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Abstract

Belief revision deals with the problem of changing a declar-
atively specified repository under potentially conflicting in-
formation. Usually, the problem is approached by providing
postulates that specify intended constraints for the revision
and constructing concrete revision operators fulfilling them.
In the last 30 years since the start of formal belief revision
with the work of AGM (Alchourron, Gärdenfors, and Makin-
son) roughly four construction principles were investigated
and mutually interrelated: partial-meet, epistemic entrench-
ment, safe/kernel, and the possible worlds (model based) con-
struction. The aim of this paper is to raise into the focus an-
other construction principle relying on the idea of reinterpre-
tation: Conflicts are explained by different use of symbols and
conflict resolution is handled by choosing appropriate bridg-
ing axioms that relate the different readings. The main pur-
pose of the paper is to argue that the reinterpretation-based
approach is sufficiently general by showing how to equiva-
lently formulate classical revision operators such as the op-
erators of Weber, a natural variant of Weber, the operator of
Satoh (= skeptical operator of Delgrande and Schaub) and the
operator of Borgida with reinterpretation operators.

1 Introduction
Belief revision deals with the problem of changing a declar-
atively specified repository such as a belief base (an arbitrary
set of sentences) or a belief set (a logically closed set of sen-
tences) under a new piece of potentially conflicting informa-
tion, called trigger in the following. This paper is going to
discuss a class of operators in a special category of belief re-
vision that—following the terminology of (Dalal 1988)—is
termed “knowledge-base revision”. The idea is to represent
the knowledge of a domain in a finite belief base and define
revision operators that do not depend on the syntax of the
belief base but only on its semantics, i.e., its models.

In the last 30 years since the start of formal belief revi-
sion with the work of AGM (Alchourron, Gärdenfors, and
Makinson, (Alchourrón, Gärdenfors, and Makinson 1985)),
roughly four construction principles were investigated and
mutually interrelated: The first one is that of partial-meet
revision going back to AGM (Alchourrón, Gärdenfors, and
Makinson 1985). The result is calculated by considering
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maximal subsets of the belief set consistent with the trig-
ger and then intersecting a selection of them (hence the
name partial-meet); another construction principle (applied
mainly to belief bases) uses kernels, i.e., minimal sets of in-
consistencies, in order to guide the contraction/revision. The
third principle rests on ranking sentences w.r.t. an epistemic
entrenchment relation. And the last construction principle
approaches revision purely semantically, considering only
possible worlds or more specifically, models, for the KB and
the trigger, taking into consideration relations (orderings) on
the possible worlds to guide the revision. Knowledge-base
revision falls into this last category.

The aim of this paper is to raise into the focus another—
though not completely orthogonal—construction principle
relying on the idea of reinterpretation: Conflicts are ex-
plained by different use of symbols, and conflict resolution is
handled by choosing appropriate bridging axioms that relate
the different readings. As an example, consider an integra-
tion scenario where an ontology from an online library sys-
tem (trigger) has to be integrated into an ontology of another
online library system (the knowledge base). Here one faces
the problem of ambiguous use of symbols. For example, the
term “article” may be used in one library system for all enti-
ties that are published in the proceedings of a conference or
in a journal, and in the other “article” may stand for entities
published only in journals. So one reading of “article” has to
be reinterpreted such that conflicts are resolved and such that
the different readings are interrelated in a reasonable way. In
this example, one would state declaratively with a bridging
axiom that one reading of “article” is contained in the other
reading (but not vice versa).

The properties of reinterpretation heavily depend on the
types of bridging axioms that one is going to allow to guide
the reinterpretation. Choosing different classes of bridging
axioms leads to different classes of reinterpretation opera-
tors. In the example above, allowing only equivalence (in
propositional logic: bi-implication) may lead to a loss of re-
lations between the different readings of “article” whereas a
use of subsumption (in propositional logic: implication) may
preserve relevant relations between the readings.

Though the reinterpretation operators were built w.r.t.
such integration scenarios as illustrated above, this paper ar-
gues that the reinterpretation based framework is sufficiently
general to capture also classical revision operators. In par-
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ticular, the main contribution of this paper is to show that
one can find appropriate classes of bridging axioms such
that some of the operators discussed in (Eiter and Gottlob
1992) can be equally represented as reinterpretation opera-
tors: The revision operator of Weber (Weber 1986) can be
represented by full-meet revision on the set of bridging ax-
ioms that have the form of bi-implications. A natural variant
of Weber revision can be represented as full-meet revision
of bridging axioms having the form of implications. The op-
erator of Satoh (Satoh 1988) (= skeptical operator of (Del-
grande and Schaub 2003)) can be represented as partial-meet
revision of the disjunctive closure of bi-implications, and the
operator of Borgida (Borgida 1985) can be represented as
partial-meet revision of bridging axioms that are in the dis-
junctive closure of bi-implications or that are literals.

The rest of the paper is structured as follows: After a short
overview of related work in Sect. 2 and a recap of necessary
terminology and concepts in Sect. 3, classical model-based
belief-revision operators are introduced in Sect. 4. The class
of reinterpretation operators is introduced in Sect. 5. The
main equivalence results are stated and proved in Sect. 6.
Section 7 concludes the paper with a short resume and an
outlook. At the URL http://tinyurl.com/jprcbuv

an extended version of this paper with proofs is provided.

2 Related Work
The reinterpretation framework uses bridging axioms to
guide the resolution of conflicts. The most related work
is that of Delgrande and Schaub (Delgrande and Schaub
2003) discussed below. But, additionally, there is a great
deal of work in the general area of ontology change with
which the reinterpretation framework presented in this pa-
per shares the main motivations. A classification of differ-
ent forms of ontology change operators with pointers to
the literature is given by Flouris and colleagues (Flouris et
al. 2008). Work in ontology mapping, ontology alignment,
and mapping revision (Meilicke and Stuckenschmidt 2009;
Qi, Ji, and Haase 2009) is related to the approach described
in this paper, as it investigates adequate constructions of
mappings which are generalizations of bridging axioms.
A more recent approach for mapping management in the
paradigm of ontology-based data access is given in (Lembo
et al. 2015). A more recent approach to ontology revision is
developed in (Benferhat et al. 2014).

The reinterpretation approach is symbol-oriented. A dif-
ferent symbol-oriented approach is described by Lang and
Marquis (Lang and Marquis 2010). Their revision operators
are not based on bridging axioms but use the concept of for-
getting (Lin and Reiter 1994). As exemplified by the Weber
operator (Weber 1986) (see Sect. 4), there are strong con-
nections between these approaches.

3 Preliminaries
This section shortly describes concepts and notations used
in this paper. Though the idea of reinterpretation unfolds its
full effect in expressive logics such as first-order logic (FOL)
or description logics, this paper focusses on propositional
logic.

The power set of a set X is denoted Pow(X) = {Y |
Y ✓ X}. In the whole paper P denotes a set of propositional
symbols. These are denoted by p, q, r etc. and variants with
subscripts and primes. Fml(P) is the set of propositional
formulae ↵ over P given by the following grammar:

↵::=p | ¬↵ | (↵^↵) | (↵_↵) | (↵! ↵) | (↵$ ↵) | ? | >

↵,� . . . are used as meta-variables for propositional for-
mulae. Any finite set of propositional formulae is called a
knowledge base and is denoted by B or indexed or primed
variants.

V
B abbreviates (↵1 ^ ↵2) ^ . . . ) ^ ↵n for some

fixed ordering of all elements ↵i of B. The set of proposi-
tional symbols in B is abbreviated as symb(B). The seman-
tics is defined as usual by truth-tables based on interpreta-
tions. Int(P) = {1, 0}P denotes the set of interpretations,
i.e., functions from P to the set of truth values 1, 0. Interpre-
tations are denoted by I,J and indexed and primed vari-
ants. The modelling relation and the entailment relation are
defined as usual and are both denoted by |=. JBK denotes
the set of models of B. Actually, for the definition of some
operators, interpretations will be identified with the set of
symbols which are assigned the value 1. For example, let
I be an interpretation over P = {p, q, r} with I(p) = 1,
I(q) = 0, I(r) = 1, then I is identified with the set {p, r}.

The definition of reinterpretation operators requires two
disjoint sets of propositional symbols, a set P , also called
the public symbol set and a set P 0 := {p0 | p 2 P} called
the internal symbol set. The paper relies on the following
sets of bridging axioms: Bimpl = {p $ p0 | p 2 P} and
Impl = {p! p0, p0 ! p | p 2 P}.

The set of consequences of B over the set of proposi-
tional symbols S is defined as Cn

S
(B) = {↵ 2 Fml(S) |

B |= ↵}. If Cn is used without a superscript, then the con-
sequences have to be understood with respect to the maxi-
mal set of propositional symbols discussed in the context, in
our case this is mostly the symbol set P [ P 0. If two sets
B1 and B2 have the same sets of consequences of formulae
in Fml(S), we write B1 ⌘S B2. Some of the equivalence
results heavily depend on the disjunctive closure (Hansson
1999). This is a closure operator that is rougher than the
usual consequence but finer than the identity closure. The
disjunctive closure B of a knowledge base B is defined as
follows: B = {�1 _ · · · _ �n | �i 2 B,n 2 N \ {0}}.

Reinterpretation operators are defined with dual remain-
der sets, which are similar to the concept of remainder sets
used in the classical paper of Alchourrón, Gärdenfors and
Makinson (AGM) (Alchourrón, Gärdenfors, and Makinson
1985) but which are applicable also for logics not allow-
ing for arbitrary negation. As we are going to consider also
the more general case of multiple revision, i.e. revision with
sets Y of sentences as triggers, we define the following no-
tions for this general case. The special case of singletons
Y = {↵} then covers the case of a trigger that is a sentence
↵. The dual remainder sets modulo Y are defined as follows:

X 2 B>Y iff X ✓ B and X [ Y is consistent and
for all X 0 ✓ B with X ( X 0

the set X 0 [ Y is not consistent



Let B be a knowledge base. An AGM-selection function �
for B is a function � : Pow(B) �! Pow(B), such that for
all sets of formulae Y the following holds:
1. If B>Y 6= ;, then ; 6= �(B>Y ) ✓ B>Y ;
2. else �(;) = {B}.

With these notions one can define multiple partial-meet
revision for belief bases (see, e.g., (Hansson 1999)). Given
any set B, a AGM-selection function � for B, and any set Y
of formulae, multiple partial-meet base revision is defined
as: B ⇤� Y =

T
�(B>Y )[Y . We let B ⇤� ↵ = B ⇤� {↵}.

The function pri is the projection of n-ary (i  n) vectors
to their ith argument.

As we are going to define quite a lot of change opera-
tors, we make the following notational convention: all revi-
sion operators are denoted by ⇤, possibly with super- and
subscripts. All reinterpretation operators are denoted by the
symbol �, possibly with super- and subscripts.

4 Model-Based Belief Revision
The main idea of model-based belief revision is to let the
revision be driven only by the models of the knowledge
base and of the trigger. With this approach the concrete sen-
tential representation of the belief base becomes irrelevant
(hence it is called knowledge base), and, in fact, Dalal (Dalal
1988) considered this syntax-insensitivity as the essence of
knowledge-base revision in contrast to belief-set revision ac-
cording to AGM (Alchourrón, Gärdenfors, and Makinson
1985) or belief-base revision (Hansson 1991).

Though quite many different model-based operators exist,
the core idea for the revision is the same: The models of
the revision are those models of the trigger that are minimal
w.r.t. some appropriate (pre-, partial, or total) order or, more
specifically, a distance function. As shown by Katsuno and
Mendelzon (Katsuno and Mendelzon 1992), there are strong
connections between revision operators based on orders (of
a specific kind) and the postulates they fulfill.

All model-based operators that are in the focus of this pa-
per are defined on the basis of minimal difference between
models of the knowledge base and the trigger. Minimal dif-
ference in turn is explicated by using—in some or other
form—the symmetric difference of models represented as
sets. The symmetric difference for any pair of sets A,B is
defined as A�B = A \ B [ B \ A. Let X1, X2 be sets
of sentences.�min

(X1, X2) is the set of inclusion-minimal
symmetric differences between models of X1 and X2.
�

min
(X1, X2) = min✓{I�J | I 2 JX1K, J 2 JX2K}

If one considers a set of sentences X1 with exactly one
model I in the first argument, then one gets as special case
�

min
(I, X2) which is the set of inclusion-minimal symmet-

ric differences between I and models of X2. (Remember
that I is identified with the set of proposition symbols that
are true according to I).

�

min
(I, X2) = min✓{I�J | J 2 JX2K}

The set ⌦(X1, X2) describes those propositional variables
that are involved in a minimal difference between a model
of X1 and a model of X2.

⌦(X1, X2) =

[
�

min
(X1, X2)

In the symmetric difference operator�, information regard-
ing the origins of the elements is lost. This loss is mitigated
within the following non-commutative definition of the sym-
metric difference:�±(A,B) = (A \B,B \A). For any set
of sentences X1, X2 define

�±(X1, X2) = {(I \ J ,J \ I) | I 2 JX1K, J 2 JX2K}
Now consider a subset of these sets which are minimal

w.r.t. the cartesian product order <✓⇥✓ defined as usual by
(A,B) <✓⇥✓ (C,D) iff A ✓ C and B ✓ D.

�

min
± (X1, X2) = min<✓⇥✓(�±(X1, X2))

The adapted operator for ⌦(·, ·) is denoted ⌦±(X1, X2)

which is defined as the pair of two sets: the first (second)
argument consists of all propositional variables contained in
the first (second) argument of some pair in�min

± (X1, X2).

⌦±(X1, X2) =� S
{Y1 | 9Y2 : (Y1, Y2) 2 �min

± (X1, X2)},S
{Y2 | 9Y1 : (Y1, Y2) 2 �min

± (X1, X2)}
�

The Satoh revision operator ⇤S (Satoh 1988) defines the
models of the revision result as those models of the trigger
for which there is a model of the knowledge base with min-
imal symmetric difference.

JB ⇤S ↵K = {I 2 J↵K | There is J 2 JBK
with I�J 2 �min

(B,↵)}

A natural weakening of this operator is the following one,
which is coined weak Satoh revision here.

JB ⇤wkS ↵K = {I 2 J↵K | There is J 2 JBK
with I�±J 2 �min

± (B,↵)}

Note that in both Satoh revision operators, minimality con-
cerns the whole set of models of the knowledge base. In
contrast to this, the operator of Borgida (Borgida 1985)
considers for each model of the knowledge base the mod-
els of the trigger that are minimally distant. Borgida revi-
sion is defined as follows: If B [ {↵} is consistent, then
JB ⇤B ↵K = JB [ {↵}K. Otherwise,

JB ⇤B ↵K =S
I2JBK{J 2 J↵K | I�J 2 �min

(I, {↵})}

The operator of Weber (Weber 1986) puts all those models
of the trigger into the revision result for which there is a
knowledge base model differing at most in the propositional
variables involved in a minimal difference. In the trivial case
where B [ {↵} is consistent the definition is JB ⇤B ↵K =

JB [ {↵}K. Else:

JB ⇤W ↵K = {J 2 J↵K | There is I 2 JBK s.t.
I \ ⌦(B,↵) = J \ ⌦(B,↵)}

A natural variant of the Weber operator uses the non-
commutative definition of symmetric difference. In lack of a
better name this operator is coined the weak Weber operator.

JB ⇤wkW ↵K = {J 2 J↵K | There is I 2 JBK s.t.
I \ pr1(⌦±(B,↵)) = J \ pr2(⌦±(B,↵))}



5 Reinterpretation-Based Revision
The general idea of reinterpretation-based revision for a
knowledge base B and a trigger ↵ is to trace back the con-
flict between B and the trigger ↵ to an ambiguous use of
some of the common symbols. So, the idea for resolving the
conflict is to assume in the first place how the different uses
of the symbols are related, stipulating the relations explic-
itly as a set of bridging axioms BA, and then applying a
classical revision strategy on BA as the knowledge base to
be revised.
Example 1. Assume that the sender of the trigger has a
strong notion of article defined to be those entities published
in a journal. The sender of the trigger has stored the infor-
mation that some entity b is not an article in her KB because
she has acquired the knowledge that b is not published in
a journal. Assume that the information ¬Article(b) is rep-
resented in propositional logic by the literal ↵ = ¬q. This
bit of information ↵ is send to the holder of the KB B. The
holder of B has a weaker notion of article—defining them as
entities published either in the proceedings of a conference
or in a journal. In her KB the same entity b is stated to be
an article. So B entails q. Now, a conflict resolution strategy
is to completely separate the readings of all symbols by re-
naming all the ones in B with primed versions, resulting in
an “internalized” KB B0. In particular, q becomes q0 in the
receiver’s KB. Then, guesses on the interrelations of the dif-
ferent readings are postulated by bridging axioms. The type
of reinterpretation depends on the class of initial bridging
axioms. So for example, considering bi-implications would
lead to stipulations of axioms p $ p0, actually stating that
the reading of p and p0 is the same. The resolution of the
conflicts between B and ↵ requires not to include q $ q0,
as this entails an inconsistency.

Considering more fine-grained sets of bridging axioms
such as implications p ! p0 and p0 ! p leads to more
fine-grained solutions. In this example, the reinterpretation
result could contain q ! q0 (articles as used in the trigger
are articles as used in B) but not q0 ! q (articles in the
sense of B are articles in the sense of ↵).

The parameterized equation B � ↵ = BA ⇤ (B0 [ {↵})
illustrates the general strategy for reinterpretation. The first
parameter is the set of initial bridging axioms: BA contains
sentences over P [ P 0 relating the meaning of the symbols
P (associated with the sender) with those in P 0 (associated
with the receiver). A very simple example of a bridging ax-
iom is the bi-implication p $ p0 stating that the reading of
p in the knowledge base is actually the same as the reading
in the trigger. The trigger is the union of the original trigger
and the internalized version of the original knowledge base
B0. The second parameter in the schema is a classical base
revision function ⇤. In this paper, only partial-meet revision
on arbitrary finite KBs is considered as instance of ⇤.

Technically, reinterpretation-based revision is similar to
base-generated revision (Hansson 1999) which combines
the benefits of belief base revision and belief set revision,
namely: the benefit of having a finite (and hence imple-
mentable) resource and the benefit of syntax-insensitivity.
The difference relies in the special type of the generating

base one uses, namely a set of bridging axioms. As the
reinterpretation-based approach is not sentence-oriented but
symbol-oriented it can be applied to various logics such as
description logics (Eschenbach and Özçep 2010).

Four different classes of reinterpretation operators fitting
the above scheme are those based on bi-implications as
bridging axioms and those based on implications, both in
turn considered per se or w.r.t. the disjunctive closure.
Definition 1. Let B be a knowledge base, ↵ be a formula,
and � be a selection function for Impl ( Impl, Bimpl, Bimpl,
resp.) and ⇤� be a partial-meet revision operator for Impl (
Impl,Bimpl,Bimpl, resp. ). 1. The implication-based, 2. the
disjunctively closed implication-based, 3. the bi-implication
based, and 4. the disjunctively closed bi-implication based
reinterpretation operators are defined as follows

B �!� ↵ = Impl ⇤� (B0 [ {↵})
B �!� ↵ = Impl ⇤� (B0 [ {↵})
B �$� ↵ = Bimpl ⇤� (B0 [ {↵})
B �$� ↵ = Bimpl ⇤� (B0 [ {↵})

If � is the identity function, then � can be dropped and the
resulting operators are called skeptical reinterpretation op-
erators (using the terminology of (Delgrande and Schaub
2003)). If � is such that |�(X)| = 1 for all X , then we talk
of choice reinterpretation operators.

Another reinterpretation operator—which does not fit into
the homogeneous scheme of Definition 1 and hence is de-
fined separately—is termed literal-supported reinterpreta-
tion operator. It uses the notion of a bridging axiom in a very
tolerant way. Concretely, the operator uses the following set
of bridging axioms:

Bimpl+ = Bimpl [ {p0,¬p0 | p 2 P}
So, next to the disjunctive closure of bi-implications it con-
tains the disjunctive closure of literals in the internal vocab-
ulary.
Definition 2. Let � be an AGM-selection function for
Bimpl+ and ⇤� a multiple partial-meet revision operator
for Bimpl+. Then define the literal-supported reinterpreta-
tion operators by: B �lit� ↵ = Bimpl+ ⇤� (B0 [ {↵}).

Note that all results of all the reinterpretation opera-
tors contain bridging axioms and hence are not contained
in Fml(P) but Fml(P [ P 0). Accordingly, reinterpretation
operators are not genuine revision operators. As the plan of
the paper is to show that with reinterpretation operators dif-
ferent classical belief-revision operators can be simulated,
the consequences of the reinterpretation result are restricted
to formulae in the public vocabulary, i.e., to formulae in
Fml(P). So, what is going to be shown in the following is
that for the revision operators ⇤ mentioned before one can
find a reinterpretation operator �⇤ such that for all B and ↵
one has B ⇤ ↵ ⌘P B �⇤ ↵.

For a discussion of the use of reinterpretation operators
and the postulates they fulfill we refer the reader to (Eschen-
bach and Özçep 2010; Özçep 2008; Özçep 2012). For a dis-
cussion of a genuine “representation result” which describes



a set of postulates characterizing a class of (reinterpretation)
operators we refer the reader to (Özçep 2012).

It should be stressed already here that all reinterpretation
operators considered in this paper are motivated by a spe-
cific integration scenario: The information in the KB and
that in the trigger are over the same domain; there is trust
in the information stemming from the sender of the trig-
ger and there is a clear evidence that the symbols in the KB
and in the trigger are strongly related though they may dif-
fer. This is the reason why, in this paper, only special kinds
of bridging axioms are considered where one reading p is
related to another related reading p0. Clearly, one can con-
sider further bridging axioms that go beyond the resolution
of ambiguities; for example, one may consider also bridg-
ing axioms that relate synonymous symbols (say “beverage”
and “drink”). But nothing prevents the general reinterpreta-
tion framework from using these kinds of bridging axioms.
Of course, what is required then is a knowledge engineer-
ing step (based on heuristics, say) regarding the potential
conflicts in a given integration scenario in order to find an
appropriate initial set of bridging axioms.

The idea of reinterpretation is used implicitly in the oper-
ators of Delgrande and Schaub (DS) (Delgrande and Schaub
2003), but not from the perspective of disambiguating sym-
bols, rather using the bridging axioms as helper axioms for
the revision. Moreover, though the conflict resolution is sim-
ilar to reinterpretation it is not the same.

DS revision operators are defined using the notion of a
belief extension. We describe here only their general frame-
work for revision (and not that of parallel revision and con-
traction in a belief change scenario.)
Definition 3. (Delgrande and Schaub 2003) Given B and ↵,
a belief extension is defined as a set of the form Cn

P
(B0 [

{↵} [ Bimi) where Bimi 2 Bimpl>(B0 [ {↵}). If no such
Bimi exists, then Fml(P) is the only belief extension. The
family of all belief extensions is denoted by (Ei)i2I .

A DS-selection function c is defined for I as c(i) 2 I .
So it corresponds to AGM-selection functions that select ex-
actly one element.

Based on these notions, choice revision ⇤cDS, which selects
exactly one belief extension, and skeptical revision, which
selects all belief extensions, can be defined.
Definition 4. (Delgrande and Schaub 2003) Given a KB B,
a formula ↵ and (Ei)i2I the set of all belief extensions and a
selection function over I with c(I) = k, the choice revision
⇤cDS and skeptical revision ⇤DS are defined as follows:
B ⇤cDS ↵ = Ek (for c(I) = k) and B ⇤DS ↵ =

T
i2I Ei

The revision results for ⇤cDS, ⇤DS are not finite. But Del-
grande and Schaub (Delgrande and Schaub 2003) show that
there are equivalent operators that have finite revision results
using a polarity flipping operator.

A theorem that is relevant for the equivalence results of
this paper is proven in (Delgrande and Schaub 2003) as
Corollary 4.8, stating that skeptical DS revision is nothing
else than Satoh revision.
Theorem 1 ((Delgrande and Schaub 2003)). Skeptical DS
revision is Satoh revision: JB ⇤DS ↵K = JB ⇤S ↵K.

The idea of using belief extensions can also be used for
other sets than bi-implications. This may result in the fol-
lowing definitions as given in (Özçep 2012). A set CnP(B0[
{↵} [ X) is an implication-based belief extension iff X 2
Impl>(B0[{↵}). Let (Imi)i2I be the set of all implication-
based consistent belief extensions for B and ↵ and c be a
selection function for I with c(I) = k. The new operators
are defined as follows:
Definition 5. The implication-based choice revision ⇤c,!DS
and the implication-based skeptical revision ⇤!DS are defined
by: B⇤c,!DS ↵ = Imk (for c(I) = k) and B⇤!DS↵ =

T
i2I Imi

Also for these operators a finite representation theorem
follows using an adapted flipping operator (Özçep 2012).
Based on the finite representation result with partial flipping
operators, it is possible to show a theorem corresponding
to Thm. 1, namely that skeptical implication-based revision
⇤!DS actually is the same as weak Satoh revision.
Theorem 2. JB ⇤!DS ↵K = JB ⇤wkS ↵K

6 Equivalence Results
The first equivalence result of this paper states that Satoh
revision can be represented by disjunctively closed bi-
implication-based reinterpretation operators �$� . For the
proof one shows that skeptical DS revision can be repre-
sented by an operator �$� with a simple selection function
�, and then uses Theorem 1.
Theorem 3. Skeptical DS revision ⇤DS can be represented
by an operator �$� where � is defined independently of B
(and ↵). That is, there is a selection function � s.t. for any
KB B and formula ↵: JB ⇤DS ↵K = JCnP(B �$� ↵)K.

The function � = �1 used in this and the next theorem
is �1(H) = { X 2 H | X \ Bimpl is maximal in {X 0 \
Bimpl | X 0 2 H} }. As a corollary we get:
Theorem 4. Satoh revision can be simulated by disjunc-
tively closed bi-implication-based reinterpretation opera-
tors �$� : There is a selection function � s.t. for any KB B

and formula ↵: JB ⇤S ↵K = JCnP(B �$� ↵)K.

Similar observations as for the theorems above also lead
to the representation of implication-based skeptical DS re-
vision and weak Satoh revision by disjunctively closed
implication-based reinterpretation.
Theorem 5. Implication-based skeptical DS revision and
weak Satoh revision can be simulated by disjunctively closed
implication-based reinterpretation operators �!� : There is a
selection function � such that for any KB B and formula ↵
it holds that JB ⇤!DS ↵K = JB ⇤wkS ↵K = JCnP(B �!� ↵)K.

Here � = �2 is the same as �1 except that one uses Impl
instead of Bimpl.

Weber revision is quite similar to Satoh, but it is more
tolerant w.r.t. the models to be taken into account in the re-
vision result. Dually, this tolerance w.r.t. the models means
more skepticism regarding the sentences to keep in the re-
vision result. Actually, this is reflected in the following the-
orem which says that Weber revision can be simulated by
bi-implication-based reinterpretation: That is, in contrast to



Satoh revision, the set of bi-implications is not exploited fur-
ther w.r.t. logical consequences within the disjunctive clo-
sure. Moreover, as there is no additional closure of the bridg-
ing axioms, even full meet revision can be used, i.e., � can
be chosen as the identity function.
Theorem 6. Weber revision can be represented by skeptical
bi-implication-based reinterpretation �Bimpl, i.e., for any KB
B and formula ↵: JB ⇤W ↵K = JCnP(B �$ ↵)K.

With a similar argument one can show:
Theorem 7. The weak Weber operator can be represented
by skeptical implication-based reinterpretation.

Borgida revision is special in the sense that it consid-
ers the minimal symmetrical difference of models not glob-
ally, but locally for each model of the knowledge base. This
model dependency can be simulated by literal-supported
reinterpretation which allows the use of arbitrary primed lit-
erals as bridging axioms and thus allows the construction of
arbitrary models of the knowledge base.
Theorem 8. Borgida revision can be represented by literal-
supported reinterpretation: There is � for Bimpl+ such that
for any KB B and formula ↵: JB ⇤B ↵K = JCnP(B �lit� ↵)K.

7 Conclusion
Though all reinterpretation operators have been developed
mainly for ontology integrations scenarios, they provide a
sufficiently general framework for investigating classical
belief-revision operators—at least this has been shown for
five classical belief-revision operators that are defined purely
semantically. In particular, the reinterpretation framework
allows to compare classical revision from a different angle
(similar to base-generated revision) and to get a better un-
derstanding of their commons and their differences.

As future work, the study of reinterpretation operators is
planned to be extended by considering in a more system-
atically way the kinds of bridging axioms one is going to
allow. For example, the literals used as bridging axioms for
the representation of Borgida revision do not really bridge
the meanings of symbols. So, the question arises whether for
more restricted classes of bridging axioms a representation
of Borgida revision is possible. This whole study then has to
be lifted to the more demanding scenario where the knowl-
edge base and the trigger are expressed in more expressive
logics such as description logics or first-order logic.
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Appendix: Proofs
Additional Concepts and Lemmata
The following space saving abbreviations for p 2 P are used
throughout this appendix: !p = p $ p0, �!p = p ! p0 and �p = p0 ! p. We remind the reader of the abbreviations
Bimpl = { !p | p 2 P} and Impl = {�!p , �p | p 2 P}.

In order to prove Theorem 2 we need a similar result in
finite representability as given by (Delgrande and Schaub
2003) for skeptical DS revision. So we first define the rele-
vant notions of flipping and partial flipping here.

Let Bimi be a set of bi-implications. For any knowledge
base B the formula dBei results from B by substituting ev-
ery propositional variable p 2 P not occurring in Bimi by
its negation ¬p and then building a formula by applying

V
.

The main observation for the finite representation result of
(Delgrande and Schaub 2003) is the following observation:
Lemma 1 ((Delgrande and Schaub 2003)). Let Bimi 2
Bimpl>(B0[{↵}). Then (B0[{↵}[Bimi) ⌘P dBei[{↵}.

Based on this lemma, one can show that choice revision
with a DS-selection function c such that c(I) = i is repre-
sentable by dBei^↵, and skeptical revision is representable
as

W
i2IdBei ^ ↵.

We define an adapted flipping operator, called polarity
flipping. For ease of definition we assume that only the con-
nectors ^,_ and ¬ appear in the knowledge base (other-
wise just recompile the KB equivalently). An occurrence
of a propositional symbol is syntactically positive iff it oc-
curs in the scope of an even number of negation symbols,
otherwise it is syntactically negative. Let (Imi)i2I be the
family of belief extensions for B and ↵, and let Imk be an
implication-based belief extension chosen by the selection
function, c(I) = k. The result of partial flipping to B, for
short dBe!k , is defined as follows: If p ! p0 /2 Imk, then
switch the polarity of the negative occurrences of p in

V
B

(by adding ¬ in front of these occurrences). If p0 ! p /2 Imk,
then switch the polarity of the positive occurrences of p inV

B. Let dBe! =

W
i2IdBe!i .

With these definitions one can show the finite repre-
sentability.
Theorem 9. B ⇤c,!DS ↵ has the same models as dBe!c ^ ↵
and that B ⇤!DS ↵ has the same models as dBe! ^ ↵.

For the proof of 9 and also for other theorems below we
introduce the forgetting operator. Let ⇥S denote an opera-
tor that, given a formula ↵ and a set S of symbols S ✓ P ,
computes a formula representing all consequences of ↵ that
do not contain symbols in S, i.e., ⇥S forgets about S. For
I 2 Int(S) let ↵I be defined as follows: Substitute all
occurrences of p 2 S in ↵ where pI = I(p) = 1 by
>, else ? is substituted for p. Now one can define ⇥S :

↵ 7!
W

I2Int(S) ↵I . For arbitrary S ✓ P let ⇥S(↵) =

⇥symb(↵)\S(↵). For example, let ↵ = (p ^ q) _ (r ^ s) and
S = {p, r}. Then⇥S = ((?^q)_(?^s))_((?^q)_(>^
s))_((>^q)_(?^s))_((>^q)_(>^s)). This is equiv-
alent to the formula s _ q. The following facts concerning
⇥S for S ✓ P can be proved easily. For all ↵ 2 Fml(P):
↵ |= ⇥S(↵) and Cn

P\S
(↵) = Cn

P\S
(⇥S(↵)). Note, that

case form form implications
in dBe!k in B in Implk

I p p p0 ! p, p! p0

II p p p0 ! p
III p ¬p p0 ! p
IV ¬p ¬p p0 ! p, p! p0

V ¬p ¬p p! p0

VI ¬p p p! p0

Table 1: Cases for literals

⇥S(↵) can be described as the quantified boolean formula
9S.↵.

Proof of Theorem 9
Let (Imi)i2I be the set of all implication based consistent
belief set extensions for B and {↵}. First note that the max-
imality of the Imi has the effect that for every p 2 P at
least one of p ! p0, p0 ! p is contained in Imi. Because,
suppose that neither of �!p , �p is contained in Imi. The max-
imality of Imi implies that B0 [ Impli [ {↵} |= ¬�!p ^ ¬ �p
and so B0 [ Imi [ {↵} |= ?, which contradicts the fact that
B0 [ Imi [ {↵} is consistent.

Now we start the proof of the theorem by assuming that
that B is a formula in DNF. Let c(I) = k. We show that
B0[Imk[{↵} ⌘P dBe!k [{↵} by proving the two implicit
directions.

‘Right to left’: Let B0 [ Imk [ {↵} |= � for � 2 Fml(P).
We have to show dBe!k [ {↵} |= �. Let be given a model
I |= dBe!k [ {↵}. Then there is a dual clause cl in dBe!k
such that I |= cl. (Remember: that a dual clause is just a
conjunction of literals). For every literal li in cl one of the
cases mentioned in Table 1 holds.

So there are 6 different types of literals in cl; this justifies
the following representation of cl in dBe!k .

kl = p11 ^ · · · ^ p1n1
^ p21 ^ · · · ^ p2n2

^ p31 ^ · · · ^ p3n3

^¬p41 ^ · · · ^ ¬p4n4
^ ¬p51 ^ · · · ^ ¬p5n5

^¬p61 ^ · · · ^ ¬p6n6

Define a new interpretation I 0 in the following way:

• I 0(p01i ) = I 0(p1i ) = 1 = I(p1i );
• I 0(p02i ) = I 0(p2i ) = 1 = I(p2i );
• I 0(p03i ) = 0 6= I(p3i ) = 1; I 0(p3i ) = I(p3i ) = 1;

• I 0(p04i ) = I 0(p4i ) = 0 = I(p4i );
• I 0(p05i ) = I 0(p5i ) = 0 = I(p5i );
• I 0(p06i ) = 1 6= I(p6i ) = 0; I 0(p6i ) = I(p6i ) = 0;

• if r is a propositional symbol in P with r 6= pji and r0 6=
p0ji , let I 0(r0) = I(r);

From the construction of I it follows that I 0�P = I�P and
I 0 |= B0 [ Imk [ {↵}. So I 0 |= � and hence I |= �.

‘Left to right’: Now suppose that dBe!k |= � and let I |=
B0 [ Imk [ {↵}. That is, there is a dual clause cl0 in B0 of



the form

p011 ^ · · · ^ p01n1
^ p021 ^ · · · ^ p02n2

^ ¬p031 ^ · · · ^ ¬p03n3

^¬p041 ^ · · · ^ ¬p04n4
^ ¬p051 ^ · · · ^ ¬p05n5

^p061 ^ · · · ^ p06n6

It follows that I(p1i ) = I(p2i ) = 1 and I(p2i ) = I(p5) = 0.
(Because of the types of the literals and the fact that the
hypotheses are made true.) Moreover, as p3i ! p03i and
p06i ! p6i are not in Imk, the maximality of Imk entails
B0[Imk[{↵} |= p3i^¬p03i and B0[Imk[{↵} |= ¬p6i^¬p06i .
Therefore we also have I(p3i ) = 1 and I(p6i ) = 0. Finally,
this entails I |= dBe!k ^ ↵, hence I |= �.

Proof of Theorem 2
With Theorem 9 Theorem 2 is an immediate corollary: As-
sume that b is given in complete disjunctive normal form.
I |= dBe!^↵ iff I |= dBe!i for some i. Now, in dBe!i all
propositional variables p for which either �!p or �p does not
occur in Imi all associated occurrences in the dual clauses
(which correspond actually to models) are flipped into the
other polarity so that all dual clauses have for each oc-
currence of p the same polarity. But this means that there
is a model J |= B which differs from I exactly in the
corresponding polarities for the ps with missing bridging
axioms in Imi; this is the same as saying that I�±J 2
�

min
± (B,↵)J .

Proof of Theorem 3
We define � as follows:

�(H) = { X 2 H | X \ Bimpl is maximal in
{X 0 \ Bimpl | X 0 2 H} }

� selects from H those sets for which the intersection with
the set of bi-implications Bimpl is maximal. Note, that this
definition is completely independent of B, and hence the
content of the theorem is stronger than to say that for any
B one my define a selection function � such that the rep-
resentation holds. Let (Bim_j )j2J be the family of sets in
�(Bimpl>(B0 [ {↵})). Because of the definition of the dis-
junctive closure and of the remainders it holds that for all
i 2 I there is a j 2 J s.t. Bimi ✓ Bim_j ,Bim_j \ Bimpl =
Bimi and

Bim_j ✓ Cn(Bimi) (1)
Conversely, because of the definition of � one has for every
j 2 J an i 2 I such that

Bim_j ◆ Bimi (2)

Proof of B ⇤DS ↵ ◆ Cn

P
(Bimpl) ⇤� (B0 [ {↵})): As-

sume first that � 2 Cn

P
(Bimpl ⇤� (B0 [ {↵})), i.e.,

� 2 Fml(P) and (

T
j2J Bim_j ) [ B0 [ {↵} |= �. So,

for all j 2 J it holds that Bim_i [ B0 [ {↵} |= � and
so Bim_j |= (

V
B0 ^ ↵) ! �. Together with (1) it fol-

lows that for all i 2 I: Bimi |= (

V
B0 ^ ↵) ! �, hence

(

V
B0^↵)! � 2 Cn(Bimi) ✓ Cn(Bimi[B0[{↵}) = Ei

for all i 2 I . Consequently, � 2 Ei for all i 2 I and lastly

� 2
T

i2I Ei = B ⇤DS ↵.

Proof of B ⇤DS ↵ ✓ Cn

P
(Bimpl ⇤� (B0 [ {↵})): Let � 2

B ⇤DS ↵ =

T
i2I Ei, i.e. � 2 Fml(P), and for all i 2 I:

Bimi [B0 [ {↵} |= � and hence Bimi |= (

V
B0 ^ ↵)! �.

Because of the compactness property of propositional logic
one has for every i 2 I a finite subset Bimf

i ✓ Bimi such
that Bimf

i |= (

V
B0 ^ ↵)! �. Because B is finite, so is the

set I , which is the index set of all belief extensions Ei. Let
I = {1, . . . , k}. There are only finitely many maximal sets
of bridging axioms Bimi and finitely many extensions Ei.
So the disjunction

W
i2I Bimf

i is defined and the following
holds : _

i2I
Bimf

i |= (

^
B0 ^ ↵)! � (3)

For all i 2 I let ni = |Bimi| be the number of elements
in Bimf

i and Ni = {1, . . . , ni}. Every set Bimi, i 2 I , is
representable as Bimi ⌘

Vni

j=1(pij $ p0ij). Applying the
distribution law

W
i2I Bimf

i is transformable in a conjunction
of disjunctions of bi-implications:

_

i2I
Bimf

i ⌘
^

(j1,...,jk)2N1⇥···⇥Nk

k_

i

(pji $ p0ji) (4)

Because of (2) for every j 2 J there is an i 2 I with
Bim_j ◆ Bimi. Now for every (j1, . . . , jk) 2 N1 ⇥ · · ·⇥Nk

it holds that (pji $ p0ji) 2 Bimi and hence for every
(j1, . . . , jk) 2 N1 ⇥ · · ·⇥Nk also

Wk
i (pji $ p0ji) 2 Bim_j

holds. Hence for every j 2 J it is true that Bim_j |=
V

(j1,...,jk)2N1⇥···⇥Nk

Wk
i (pji $ p0ji). With (4) it follows

that for every j 2 J that Bim_j |=
W

i2I Bimf
i and with the

entailment in (3) it further follows that Bim_j |= (

V
B0 ^

↵)! �. In the end: � 2 Cn

P
(Bimpl ⇤� (B0 [ {↵})).

Proof of Theorem 4
Follows directly from Thm. 3 and Thm. 1

Proof of Theorem 5
The proof for the equivalent representation of ⇤!DS by an dis-
junctively closed implication-based reinterpretation operator
uses the same construction as in the proof of Theorem 3, as
the construction does not use the special property of biim-
plications. With this also the represntation for weak Satoh
follows due to Thm. 2.

Proof of Theorem 6
For the proof of this theorem we use an alternative charac-
terization of Weber revision with the forgetting operator⇥S ,
namely,

JB ⇤W ↵K = J⇥⌦(B,↵)(B) ^ ↵K

According to definition B �Bimpl ↵ =\
(Bimpl>(B0 [ ↵))

| {z }
=:X

[B0 [ {↵}. Due to interpolation



we have Cn

P
(X [ B0 [ ↵) = Cn

P
(Cn

P
(X [ B0) [ ↵).

Now one can verify that

Cn

P
(X [B0) = Cn

P
(⇥{p2P !p /2X}(B))

(Because, for example, ⇥p0,q0(B
0 [ p0 $

p)) =(B0[p0/1, q0/0] ^ p) _ (B0[p0/1, q0/1] ^ p) _
(B0[p0/0, q0/0] ^ ¬p) _ (B0[p0/0, q0/1] ^ ¬p)⌘P
(B0[p0/p, q0/0] _ B0[p0/p, q0/1] = ⇥{q}(B).) Now
{p 2 P |  !p /2 X} = ⌦(B,↵). Hence due to
JB ⇤W ↵K = J⇥⌦(B,↵)(B) [ {↵}K, the assertion fol-
lows.

Proof of Theorem 7
The proof works in the same way as the proof of Thm. 6. For
this we use the alternative characterization of weak Weber as

JB ⇤W ↵K = J⇥pr1(⌦±(B,↵))[pr2(⌦±(B,↵))(B) ^ ↵K

Proof of Theorem 8
We give here only the proof idea which relies in the correct
definition of the selection function �. Let  := {p0,¬p0 |
p 2 P}.

�(Z) = {X 2 Z | X \ is inclusion maximal within
all X 0 \ 2 Z and X \ Bimpl
is inclusion maximal within all
X 00 \ Bimpl for which there is X 000 ✓ Bimpl
with X 00 = (X \ ) [X 000}

This selection function first selects maximal sets of primed
literals from  . These maximal sets correspond just to the
the models of B0. Then it chooses maximal sets of the dis-
junctive closure of the bi-implications. But as was shown
for the representation of Satoh revision by disjunctively
closed bi-implications, this corresponds to considering min-
imal symmetrical difference.


