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Abstract—An agent pursuing a task may work with a corpus of
documents as a reference library. Subjective content descriptions
(SCDs) provide additional information that add value in the
context of the task. On the pursuit of new documents to add
to the corpus, an agent may come across new documents where
content text and SCDs from another agent are interleaved and
no distinction can be made unless the agent knows the content
from somewhere else. Therefore, this paper presents an Hidden
Markov model (HMM)-based approach to identifying SCDs
based on SCD and word distributions in a previously unknown
text where descriptions occur inline among content text. We
present a case study evaluating the performance of identifying
inline SCDs in a text based on real-world and simulated data.

I. INTRODUCTION

An agent in pursuit of a task, explicitly or implicitly defined,
may work with a corpus of text documents as a reference
library. From an agent-theoretic perspective, an agent is a
rational, autonomous unit acting in a world fulfilling a defined
task, e.g., providing document retrieval services given requests
from users. We assume that the corpus represents the context
of the task, since collecting documents is not an end in itself.
Further, documents in a given corpus might be associated with
additional location-specific data making the content nearby
the location explicit by providing descriptions, references,
or explanations. We refer to these location-specific data as
subjective content descriptions (SCDs). Generating a corpus
specific SCD-word distribution, which encodes which words
occur often with a given SCD, provides a value for different
tasks of an agent in the context of a corpus, e.g., classifying
new documents to extend a corpus with documents from
a specific category [1] or enriching documents with SCDs
associated to other documents in the same corpus [2].

So far, we have assumed that SCDs and documents are
separate or at least clearly distinguishable. However, an agent
in pursuit of new documents may come across documents
where normal document text, i.e., content, and textual content
descriptions, i.e., SCDs, are interleaved. An agent could go
through the text and identify the SCDs manually or create
a parser that separates the SCDs from the content, manu-
ally specifying rules for distinguishing content and SCDs.
However, both approaches are cost-intensive and laborious,
and require intimate knowledge about content and SCDs. A
scenario we have encountered during a project features old
poems in Tamil, which contain the poem itself and comments

for specific words inline after the word. The poem would be
the content and the comment fulfils the role of an SCD. Only
an agent with knowledge of the original poem can distinguish
poem and comment. Thus, the problem we tackle in this paper
is that of identifying inline SCDs (iSCDs) automatically.

We turn to the agent’s corpus of documents to solve the
problem. Assuming that the unknown document with iSCDs is
of the same context, we can use the corresponding SCDs-word
distribution to distinguish between content and SCDs. The
SCDs-word distribution allows for computing most probably
suited SCDs (MPSCDs) for the unknown document based
on the similarity between the words in the document and
the words usually occurring with an SCD. If the words
belong to the content, we expect that the agent is able to
identify a corresponding MPSCD with a high similarity. If the
words belong to an SCDs, which we assume has a different
composition of words occurring together, we expect that the
similarity value is low. Based on these expectations, we set
up a hidden Markov model (HMM) where the hidden state
variable encodes if the given words belong to content or SCDs
and the observation sequence consists of discretized similarity
values. Given this setup and the existing corpus, the agent
can train the HMM and then compute a most-likely sequence
of hidden states using the Viterbi algorithm [3]. Once iSCDs
are identified, the agent can use them for whatever purpose,
e.g., deciding if to incorporate the document into its corpus.
Specifically, the contributions of this paper are:

(i) an approach to identify iSCDs based on an HMM trained
on the available corpus of documents and SCDs and

(ii) a case study based on real-world (Tamil poems) and sim-
ulated data to evaluate the performance of our approach.

The remainder of this paper is structured as follows: We first
specify notations and recap SCD-word distributions. Then, we
present our HMM-based approach to identify iSCDs in a new
document and evaluate the performance in a case study. The
case study is followed by a look at related work. Last, we
conclude and present future work.

II. PRELIMINARIES

This section specifies notations and recaps the concept of
an SCD-word distribution.



A. Subjective Content Descriptions

We define the following terms to formalize the setting of a
corpus with documents and SCDs.
• A word w is a basic unit of discrete data from a given

vocabulary V = (w1, . . . , wN ), N ∈ N, and can be
represented a word w as a one-hot vector of length N
having a value of 1 where w = wi and 0’s otherwise.

• A document d is represented by a sequence of D ∈ N
words (wd1 , . . . , w

d
D), where each word wdi ∈ d is a subset

of vocabulary V . The function #word(d) returns the total
number of words occurring in document d.

• A corpus D represents a set of Z ∈ N documents
{d1, . . . , dZ} and we assume that the documents are from
the same context. The term VD refers to the corpus-
specific vocabulary representing the set of all words
occurring in the documents of corpus D.

• A SCD t is a sequence of words (wd1 , . . . , w
d
M ), M ∈ N,

where each word wdi ∈ t is a subset of vocabulary VD,
and t can be associated with a position ρ in a document
d. We use the term located SCDs interchangeably for
associated SCDs and represent a located SCD t by the
tuple {(t, {ρi})li=1}, where {ρi}li=1 represents the l ∈ N
positions in document d the SCD t is associated with.

• For each document d ∈ D there exists a set g de-
noted as SCD set containing a set of m located SCDs
{tj , {ρi}

lj
i=1}mj=1. Given a document d or a set g, the

terms g(d) and d(g) refer to the set of located SCDs in
document d and the corresponding document d, respec-
tively. The set of all located SCD tuples in corpus D is
then given by g(D) =

⋃
d∈D g(d).

• For each located SCD tj in g(d) exists an correspond-
ing SCD window wind,ρ that refers to a sequence
of words in d surrounding ρ in d, i.e., wind,ρ =
(wd(ρ−i), . . . , w

d
ρ, . . . , w

d
ρ+i), i ∈ N and ρ marks the mid-

dle of the window. The window-specific position of wd ∈
wind,ρ is given by pos(wd, wind,ρ) (0-based numbering)
and the size of wind,ρ is given by s(wind,ρ) = 2i+ 1.

• Each word wd ∈ wind,ρ is associated with an in-
fluence value I(wd, wind,ρ) representing the distance
in the text between wd and position ρ. The closer
wd is positioned to ρ in wind,ρ, the higher its corre-
sponding influence value I(wd, wind,ρ). The influence
value of wd at pos(wd, windd,ρ) is distributed binomial,
i.e., I(wd, wind,ρ) =

(
n
k

)
· qk · (1 − q)n−k, where

n = s(wind′,ρ), k = pos(wd, wind,ρ), and q = ρ
n .

B. SCD-word Distribution

An SCD-word distribution encodes which words occur often
around the position of a given SCD. Specifically, we generate
an additional representation for each of the m SCDs associated
to documents in corpus D by building a vector of length
n, where n = |VD|, s.t. each vector entry refers to a word
w in VD. The entry itself is a probability describing how
likely it is that a word occurs in an SCD window surrounding
the position associated with the SCD, yielding an SCD-word

Algorithm 1 Forming SCD-word distribution matrix δ(D)

1: function BUILDMATRIX(Corpus D)
2: Input: D
3: Output: δ(D)
4: Initialize an m× n matrix δ(D) with zeros
5: for each d ∈ D do
6: for each t, ρ ∈ g(d) do
7: for each w ∈ wind,ρ do . Iterates over ρ
8: δ(D)[t][w] += I(w,wind,ρ)

9: Normalize δ(D)[t]

10: return δ(D)

distribution for each SCD. Algorithm 1 generates the SCD-
word distribution for all m SCDs available in SCD set g(D).
We represent the SCD-word distribution by an m× n matrix
δ(D), where the SCD-word distribution vectors form the rows
of the matrix:

δ(D) =



w1 w2 w3 · · · wn

t1 v1,1 v1,2 v1,3 · · · v1,n

t2 v2,1 v2,2 v2,3 · · · v2,n
...

...
...

...
...

...
tm vm,1 vm,2 vm,3 · · · vm,n

 (1)

The input of Alg. 1 is a corpus D containing a set of
documents associated with SCDs. In line 4 of Alg. 1, we
instantiate an empty δ(D) by filling the matrix with zeros.
Afterwards, we update the SCD-word distribution matrix δ(D)
entries based on the SCDs and words occurring in the docu-
ments of D using maximum-likelihood estimation by counting,
for each SCD t, the number of occurrences of each word w
in the corresponding windows wind,ρ of all documents in D
and all positions. We weight the occurrences by the influence
value of each word in a window (line 8). At the end of the
outer loop, the SCD-word distribution of the current SCD t
is normalized to yield a probability distribution for each SCD
over the complete vocabulary (line 9). Finally, Alg. 1 returns
the SCD-word distribution matrix δ(D).

Given δ(D) and presented with a new document d of the
same context containing pure text without any SCDs, an agent
can use δ(D) to find M MPSCDs. MPSCDs are computed by
sliding a toppling window wind,ρ of size σ = #word(d)

M over
the words in d and computing the similarity between the words
in wind,ρ weighted according to I(wd, wind,ρ) and the rows in
δ(D) and choose the SCD t belonging to the row with highest
similarity. Afterwards, width and position of each window can
be further optimized. Please refer to [1] for details.

Next, we present our approach to identifying SCDs in an
unknown document with iSCDs.

III. IDENTIFYING INLINE SCDS

This section introduces the problem of identifying textual
SCDs that are interleaved with content text in a document and
presents an HMM-based approach solving the problem.



A. Inline SCD Problem

The problem at hand consists of an agent being faced
with a document containing content in the form of text and
textual SCDs and no markers or way inherently available
to distinguish the two. An important task of an agent is to
identify iSCDs among text s.t. the agent can (i) reconstruct
the content of a document containing iSCDs, and (ii) use the
located iSCDs, e.g., to identify similar documents within the
corpus. We refer to SCDs that are interleaved with the text
of a document as iSCDs and to the remaining text as content.
Given this new setting, we introduce iSCDs into our notation.
• An iSCD t is a sequence of words (s1, . . . , sn), n ∈
N, si ∈ Vg(D) that is associated to the sequence of words
exactly preceding t in d.

• Next to the vocabulary VD of corpus D, there is a
vocabulary Vg(D) of the words occurring in the (inline)
SCDs t ∈ g(D). The two vocabularies may overlap.

• A document d is a sequence of words from VD and Vg(D)

with subsequences of words from VD and subsequences
of words from Vg(D) alternating, where the latter is
associated with the preceding window of words. Further
SCDs may be located throughout d.

Problem 1 introduces the inline SCD problem and Exam-
ple 1 illustrates the problem using a short text.

Problem 1 (Inline SCD Problem). An agent does not know
which subsequences of words are content and which are iSCDs
for a document d = (wd1 , . . . , w

d
D), wdi ∈ (VD ∪ Vg(D)).

Example 1 (Inline SCD Example). Assume that a new docu-
ment d /∈ D contains the following sentence with two iSCDs:

“David Blei professor at Columbia University re-
ceived the ACM Infosys Foundation Award renamed
in the ACM Prize in Computing in 2013.”

The two iSCDs are underlined. However, the highlighting is
not available in the original document. An agent is faced
only with the word sequence and has to decide which words
represent iSCDs. The problem is simple if the two vocabularies
do not overlap but becomes increasingly harder the more the
two vocabularies share words and those words have similar
frequencies regarding occurrences.

We can formulate the inline SCD problem as a classification
problem estimating for each word in a sequence of words the
corresponding category. In our setting, we have two categories.
One category represents the subsequences in d that are not part
of an iSCD, i.e., content, and another category represents the
subsequences in d belonging to an iSCD.

B. General Procedure

To solve the problem, we work with two assumptions about
corpus D and document d carrying Problem 1:

(i) Document d belongs to the same context as D.
(ii) Vocabulary VD or the words occurring together in a

window of an associated SCD differ from vocabulary
Vg(D) or the words occurring together in the SCD.

Algorithm 2 Estimating MPSCD sequence
1: function ESTIMATEMPSCDSEQUENCE(d, σ, δ(D))
2: ρ← σ

2 , W ← ∅
3: for ρ← σ

2 ; ρ ≤ words(d); ρ← ρ+ 1 do
4: Set up wind,t,ρ of size σ around ρ with t = ⊥
5: δ(wind,t,ρ)← new zero-vector of length n
6: for w ∈ wind,t,ρ do
7: δ(wind,t,ρ)[w] += I(w,wind,t,ρ)

8: t← arg maxti
δ(D)[i]·δ(wind,t,ρ)
|δ(D)[i]|·|δ(wind,t,ρ)| in wind,t,ρ

9: sim← maxti
δ(D)[i]·δ(wind,t,ρ)
|δ(D)[i]|·|δ(wind,t,ρ)|

10: W ←W ⊕ (sim,wind,t,ρ)
11: g(d)← g(d)⊕ t
12: return g(d), W

Given the first assumption, we can use the SCD-word distri-
bution δ(D), generated based on D, for d as well. Given the
second assumption, δ(D) will work well to estimate MPSCDs
for content words but less well for iSCDs words. If we estimate
MPSCDs for d but using a sliding window (instead of a
tumbling one), we expect the following behavior: The MPSCD
similarity value for a window containing an iSCD should be
significantly smaller than the MPSCD similarity value for a
window containing content of d related to the content of other
documents in D. Therefore, if sliding a window over the words
in d, we expect the similarity values to show a characteristic
behavior, which we can train an HMM with. Specifically, one
has to perform the following steps to solve Problem 1:

1) Estimate δ(D) for D using Alg. 1 (offline).
2) Train an HMM for classifying whether a word belongs to

the category “content” or the category “iSCD” (offline).
3) For each new document d carrying Problem 1:

a) Estimate the MPSCD sequence over a sliding window
along the words of d using δ(D).

b) Compute the most probable sequence of states in the
HMM given the sequence of similarity values of the
MPSCD sequence as evidence.

c) From the most probable sequence of states, identify the
words in d that belong to category “iSCD”.

The following sections present in detail how to estimate the
MPSCD sequence and classify iSCDs using an HMM.

C. Estimating an MPSCD Sequence

Given a corpus D containing documents associated with
a set of location-specific SCDs, we can generate a corpus-
specific SCD-word distribution δ(D) using Alg. 1. Based on
δ(D), Alg. 2 allows for calculating a sequence of MPSCDs
similarity values for a document d by sliding a window
wind,t,ρ of size σ over the words in d. Initially, the sliding
window contains the first σ words (wd1 , ..., w

d
σ). Then, we shift

the window over the sequence of words in d by removing the
first word wd1 and extending the window with the word wdσ+1

an so forth until the last window contains (wd(D−σ), ...w
d
D).

Example 2 describes the sliding window behaviour in detail.
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Fig. 1: Window of size σ = 9 sliding over the words in document d where words wd9 to wd13 represent an inline SCD.

Example 2 (Sliding Window). Figure 1 illustrates the behav-
ior of a sliding window wind,t,ρ for the first 20 words wd1 to
wd20 in d with a window size σ of 9, starting with wind,t1,wd5 =

(wd1 , ..., w
d
9) and ending with wind,t12,wd16 = (wd12, ..., w

d
20).

The words w9 to w13 represent an iSCD.

For each sequence of words in wind,t,ρ, Alg. 2 estimates
the MPSCD t and corresponding similarity value sim. Specif-
ically, Alg. 2 builds a vector representation δ(wind,ρ) for the
sequence of words in wind,t,ρ and compares the vector with
the vector representations of all SCDs in δ(D). Finally, Alg. 2
uses SCD t from δ(D) that has a vector representation most
similar to δ(wind,ρ) as MPSCDs. Similarity is defined using
the cosine similarity. Example 3 describes what similarity
values might look like given the sliding window of Example 2.

Example 3 (Sequence of Similarity Values). Figure 3 repre-
sents the sequence of MPSCD similarity values for the sliding
window used in Fig. 1. We have a sequence of 12 similarity
values for the words in the corresponding 12 windows. In
the first window wind,t1,wd5 , only the word w9 belongs to an
iSCD. Shifting the window to the right results in a second word
belonging to the iSCD. The more words of a window belong
to an iSCD, the lower the corresponding similarity value.

As shown in Fig. 3, iSCDs yield a specific pattern in the
sequence of similarity values. Next, we present how to identify
iSCDs in d using an HMM given this sequence.

D. Estimating iSCDs

We use an HMM to estimate the iSCDs using the sequence
of similarity values from the MPSCDs in d. We first define
the HMM and then present how to estimate the iSCDs.

Definition 1 (Hidden Markov model). A hidden Markov model
λ = (aij , bj , π) for solving Problem 1 is defined by:

• (hidden) states given by Ω = {s1, ..., sn}, where n = 2,
with state s1 meaning the word behind s1 belongs to
“content” and s2 meaning the word belongs to “iSCD”,

• an observation alphabet ∆ = {y1, . . . , ym}, where each
yi represents a range of MPSCD similarity values,
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Fig. 3: Sequence of MPSCD similarity values corresponding
to the word sequences from the 12 windows in Figure 1.

• a transition probability matrix A representing the proba-
bility between all possible state transitions ai,j between
the two states s1, s2 ∈ Ω.

• an emission probability matrix B representing the prob-
ability to emit a symbol from observation alphabet ∆ for
each possible state in Ω, and

• an initial state distribution vector π = π0.
With

∑n
j=1 ai,j = 1, the entries of transition probability

matrix A between states si, sj ∈ Ω, are given by

ai,j = P (sj |si).

The entries of emission probability matrix B represent the
probability to emit symbol yk ∈ ∆ in state sj ∈ Ω and, with∑m
j=1 bj(yk) = 1, are given by

bj(yk) = P (yk|sj).

The semantics of λ is given by unrolling λ for a given number
of slices and building a full joint distribution.
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Fig. 2: Trellis corresponding to the MPSCD sequence resulting from sliding windows in Example 2.
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Fig. 4: Hidden Markov model containing two hidden states
{s1, s2} emitting three observation symbols {yl, ym, yh}.

Example 4 (Graphical Representation). Figure 4 contains
a graphical representation of a hidden Markov model λ =
(aij , bj , π) containing observation symbols {yl, ym, yh} ∈ ∆,
and the two states {s1, s2} ∈ Ω.

Generally, A and B are unknown and have to be learned,
e.g., using the Baum-Welch algorithm [4]. Using a set of
documents containing located SCDs, we can calculate MP-
SCDs and their similarity values to train an HMM on this
information using the Baum-Welch algorithm. The discrete
observation alphabet ∆ requires discretizing similarity values.
A discretization function f : [0, 1] 7→ ∆ maps a similarity
value x to one of the m symbols in ∆. Algorithm 3 shows
pseudocode, mapping a sequence of similarity valuesW to the
observation symbols in ∆ based on f , returning a sequence of
observable symbols O. Generally, the discretization depends
on the task of an agent and can be adapted to each problem
individually.

To solve the iSCD problem, we have to find the most
likely sequence of states from alphabet Ω, given a sequence of
observation symbols from alphabet ∆. Given a trained HMM
and the discretization procedure in Alg. 3, the workflow for
estimating iSCDs based on a sequence of similarity values W
over the windows in document d is as follows:

1) Discretize the similarity values in W , leading to an
observation sequence O.

2) Based on O, compute the most likely state sequence S.
3) Based on S, extract the windows wini from states in S

where s = s2.
4) For each extracted window wini, reconstruct the original

window wind,ρ by setting ρ = i+ bσ2 c. Mark the words
in wind,ρ as the iSCD.

Algorithm 3 MPSCD Similarity Discretization

1: function DISCRETIZE(W , f )
2: O ← () . observation sequence
3: for each sim ∈ W do
4: yk ← f(sim) . yk ∈ ∆
5: O ← O ◦ yk
6: return O

We calculate the most likely sequence of states using the
Viterbi algorithm [3], which makes use of the dynamic pro-
gramming trellis for computing the most likely state sequence
S for an observation sequence O. Let us consider an example
of a most likely sequence given the sequence of MPSCD
similarity values resulting from the 12 windows in Example 2.

Example 5. Assume that Alg. 2 yields the following similarity
values for the 12 windows in Example 2, as shown in Fig. 3:

(0.8, 0.7, 0.6, 0.4, 0.2, 0.18, 0.24, 0.22, 0.22, 0.4, 0.54, 0.7)

Using the following function for discretization

f(x) =


yl 0 ≤ x < th1

ym th1 ≤ x < th2

yh th4 ≤ x ≤ 1,

where th1 = 0.3, and th2 = 0.7, we get the observation
sequence:

O = (yh, yh, ym, ym, yl, yl, yl, yl, yl, ym, ym, yh)

Let the corresponding state sequence in the trained HMM be
given by

S = (s1, s1, s1, s1, s1, s1, s2, s1, s1, s1, s1, s1).

Figure 2 represents the trellis of the observation sequence O,
where the thick arrows indicate the most probable transitions
between the states and the dotted lines represent all possible
state transitions. The hidden iSCDs is at position win7, which
corresponds to window wind,ρ with ρ = 7 + b 92c = 11.
The identified window contains the words (wd9 , . . . w

9
13), which

make up the iSCD in the example.

Correctness By identifying the M word sequences that
most probably are iSCDs, we automatically identify which
words belong to iSCDs and which belong to content, i.e.,



d \ {(sm1 , . . . , smnm) | si ∈ d,m ∈ {1, . . . ,M}}. Therefore, we
solve Problem 1 by not only providing which subsequences
are iSCDs but providing those that are most probable given the
underlying HMM, which makes the quality of the solution to a
specific instance of the problem optimal in the sense that given
the probabilistic fundamentals of our approach, this calculated
solution is the one leading to the highest probability.

Next, we present a case study evaluating our approach to
solving the iSCDs problem.

IV. CASE STUDY

After introducing the HMM-based approach to detect iSCDs
in documents, we present a case study analyzing the per-
formance of estimating iSCDs within documents of different
data sets. We describe the data sets, evaluation workflow, and
present the results.

A. Data Sets

We use three data sets to evaluate the performance of the
HMM-based approach to identify iSCDs in a new document.

1) Data set Tamil consists of 91 poems that are tran-
scribed from approximately three-hundred-year-old palm
leaves [5].

2) Data set US consists of 74 articles about cities in the
Unites States of America.1

3) Data set EU consists of 10 articles about cities in Europe.2

For the first data set, we extract the documents (poems)
from [5]. Each document is associated with iSCDs represent-
ing comments about the original text of the corresponding
document. The second and third data set consist of articles
from the open and widely accessible online encyclopedia
Wikipedia. We download all articles using a Python script
and the Wikipedia TextExtracts API. Afterwards, we store
the documents in the respective corpora and preprocess the
documents by performing following tasks: (i) lowercasing all
characters, (ii) stemming the words, (iii) tokenizing the result,
and (iv) eliminating tokens from a stop-word list containing
337 words. These four tasks are standard preprocessing tasks
in the NLP community transforming the text of documents
into more digestible form for machine learning algorithms to
increase their performance [6]. Documents in the first data
set contain text from the 17th and 18th century. As language
changes over time, we cannot apply modern word stemmers
and stopwords for the Tamil language to the first data set.

However, articles published on Wikipedia do not contain
iSCDs. Thus, we generate iSCDs for each document of the
second and third data set using the free online dictionary Wik-
tionary by (i) downloading a dump of the English Wiktionary,
(ii) creating an iSCD for each word in a document using the
corresponding Wiktionary entry (if available), and (iii) adding
the iSCDs to the document.

Table I gives an overview about the average length of
documents, size of the vocabularies, and iSCDs etc.

1US cities – https://bit.ly/3jUua5H
2European cities – https://bit.ly/34WXMsE

TABLE I: Characteristics of the three data sets

Tamil US EU

# Documents 91 74 10
Avg #word(d) 73.2 200.7 318.7
# iSCDs 997 1814 757
# Vocabulary VD ∪ Vg(D) 8031 6688 3314
# Vocabulary VD 5521 3657 1439
# Vocabulary Vg(D) 2684 3902 2232
# Vocabulary VD ∩ Vg(D) 174 871 357

B. Evaluation Workflow

We evaluate the performance of the HMM-based approach
to identify SCDs among text. The HMM contains the two
hidden states (s1,s2) as defined in Def. 1 and five observable
states y1 to y5 representing the following similarity intervals,
y1 = [0.0,0.1), y2 = [0.1,0.2), y3 = [0.2,0.4), y4 = [0.4,0.7),
and y5 = [0.7,1.0], with a corresponding discretization func-
tion. We have tested different setups and five observable
symbols and the specific intervals have shown to be a good
setup for all three data sets. Then, we perform the following
five tasks for each data set:

(i) Generate a training set containing 90% of documents and
a test set with the remaining 10% of documents.

(ii) Form the SCD-word distribution δ for the training set
using Alg. 1.

(iii) Generate an HMM and apply the Baum-Welch algo-
rithm [3] to train the parameters of the HMM.

(iv) For each document in the test set:
(a) Estimate MPSCDs and the corresponding MPSCD

similarity values using Alg. 2.
(b) Compute the most probable sequence of hidden states

in the HMM for the discretized sequence of similarity
values using the Viterbi algorithm.

We evaluate the performance of the HMM-based approach
by comparing the results with the following two standard
approaches, namely, word-based classification and a single
threshold-based classification.

Word-based Classification For each word, we form a distri-
bution representing how often the word occurs in content
(#c) vs. iSCD (#s), i.e., p = #c

#c+#s
and 1 − p.

We classify each word by sampling from (p, 1 − p).
Words belonging only to one vocabulary have a (1, 0)-
distribution and can be directly classified as belonging to
either content or iSCD. For words that are not part of any
vocabulary, we randomly assign a category.

Threshold-based Classification Instead of training an HMM
on the MPSCD similarity sequences, we directly classify
based on the MPSCD similarity value of a window sim
and a threshold `. If sim < `, we classify the words in the
window as an iSCD. For the first data set, ` = 0.1 results
in best iSCD detection performance. For the second and
third data set, ` = 0.3 leads to best results.

https://bit.ly/3jUua5H
https://bit.ly/34WXMsE


 0

 0.2

 0.4

 0.6

 0.8

 1

Word-
based

Threshold-
based

Initial HMM Trained HMM

Corpus of Tamil Poems

 0

 0.2

 0.4

 0.6

 0.8

 1

Word-
based

Threshold-
based

Initial HMM Trained HMM

Cities in the US

 0

 0.2

 0.4

 0.6

 0.8

 1

Word-
based

Threshold-
based

Initial HMM Trained HMM

Cities in the EU

 0

 0.2

 0.4

 0.6

 0.8

 1

Word-
based

Threshold-
based

Initial HMM Trained HMM

Precision Recall F-Score

Total Average

Fig. 5: Performance of the HMM-based approach compared to the word-based and threshold-based approach for iSCD
classification.

C. Results
We evaluate the performance of the HMM-based approach

to identify SCDs among texts and compare the performance
with the word-based and threshold-based classification ap-
proaches. We use the F1-score to evaluate the performance
of each approach, which is defined by:

F1-Score =
2 · precision · recall
precision + recall

,

where precision and recall are defined by:

Precision =
tp

tp+ fp
Recall =

tp

tp+ fn
,

with tp = # true positives, fp = # false positives, tn =
# true negatives, and fn = # false negatives. We use cross
validation with 90% of the documents for training and 10%
of the documents for testing, resulting in the total average of
the precision, recall and F1-score.

As depicted in Table I, the documents in Tamil contain
only 174 words, representing 2% of all words, that occur in
both VD and Vg(D). The US and EU set contain 871 (13.0%)
and 357 (10.7%) words occurring in both vocabularies, re-
spectively. Thus, we expect a good word-based classification
performance for the Tamil set and a good performance by
the HMM-based approach for the US and EU set.

Figure 5 presents the performance (precision, recall, F1-
score) of the word-based, threshold-based, and HMM-based
approach for all three data sets. For the HHM-based approach,
we present the performance of the initial model and the trained
model. The initial HMM contains the following emission
probabilities in case of iSCDs:

{y1 : 0.50, y2 : 0.35, y3 : 0.15, y4 : 0.00, y5 : 0.00}

and in case of text:

{y1 : 0.00, y2 : 0.10, y3 : 0.50, y4 : 0.35, y5 : 0.05}.

The emission probabilities encode that a window associated
with an MPSCD of a high similarity is unlikely being classified
as an iSCD. We train this initial HMM, using 90% of the
data for training and 10% for testing, with the Baum-Welch
algorithm. The result is the trained model referenced in Fig. 5.

The word-based classification yields best results for the
Tamil set. The recall of the word-based classification for US
and EU is considerably smaller than the recall of the HMM-
based approach leading to a smaller F1 score. Interestingly,
the word-based classification performance is not as poor as
expected for data sets containing a more overlapping vocabu-
lary between content and SCDs.

The threshold-based classification performance is worst for
all three data sets. The approach identifies only a small number
of iSCDs with many false negatives. One reason for the large
number of false-negative iSCD classification is that all words
in a window are classified into the same category. Even if
testing with different thresholds, the recall remains low.

The HMM-based approach performs well for all three
corpora. The trained HMM performs slightly better than the
initial HMM for all three corpora. The difference between the
initial and the trained model is not as pronounced since the
initial values for the emission probabilities are already of good
quality, which reduces not only runtimes for learning but also
has the effect of the initial model performing relatively well.

Overall, the HMM-based approach yields the best perfor-
mance in the case study, outperforming the word-based and
threshold-based approach in terms of recall and F1-score.



V. RELATED WORK

We look at related work in the area of text segmentation,
where the goal is to distinguish words belonging to different
categories as well, as well as HMM-based classification.

In our setting, we need to separate words that are part of the
content of a document from words that are part of an iSCD.
In text segmentation, the task is to separate text into segments,
such as words [7], topics [8], sentences [9], passages, or lines.
The difficulty lies in identifying the segment borders [10].
Choi [11] constructs a dictionary of word stem frequencies
for each sentence and represents it as a vector of frequency
counts for domain independent linear text segmentation. A
similarity matrix is constructed by comparing all sentences
using the cosine similarity. The values in the matrix are then
replaced by the number of neighbouring elements with a lower
similarity. Segments then are identified as a square region
along the diagonal of the rank matrix.

The existing algorithms do not solve the iSCD problem as
they ignore the context of a specific task, which we explicitly
incorporate. In addition, we identify exactly those segments as
iSCDs that are relevant for the task of an agent.

Another class of related work deals with HMM-based clas-
sification. Classification and statistical learning using HMMs
has achieved remarkable progress in the past decade. Using a
HMM is a well-researched stochastic approach for modeling
sequential data, and it has been successfully applied in a
variety of fields, such as speech recognition [12], character
recognition [13], finance data prediction [14], [15], credit card
fraud detection [16], and workflow mining [17], [18], [19].
With the identification of iSCDs, we have successfully applied
HMMs in another context, solving a new task.

VI. CONCLUSION

This paper presents an approach to identify textual SCDs
among the usual text of documents. It defines the problem
of iSCD, where the words of SCDs are interleaved with the
normal document text (content of document), and presents an
approach to solve the problem. The approach uses the SCD-
word distribution of a given corpus, which encodes the most
likely words to occur with an SCD, as well as an HMM,
which encodes being part of an SCD or not as the hidden state.
Calculating a most probable sequence of hidden states in the
HMM then allows for identifying the most probable windows
for iSCDs. A case study on real-world and simulated data
shows that the HMM-based approach has a robust performance
in terms of recall and F1-score.

In future work, we aim to incorporate a person with a
specific goal into the task of an agent that has a reference
library with a set of SCDs. Additionally, we plan to put
different SCDs into relation to each other through links, which,
depending on the type of SCD could be text-based using
similar words or relation-based using reoccurring entities or
relations, for example. Links between SCDs further support
the agent in providing information retrieval services.
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