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Abstract. The lifted dynamic junction tree algorithm (LDJT) efficiently
answers exact filtering and prediction queries for probabilistic relational
temporal models by building and then reusing a first-order cluster rep-
resentation of a knowledge base for multiple queries and time steps. We
extend the underling model of LDJT to provide means to calculate a
lifted dynamic solution to the maximum expected utility problem.

1 Introduction

Areas like healthcare and logistics involve probabilistic data with relational and
temporal aspects and need efficient exact inference algorithms. These areas in-
volve many objects in relation to each other with changes over time and uncer-
tainties about object existence, attribute value assignments, or relations between
objects. More specifically, healthcare systems involve electronic health records
(relational part) for many patients (objects), streams of measurements over time
(temporal part), and uncertainties [11] due to, e.g., missing information caused
by data integration from different hospitals. For query answering, we perform
deductive reasoning by computing marginal distributions at discrete time steps.
In this paper, we study the problem of exact decision making under uncertainty
in large probabilistic temporal models that exhibit symmetries.

We [4] propose parameterised probabilistic dynamic models (PDMs) to repre-
sent probabilistic relational temporal behaviour, and furthermore introduce the
lifted dynamic junction tree algorithm (LDJT) to answer multiple exact filtering
and prediction queries efficiently. LDJT combines the advantages of the interface
algorithm [7] and the lifted junction tree algorithm (LJT) [3]. Specifically, this
paper contributes action and utility nodes for PDMs to calculate a lifted dy-
namic solution to the maximum expected utility (MEU) problem. Action nodes
are well-motivated candidates to model, e.g., treatments, while utility nodes can
represent, e.g., the well being of patients, risk scores, or treatment costs.

Practical related work for inference on relational temporal models consists of
approximative approaches. Additional to being approximative, these approaches
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involve unnecessary groundings or are only designed to handle single queries ef-
ficiently. Ahmadi et al. [1] propose lifted (loopy) belief propagation. Geier and
Biundo [5] present an online interface algorithm for dynamic Markov logic net-
works [9], similar to the work of Papai et al. [8]. Vlasselaer et al. [12] introduce an
exact approach for relational temporal models involving computing probabilities
of each possible interface assignment on a ground level.

Apsel and Brafman [2] show a solution to calculate an exact lifted static solu-
tion to the MEU problem. Similar research relates to first-order (PO)MDP [6,10].

The lifting approach exploits symmetries in the model to reduce the number
of instances or patients to perform inference on. Additionally, LDJT clusters a
model into submodels to answer queries, like the condition of each patient, for a
time step and also reuses the clustered structure to answer queries for all time
steps t > 0. Therefore, LDJT is suitable to handle healthcare related data.

2 Lifted Maximum Expected Utility

We begin by recapitulating PDMs and then extend the work and example
from [4] with action and utility nodes to support decision making.

2.1 Parameterised Probabilistic Dynamic Models

A parameterised probabilistic model (PM) combines first-order logic with prob-
abilistic models, representing first-order constructs using logical variables as pa-
rameters. Using two PMs, we define the temporal behavior from one time step
to the next. Therefore, making PDMs well-suited to model temporal medical
processes, which are assumed to be identical for all patients.

Figure 1 shows the example from [4] represented as a PDM with action and
utility nodes added in grey. In the example, we remotely infer the condition of
patients with regards to water retaining. To determine the condition of patients,
we use the change of their weights and additionally use the change of weights of
people living with the patient to reduce the uncertainty to infer conditions. An
increase in weight could either be caused by overeating or retaining water. In case
both gain weight, overeating is more likely, while if only the patient gains weight
retaining water is more likely. In Fig. 1, each node is a parameterised random
variable (PRV), which is connected by edges to parametric factors (parfactors)
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Fig. 1. Retaining water example with action and utility nodes in grey
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to set them into relation. For example, the PRV C(X) models the condition
of all patients, e.g., {alice, bob, eve}, and can evaluate to {normal, deviation,
retains water, stopped}. Additionally, parfactor gC models that the condition of
a patient influences the condition in the next time step. Using the PDM, LDJT
can answer filtering and prediction queries. Hence, LDJT answers queries like
“given all weight observation up until now, what is the condition of bob” and
“how will his condition probably be in ten time steps”. For more details, see [4].

2.2 Maximum Expected Utility for PDMs

Let us now extend the example with action and utility nodes. In Fig. 1, one can
see two disjoint action nodes (squares) and one utility node (diamond) for each
time step. In our example, action A1 is visit patient and action A2 is do nothing.
Obviously, other actions could also be included in the model, e.g., diet related
actions or obtaining a more accurate scale. The condition of patients and A1

influence the utility. For example, patients with a chronic heart failure might
tend to retain water. In case water retention is detected early on, treatment
is easier. However, if this water retention remains undetected, water can also
retain in the lung, which can lead to a pulmonary edema, making a treatment
more costly. More importantly, pulmonary edema is an acute life-threatening
condition. In addition to the condition of patients, A1 also influences the utility
as a doctor, with limited time, visiting a patient is expensive. Thus, one always
needs to consider that alerting the doctor too early generats unnecessary costs
and alerting the doctor too late can have serious consequences for the patient.

We encode the trade-off in the utility node, which normally is time-dependent.
Connecting Utilt−1 and Utilt with a parfactor gU makes the utility node time-
dependent and allows discounting. Actually, a utility PRV can also have param-
eters, for example Utilt(X) and thereby encode the utility for each patient. For
the utility PRV with the parameter, LDJT can maximise the expected utility
for each patient, while without the parameter, LDJT maximises a global utility
over all patients. The actions to maximise the utility can differ given constraints.
Now, we need to select the best action, which maximises the utility. With the
action and utility nodes, we can use LDJT to calculate which action maximises
the expected utility for the current time step as well as for the one in, e.g., five
time steps. Due to the inherent uncertainty of PDMs, which is similar to a belief
state in POMDPs, LDJT can only calculate the best action for a finite horizon.

Unfortunately, as all actions have a different impact, currently we cannot
combine all actions into one PRV, which would result in Action(A), where A ∈
{a1, a2}. Nonetheless, LDJT directly reasons over all patients instead of reason
over each patient individually. Additionally, LDJT can provide alerts based on
observations of each patient. Apsel and Brafman [2] extend C-FOVE to solve
MEU queries, which significantly outperforms the propositional case. Braun and
Möller [3] show that LJT outperforms GC-FOVE, an extension to C-FOVE, for
multiple queries. We [4] present how LDJT efficiently handles temporal aspects
and thus, outperforms LJT for temporal queries. Therefore, LDJT is a well-suited
candidate to support lifted decision making, including for healthcare processes.
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3 Conclusion

We present an extension to PDMs to support lifted decision making by calculat-
ing a solution to the MEU problem. Areas like healthcare extremely benefit from
the lifting idea for many patients in combination with the efficient handling of
temporal aspects of LDJT and the support of different kinds of queries. By ex-
tending the underlying model with action and utility nodes, complete healthcare
processes including treatments can be modelled. Additionally, by maximising the
expected utility, LDJT can calculate the best action.

The next step is to generalise PRVs to allow one action PRV for all possi-
ble actions with different impacts and investigate whether, for our application,
evidence can reduce the MEU problem from a POMDP to an MDP. Further,
we are working on calculating a most probable explanation with LDJT to, e.g.,
determine the most likely cause for observed changes in the condition of patients.
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