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Jana Mertensa, Mena Leemhuisb, Özgür Özçepb, Hedda Schmidtkeb, and Jürgen Maasa

aTechnical University of Berlin, Mechatronic Systems Lab, Germany
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ABSTRACT

Dielectric Elastomer (DE) transducers are characterized by their geometrical dimensions and in particular by the
properties of the elastomer and electrode materials. Therefore, in addition to dimensions, it is advantageous to
consider optimization of material properties to fulfill transducer requirements, such as blocking force, free stroke,
or response time. A big challenge in describing the properties of DE materials deals with utilizing different but
commonly used hyperelastic material models and their parameters, which differ in complexity and corresponding
model errors. Thus, determined material parameters are not necessarily consistent. In addition, parameters
are depending on the measurement method, its conditions and the samples themselves. All of this leads to
heterogeneous datasets making data access more complicated and in certain cases impossible for users. To
overcome this, OBDA (ontology-based data access) approaches have been proven to access these heterogeneous
datasets individually and efficiently and to gain the relevant information with the help of an ontology. Within
a research project funded by the Federal Ministry of Education and Research, an extended OBDA approach is
developed: OBDMA (ontology-based data and model access) combines data access with model-based working
steps. While the joint project considers four different smart material classes, this paper focuses on dielectric
materials and their transducers, in particular the development of methods to handle hyperelastic material models
and their parameters. The various possibilities of material models and parameter identification methods are
discussed on the basis of a measurement curve. Finally, the working principle and the advantages of the OBDMA
system are demonstrated by means of a representative DE use case.

Keywords: dielectric elastomer materials, ontology, digital data access, material models and parameters

1. INTRODUCTION

Dielectric elastomer transducers (DE) consist of thin dielectric elastomer films coated with flexible and conduc-
tive electrodes. When a voltage is applied, the transducer deforms.1 Numerous modeling and characterization
studies,2,3 as well as material modification and optimization investigations,4,5 are being conducted in the field
of DE-transducers to characterize their mechanical and electrical properties.
One of the typical properties of elastomer materials is their non-linear elastic behavior, which can be represented
by hyperelastic models. Hyperelastic material models are defined by an assumption for the strain energy density
combined with a deformation assumption. Neo-Hooke, Mooney-Rivlin, Yeoh and Odgen are just a few exam-
ples of strain energy density modeling approaches that vary in complexity and accuracy.6–8 In addition to the
multitude of models, differences in measurement, identification, and storage formats,9 as well as different manu-
facturing processes,10 result in many possible parameters, leading to heterogeneous databases and complicating
data access. However, easy data access is crucial for material design and optimization of DE-transducers. In
this contribution, we discuss and extend an ontology-based data access (OBDA) approach, which is an efficient
method for accessing data from heterogeneous databases via a homogeneous interface in form of a terminology
(ontology).11

An ontology pursues the goal of modeling information in form of concepts and their relations.12 In recent
years, there have been various efforts to improve knowledge storage and access in engineering science domains
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using an ontology approach. For material science there are several investigations on the development and use
of ontologies.13 Among other investigations the European Materials Modelling Council (EMMC) is working
to establish common standards and has developed the European Materials and Modelling Ontology (EMMO)
in form of a top-level ontology.14 While many material-specific ontologies, including EMMO, focus on storing
knowledge at the ontology level, this study takes an OBDA approach, where knowledge is distributed across an
ontology, mappings, and databases. By using mappings to connect data from different databases to the ontol-
ogy, this approach allows flexible querying of heterogeneous databases.15 Furthermore we considerably extend
OBDA to the approach of ontology-based data and model access (OBDMA). OBDMA not only enables easy
data access but also links to models (here mainly given by analytical functions). This method allows querying
not only for data given by the database or inferred by the ontology, but also for data calculated with the help
of these user-defined functions (UDF), providing flexible and application-oriented data access. For instance, one
can analyze and model a stress-strain curve across the entire range of measured strain, or selectively over a range
that is dependent on the specific application and based on the desired level of model accuracy and complexity.
The basic principle of OBDMA is sketched in Figure 1.

Figure 1. Basic principle of an OBDMA-system.

In the following two sections, the OBDMA approach’s advantages are explained in the case of hyperelastic
modeling of DE-transducers. For this purpose, hyperelastic material models are first presented and discussed in
section 2, followed by a demonstration of the OBDMA-system using a simplified use case in section 3.

2. HYPERELASTIC MATERIAL MODELING AND IDENTIFICATION

The fundamentals and advantages of an OBDMA-system are exemplified by modeling and parameterizing elastic
material properties. DE materials are characterized by their incompressibility and show a non-linear elastic
behavior. The elastic stress σelast,i is defined by the stretch λi, the strain energy density uelast and the hydro-
static pressure p:

σelast,i = λi
∂uelast

∂λi
− p. (1)

Depending on the assumption for the strain energy density and the deformation, a hyperelastic model can
be derived from equation 1. There are three typical deformation assumptions: uniaxial, planar and biaxial,
depending on the geometry and boundary conditions.16 Various assumptions about the strain energy density
model are available for different DE applications, varying in complexity and accuracy.
When considering stress models, it’s important to differ between the true and technical stress. The true stress
σelast,i refers to the deformed area A and the technical stress σtech,i = σi to the undeformed area A0, respectively.
Equation 1 refers to the true stress and equation 2 shows the link of the true and technical stress.

σi =
σelast,i

λi
, A0 = Aλi (2)

For this analysis, the measured stress-strain curves are stored in the database using the technical stress,
geometry, and boundary conditions, making the data independent of the deformation assumption.



Table 1. Exemplary elastic models

model deformation equation
linear Hooke no σx = Y εx, λx = 1 + εx

Neo-Hooke uniaxial σx = 2C10

(
λx − 1

λ2
x

)
, Y = C10

6

Neo-Hooke planar σx = 2C10
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)
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6
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λ2
x

) (
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2
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)
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)
Yeoh planar σx = 2
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x

)(
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2
pl

)
, λpl =

(
λ2
x + 2
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)

This contribution presents the linear Hooke model and two hyperelastic models (Neo-Hooke and Yeoh) to demon-
strate the manifold of parameter identification. However, the analysis can also be applied to other model as-
sumptions. Table 1 gives an overview of the considered elastic models applied with two deformation assumptions
using the technical stress.

Various parameter identification techniques are presented in this study to show the range of possibilities
depending on the assumed model, identification range, and methodology. The results are discussed based on a
stress-strain curve measured on a sample with the geometry shown in Figure 2, where uniaxial deformation can
be assumed.16

Figure 2. Sample geometry.

The measured strain range is εmes = 0−200%. Besides the different model approaches, there are also different
identification methods. Two identification methods are considered here: initial slope and minimizing an error
over a specific identification strain range εident.

Table 2. Two exemplary identification methods.

method equation
intial slope Y = σ0

ε0
minimize R min

C orY
R

For this analysis, the error is defined as the mean normalized error according to the equation 3 and for the
initial slope method the initial strain is fixed to ε0 = 5%

R =
1

N

N∑
i=0

|σ̂i − σi|
σi

(3)

In some cases, however, the root mean square error may be more appropriate. Different error definitions affect
the accuracy for different strain ranges and thus depend on the application conditions. Consequently, several
parameters can be determined for a model approach depending on the three criteria of identification method,
range, and error definition. An example variation is shown in the next two steps to demonstrate the importance
of having access to different models and different identification options.
In a first step, the model approach and the identification method are varied using the measured strain range as
the identification strain range εident = εmes = 0 − 200%. For the linear Hooke and Neo-Hooke model, the two



identification methods shown in Table 2 and for the Yeoh model only the minimization method are investigated.
The five results are shown in Figure 3.

Figure 3. Comparison of different model approaches and identification methods: stress-strain curves (left) and mean
normalized error over different error ranges εR (right).

The left diagram shows the measured stress-strain curve in blue compared to the five model fit curves. The
right one indicates the mean error R over a particular error strain range εR, which is used to determine the error
R. Considering the linear Hooke model with initial slope as the identification method, it shows the best results
in the range εR = 0− 10%, but for a strain range of εR > 10% the error becomes high. The error over the entire
measurement range εR = 0 − 200% can be optimized using the minimization method over the measured strain
range. However, the error is significantly higher for the lower strain range of εR = 0− 10% for this identification
method.
The Neo-Hooke model has only one material parameter like the linear Hooke model, but the non-linearity allows
lower error values for a wider strain range. Up to a strain range of εR = 50%, the error is relatively small, and
the model is suitable for many DE applications. The Yeoh model is necessary if low error values are required over
the entire measured strain range of εR = 0− 200%. While the low error over a wide strain range is advantageous
for the Yeoh model, the model complexity is disadvantageous.
When a simple model is required, as is often the case in control applications, another way to identify parameters
is to restrict the identification range εident according to the application domain. This limitation enables minor
errors over the application range. However, a more significant error is expected for out-of-range applications.
The identification range is varied to demonstrate its influence. For this purpose, a working point εWP is defined
and the identification range is created around the working point according to equation 4:

εident = εWP ± 5%. (4)

For the analysis, the working point is varied with 10%-steps, and for each identification range the Young’s mod-
ulus is determined. The results are compared to the identification range of εident = 0−200% in Figure 4. The top
left diagram shows the stress-strain curves. The results for the variation of the identification range are plotted
for the identification range and the working point is marked. The top right diagram shows the Young’s modulus
over the different working points. The mean normalized error is demonstrated in the bottom diagram determined
for the error strain range εR = εWP ± 5%.



Figure 4. Comparison of different identification strain ranges εident for the linear Hooke model: stress-strain curves (top,
left), Young’s modulus over the working point εWP (top, right) and the mean normalized error with the error range of
εR = εWP + /− 5% (bottom).

As expected, the parameter identification with the small identification range leads to lower error for the
considered error strain range. It should be noted that with this method, higher errors are expected outside the
valid range. Thus, the error can be reduced by considering a limited range, but this limitation must be taken
into account for the application.

The previous analysis demonstrated the importance of choosing the right model approach, identification
method, and range for the considered application, and consequently, various data sets of elastic parameters are
needed for an application-oriented development of DE-transducers. The OBDMA-system provides easy access
to these various data and models and is introduced in the next section.

3. OBDMA-SYSTEM

OBDMA (ontology-based data and model access) is an extension of the OBDA (ontology-based data access)
approach. A user can specify a query using the vocabulary of the given ontology. The basic query language is
SPARQL, a W3C* recommended language for the semantic web and linked open data that provides convenient
language constructs. A user interface can be specified, so that the SPARQL query is generated in the back-
ground.17 The SPARQL query is automatically rewritten - in order to capture the implications of the ontology
- and then automatically transformed (using the mappings) to a query (usually SQL) that can be answered over
the backend database. For OBDMA, UDFs (user-defined functions) are also stored in the database, enabling
new data to be calculated on-the-fly.
Figure 5 gives an overview of the functional principle of the OBDMA-system explained based on a query about
elastic parameters.

*https://www.w3.org/TR/rdf-sparql-query/



Figure 5. Functional principle of the OBDMA-system explained by means of an exemplary query.

The OBDMA-system consists of the rewriting and transformation algorithms as well as declarative artifacts in
form of the database, the mappings, and the ontology. The input to the OBD(M)A-system is a SPARQL-query.
It is stated by the user either directly as a SPARQL-query or indirectly with the help of some user interface whose
input however is directly translated into a SPARQL-query. In detail, the query in Figure 5 asks for the values and
units of all elastic parameters, the corresponding material, their origin and description of the origin. The origin
indicates whether the parameter was calculated internally in the system or stored as a value in the database and
determined in an external source, such as a data sheet or paper. In the case of a internal calculation, the input
parameters of this calculation can also be queried (not done in this example). The description includes some
specifics about the origin, e.g., for elastic parameters, the information about the identification method and the
strain range. The user neither need to have any information about the internal structure of the database nor
ontological information, e.g., which parameters actually count as elastic parameters to state such a query.
In this SPARQL-query, first via rewriting, the ontological information is incorporated. Though, in OBDA (and
thus also in OBDMA), only a restricted ontology can be modeled, it enables to increase the expressivity of the
query. In the example, the ontology incorporates the information that e.g. the Yeoh-vector and the Young’s
modulus are both elastic parameters. Without this information, the user would have to state the query for each
of this parameters on its own, with this information, the query is extended in the rewriting step to incorporate
all these variants (thus, the query “give me the elastic parameter” changes to “give me the parameters which
are an elastic parameter or a Yeoh vector or a Young’s modulus or . . . ”). The rewriting is independent of the
database, thus, the ontology is not restricted to one specific use-case based on one database but can be exchanged
and reused. To connect the rewritten SPARQL-query with an actual database, a mapping is needed, it contains
rules converting the SPARQL query to a SQL query. In this unfolding step, each element of the rewritten query
is mapped to some values of the database. As in the ontology, it is also possible in this step to incorporate
background information. Beside the actual “translation” of the SPARQL- into the SQL-query, especially the
model access is done in this step. A query asking for the value of the Young’s modulus is then on the one
hand mapped to values already given in the database from some external source, e.g., a measurement. On the
other hand, in the mapping a rule is given including the information how the value can be calculated based on
parameter values and a function given in the database. This rewritten and unfolded query can then be queried
over the database and an result is returned to the user. In this example, for Mat 1, information about the



Young’s modulus for the Neo-Hooke model YNH is stored in the database, the knowledge that this is an elastic
parameter is given in the ontology. For Mat 2, a stress-strain curve is given in the database and combined with
the two UDFs, the Yeoh vector and Young’s modulus are evaluated.

In this example, only a simple SPARQL-query has been described. It is possible to extend these queries, e.g.,
with filter operations. For example, the user can first query which elastic parameters are available. In the next
step, the user can query only a specific parameter, e.g., the Yeoh vector, with further information like value and
description. Next to this, it is possible to get more information about the calculations done, e.g., querying input
parameters of a model or the equation used for a calculation. In section 2 different possibilities of hyperelastic
models and methods for parameter identification were demonstrated. The presented OBDMA system allows the
handling of all these models and parameters and offers an application-oriented approach.

4. CONCLUSION

Especially in young research areas, such as DE-transducers, material data and models are often available in
heterogeneous form. For example, the parameter identification for an application-oriented determination is
quite individual. The diversity and the large number of possible values for elastic material parameters were
demonstrated in the first section and are essential for developing and optimizing DE-transducers. OBDMA is
a system that provides easy access to such heterogeneous data and models, where the database can be flexibly
modified and extended. In this paper, OBDMA is explained for DE materials as an example, but it can also be
used for other applications. For example, in the SmaDi collaborative project, four different smart materials are
being considered for the development of an OBDMA-system, of which DE materials are only one. The principle
of OBDMA has been demonstrated in the previous section with a simple example, although the advantages
better come into play with large and diverse databases.
When using SPARQL as a query language, filter options allow application-oriented response containment. For
example, parameter identification can be limited to a specific range, or Young’s modulus can be queried only for a
specific range of values. In summary, the principle of the OBDMA-system was presented, and its advantages were
demonstrated using the example of parameter identification for elastic models for DE-transducers. Furthermore,
collecting and implementing existing parameter values and models are prerequisites for a broad application and
enable optimized and application-oriented material development for DE-transducers.
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mechanical response of dipole grafted silicones,” Smart materials and structures 21(6), 064005 (2012).

[5] Xiang, D., Liu, M., Chen, G., Zhang, T., Liu, L., and Liang, Y., “Optimization of mechanical and dielec-
tric properties of poly (urethane–urea)-based dielectric elastomers via the control of microstructure,” RSC
advances 7(88), 55610–55619 (2017).

[6] Bien-aime, L. K. M., Blaise, B. B., and Beda, T., “Characterization of hyperelastic deformation behavior
of rubber-like materials,” SN Applied Sciences 2(4), 1–10 (2020).



[7] He, H., Zhang, Q., Zhang, Y., Chen, J., Zhang, L., and Li, F., “A comparative study of 85 hyperelastic con-
stitutive models for both unfilled rubber and highly filled rubber nanocomposite material,” Nano Materials
Science 4(2), 64–82 (2022).
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