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Abstract. Foundational work on stream processing is relevant for dif-
ferent areas of AI and it becomes even more relevant if the work concerns
feasible and scalable stream processing. One facet of feasibility is treated
under the term bounded memory. In this paper, streams are represented
as finite or infinite words and stream processing is modelled with stream
functions, i.e., functions mapping one or more input stream to an output
stream. Bounded-memory stream functions can process input streams
by using constant space only. The main result of this paper is a syn-
tactical characterization of bounded-memory functions by a form of safe
recursion.
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1 Introduction

Stream processing has been and is still a highly relevant research topic in com-
puter science and especially in AI. The main aspects of stream processing that
one has to consider are illustrated nicely by the titles of some research papers:
the ubiquity of streams due to the temporality of most data (“It’s a streaming
world!”, [12]), the potential infinity of streams (“Streams are forever”, [13]), or
the importance of the order in which data are streamed (“Order matters”, [34]).

These aspects are relevant for all levels of stream processing that occur in
AI research and AI applications, in particular for stream processing on the
sensor-data level, e.g., for agent reasoning on percepts, or on the relational data
level, e.g., within data stream management systems. Recent interest on high-
level declarative stream processing [11,6,31,28,24] w.r.t. an ontology have lead
to additional aspects becoming relevant: The enduser accesses all possibly het-
erogeneous data sources (static, temporal and streaming) via a declarative query
language using the signature of the ontology. The EU funded project CASAM1,
demonstrated how such a uniform ontology interface could be used to realize
(abductive) interpretation of multimedia streaming data [18]. The efforts in the
EU project OPTIQUE 2 [17] resulted in an extended OBDA system with a flex-
ible, visual interface and mapping management system for accessing static data

1 http://cordis.europa.eu/project/rcn/85475_en.html
2 http://optique-project.eu/
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(wellbore data provided by the industrial partner STATOIL) as well as tempo-
ral and streaming data (turbine measurements and event data provided by the
industrial partner SIEMENS). This kind of convenience and flexibility for end-
users leads to challenges for the designers of the stream engine as they have to
guarantee complete and correct transformations of endusers’ queries to low-level
queries over the backend.

The main challenging fact of stream processing is the potential infinity of the
data: It means that one cannot apply a one-shot query-answering procedure, but
has to register queries that are evaluated continuously on streams. Independent
of the kind of streams (low-level sensor streams or high-level streams of semanti-
cally annotated data), the aim is to keep stream processing feasible, in particular
by minimizing the space resources required to process the queries. The kind of
data structures used to store the relevant bits of information in the so-called
synopsis (or summary or sketch [8]) may differ from application to application
but sometimes one can describe general connections between the required space
and the expressivity of the language for the representation of the stream query.

Bounded-memory queries on streams are allowed to use only constant space
to store the relevant bits of informations of the growing stream prefix. This
notion depends on the underlying computation model and so bounded-memory
computation can be approached from different angles. Bounded-memory stream
processing has been in the focus of research in temporal databases [7] under
the term “bounded history encoding” and in research on data stream manage-
ment systems [2,19] but it has been also approached in the area of theoretical
informatics in the context of finite-memory automata [23], string-transducers
[14,1,15] and from a co-algebraic perspective [32].

In this paper, bounded-memory stream processing is approached in the infi-
nite word perspective of [20]. Streams are represented as finite or infinite words
and stream processing is modelled by stream functions/queries, i.e., functions
mapping one or more stream to an output stream. The important class of ab-
stract computable functions (AC) are those representable by repeated applica-
tions of a kernel, alias window function, on the growing prefix of the input.
Various other classes of interesting stream functions, which can be characterized
axiomatically (see e.g. [27]), result by considering restrictions on the underly-
ing window functions. The focus of this paper are AC functions with windows
computable in bounded memory. The underlying computation model is that of
streaming abstract state machines [20].

Though the restriction of constant space for bounded memory functions lim-
its the set of expressible functions, the resulting class of streams functions is still
expressive enough to capture interesting information needs over streams. In fact,
in this paper it is shown that bounded-memory functions can be constructed us-
ing principles of linear primitive recursion. The main idea is to use a form of
safe recursion of window function applications. The result is a rule set for induc-
tively building functions on the base of basic functions. In familiar programming
speak the paper gives a characterization of stream functions that correspond to
programs using linearly bounded for-loops (and not arbitrary while loops).



2 Preliminaries

The following simple definition of streams of words over a finite or infinite al-
phabet D is used throughout this paper. An alphabet D is also called domain
here.

Definition 1. The set of finite streams is the set of finite words D∗ over the
alphabet D. The set of infinite streams is the set of ω-words Dω over D. The
set of (all) streams is denoted D∞ = D∗ ∪Dω.

The basic definition of streams above is general enough to capture all differ-
ent forms of streams, in particular those that are considered in the approaches
mentioned in Sect. 4 on related work.

D≤n is the set of words of length maximally n. For any finite stream s the
length of s is denoted by |s|. For infinite streams s let |s| = ∞ for some fixed
object ∞ /∈ N. For n ∈ N with 1 ≤ n ≤ |s| let s=n be the n-th element in the
stream s. For n = 0 let s=n = ε = the empty word. s≤n denotes the n-prefix of
s, s≥n is the suffix of s s.t. s≤n−1 ◦s≥n = s. For an interval [j, k], with 1 ≤ j ≤ k,
s[j,k] is the stream of elements of s such that s = s≤j−1◦s[j,k]◦s≥k+1. For a finite
stream w ∈ D∗ and a set of streams X the term w ◦X or shorter wX denotes
the set of all w-extensions with words from X: wX = {s ∈ D∞ | There is s′ ∈
X s.t. s = w ◦ s′}. The finite word s is a prefix of a word s′, for short s v s′,
iff there is a word v such that s′ = s ◦ v. If s v s′, then s′ −v s is the suffix
of s′ when deleting its prefix s. If all letters of s occur in s′ in the ordering of
s (but perhaps not directly next to each other) then s is called a subsequence
of s′. If s′ = usv for u ∈ D∗ and v ∈ D∞, then s is called a subword of s′.
Streams are going to be written in the word notation, sometimes mentioning
the concatenation ◦ explicitly. For a function Q : D1 −→ D2 and Y ⊆ D2 let
Q−1[Y ] = Q−1(Y ) = {w ∈ D1 | Q(w) ∈ Y } be the preimage of Y under Q.

The very general notion of an abstract computable [20] stream function is that
of a function which is incrementally computed by calculations of finite prefixes
of the stream w.r.t. a function called kernel. More concretely, let K : D∗ −→ D∗

be a function from finite words to finite words. Then define the stream query
Repeat(K) : D∞ −→ D∞ induced by kernel K as

Repeat(K) : s 7→ ©|s|j=0K(s≤j)

Definition 2. A query Q is abstract computable (AC) iff there is a kernel such
that Q(s) = Repeat(K)(s).

Using a more familiar speak from the stream processing community, the kernel
operator is a window operator, more concretely, an unbounded window operator.
The “window” terminology is the preferred one in this paper.

That abstract computability is an adequate concept for stream processing
can be formally undermined by showing that exactly the AC functions fulfill
two fundamental properties: AC functions are prefixed determined (FP∞) and



they are data-driven in the sense that they map finite streams to finite streams
(F2F).

(FP∞) For all s ∈ D∞ and all u ∈ D∗: If Q(s) ∈ uD∞, then there is a w ∈ D∗
s.t. s ∈ wD∞ ⊆ Q−1[uD∞].

(F2F) For all s ∈ D∗ it holds that: Q(s) ∈ D∗.

The following theorem states the representation result:

Theorem 1 ([20]). AC queries represent the class of stream queries fulfilling
(F2F) and (FP∞).

Multiple (input) streams can be handled in the framework of [20] by attaching
to the domain elements tags with provenance information, in particular informa-
tion on the stream source from which the element originates. This is the general
strategy in the area of complex event processing (CEP), where there is exactly
one (mega)-stream on which event patterns are evaluated. But this tag-approach
appears in some situation to be too simple as it provides no control on how to
interleave the stream inputs—as it is required, e.g., for state-of-the art stream
query languages following a pipeline architecture. Actually, in this paper the
framework of [20] is generalized to handle functions on multiple streams gen-
uinely as functions of the form Q : D∞ × · · · × D∞ −→ D∞—similar to the
approach of [35].

3 Bounded-Memory Queries

The notion of abstract computability is very general, even so as to contain also
queries that are not computable by a Turing machine according to the notion of
TTE computability [35]. Hence, the authors of [20] consider the refined notion of
abstract computability modulo a class C meaning that the window K inducing an
abstract computable query has to be in C. In most cases, C stands for a family
of functions of some complexity class. In [20], the authors consider variants
of C based on computations by a machine model called stream abstract state
machine ( sAsm). In particular, they show that every AC query induced by a
length-bounded window (in particular: each so-called synchronous AC query:
window-length always 1) is computable by an sAsm [20, Corollary 23].

A particularly interesting class from the perspective of efficient computation
are bounded-memory sAsms because these implement the idea of incremen-
tally maintainable windows requiring only a constant amount of memory. (For
a more general notion of incremental maintainable queries see [29].) Of course,
the space restrictions of bounded-memory sAsms are strong constraints on the
expressiveness of stream functions, e.g., it is not possible to compute the IN-
TERSECT problem of checking whether prior to some given timepoint t there
were identical elements in two given streams [20, Proposition 26] with a bounded-
memory sAsm. A slightly more general version of bounded-memory sAMS are



o(n)-bitstring sAMS which store, on every stream and every step, only o(n)
bitstrings. (But neither can these compute INTERSECT [20, Proposition 28].)

An sAsm operates on first-order sorted structures with a static part and a
dynamic part. The static part contains all functions allowed over the domain of
elements D of the streams. The dynamic part consists of functions which may
change by transitions in an update process. A set of nullary functions in and
out is pre-defined and are used to describe registers for the input, output data
stream elements, resp. Updates are the basic transitions. Based on these, simple
programs are defined as finite sequences of rules: The basic rules are updates
f(t1, . . . , tn) := t0, meaning that in the running state terms t0, t1, . . . , tn are
evaluated and then used to redefine the (new) value of f . Then, inductively, one is
allowed to apply to update rules a parallel execution constructor par that allows
parallel firing of the rule; and also, inductively, if rules r1, r2 are constructed,
then one can build the “if-then-else construct”: if Q then r1 else r2.Here the if-
condition is given by a quantifier free formula Q on the signature of the structure
and where the post-conditions are r1, r2. For bounded-memory sAsm [20, Def.
24] one additionally requires that out registers do not occur as arguments to
a function, that all dynamic functions are nullary and that non-nullary static
functions can be applied only to rules of the form out := t0.

3.1 Constant-Width Windows

In this subsection we are going to consider an even more restricted class of
bounded-memory windows, namely those based on constant-width windows. For
this, let us recapitulate the definitions (and some result) that were given in [27].

The general notion of an n-kernel which corresponds to the notion of a finite
window of width n is defined as follows:

Definition 3. A function K : D∗ −→ D∗ that is determined by the n-suffixes
(n ∈ N), i.e., a function that fulfills for all words w, u ∈ D∗ with |w| = n
the condition K(uw) = K(w) is called an n-window. If additionally K(s) = ε,
for all s with |s| < n, then K is called a normal n-window. The set of stream
queries generated by an n-window for some n ∈ N are called n-window abstract
computable stream queries, for short n-WAC operators. The union WAC =⋃

n∈N n-WAC is the set of window abstract computable stream queries.

The class of WAC queries can be characterized by a generalization of a dis-
tribution property called (Factoring-n) that, for each n ∈ N, captures exactly
the n-window stream queries.

(Factoring-n) ∀s ∈ D∗: Q(s) ∈ D∗ and

1. if |s| < n, Q(s) = ε and
2. if |s| = n, for all s′ ∈ D∞ with |s′| ≥ 1: Q(s ◦ s′) = Q(s) ◦Q((s ◦ s′)≥2).

Proposition 1. [27] For any n ∈ N with n ≥ 1, a stream query Q : D∞ −→ D∞

fulfills (Factoring-n) iff it is induced by a normal n-window K.



Intuitively, the class of WAC stream queries is a proper class of AC stream
queries because the former consider only fixed-size finite portions of the input
stream whereas for AC stream queries the whole past of an input stream is
allowed to be used for the production of the output stream. A simple example for
an AC query that is not a WAC query is the parity query PARITY : {0, 1}∞ −→
{0, 1}∞ defined as Repeat(Kpar). Here, Kpar is the parity window function K :
{0, 1}∗ −→ {0, 1} defined as Kpar(s) = 1, if the number of 1s in s is odd and
Kpar(s) = 0 else. The window Kpar is not very complex, indeed one can show
that Kpar is a bounded-memory function w.r.t. the sAsm model or, simpler,
w.r.t. the model of finite automata: It is easy to find a finite automaton with two
states that accepts exactly those words with an odd number of 1s and rejects the
others. In other words: parity is incrementally maintainable. But finite windows
are “stateless”, they cannot memorize the actual parity seen so far. Formally, it
is easy to show that any constant-width window function is AC0 computable,
i.e., computable by a polynomial number of processors in constant time: For any
word length m construct a circuit with m inputs where only the first n of them
are actually used: One encodes all the 2n values of the n-window K in a boolean
circuit BCm, the rest of the m word is ignored. All BCm have the same size and
depth and hence a finite window function is in AC0. On the other hand it is well
known by a classical result [16] that PARITY is not in AC0.

3.2 A Recursive Characterization of Bounded-Memory Functions

Though the machine-oriented approach for the characterization of bounded-
memory stream functions with sAsms is quite universal and fits into the general
approach for characterizing computational classes, the following considerations
add a simple, straight-forward characterization following the idea of primitive
recursion over words [22,3]: Starting from basic functions on finite words, the
user is allowed to built further functions by applying composition and simple
forms of recursion. In order to guarantee bounded memory, all the construction
rules are built with specific window operators, namely lastn(·), which output
the n-suffix of the input word. This construction gives the user the ability to
built (only) bounded-memory window functions K in a pipeline strategy. The
main adaptation of the approach of [20] is adding recursion for n-window kernels.
This leads to a more fine-grained approach for kernels K. In particular, now, it
is possible to define the PARITY query with n-window Kernels whereas without
recursion, as shown in the example before, it is not.

It should be noted that in agent theory usually the processing of streams is
described by functions that take an evolvement of states into account: Depending
on the current state and the current percept, the agent chooses the next action
and the next state. In this paper, a different approach is described which is based
on the principle of tail recursion where the accumulators play the role of states.

In order to enable a pipeline-based construction the approach of [20] is further
extended by considering multiple streams explicitly as possible arguments for
functions with an arbitrary number of arguments. Still, all functions will output
a single finite or infinite word—though the approach sketched below can easily



be adapted to work for multi-output streams. All of the machinery of Gurevich’s
framework is easily translated to this multi-argument setting. So, for example
the axiom (FP∞) now reads as follows:

(FP∞) For all s1, . . . sn ∈ D∞, and all u ∈ D∗: If Q(s1, . . . , sn) ∈ uD∞,
then there are w1, . . . , wn ∈ D∗ such that si ∈ wiD

∞ for all i ∈ [n] and
w1D

∞ × · · · × wnD
∞ ⊆ Q−1(uD∞).

Monotonicity of a function Q : (D∞)n −→ D∞ now reads as: For all (s1, . . . , sn)
and (s′1, . . . , s

′
n) with si v s′i for all i ∈ [n]: Q(s1, . . . , sn) v Q(s′1, . . . , s

′
n).

The temporal model behind the recursion used in Definition 4 is the following:
At every time point one has exactly n elements to consume, exactly one for each
of the n input streams. These are thought to appear at the same time. To model
also the case where no element arrives in some input stream, a specific symbol ⊥
can be added to the system. Giving the engine a finite word as input means that
the engine gets noticed about the end of the word (when it has read the word).
In a real system this can be handled, e.g., the idea of punctuation semantics
[33]. Of course, then there is a difference between the finite word abc, where the
system can stop listening for the input after ‘c’ was read in, and the infinite
word abc(⊥)ω, where the system gets notified at every time point that there is
no element at the current time.

A further extension of the framework in [20] is that we add to the set of
rules a co-recursive/co-inductive rule [32], in order to describe directly bounded-
memory queries Q = Repeat(K)—instead of only the underlying windows K.
This class is denoted MonBmem in Definition 4.

Three types of classes are defined in parallel: classes Accun which are in-
tended to model accumulator functions f : (D∗)n −→ D∗; classes Bmem(n;m)

that model incrementally maintainable functions with bounded memory, i.e.,
window functions that are bounded-memory and have bounded output, and
classes MonBmem(n;m) of incrementally maintainable, memory-bounded, and
monotonic functions that lead to the definition of monotonic functions on infi-
nite streams. The main idea, similar to that of [3], is to partition the argument
functions in two classes, normal and safe arguments. In [3] the normal variables
are the ones on which the recursion step happens and which have to be con-
trolled, whereas the safe ones are those in which the growth of the term is not
restricted. In the definitions, the growth (the length) of the words is controlled
explicitly and the distinction between input and output arguments is used: The
input arguments are those where the input may be either a finite or an infinite
word. The output variables are the ones in which the accumulation happens. In a
function term f(x1, . . . , xn; y1, . . . , ym) the input arguments are the ones before
the semicolon “;”, here: x1, . . . , xn, and the output arguments are the ones after
the “;”, here: y1, . . . , yn.

Using the notation of [22] for my purposes, a function f with n input and m

output arguments is denoted f (n;m). Classes Bmem(n;m) and MonBmem(n;m)

consist of functions of the form f (n;m). The class MonBmem defined as the
union

⋃
n∈N MonBmem(n;) contains all functions without output variables and



is the class of functions which describe the prefix restrictions Q�D∗ of stream
queries Q : D∞ −→ D∞ that are computable by a bounded-memory sAsm.

Definition 4. Let n,m ∈ N be natural numbers (including zero). The set of
bounded n-ary accumulator word functions, for short Accun, the set of (n+m)-
ary bounded-memory incremental functions with n input and m output argu-
ments, for short Bmem(n;m), and the set of monotonic, bounded-memory incre-
mental (n + m)-ary functions with n input and m output arguments, for short

MonBmem(n;m), are defined according to the following rules:

1. w ∈ Accu0 for any word w ∈ D∗ (“Constants”)
2. lastk(·) ∈ Accu1 for any k ∈ N (“Suffixes”)
3. Sa

k(w) = lastk(w) ◦ a ∈ Accu1 for any a ∈ D (“Successors”)
4. Pk(w) = lastk−1(w) ∈ Accu1 (“Predecessors”)

5. condk,l(w, v, x) =

{
lastk(v) if last1(w) = 0
lastl(x) else

∈ Accu3 (“Conditional”)

6. Πj
k(w1, . . . , wn) = lastk(wj) ∈ Accun for any k ∈ N and j ∈ [n], n 6= 0.

(“Projections”)
7. shl(·)(1;0) ∈MonBmem with shl(aw; ) = w and shl(ε; ) = ε. (“Left shift”)
8. Conditions for Composition (“Composition”)

(a) If f ∈ Accun and, for all i ∈ [n], gi ∈ Accum, then also f(g1, . . . , gn) ∈
Accum; and:

(b) If g(m;n) ∈MonBmem(m;n) and, for all i ∈ [m], gi ∈ Accul and h
(k;l)
j ∈

MonBmem(k;m) for j ∈ [n], then f (k;l) ∈ MonBmem(k;l) where using
w = w1, . . . , wk, v = v1, . . . , vl

f (k;l)(w;v) = g(m;n)(h1(w;v), . . . , hm(w;v); g1(v), . . . , gn(v))

(c) If g(m;n) ∈ Bmem(m;n) and, for all i ∈ [m], gi ∈ Accul and h
(k;l)
j ∈

MonBmem(k;m) for j ∈ [n], then f (k;l) ∈ Bmem(k;l) where using w =
w1, . . . , wk, v = v1, . . . , vl

f (k;l)(w;v) = g(m;n)(h1(w;v), . . . , hm(w;v); g1(v), . . . , gn(v))

9. If g : (D∗)n −→ D∗ ∈ Accu and h : (D∗)n+3 −→ D∗ ∈ Accu then also
f : (D∗)n+1 −→ D∗ ∈ Accu, where:

f(ε, v1, . . . , vn) = g(v1, . . . , vn)

f(wa, v1, . . . , vn) = h(w, a, v1, . . . vn, f(w, v1, . . . , vn))

(“Accu-Recursion”)
10. If gi : (D∗)n+m −→ D∗ ∈ Accu for i ∈ [m], g0 ∈ Accu then k = k(n;m) ∈

Bmem(n;m), where k is defined using the above abbreviations as follows:

k(ε, . . . , ε;v) = g0(v)

k(w;v) = k(shl(w); g1(v,w=1), . . . , gm(v,w=1))

(“Window-Recursion”)



11. If gi : (D∗)n+m −→ D∗ ∈ Accu for i ∈ [m], g0 ∈ Accu, then f = f (n;m) ∈
MonBmem(n;m), where f is defined using the above abbreviations as follows:

f(ε, . . . , ε; out,v) = out

f(w; out,v) = f(shl(w); out ◦ g1(v,w=1), g1(v,w=1), . . . , gm(v,w=1))

(“Repeat-Recursion”)

Let MonBmem =
⋃

n∈N MonBmem(n;).

Within the definition above, three types of recursions occur: the first is a
primitive recursion over accumulators. The second, called window-recursion, is a
specific form of tail recursion which means that the recursively defined function
is the last application in the recursive call. As the name indicates, this recursion
rule is intended to model the kernel/window functions. The last recursion rule
(again in tail form) is intended to mimic the Repeat functional.

In the first recursion, the word is consumed from the end: This is possible,
as the accumulators are built from left to right during the streaming process.
Note, that the length of outputs produced by the accu-recursion rule and the
window-recursion rule are length-bounded.

The window-recursion rule and the repeat-recursion rule implement a specific
form of tail recursion consuming the input words from the beginning with the
left-shift function shl(). This is required as the input streams are potentially in-
finite. Additionally, these two rules implement a form of simultaneous recursion,
where all input words are consumed in parallel according to the temporal model
mentioned above.

Repeat recursion is illustrated with the following simple example.

Example 1. Consider the window function Kpar that, for a word w, outputs its

parity. The monotonic function Par(w) = Repeat(Kpar)(w) = ©|w|j=0Kpar(w≤j)
can be modelled as follows. The auxiliary xor function ⊕ can be defined with
cond because with cond one can define the functionally complete set of junctions
{¬,∧} with ¬x := cond1,1(x, 1, 0) and x ∧ y = cond1,1(x, 0, y). Using repeat
recursion (item 11 in Definition 4) gives the desired function.

f(ε; out, v) = out

f(w; out, v) = f(shl(w); out ◦ v ⊕ w=1, v ⊕ w=1)

Par(w) = f(w; ε, 0)

For example, the input word w = 101 is consumed as follows:

Par(101) = f(101; ε, 0) = f(shl(101); ε ◦ 0⊕ 101=1, 0⊕ 101=1)

= f(01; ε ◦ 0⊕ 1, 0⊕ 1) = f(01; 1, 1)

= f(1; 1 ◦ 1⊕ 0, 1⊕ 0) = f(1; 1 ◦ 1, 1)

= f(ε; 1 ◦ 1⊕ 1, 1⊕ 1) = f(ε; 1 ◦ 1 ◦ 0, 0) = 110



The output of the repeat-recursion grows linearly: The whole history is out-
putted with the help of the concatenation function. Note that the concatenation
functions appears only in the repeat-recursion rule and also—in a restricted
form—in the successor functions, but there is no concatenation function defined
in one of the three classes (as it is not a bounded-memory function). The repeat-
recursion function builds the output word by concatenating intermediate results
in the out variable. Because of this, it follows that all functions in MonBmem are
monotonic in their input arguments. This is stated in the following proposition:

Proposition 2. All functions in MonBmem are monotonic.

Proof (sketch). Let us introduce the notion of a function f(x;y) being monotonic
w.r.t. its arguments x: This is the case if for every y the function fy(x) = f(x,y)
is monotonic. The functions in MonBmem are either the left shift function
(which is monotonic) or a function constructed with the application of compo-
sition, which preserves monotonicity, or by repeat-recursion, which, due to the
concatenation in the output position, also guarantees monotonicity. ut

The functions in MonBmem map (vectors of) finite words to finite words.
Because of the monotonicity, it is possible to define for each f ∈MonBmem an
extension f̃ which maps (vectors) of finite or infinite words to finite or infinite
words. If f (n;) : (D∗)n −→ D∗, then f̃ : (D∞)n −→ D∞ is defined as follows:
If all si ∈ D∗, then f̃(s1, . . . , sn) = f(s1, . . . , sn). Otherwise, f̃(s1, . . . , sn) =

supi∈Nf(s≤i1 , . . . , s≤in ) where supi∈Nf(s≤i1 , . . . , s≤in ) is the unique stream s ∈ D∞
such that f(s≤i1 , . . . , s≤in ) v s for all i. Let us denote by BmemStr those func-
tions Q that can be presented as Q = f̃ for some f ∈MonBmem and call them
bounded-memory stream queries.

Theorem 2. A function Q with one argument belongs to BmemStr iff it is a
stream query computable by a bounded-memory sAsm.

Proof (sketch). Clearly, the range of each function f in Bmem is length-bounded,
i.e., there is m ∈ N such that for all w ∈ D∗ : |f(w)| ≤ m. But then, according
to [20, Proposition 22], f can be computed by a bounded-memory sAsm. As the
Repeat functional does (nearly) nothing else than the repeat-recursion rule, one
gets the desired representation.

The other direction is more advanced but can be mimicked as well: All basic
rules, i.e. update rules, can be modelled by Accu functions (as one has to store
only one symbol of the alphabet in each register; the update is implemented as
accu-recursion). The parallel application is modelled by the parallel recursion
principle in window-recursion. The if-construct can be simulated using cond.
And the quantifier-free formula in the if construct can also be represented using
cond as the latter is functionally complete. ut

Note that in a similar way one can model o(n) bitstring bounded sAsm:
Instead of using constant size windows lastk(c) in the definition of accumulator
functions, one uses dynamic windows lastf(·)(·), where, for a sublinear function
f ∈ o(n), lastf(|w|)(w) denotes the f(|w|) suffix of w.



4 Related Work

The work presented here is based on the foundation of stream processing accord-
ing to [20] which considers streams as finite or infinite words. The research on
streams from the word perspective is quite mature and the literature on infinite
words, language characterizations, and associated machine models abounds. The
focus in this paper is on bounded-memory functions and their representation by
some form of recursion. For all other interesting topics and relevant research
papers the reader is referred to [35] and [30].

The construction of bounded-memory queries given in this paper are based
on the Repeat functional applied to a window function. An alternative repre-
sentation by trees is given in [21]: An (infinite) input word is read as sequence
of instructions to follow the tree, 0 for left and 1 for right. The leaves of the
tree contain the elements to be outputted. The authors give a characterization
for the interesting case where the range of the stream query is a set of infinite
words: In this case they have to use non-well-founded trees. Note, that in this
type of representation the construction principle becomes relevant. Instead of a
simple instantiation with a parameter value, one has to apply an algorithm in
order to build the structure (here: the function).

In [20] and in this paper, the underlying alphabet for streams is not neces-
sarily finite. This is similar to the situation in research on data words [5], where
the elements of the stream have next to an element from a finite alphabet also
an element from an infinite alphabet.

Aspects of performant processing on streams are touched in this paper with
the construction of a class of functions capturing exactly those queries com-
putable by an sAsm. This characterization is in the tradition of implicit com-
plexity as developed in the PhD thesis of Bellantoni [4] which is based on work
of Leivant [25]. (See also the summary of the thesis in [3] where the main result
is the characterization of polynomial time functions by some form of primitive
recursion). The main idea of distinguishing between two sorts of variables in
my approach comes from [4], the use of constant, o(n) size windows to control
the primitive recursion is similar to the approach of [26] used for the rule called
“bounded recursion” therein.

The consideration of bounded memory in [2] is couched in the terminology of
data-stream management systems. The authors of [2] consider first-order logic
(FOL) or rather: (non-recursive) SQL as the language to represent windows. The
main result is a syntactical criterion for deciding whether a given FOL formula
represents a bounded-memory query. Similar results in the tradition of Büchis
result on the equivalence of finite-automata recognizability with definability in
second-order logic over the sequential calculus can be shown for streams in the
word perspective [14,1].

An aspect related to bounded memory is that of incremental maintainability
as discussed in the area called dynamic complexity [29,36]. Here the main concern
is to break down a query on a static data set into a stream query using simple
update operators with small space.



The function-oriented consideration of stream queries along the line of this
paper and [20] lends itself to a pipeline-style functional programming language
on streams. And indeed, there are some examples, such as [9], that show the
practical realizability of such a programming language.

The type of recursion that was used in order to handle infinite streams,
namely the rules of window-revision and repeat-revision, uses the consumption
of words from the beginning. This is similar to the co-algebraic approach for
defining streams and stream functions [32].

5 Conclusion

Based on the foundational stream framework of [20], this paper gives a recur-
sive characterization of bounded-memory functions. Though the achieved results
have a foundational character, they are useful for applications relying, say, on
the agent paradigm where stream processing plays an important role. The recur-
sive style that was used to define the set of bounded-memory functions can be
understood as a formal foundation for a functional style programming language
for bounded-memory functions.

The present paper is one step towards axiomatically characterizing practi-
cally relevant stream functions for agents [27]. The axiomatic characterizations
considered in [27] are on a basic phenomenological level—phenomenological, be-
cause only observations regarding the input-output behavior are taken into ac-
count, and basic, because no further properties regarding the structure of the
data stream elements are presupposed. The overall aim, which motivated the
research started in [27] and continued in this paper, is to give a more elaborated
characterization of rational agents where also the observable properties of various
higher-order streams of states such beliefs or goals are taken into account.

For example, if considering the stream of epistemic states Φ1, Φ2, . . . of an
agent, an associated observable property is the set of beliefs Bel(Φi) an agent is
obliged to believe in its current state Φi. The beliefs can be expressed in some
logic which comes with an entailment relation |=. Using the entailment relation,
the idea of a rational change of beliefs of the agent under new information can
be made precise. For example, the success axiom expresses an agent’s “trust” in
the information it receives: If it receives α, then the current state Φi is required
to develop into state Φi+1 such that Bel(Φi+1) |= α. The constraining effects
that this axiom has on the belief-state change may appear simple but, at least
when the new information is not consistent with the current beliefs, it is not
clear how the change has to be carried out. Axioms such as the success axiom
are one of the main objects of study in the field of belief revision. But what is
still missing in current research is the combination of belief-revision axioms (in
particular those for iterated belief revision [10]) with axioms expressing basic
stream-properties.
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