Lifted Temporal Maximum Expected Utility*

Marcel Gehrkel0000—0001-9056-7673] Tanya Braun!0000—0003—0282-4284] 4, 4 Ralf
Moller

Institute of Information Systems, University of Liibeck, Liibeck, Germany
{gehrke, braun, moeller}@ifis.uni-luebeck.de

Abstract. The lifted dynamic junction tree algorithm (LDJT) efficiently answers
exact filtering and prediction queries for temporal probabilistic relational models
by building and then reusing a first-order cluster representation of a knowledge
base for multiple queries and time steps. To also support sequential online de-
cision making, we extend the underling model of LDJT with action and util-
ity nodes, resulting in parameterised probabilistic dynamic decision models, and
introduce meuLDJT to efficiently solve the exact lifted temporal maximum ex-
pected utility problem, while also answering marginal queries efficiently.

1 Introduction

Areas such as healthcare and logistics deal with probabilistic data including relational
and temporal aspects and need efficient exact inference algorithms. These areas in-
volve many objects in relation to each other with changes over time and uncertainties
about object existence, attribute value assignments, or relations between objects. More
specifically, healthcare systems involve electronic health records (relational) for many
patients (objects), streams of measurements over time (temporal), and uncertainties due
to, e.g., missing information. In this paper, we study the problem of supporting exact
decision making and query answering in temporal probabilistic relational models.

We [3] present parameterised probabilistic dynamic models (PDMs) to represent
temporal probabilistic relational behaviour and propose the lifted dynamic junction tree
algorithm (LDJT) to efficiently answer multiple filtering and prediction queries. LDJT
combines the advantages of the interface algorithm [5] and the lifted junction tree al-
gorithm (LJT) [2]. Specifically, this paper contributes (i) parameterised probabilistic
dynamic decision models (PDDecMs) by adding action and utility nodes to PDMs and
(i1) meulLDJT to efficiently solve the temporal maximum expected utility (MEU) prob-
lem using PDDecMs, while also answering marginal queries efficiently.

Nath and Domingos [6] perform first steps to formally define action and utility
nodes for static probabilistic relational models. Further, Apsel and Brafman [1] propose
an exact lifted static solution to the MEU problem based on [6]. We [4] propose a solu-
tion based on LJT to combine decision support and efficient marginal query answering.
However, in this paper, we propose to include sequential decision making. Research on
sequential decision making relates to first-order (partially observable) Markov decision

* This research originated from the Big Data project being part of Joint Lab 1, funded by Cisco
Systems Germany, at the centre COPICOH, University of Liibeck



2 M. Gehrke, T. Braun, and R. Moller

processes (FO (PO)MDPs) [7]. In constrast to FO POMDPs, which support offline deci-
sion making, we propose to support probabilistic online decision making, which allows
for reacting to observations as well as for query answering.

In the following, we present PDDecMs including the MEU problem. Afterwards,
we introduce meuLDJT to solve the lifted temporal MEU problem efficiently.

2 Lifted Temporal Maximum Expected Utility

We recapitulate PDMs [2,3] and then define PDDecMs with action and utility nodes to
support decision making. Finally, we define the temporal MEU problem for PDDecMs.

2.1 Parameterised Probabilistic Models

A parameterised probabilistic model (PM) combines first-order logic with probabilistic
models, representing first-order constructs using logical variables (logvars) as parame-
ters. We would like to remotely infer the condition of patients with regard to retaining
water. To determine the condition of patients, we use the change of their weights and
additionally use the change of weights of people living with a patient to reduce the
uncertainty for inferring conditions. The cause of an increase in weight could either
be overeating or retaining water. In case both persons gain weight, overeating is more
likely. Otherwise, only one person gains weight and retaining water is more likely.

Definition 1. Ler L be a set of logvar names, ¢ a set of factor names, and R a set
of random variable (randvar) names. A parameterised randvar (PRV) A = P(X!,
...y X™) represents a set of randvars behaving identically by combining a randvar P €
R with logvars X, ..., X™ € L. Ifn = 0, the PRV is parameterless. The domain of a
logvar L is denoted by D(L). The term range(A) provides possible values of a PRV
A. Constraint (X, Cx) allows for restricting logvars to certain domain values and is a
tuple with a sequence of logvars X = (X!, ..., X") and a set Cx C x"_D(X?*). The
symbol T denotes that no restrictions apply and may be omitted. The term lv(Y') refers
to the logvars, rv(Y') to the randvars, gr(Y'|C) denotes the set of instances of Y with
all logvars in'Y grounded w.r.t. constraint C.

To model the example, we use the randvar names C, LT, S, and W for Condition,
LivingTogether, ScaleWorks, and Weight, respectively, and the logvar names X and X’.
From the names, we build PRVs C(X), LT(X, X'), S(X), and W (X). The domain of
X and X" is {alice, bob, eve}. The range of C'(X) is {ok, bad}, LT (X, X') and S(X)
have range {true, false}, and W (X) has range {ok, high}.

Definition 2. We denote a parametric factor (parfactor) g with VX : ¢(A) |C, X C
L being a set of logvars over which the factor generalises, and A = (Al ..., A") a
sequence of PRVs. We omit (VX :) if X = lv(A). Function ¢ : x?_ range(A*) — RT
with name ¢ € @ is identical for all grounded instances of A. A list of all input-output
values is the complete specification for ¢. C'is a constraint on X. A PM G := { gi}?gol
is a set of parfactors and semantically represents the full joint probability distribution
Pe = % 11 Fegr(G) f with Z as a normalisation constant.



Lifted Temporal Maximum Expected Utility 3

Fig. 1: Retaining water example with action and utility nodes

Now, we build the PM G® with: ¢° = ¢°(C(X),S(X),W(X))|T and g =
#H(C(X),C(X"),LT(X, X"))|x'. The constraint ' of g* ensures that X # X’ holds.

We define PDMs based on the first-order Markov assumption and a stationary pro-
cess. A PDM is composed of a PM G|, for the initial time step and G_,, which connects
two PMs with inter-slice parfactors to model the temporal behaviour. Figure 1 shows a
PDM with PRV connected to parfactors and inter-slice parfactors g“7, ¢©, and ¢°.

2.2 Parameterised Probabilistic Decision Models
Let us extend PDMs with action and utility nodes, resulting in PDDecMs.

Definition 3. We represent actions and utilities by PRVs. Let ®* be a set of utility
factor names. The range of action PRVs is disjoint actions and the range of utility
PRVs is R. A parfactor with a utility PRV U is a utility parfactor. We denote a utility
parfactor u with VX : u(A) |C, where U € A and C a constraint on X. Function
p: X" range(AY) — R, A® € A, with name i € D is defined identically for all
grounded instances of A and its output is the additive change of U’s value. Therefore,
after the evaluation of a p function, the initial value of U, 1, is changed by the output
value, j, resulting in the new value of U, which is i + j. The default initial utility value
is 0. A parameterised probabilistic decision model (PDecM) G extends a PM with an
additional set G* of utility parfactors. Let rv(G") refer to all probability randvars in
G". Semantically G* represents the combination of all utilities Ug = ZfegT.(Gu) f-

The p functions output a utility, i.e., a scalar, which makes comparing utility values
easy. Hence, we can easily test how discriminable actions are.

For a PDDecMs, which extends a PDecM to the temporal case similar to a PDM
with a PM, to connect two utility PRVs, we define a utility transfer function.

Definition 4. A utility transfer function )\ has utility PRVs U as input and one utility
PRV U, as output. Additionally, A can have non utility PRVs as input. )\ specifies how
the value of U, is additively changed, possibly depending on non utility PRVs. In this
fashion, PDDecMs transfer utility values to the next time step and allow for discounting.

Figure 1 shows one action (square) and one utility (diamond) PRV in grey, utility
parfactors (crosses), and a utility transfer parfactor gV in black. Assume actions are:
Al is visit patient and A? is do nothing. For example, patients with a chronic heart



4 M. Gehrke, T. Braun, and R. Moller

failure might tend to retain water. In case water retention is detected early on, treatment
is easier. However, if this water retention remains undetected, water can also retain in
the lung, which can lead to a pulmonary edema, making a treatment more costly. More
importantly, pulmonary edema is an acute life-threatening condition. A' also influences
the utility as for a doctor, with limited time, visiting a patient is expensive. Thus, one
always needs to consider that alerting a doctor too early generates unnecessary appoint-
ments and alerting a doctor too late can have serious consequences for patients.

2.3 Maximum Expected Utility in PDDecMs

PDDecMs encode trade-offs in utility parfactors. Connecting Util;_1 and Util; with
a utility transfer parfactor gV makes utility PRVs time-dependent and allows for dis-
counting. For example, gV specifies that the value of Util;_; is reduced by 5 and then
added to Utul,. To select an action, we begin by defining probability and utility queries.

Definition 5. Given a PDecM G, a ground PRV () and grounded PRV with fixed range
values E, the expression P(Q|E) denotes a probability query w.r.t. Pg and the expres-
sion U(Q, E) refers to a utility w.rt. Ug.

Semantically, the expected utility of a PDecM or a PDDecM G, with utility part
G", under assignment to action PRVs a is given by:

eu(Gla) = > P(r|a) - U(r,a) (1)

reérange(rv(Gv))

We calculate a belief state and combine the belief state with corresponding utili-
ties. By eliminating all randvars, one obtains the expected utility. We define the MEU
problem as:

meu[G] = (arg max eu(G|a),m3x eu(Gla)) )
a

Equation (2) defines how to calculate the MEU for a PDecM and a PDDecM. Using
a utility transfer function, we see the problem as an iterative filtering problem. The
expected utility is calculated for one time step and then the utility value is transfered to
the next time step. Therefore, the utility value of the latest time step, is the overall utility
value. Due to the inherent uncertainty of PDDecMs, calculating the best actions is only
feasible for a finite horizon, as one needs to iterate over all possible action assignments.

3 Solving the MEU Problem with meulLDJT

We illustrate how meuLDJT incorporates utilities and solves the MEU problem.

Including Utilities Alg. 1 outlines how meuLDJT includes utilities. Similar to LDJT
with PDMs (c.f. [3]), meuLDJT first builds an first-order junction tree (FO jtree) from
a PDDecM. Allowing utility parfactors in parclusters is straight forward. While con-
structing the FO jtree, meulLDJT treats the utility parfactor in the same way as probabil-
ity parfactors. With the parclusters, meuLDJT distributes local information by message



Lifted Temporal Maximum Expected Utility 5

Algorithm 1 meuLDJT for a PDDecM G, Queries {Q}~_, and Evidence {E}L_,

procedure MEULDJT(Go, G-, {Q}{o, {E}i0)
(Jo, J¢, It) := DFO-JTREE(Go, G—,)
whilet # 7T + 1 do
Ji := LIT.EnterEvidence(J;, E;)
J¢ := LIT.PassProbMessages(J;)
J¢ := LIT.PassUtilMessages(J;)
AnswerQueries(J;, Q¢)
(J¢, t, aft — 1]) := ForwardPassJy, t)

passing. To calculate the probability messages, meuLDJT excludes utility parfactors
as they do not influence the probability distributions. Using the probability messages,
meulLDJT can calculate the current utility value and distribute the value as long as the
utility PRV is in the separator. To calculate utilities, utility parclusters need to know the
probability distributions, which is distributed during message passing to each parcluster.
Using the probability distributions, meuLDJT calculates for each group a utility value
and multiplies the value by the number of groundings. The new utility value is then
added to the old utility value. Further, the utility transfer function ensure the transfer of
utility values, while LDJT’s behaviour ensures preserving the current state.

Answering MEU Queries meulLDJT can answer MEU queries for a finite horizon.
The horizon defines how far meuLDJT predicts into the future. For a given horizon,
meulLDJT tests all action sequences to find the best action sequence. Hence, meuLLDJT
constructs all action sequences for a horizon. In general, meuLDJT constructs rhtl ac-
tion sequences, where r is the number of actions and h the horizon. For each action
sequence, meuLDJT enters the sequence as evidence and answers the expected utility
query for that sequence. Finally, after having tested all action sequences, meuLDJT
returns the best action sequence and the expected utility value.

Assume that ¢ = 3 and we only have a horizon of 1 to answer an MEU query,
then meuLLDJT constructs the action sequences. In this case, there are four action se-
quences. For example, the first action sequence is A3(X) = A! and 44(X) = A%
Now, meuLDIJT enters A3(X) = A in the FO jtree for time step 3. Message passing
on the FO jtrees is now performed in two steps. The first step is to calculate probability
messages. The second step is to calculate utility messages. meuLDJT uses the proba-
bility messages and the evidence, which includes the current action, and distributes the
utility through the FO jtree. After message passing, each parcluster can answer queries
about its PRVs. Thus, meuLDJT can answer multiple probability and utility queries
efficiently, as it can reason over representatives. To proceed in time, meuLDJT uses
the out-cluster to calculate an o message over the interface PRVs, which now includes
U'til,. Hence, the current belief state and utility value is stored in the o message and then
added to the in-cluster of the next time step, in this case C3. Using the utility transfer
function, the current FO jtree contains the overall utility value. Now, meuLDJT enters
A4(X) = Al in the FO jtree for time step 4 and performs the two message passes. Fi-
nally, meuLDJT calculates the expected utility value and proceeds with the next action
sequence, until meuLDJT has the expected utility values for all four sequences.



6 M. Gehrke, T. Braun, and R. Moller

Theorem 1. meulDJT is sound, i.e., it produces the same result as a ground algorithm.

Proof sketch. LDIT is sound [3] and meuLDJT uses LDJT for the probability calcu-
lations. Thus, marginal filtering and prediction queries are still sound. To calculate the
new utility value, meuLDJT efficiently calculates the utility value and adds it to the
old utility value. While calculating the utility value, meuLDJT accounts for the ground-
ings, namely, it calculates the utility value for one representative and multiplies it by
the number of groundings. As all instances behave the same, they instances each would
contribute the same utility value in a ground model. Hence, by calculating a utility for
one representative and multiplying the utility by the number of groundings, meuLLDJT
obtains the same result a ground algorithm would obtain. Additionally, the message
passing inside of a FO jtree ensures that the current utility value is known at all relevant
parclusters and the transfer function preserves the value over time.

4 Conclusion

We present PDDecMs, an extension to PDMs, and meuLLDJT for sequential probabilis-
tic online decision suport by calculating a solution to the lifted temporal MEU problem.
Areas such as healthcare could benefit from the lifting idea for many patients in com-
bination with the efficient handling of temporal aspects of meuLDJT and the support
of different kinds of queries. By extending the underlying model with action and utility
nodes, complete healthcare processes including treatments can be modelled. Addition-
ally, by maximising the expected utility, meuLDJT can calculate a best action. Further,
meul.DJT can efficiently answer a combination of expected utility, filtering, and predic-
tion queries. Thus, meuLDJT can support decision support as well as help to understand
the suggested decision by also efficiently answering multiple marginal queries.

We currently check whether meuLLDJT can reuse computations from previous ex-
pected utility calculations by, e.g., identifying dominant actions for belief state regions.

References

1. Apsel, U., Brafman, R.I.: Extended Lifted Inference with Joint Formulas. In: Proceedings of
the 27th Conference on Uncertainty in Artificial Intelligence. pp. 11-18. AUAI Press (2011)

2. Braun, T., Mdller, R.: Lifted Junction Tree Algorithm. In: Proceedings of KI 2016: Advances
in Artificial Intelligence. pp. 30—42. Springer (2016)

3. Gehrke, M., Braun, T., Moller, R.: Lifted Dynamic Junction Tree Algorithm. In: Proceedings
of the 23rd International Conference on Conceptual Structures. pp. 55-69. Springer (2018)

4. Gehrke, M., Braun, T., Méller, R., Waschkau, A., Strumann, C., Steinhéuser, J.: Lifted Max-
imum Expected Utility. In: Artificial Intelligence in Health. pp. 131-141. Springer Interna-
tional Publishing (2019)

5. Murphy, K.P.: Dynamic Bayesian Networks: Representation, Inference and Learning. Ph.D.
thesis, University of California, Berkeley (2002)

6. Nath, A., Domingos, P.: A language for relational decision theory. In: Proceedings of the
International Workshop on Statistical Relational Learning (2009)

7. Sanner, S., Kersting, K.: Symbolic Dynamic Programming for First-order POMDPs. In: Pro-
ceedings of the Twenty-Fourth AAAL pp. 1140-1146. AAAI Press (2010)



