a travel
ban, i.e., DoB(X) = B1 for all groups of X, evidence on Travel(X) is not used.

4 Empirical Case Study

We have implemented a prototype of LEEDS, based on the LVE3 and the LJT4

implementations available. Since LEEDS uses an FO jtree and LVE for its cal-
culations, LEEDS outperforms grounded versions as well as LVE for a set of
queries as shown in [20,3]. Thus, we concentrate on the following two claims:
First, LEEDS performs inference faster in a PDecGM, modelling actions with
gates, than LJT in a PM, modelling actions using PRVs. Second, since LEEDS
ensures a minimum number of calculations to solve MEU problems and answer-
ing probability queries, by only adapting the model to changing configurations
and thereby reusing as many computations as possible, LEEDS is faster than
solving the MEU problem in a non-adaptive way.

We consider the running example PDecGM as input with domain sizes of
W and D fixed to 50 and the domain size of X set to 10, 100, and 1000. We
consider two groups in the X constants. As registered queries, we consider Epid
and Sick(X). Since there are two groups in the X constants and four possible
actions, there are 16 action configurations to consider. Computing the same MEU
grounded would require 410 to 41000 action configurations to consider instead
of 42. We compare runtimes of implementations of LEEDS (leeds), of LEEDS
without adaptation (nogray), and of LJT on a PM with action PRVs (actprvs).
The last one requires providing the action configurations as evidence to LJT.
3 https://dtai.cs.kuleuven.be/software/gcfove
4 https://www.ifis.uni-luebeck.de/index.php?id=518

https://dtai.cs.kuleuven.be/software/gcfove
https://www.ifis.uni-luebeck.de/index.php?id=518
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Fig. 5. Runtimes in miliseconds

Runtimes are collected and averaged over 10 runs on a virtual machine with
16GB working memory and no additional load on the machine.

Figure 5 shows runtimes for leeds, nogray, and actprvs. In the figure, we
can see that answering expected utility queries and marginal queries roughly
take the same time to answer across the different approaches. The runtimes are
roughly the same as each of the approaches answers the queries on a single par-
cluster, which should have roughly the same amount of PRVs leading to similar
runtimes. Additionally, we can see that as to be expected for lifted algorithms,
increasing domain sizes does not have an exponential influence on runtimes.
The main difference between the approaches is during message passing. Nogray
roughly takes about twice as long as leeds. With the Gray code, leeds roughly
reuses 50% of the messages while changing action assignments leading to the
speed up in comparison to nogray. In comparison to actprvs, even for this
small model, leeds achieves a speed up of nearly one order of magnitude due to
adaptive inference and a more compactly represented model.

5 Conclusion

We present LEEDS to provide effective decision support beyond simple explana-
tions. To support a user in their decision, LEEDS outputs top-k action plans and
answers to representative marginal queries for groups of interest. To this end, we
define PDecGMs as the modelling formalism, incorporating parameterised util-
ities as well as parameterised gates for actions. LEEDS then takes a PDecGMs,
a number k, evidence, and possibly registered queries as inputs. LEEDS solves
the MEU problem in PDecGMs exactly and in a lifted way, reusing computa-
tions under varying configurations, and answers registered queries. Areas such as
health care can benefit from the lifting idea for many patients and the decision
support beyond explanations.
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Using LEEDS as a basis, we are looking into finding attributable approxima-
tions for further speed-up. Furthermore, we are working on extending LEEDS to
the temporal case to support lifted sequential decision making under uncertainty.
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