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Abstract. For inference in probabilistic formalisms with first-order con-
structs, lifted variable elimination (LVE) is one of the standard approaches
for single queries. To handle multiple queries efficiently, the lifted junc-
tion tree algorithm (LJT) uses a specific representation of a first-order
knowledge base and LVE in its computations. Unfortunately, LJT induces
unnecessary groundings in cases where the standard LVE algorithm, GC-
FOVE, has a fully lifted run. Additionally, LJT does not handle evidence
explicitly. We extend LJT (i) to identify and prevent unnecessary ground-
ings and (ii) to effectively handle evidence in a lifted manner. Given
multiple queries, e.g., in machine learning applications, our extension
computes answers faster than LJT and GC-FOVE.
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1 Introduction

AI research and application areas such as machine learning (ML) need efficient
inference algorithms. Modeling realistic scenarios results in large probabilistic
knowledge bases (KBs) that require reasoning about sets of individuals. Lifting
uses symmetries in a KB, also called model, to speed up reasoning with known
objects. We study the problem of reasoning in large KBs with symmetries for
answering multiple queries, a common scenario in ML. Answering queries reduces
to computing marginal distributions. We aim to enhance the efficiency of these
computations exploiting that a model remains constant under multiple queries.

In [3], we introduce a lifted junction tree algorithm (LJT) for multiple queries
on models with first-order constructs. The algorithm combines the junction tree
algorithm [12,18] and lifted variable elimination (LVE) [18]. LJT currently does
not provide a lifted run for all models that have a lifted solution in LVE, requiring
unnecessary groundings. This paper contributes the following: First, we identify
when LJT induces unnecessary groundings. Second, we add a fusion step that
aims at preventing these groundings for models with a lifted solution in LVE.
Third, we add efficient evidence handling.

LJT imposes some static overhead for building a first-order junction tree (FO
jtree) and for propagating knowledge in this tree. The fusion step slightly adds
to the static overhead in exchange for faster knowledge propagation. Evidence
handling does not affect FO jtree construction but inherently affects knowledge
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distribution and query answering. We significantly speed up runtime compared to
LJT and LVE. Overall, we handle multiple queries more efficiently than existing
approaches tailored for handling single queries.

The remainder of this paper is structured as follows: First, we look at related
work on exact inference and lifting. Next, we introduce basic notations and recap
LJT. Then, we present conditions for groundings and our extensions regarding
fusion and evidence. A short evaluation shows the potential of our approach.
Last, we give a conclusion and provide future work.

2 Related Work

For single queries given some evidence, researchers have sped up runtimes for
inference significantly over the last two decades. For propositional formalisms,
VE decomposes a model into subproblems to evaluate them in an efficient order
[21]. We can represent such a decomposition using a dtree [6]. LVE, also called
first-order VE (FOVE), first introduced in [14] and expanded in [15,13], exploits
symmetries at a global level. LVE saves computations by reusing intermedi-
ate results for isomorphic subproblems. Its current standard form GC-FOVE
generalizes counting and decouples lifting from constraint handling [18].

For multiple queries in a propositional setting, Lauritzen and Spiegelhalter
[12] present jtrees along with a reasoning algorithm that uses a message passing
scheme, known as probability propagation (PP). Well known PP schemes include
[16,11] trading off runtime and storage differently. The connection between jtrees
and VE lies in a dtree representing a VE: The clusters of a dtree form a jtree
[7]. Taghipour et al. [19] introduce first-order dtrees (FO dtrees) and perform a
theoretical analysis of lifted inference using the clusters of an FO dtree.

Many researchers apply lifting to various settings, e.g., continuous or dynamic
KBs [5,20], logic programming [2], or theorem proving [10]. For example, van
den Broeck [4] lifts weighted model counting and knowledge compilation. Lifted
belief propagation combines PP and lifting, often using lifted representations
[17,9,1], allowing for approximate inference. Das et al. [8] use graph data bases
storing compiled models for scalability. To the best of our knowledge, none of
them focus on multiple queries or changing evidence.

In [3], we lift jtrees introducing FO jtrees. Our reasoning algorithm induces
additional groundings and does not handle evidence effectively. We widen its
scope with our extensions regarding fusion and evidence.

3 Preliminaries

This section introduces basic notations, provides an overview of LVE and recaps
LJT along with FO jtrees based on [18,3].

3.1 Parameterized Models

Parameterized models compactly represent models with first-order constructs.
We first denote basic building blocks for constructing more complex structures.
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Definition 1. Let L be a set of logical variable names (logvars), Φ a set of factor
names, and R a set of random variable names (randvars). A parameterized
randvar (PRV) R(L1, . . . , Ln), n ≥ 0, is a syntactical construct of a randvar
R ∈ R, combined with logvars L1, . . . , Ln ∈ L to represent a set of randvars.
Domain D(L) refers to the values a logvar L can take and range(A) to the values
a PRV A can take. A constraint (X, CX) is a tuple of a sequence of logvars
X = (X1, . . . , Xn) and a set CX ⊆ ×ni=1D(Xi) restricting logvars to certain
values. Symbol > marks that no restrictions apply and may be omitted.

Parametric factor (parfactor) g has a function mapping inputs to real values.
We specify g with ∀X : φ(A) | C. X is a set of logvars that g generalizes over. A =
(A1, . . . , An) is a sequence of PRVs, each PRV built from R and possibly L. We
omit (∀X :) if X = logvars(A). C is a constraint on X. φ : ×ni=1range(Ai) 7→ R+

is a potential function with name φ ∈ Φ. φ is identical for all randvars represented
by the logvars in A w.r.t. C. A full specification of φ includes values for each
combination of input values. A set of parfactors forms a model G := {gi}ni=1

representing the probability distribution PG = 1
Z

∏
f∈gr(G) φf (Af ). Term gr(G)

denotes a set of instances with all logvars in G grounded.

The terms logvars(P ) and randvars(P ) denote the logvars and randvars in input
P , e.g., a parfactor or model. We specify model Gex for publications on some topic.
We model that the topic may be hot, serves business markets and application
areas, people do research, attend conferences, and publish in publications.

Example 1. Let L = {A,M,P,X}, Φ = {φ0, φ1, φ2, φ3}, and R = {Hot,Biz,App,
Res, Conf, Pub}. We build five binary PRVs with n > 0 and one with n = 0:
Hot, Biz(M), App(A), Conf(X), Res(X), Pub(X,P ). The model reads Gex =
{g0, g1, g2, g3} where g0 = φ0(Hot), g1 = φ1(Hot,App(A), Biz(M))|C1, g2 =
φ2(Hot, Conf(X), Res(X))|C2, and g3 = φ3(Hot, Conf(X), Pub(X,P ))|C3. We
omit concrete functions for φ0 to φ3. We exemplarily define constraint C3 =
((P,X), C(P,X)). Let D(P ) = {p1, p2} and D(X) = {alice, eve, bob}. We define
C(W,X) as {(p1, eve), (p1, bob), (p2, alice), (p2, eve)}. φ3 applies to all tuples in C3.
Figure 1 depicts Gex as a graph with six variable nodes for the PRVs and four
factor nodes for g0 to g3 with edges to the PRVs involved.

The semantics of a model is given by grounding w.r.t. constraints and building
a full joint distribution. Query answering (QA) asks for a probability distribution
of a randvar w.r.t. a model’s joint distribution and fixed events (evidence). A
grounded PRV Q and a set of events E (grounded PRVs with values) build a
query P (Q|E). For Gex, P (pub(eve, p1)|conf(eve)) forms a query. Next, we look
at QA algorithms seeking to avoid grounding and building a joint distribution.
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3.2 Lifted Variable Elimination

LVE employs two main techniques for QA, (i) decomposition into isomorphic
subproblems and (ii) counting of domain values leading to a certain range value.
The first one refers to lifted summing out. The idea is to compute VE for one case
and exponentiate the result for isomorphic instances. The second one exploits
that all randvars of a PRV A evaluate to range(A), forming a histogram by
counting for each v ∈ range(A) how many instances of gr(A) evaluate to v.

Definition 2. #X∈C [P (X)] denotes a counting randvar (CRV) with PRV P (X)
and constraint C, where logvars(X) = {X}. Its range is the space of possible
histograms. If {X} ⊂ logvars(X), the CRV is a parameterized CRV (PCRV) rep-
resenting a set of CRVs. Since counting binds logvar X, logvars(#X∈C [P (X)]) =
X \ {X}. We count-convert a logvar X in a parfactor g = L : φ(A)|C by turning
a PRV Ai ∈ A, X ∈ logvars(Ai), into a CRV A′i. In the new parfactor g′, the
input for A′i is a histogram h. Let h(ai) denote the count of ai in h. Then,
φ′(. . . , ai−1, h, ai+1, . . . ) maps to

∏
ai∈range(Ai)

φ(. . . , ai−1, ai, ai+1, . . . )
h(ai).

For both techniques, preconditions exist, see [18]. E.g., to sum out PRV A
from parfactor g, logvars(A) = logvars(g). To count-convert logvar X in g, only
one input in g contains X. Let us apply LVE to parfactor g1 ∈ Gex.

Example 2. In g1 = φ1(Hot,App(A), Biz(M))|C1, we cannot sum out any PRV
as neither includes both logvars. To sum out App(a) of some a in the propositional
case, we would multiply all factors that include App(a) into a factor with inputs
Hot, App(a), and Biz(m1), . . . Biz(mn) for each market in C1. All Biz(mi) lead
to true or false, making Biz(M) a CRV. We rewrite Biz(M) into #M [Biz(M)]
and g1 into g′1 = φ′(Hot,App(A),#M [Biz(M)])|C1. The CRV refers to his-
tograms that specify for each v ∈ range(Biz(M)) how many grounded PRVs
evaluate to v. The mappings (h, a, true) 7→ x and (h, a, false) 7→ y in φ become
(h, a, [n1, n2]) 7→ xn1yn2 in φ′. We can now sum out App(A).

Evidence shows symmetries as well, exhibiting the same value for n ground
randvars of a PRV. Evidence parfactor φE(P (X))|CE holds evidence for PRV
P (X). Potential function φE and constraint CE encode the observed values and
randvars. For each evidence parfactor gE , LVE tests each parfactor g ∈ G if
CE ∩ C 6= ∅. If true, it splits g for lifted absorption: We add a duplicate g′ and
restrict C to tuples where a component receives evidence through gE and C ′ to
tuples unaffected by evidence. Then, g absorbs gE , eliminating P in g.

Example 3. We observe that Conf(x1), . . . , Conf(x10) are true. In evidence
parfactor gE = φE(Conf(X))|CE , CE restricts X to x1, . . . , x10. φE(true) = 1
and φE(false) = 0. gE affects g2 and g3. After splitting, g2 and g3 absorb gE .

3.3 Lifted Junction Tree Algorithm

LJT builds an FO jtree for faster QA. We first define a parameterized cluster
(parcluster) and FO jtrees, analogous to propositional jtrees, before diving into
the algorithm. Compared to [3], we assign a set of parfactors F , i.e., a local
model, to a parcluster instead of one parfactor due to evidence splitting.
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Fig. 2: FO jtree for Gex (local parcluster models in gray)

Definition 3. A parcluster C is denoted by C := ∀L : A | C where L is a
set of logvars and A is a set of PRVs with logvars(A) ⊆ L. We omit (∀L :)
if L = logvars(A). Constraint C puts limitations on L. Each parcluster has a
possibly empty set of parfactors F assigned. A parfactor gC = φ(Aφ)|Cφ assigned
to C fulfills (i) Aφ ⊆ A, (ii) logvars(Aφ) ⊆ L, and (iii) Cφ ⊆ C.

Definition 4. An FO jtree for a model G is a pair (J , fC) where J is a cycle-
free graph and fC is a function mapping each node i in J to a label Ci called
a parcluster. An FO jtree must satisfy three properties: (i) A parcluster Ci is
a set of PRVs from G. (ii) For every parfactor g = φ(A)|C in G, A appears in
some Ci. (iii) If a PRV from G appears in Ci and Cj, it must appear in every
parcluster on the path between nodes i and j in J . Set Sij, called separator of
edge i—j in J , contains the shared randvars of Ci and Cj.

By way of construction, LJT assigns each parfactor in G to exactly one parcluster
in (J , fC), by adding them to local models Fi at nodes i.

Example 4. For Gex, Fig. 2 shows its FO jtree with three parclusters, C1 =
∀A,M : {Hot,App(A), Biz(M)}|>, C2 = ∀X : {Hot, Conf(X), Res(X)}|>,
and C3 = ∀X,P : {Hot, Conf(X), Pub(X,P )}|>. Separators are S12 = S21 =
{Hot} and S23 = S32 = {Hot, Conf(X)}. Each parcluster has one or two
parfactors in its local model (g0 could have been assigned to any of them).

LJT answers a set of queries Q given a model G and evidence E. The main
workflow is: (i) Construct an FO jtree for G. (ii) Enter E. (iii) Pass messages.
(iv) Compute answers for Q. For construction, see [3]. Message passing spreads
information among nodes. Two passes propagating information from peripheral
to inner nodes and back suffice [12]. A message mij from node i to node j
is a parfactor with the PRVs in Sij as inputs. To compute mij , we sum out
Ai \Sij from Fi and the messages from all other neighbors. If a node has received
messages from all neighbors but one, it sends a message to the remaining neighbor
(inbound pass). In the outbound pass, messages flow in the opposite direction.
To answer a query, we take a parcluster covering the query terms and sum out
all non-query terms in its model and received messages.

Example 5. In the FO jtree in Fig. 2, messages flow from nodes 1 and 3 to node
2 and back with the corresponding separators as inputs. E.g., messages between
nodes 1 and 2 have the argument Hot. For m12, we sum out App(A) and Biz(M)
from F1. For m21, we sum out Conf(X) and Res(X) from F2 and message m32

from node 3. After message passing, we can answer, e.g., query P (Conf(x1)) at
node 3 by summing out Hot and Pub(X,P ) from F3 ∪ {m23}.
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4 Algorithm-induced Groundings

A lifted solution to a query given a model means that we compute an answer
without grounding a part of the model. Not all models have a lifted solution as
LVE requires certain conditions to hold to be applicable. Computing a solution to
queries based on these models involves groundings with any exact lifted inference
algorithm. But additionally to inherent groundings, LJT may induce unnecessary
groundings during message passing as the separators may impede a reasonable
elimination order. Grounding a logvar is expensive and, during message passing,
may propagate through all nodes, forcing even more groundings in a worst case.
This section examines when algorithm-induced groundings occur and derives
conditions for messages that allow lifted solutions if possible.

Within this section, we use examples displayed in Fig. 3. Each example is a
node with two PRVs in its parcluster and an edge with a separator consisting of
one of the PRVs. The local model has one parfactor with both PRVs as inputs.
We use the labels L = {X,Y, Z} and R = {P,Q,R} to build PRVs.

Informally, LJT does not induce groundings due to message calculations if it
can sum out the PRVs in a separator last. Figure 3a shows an example without
groundings. The parcluster contains P (X) and Q(X,Y ). For the message, we have
to eliminate Q(X,Y ) from the local parfactor. Q(X,Y ) fulfills all preconditions
for lifted summing out. We can sum out P (X) last. No groundings occur.

Formally, for message mij from node i to j with parcluster Ci = Ai|Ci, local
model Fi, and separator Sij , we eliminate the parcluster PRVs not part of the
separator, i.e., Eij := Ai \ Sij , from the local model and all messages received
from other nodes than j, i.e., F ′ := Fi ∪{mil}l 6=j . To eliminate E ∈ Eij by lifted
summing out from F ′, we replace all parfactors g ∈ F ′ that include E with a
parfactor gE = φ(AE)|CE that is the lifted product of these parfactors g. Let
SEij := Sij ∩ AE be the set of randvars in the separator that occur in gE . For

lifted message calculation, it necessarily has to hold ∀S ∈ SEij ,

logvars(S) ⊆ logvars(E). (1)

Otherwise, E does not include all logvars in gE . We may induce Eq. (1) for a
particular S by count conversion if S has an additional, count-convertible logvar:

logvars(S) \ logvars(E) = {L}, L count-convertible in gE . (2)

If Eq. (2) holds, we count-convert L, yielding a (P)CRV in mij , else, we ground.
Figure 3b shows a parcluster with E = P (X) and S = Q(X,Y, Z) where

we ground. As logvars(Q(X,Y, Z)) 6⊆ logvars(P (X)) and Q(X,Y, Z) has two
logvars not in P (X), Eqs. (1) and (2) do not hold. We can count-convert Y
(or Z), still leaving us with Z (or Y ) to ground. In Fig. 3c, the separator PRV,
Q(X,Y ), has one logvar, Y , more than P (X). Y is count-convertible so Eq. (2)
holds. We count-convert Y , building #Y [Q(X,Y )]. Now, X is the only logvar
and we sum out P (X). The same holds if P has more logvars, e.g., P (X,Z).
Y would not be count-convertible if the parcluster and parfactor contain, for
instance, a PRV R(Y ) as Y appears in two PRVs, leading to a grounding of Y .
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Fig. 3: Conceptual examples with liftable and non-liftable message calculation
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Fig. 4: Conceptual examples with #X [P (X)] in incoming message

Count conversion of a logvar L may prevent groundings at node i but the
(P)CRV of the affected PRV S may cause problems at node j. As S appears in
Fj , we have S present as a PRV and a (P)CRV. If we do not need to sum out
S or if L is count-convertible in gS , the (P)CRV does not lead to groundings.
But if we have to eliminate S and L is not count-convertible, we need to ground
all occurrences of the counted logvar in the affected parfactors. Hence, count
conversion only helps in preventing a grounding if all following messages can
handle the resulting (P)CRV. Formally, for each node k receiving S as a (P)CRV
with counted logvar L, it has to hold for each neighbor n of k that

S ∈ Skn ∨ L count-convertible in gS (3)

Let us look at some examples for clarification. Figure 4 shows example nodes
as in Fig. 3 with another edge and #X [P (X)] in an incoming message. In Fig. 4a,
#X [P (X)] does not lead to groundings as P (X) is in the next separator, i.e.,
the first disjunct in Eq. (3) holds. However, as #X [P (X)] becomes part of the
next message, we have to check if #X [P (X)] causes groundings at the receiving
node. Figure 4b shows a case where #X [P (X)] is not in the next separator but
X is count-convertible, i.e., the second disjunct in Eq. (3) holds. As an aside, to
actually sum out #X [P (X)], we need to count-convert logvar Y in Q(Y ). But
that conversion is not due to #X [P (X)]. In Fig. 4c, neither disjunct holds for
P (X). P (X) is not in the separator and X is not count-convertible as X appears
in R(X) as well. Because X is not count-convertible, we cannot combine the
counted P (X) with the local P (X) for summing out. Instead, we need to ground
X and sum out each P (x), x ∈ D(X), individually.

In the next section, we derive a test for unnecessary groundings at nodes
based on Eqs. (1) to (3) without messages being sent.
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5 Extended Lifted Junction Tree Algorithm

We extend LJT to prevent unnecessary groundings by adding a fusion step and
to fully support evidence in an efficient manner.

5.1 Fusion: Preventing Groundings

The main idea of fusion is to merge nodes if message calculation needs groundings.
We first set up a grounding test. Then, we present fusion using the test to decide
mergings. Last, we analyze the effects on data structure and workload.

Test for Groundings Checking message mij , PRV E to eliminate, and separator
PRV S, the test strings together Eqs. (1) to (3). Testing E only needs AE of gE ,
making it easier to build. But, we need to track changes from quasi-eliminating
E for the next PRV E′. Our test runs before message passing. Since we do not
have the actual messages for F ′, we assume that a message covers the separator.
This slight over-approximation may result in a larger AE which may lead to
more PRVs in SEij that have to fulfill Eqs. (1) to (3). Thus, our test may identify
a grounding that does not occur. The test outcomes for S given mij and E are:

Eq. (1) holds → No groundings. Check next S.

Eq. (1) does not hold → Check Eq. (2).

Eq. (2) holds → Check Eq. (3) for each node receiving S.

Eq. (2) does not hold → Groundings.

Eq. (3) holds → No groundings. Check next S.

Eq. (3) does not hold → Groundings.

Extension We use the test to decide if we merge two nodes. Merging nodes i and
j means building their union in terms of parclusters and neighbors. Formally, the
union of parclusters Ci and Cj , denoted by Ci ∪Cj , is given by gr(Ci)∪ gr(Cj).
Exploiting that parclusters have certain properties by way of construction, we
need not ground but can build the union component-wise. For the local models,
we build Fi ∪ Fj . Regarding graph structure, the merged node k with parcluster
Ck = Ci ∪Cj takes over all neighbors from i and j.

Algorithm 1 shows pseudo code for fusion combining the grounding test with
merging given an FO jtree J . For each node i in J , we merge i with a neighboring
node j until Eqs. (1) to (3) hold if applicable. Algorithm 2 shows LJT with the
new step in line 3 after construction. The other steps remain the same.

Algorithm 1 Fusion of FO jtree J to prevent groundings

1: function fuse(FO jtree J)
2: for node i in J do
3: while ∃ node j ∈ neighbors(i), E ∈ Eij , S ∈ SE

ij : (Eq. (1) does not hold ∧
(Eq. (2) does not hold ∨ Eq. (3) does not hold)) do

4: merge(i, j)
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Algorithm 2 Extended Lifted Junction Tree Algorithm

1: function FusedLJT(Model G, Queries Q, Evidence E)
2: FO jtree J = FO-jtree(G)
3: fuse(J)
4: enterEvidence(J ,E)
5: passMessages(J)
6: getAnswers(J ,Q)

Theorem 1. FusedLJT is sound, i.e., produces the same result as LJT.

Proof sketch. The proof relies on LJT being sound. Fusion alters an underlying
FO jtree with merging, preserving the FO jtree properties. Given LJT is sound,
LJT works with a valid FO jtree after fusion and produces sound results.

FusedLJT does not induce any unnecessary groundings. As the grounding
test over-approximates, we may merge two nodes whose messages do not need
groundings. But, no node remains that grounds due to message calculation.

We add a parameter α to encode how many steps our grounding test should
follow. If α = 0, we do not execute the fusion step. If α = 1, we only check Eq. (1)
at a node i. It saves work on checking Eqs. (2) and (3) concerning (P)CRVs
which may inhibit smaller local models for faster query answering. If α = 2, we
additionally check Eq. (2) and move on to the next PRV in SEij if it holds. If
α = 3, we also check Eq. (3) at j. With α > 3, we check Eq. (3) at all nodes
receiving a (P)CRV with a path length of α− 3 starting from j.

Effects We look at the effects of fusion on LJT in terms of data structure and
workload. Regarding data structure, effects can range from no change to a collapse
into one node. Without a change, we add work for all checks without any merging
(no or only model-inherent groundings). Collapsing into one node with the input
model in its local model is a worst case scenario: We add overhead for construction
and fusion without a payoff as query answering compares to LVE.

Regarding workload, fusion adds to it for checking Eqs. (1) to (3). At a node
i, most work occurs if Eq. (1) does not hold for each neighbor j, PRV E ∈ Eij ,
and PRV S ∈ SEij . Then, we check for each S that Eq. (2) holds and for each
neighbor at nodes k reached through j receiving S that Eq. (3) holds. Let c1,
c2, and c3 denote the workload of checking Eqs. (1) to (3), respectively. Let dk
denote the number of neighbors at a node k. Then, a workload amounts of

TFusion(J ) =
∑
i

∑
j

|Eij | · |SEij | ·

(
c1 + c2 +

∑
k

(dk − 1) · c3

)
(4)

where i covers the nodes in J , j the neighbors of i, and k the nodes reached
through j. If α = 0, we do not add work, save for an if-condition check. If α = 1
or 2, Eq. (4) ends after c1 or c2. With increasing α, we reach more nodes k.

In a worst case, we have the most checks if Eij and Sij have the same size,
i.e., 1

2 |Ai|. We replace Ai with Amax denoting the largest parcluster, meaning
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the one with the most PRVs. As we cover each edge twice checking each neighbor
j of each node i, we rewrite

∑
i

∑
j with 2 · |E|, E being the set of edges in J . We

reformulate
∑
k as |E| − 1 since we may cover each edge except i—j. Combined,

we have a complexity of O(|E|2 · |Amax|2).

5.2 Evidence Handling

This section formalizes evidence handling, a central feature of any inference
algorithm. Though we look at evidence in general, we have to keep in mind that
computing conditional probabilities, i.e., marginals given evidence, is not liftable
unless evidence consists of PRVs with at most one logvar [4].

Extension Entering evidence includes formalizing when we add evidence, how
we distribute it, and how we absorb it. We add an evidence parfactor gE with
constraint CE to local model Fi at node i with constraint Ci in its parcluster iff

Ci ∩ CE 6= ∅ (5)

Unlike LVE, we avoid testing all parfactors in G using the third FO jtree
property. The property states that if a PRV appears in parclusters Ci and Cj , it
must appear in every parcluster on the path between nodes i and j. To distribute
gE , we find a first node with a parcluster that meets Eq. (5) and add gE . If
adding gE at a node i, we add gE to each neighboring node j if Ci projected
onto the PRVs in separator Sij fulfills Eq. (5). After distributing all evidence,
we split the parfactors in the local models accordingly and use lifted absorption.
(We store the original model for new evidence.)

In the following example, we add the evidence from Example 3 (Conf(X) is
true for 10 people) to the FO jtree of Gex.

Example 6. Conf(X) appears in parclusters C2 and C3. For lifted absorption in
C2, we split the parfactor in F2 into g2 = φ2(Hot, Conf(X), Res(X))|(C2 \ CE)
and g′2 = φ2(Hot, Conf(X), Res(X))|CE . g′2 absorbs gE by dropping the values
where ¬conf(X) and removing Conf(X) from its arguments. F2 is now {g2, g′2 =
φ2(Hot, Conf(X))|CE}. Absorbing gE in C3 proceeds analogously.

With new evidence, LJT enters evidence and passes messages again. We can
save work on both if evidence changes only incrementally: We only enter changed
evidence. After entering evidence, leaf nodes calculate a new message if evidence
changed. Without a change, an empty message is sent. Inner nodes calculate a
message if their own evidence changed or a non-empty message arrived from any
neighbor. Otherwise, they send an empty message.

Theorem 2. Evidence handling in LJT is sound, i.e., is equivalent to handling
evidence in the ground version.

Proof sketch. The proof relies on the LVE operations, specifically lifted absorption
and splitting, and LJT to be sound. Since lifted absorption drops the affected
PRVs, we enter evidence at each node that includes evidence randvars. With
a correct split and absorption in the local model of a node, the node absorbs
evidence correctly. Given LJT is sound, all following computations are sound.
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Effects Evidence has an effect on message passing and query answering since
the local models change with absorption of evidence. The effect is inherent to
handling evidence. Message passing starts after lifted absorption. In case evidence
affects sender and receiver, i.e., the evidence PRVs are part of the separator,
the message covers those PRVs without evidence since the part with evidence is
already absorbed at both parclusters. In case evidence only affects the sender
but logvars(Sij) ∩ logvars(gE) 6= ∅, the message consists of two parts, one for
the part without evidence and one for the part with evidence as Fi is shattered
w.r.t. CE splitting up all occurrences of logvars(gE). In all other cases, evidence
is hidden from the other nodes through summing out.

Entering evidence means checking Eq. (5) for each evidence parfactor gE ∈ E
at each node and each parfactor in a local model absorbing gE in a worst case
scenario, leading to a worst case complexity of O(|N | · |E| · |Fmax|), N denoting
the set of nodes in J and Fmax the largest local model. With more evidence, the
size of intermediate results decreases and consequently, runtimes fall.

If a change in evidence leads to changes in all nodes, a full message passing
run is necessary. With changes only in one part of the model, we save calculating
inbound messages from the unchanged part and outbound messages distributing
the information from the unchanged part to the remaining model.

6 Empirical Evaluation

We have implemented a prototype of the LJT extended with fusion and evidence
handling, named exfojt. Taghipour provides a baseline implementation of GC-
FOVE including its operators (available at https://dtai.cs.kuleuven.be/

software/gcfove), named gcfove in this test. We include the gcfove operators
in exfojt. We test our implementation against gcfove.

We have also implemented a propositional junction tree algorithm as a
reference point, named jt. jt requires substantially more time and memory
and therefore, is not part of the discussion. We compare runtimes for inference
summed up over queries answered, averaged over several executions per setup.

Fusion We use a variation of Gex as input whose FO jtree has four nodes and
requires groundings with α = 0 and α = 2. If α = 1, its FO jtree has two nodes
with five PRVs in its largest parcluster after fusion. If α = 3, its FO jtree has
three nodes with four PRVs in its largest parcluster after fusion. The probability
entries are random. We query each PRV once with random groundings.

Figure 5 shows runtimes with increasing domain sizes for jt (filled triangle),
gcfove (circle), and exfojt with α ∈ {0, 1, 2, 3} (squares). There is no strong
difference noticeable for varying α and the depth of its checks in terms of runtime
with this limited example. Between construction and message passing, the fusion
step does not add significantly to the overhead.

The runs of exfojt with groundings (filled squares) have a runtime worse than
the runtime of jt for small domains. Runtimes for exfojt without groundings
(empty squares) and gcfove do not have the steep increase in runtime with larger

https://dtai.cs.kuleuven.be/software/gcfove
https://dtai.cs.kuleuven.be/software/gcfove
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101

102

103

104

101 102 103 104 105 106 107

jt
exfojt, α = 0
exfojt, α = 2

gcfove
exfojt, α = 1
exfojt, α = 3

Fig. 5: Runtimes [ms], x-axis: |gr(Gex)|
from 16 to 10,100,000 (log scale)

0 20 40 60 80 100

101

102

103

104

gcfove
exfojt
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evidence from 0% to 100%

domains. exfojt (α = 1, α = 3) needs 30 to 60% of the time gcfove needs which
it trades off with memory. It requires 1.06 to 1.16 times the memory of gcfove.
The decrease in runtime is mirrored in the number of LVE operations performed,
independent of the size of the grounded model: exfojt (α = 1) performs 170
operations (181 with α = 3). gcfove performs 368 operations.

Evidence We use Gex as input with random probability entries and set α = 0.
We enter evidence on all PRVs except Hot and Pub(X,P ) ranging from 0% to
100% in 5% steps. We query each PRV once and Pub(X,P ) twice with random
groundings. We fix the domain sizes, yielding |gr(Gex)| = 111, 000.

Figure 6 shows runtimes with increasing evidence coverage. On all evidence
settings, exfojt (triangles) outperforms gcfove (circles). Entering evidence
increases runtimes since handling evidence costs time. With more evidence,
runtimes decrease for both programs as a larger part of the model is fixed with
evidence. Apart from the settings with 0% and 100% evidence, exfojt needs 8
to 16% of the time gcfove needs. In terms of VE operations, exfojt needs 128
operations (including message passing) against 475 by gcfove. exfojt trades off
runtimes with memory. It requires 1.2 to 1.4 times the memory of gcfove.

With its static overhead, exfojt outperforms gcfove with the second query
at 0% evidence. In all other cases, exfojt is faster with the first query.

In summary, spending effort on building an FO jtree and passing messages
pays off. Even with little evidence, exfojt runs faster after the first query.

7 Conclusion

We present extensions to LJT to answer multiple queries efficiently in the presence
of symmetries in a model. We identify when LJT induces unnecessary groundings
during message passing. To remedy this effect, we add a step to LJT that merges
parclusters. Additionally, we formalize how LJT handles evidence. We speed up
runtimes significantly, especially with evidence, for answering multiple queries
compared to the current version of LJT and GC-FOVE.

We currently work on adapting LJT to incrementally changing knowledge
bases. Other interesting algorithm features include parallelization, construction
using hypergraph partitioning, and different message passing strategies as well
as using local symmetries. Additionally, we look into areas of application to see
its performance on real-life scenarios.
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17. Singla, P., Domingos, P.: Lifted First-Order Belief Propagation. In: Proceedings
of the 23rd Conference on Artificial Intelligence, pp. 1094–1099. The AAAI Press,
Menlo Park (2008)

18. Taghipour, N.: Lifted Probabilistic Inference by Variable Elimination. PhD Thesis,
KU Leuven (2013)

19. Taghipour, N., Davis, J., Blockeel, H.: First-order Decomposition Trees, In: Advances
in Neural Information Processing Systems 26, pp. 1052–1060. Curran Associates,
Red Hook (2013)

20. Vlasselaer, J., Meert, W., van den Broeck, G., de Raedt, L.: Exploiting Local and
Repeated Structure in Dynamic Baysian Networks. In: Artificial Intelligence, vol.
232, pp. 43–53. Elsevier, Amsterdam (2016)

21. Zhang, N.L., Poole, D.: A Simple Approach to Bayesian Network Computations. In:
Proceedings of the 10th Canadian Conference on Artificial Intelligence, pp. 171–178.
Morgan Kaufman Publishers, San Francisco (1994)


	Preventing Groundings and Handling Evidence in the Lifted Junction Tree Algorithm
	Introduction
	Related Work
	Preliminaries
	Parameterized Models
	Lifted Variable Elimination
	Lifted Junction Tree Algorithm

	Algorithm-induced Groundings
	Extended Lifted Junction Tree Algorithm
	Fusion: Preventing Groundings
	Evidence Handling

	Empirical Evaluation
	Conclusion


