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Abstract. Communicating agents in open environments such as the
semantic web face the problem of inter-ontological ambiguity, i.e., the
problem that some agent uses a (constant, role or concept) name differ-
ently than another agent. In this paper, we propose a strategy for online
ambiguity resolution relying on the ideas of belief revision and reinterpre-
tation. The data structures guiding the conflict resolution are systems of
spheres, which, in particular, allow to select a resolution result amongst
other potential results. The paper defines operators for (iterated) rein-
terpretation based on systems of spheres and shows that they fulfill some
desirable set of properties (postulates).
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1 Introduction

Ambiguous use of words is a typical phenomenon of natural languages (next
to others such as vagueness, anaphora etc.) that may cause misunderstand-
ings within communicating humans. Similar problems occur also within artificial
agents communicating in open environments such as the semantic web. Though
artificial agents usually rely on formal languages one cannot assume that they
rely on the same ontology. Hence, instead of following the unrealistic aim of one
ontology for all agents, agents should be equipped with an online mechanism for
identifying and resolving conflicts caused by ambiguous use of symbols.

In this paper we consider the situation of two communicating agents, where a
receiver agent holds an ontology and receives (one-after-one) bits of information
from a sender agent, holding a different but kindred ontology. We consider a
class of operators that use the idea of reinterpretation for the resolution of logical
conflicts [4, 6, 2]: The meaning of the symbol as used in the ontology is changed
by broadening or weakening its extension such that the conflict is resolved, and
the different meanings are interrelated by bridging axioms.

The possible ways in which the receiver’s ontology could be changed has to
be constrained declaratively such that only “rational” types of changes results.
This idea was one of the corner-stones of the rationality postulates for revision
operators as developed in the pioneering work of AGM (Alchourron, Gardenfors,
Makinson) on belief revision [1]. One rationality postulate requires that the
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outcome of the change deviates only minimally from the original knowledge
base. In case of AGM the knowledge base is a logically closed set of sentences
called belief set, in this paper the knowledge base is an ontology.

Usually, there is more than a single “minimal” change result, hence the
change has to be supported by some data structure that allows to select a unique
result. In the literature different forms of such structures have been considered,
e.g., epistemic entrenchment relations, preference orders over models, selections
functions in partial meet operators etc. The kind of data structure that was con-
sidered in [4]—and that is also in the focus of this paper—are systems of spheres
as introduced by Grove [3] and used in prototype revision in [8].

In this paper we build on the general idea of [4] using systems of spheres for
changing concepts by reinterpretation and we extend the operators of [4] to deal
with iterated reinterpretation. We show that (iterated) sphere-based reinterpre-
tation operators enjoy most of the properties one would expect from a rational
semantic integration operator by considering the classical AGM-postulates [1]
as well as other postulates that fit the integration scenario mentioned above.

A longer version of this paper can be found at https://tinyurl.com/y8n3p6zo.

2 Example

Here and in the following we assume familiarity with description logics (DLs). A
receiver agent is the owner of the following ontology O = (O, V,,V;) where O is
a set of tbox and abox axioms over V, UV;, V, is a public vocabulary, in which
agents communicate, and V; is the internal vocabulary of the receiver agent.

O = {Student C —Researcher, Researcher(peter)} a = Student(peter)

O says that no student is a researcher and that Peter is a researcher. The infor-
mation «, stemming from a trustworthy sender, has to be integrated into O. It
says that Peter is a student. Information « leads to a logical conflict with the
ontology. And hence a change of the ontology is triggered.

Reinterpretation traces back the conflict between O and « to different read-
ings of the concept symbol Student or the constant peter. We consider only the
reinterpretation of concept symbols, hence Student has to be reinterpreted.

The outcome of sphere-based reinterpretation is given in the following:

O®sa = {Student’ = —Researcher, Researcher(peter)} U (1)
{Student' C Student} U (2)
{Student C Student' U Researcher} U (3)
{Student(peter)} (4)

As the receiver trusts the sender, it adopts the sender’s reading of “student”
and hides its own reading in the internal vocabulary as Student . As the notions
are assumed to be similar, they are related by two bridging axioms: the first
(line (2)) is an upper bound for Student', stating that Student' is a subconcept
of Student. The second one (line (3)) is an upper bound for Student.
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In order to motivate the second bound let us write it the equivalent form
{Student N —Researcher C Student'}. This axiom says that a Student (student
in the sender’s sense) is a Student (student in the receiver’s sense) except for
the case that it is also a researcher. The concept Researcher which expresses the
exception and hence the difference between Student and Student' is found by
exploiting the ontology for a compatible conceptual representation for the con-
stant peterinvolved in the conflict. In order to find this conceptual representation
the reinterpretation operator extracts the most specific concept msco (peter) for
peter and than does a form of concept contraction based on spheres: it weakens
the original concept Student in the ontology such that it does not contain one of
the conflicting properties of peter, mentioned in msco (peter), anymore. That is,
the student concept is contracted with the negation of msco(peter). The result
of this is exactly the upper bound Student’ LI Researcher for Student.

3 Revision and Contraction of Concepts

The reintepretation operators considered in this paper are based on the revision
and contraction of (atomic or complex) DL concepts as defined in [4].

Let O = (O, Vp, V) be an ontology. Let Vy; C V; UV, be a subset of the whole
vocabulary, called the relevant vocabulary. It is possible to define a Tarskian
consequence operator Cf = (C)ngl on the set of concepts C over conc(Vye).
(See long version of this paper.) A set X C conc(V,e) is called consistent iff 1| ¢
X. X C cone(Vye) is mazimally (O, Vyer)-consistent iff X is consistent, (O, Vyer)-
closed and inclusion maximal with this property. The set of maximally (O, V)-
consistent sets X is denoted Mo y,,. Let Mo = Mo (vo)nv,)uy,- Intuitively,
Mo denotes the set of all “possible objects” in ontology O. The “dynamics” of
possible objects under changing axioms, vocabularies, resp. are captured by the
following propositions.

Proposition 1. Let O1 = (01,V,, Vi), Oz = (02, V,, Vi) and V C V,UV;. Then
01 Q 02 entails M@zy g Mohv.

Proposition 2. Let O = (O1,V,,V;) be an ontology, V1,V2 C V, UV; be vo-
cabularies and assume that the consequence operator (')T(g,viuvp fulfills the in-
terpolation property. If Vi C Va, then for the injective function Foy, v,
Moy, ~% P(Moy,); X = Foy,(X) ={Y € Moy, | Y 2 X} it holds
that Moy, = LﬂXGMO,vl Fo v, v, (X).

For concept representation C, i.e., a set of concepts, let [C]© = {X € Mp | C C
X} be the set of possible objects X € Mo that are not in conflict with C. This
adapts Grove’s model bracket [3]. For a concept C' we let [C]© abbreviate [Cg]o.
With this machinery we recapitulate the notion of a system of spheres of [4].

Definition 1 ([4]). For an ontology O = (O,V,,V;) and a subset W C Mo a
family of sets S C P(Mp) is called a system of spheres (for short SoS) for W
in O iff the following conditions are fulfilled: 1. S is totally ordered w.r.t. set
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inclusion; 2. W is inclusion minimal in S; 8. Mo is inclusion mazimal in S; for
all concepts C' the following holds: If there is a sphere S € S with [C]° NS # 0,
then there is an inclusion minimal sphere Spin € S with [C]° N Spin # 0. Let
cs denote the function that selects for each [C]© the minimal sphere with non-
empty intersection with [C]° (which must exist due to condition 4.) One sets
cs(0) = Mo. Furthermore, let fs([C]°) = cs([C]°) N [C]°.

For each SoS S one can define a dual chain of concept representations 7s =
{N S| S € S}. Because in the following examples concept representations (.5 €
Ts are equivalently describable by concepts Cs due to (( S)?Q = (KS)T(;), we
will describe a SoS by the set of concepts {Cs | S € S}. Sphere-based revision
and contraction of concepts in an ontology are defined as follows.

Definition 2. Let O = (0,V,,V;) be an ontology, C be an O-closed concept
representation and D a concept from conc((V(O)NV;) UV,). Furthermore let S
be a SoS for [C]° in O. Then sphere-based revision of O-closed concept repre-
sentations Qg and sphere-based contraction of O-closed concept representations
Os are defined by C Qs D = (N (fs([D]°)), C ©s D = (C Qs =D) N C, resp.
Revision and contraction of single concepts are defined by C' Qg D = Cg Qg D,

Cos D= Cg O©s D resp.

As the O-closure operator ()ﬂ is a Tarskian consequence operator, one can
prove that @g and &g fulfill exactly those properties—adapted from sentences
to concepts—that are fulfilled by the operators of [3].

4 Sphere-Based Reinterpretation

Using ©s we now formally define sphere-based reinterpretation operators. Their
input is an ontology and a trigger information, that is a concept-based literal,
i.e. has the form K (a) or =K (a) for an atomic concept symbol K, for short: the
form K (a). Their output is a new ontology. The input ontology O is equipped
with a family of many SoS: For all concept symbols K € V, there is a SoS [K]°,
and a SoS [-~K]© for its negation.

Definition 3. A collection of systems of spheres S of O = (O, V,, V;) for concept-

based literals over V,, for short <S(K)>f(eCL¢t(vp)7 is a family of SoS for each

set of models [K]© of a concept literal K over Vp. A pair (O,S) of an ontology
O and a collection of SoS for O is called structured ontology.

(01,S1) and (05, S,) are called equivalent, for short (Oy,S;) = (09, S,) iff 07 =
0> and additionally the collections of SoS are identical, S; = S,.

The definition of sphere-based reinterpretation operators (Def. 4) relies on
weak operators for reinterpretation defined in [2] as follows:

OU{K(a)} it OU{K(a)} is consistent,
Oix/k U{K(a), K' C K} else

OU{-K(a)} if OU{=K(a)} is consistent,
Ok xU{—~K(a), K C K'} else

O®K(a):{

0 ®~K(a) = {
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Definition 4. Let (O,S) be a structured ontology. Sphere-based reinterpretation
®s for concept-based literals is defined by

Ok OU{K(a)} if OU{K (a)} is consistent,

Osk(a) = O® K@) U{KCC|Ce (K Ss(k) —msco(a))x/k} else
The properties of these operators are listed in the following theorem. Some of
the postulates have already been discussed by [1] for belief revision. Other pos-
tulates (such as the postulate RI-right preservation) are postulates that express
desirable properties for semantic integration scenarios (see [5] for a discussion).

Theorem 1. For structured ontologies (O, S), (O1,S1), and {(O2,S3) and concept-
based literals o and B the following holds:

1. If (01,S1) = (02, S3) then (0105, a) = (O2Gs, ).  (RI-left extensionality)
2. If a = B, then (OGsa) = (0OGsf). (RI-right extensionality)
3. OGsa=0U{a} iff OU{a} I~ L. (RI-vacuity)
4. a € O0sa (RI-success)
5. There is a substitution o s.t. Ooc C OGsa. (RI-left preservation)
6. There is a substitution o s.t. aoc € OGsa. (RI-right preservation)
7. There is a substitution o s.t. O C (OGsa)o. (RI-left recoverability)
8. There is a substitution o s.t. o € (OGsa)o. (RI-right recoverability)
9. OGsa =L iff O= 1. (RI-consistency)

As collections of SoS S are defined for a specific ontology O, they are not
necessarily also proper collections for the reinterpretation result O®ga. In the
following we mitigate this problem by proposing an iterated sphere-based rein-
terpretation operator ®s. We require SoS to fulfill a condition called (SW) that
strengthens the fourth condition on SoS according to Def. 1, requiring it to be
well-ordered. Adapting the terminology of [7], we call a collection of systems of
spheres well-behaved if it contains only well-ordered systems of spheres.

Let O,es = OGsa be the result of reinterpretation with o = K (a) according
to the one-step sphere-based reinterpretation. The main challenge in defining
the follow-up sphere collection is the change of the vocabulary: some of the
symbols of the receiver’s ontology become private. In order to handle this vo-
cabulary dynamics we use function DynP(Mop) — P(Mo,..); S — Dyn(S) =
U F[Sik/x1] N Mo,,, relying on the function F' from Prop. 2.

Definition 5. For O = (0,V,,V;) and o = K(a), let Vi = V(O k) NVi) U
Vp \{K} and Vo = (V(Oix k) N Vi) UV, and F = Foy, y, be the function
F(X)={Y € Mo,,.v, | Y 2 X} defined in Prop. 2. Further assume that S
is a well-behaved collection of SoS w.r.t. O for concept-based literals over V,.
The follow-up collection of spheres of O,.; = OGga is defined as follows: If
O U {a} £ L, then for all concept literals L with L € Vp the follow-up SoS is
defined as S'(L) = {SN Mo, | S € S(L)}. IfOU{a} = L and if L # K,
then one sets S'(L) = {Dyn(S) | S € S(L)}. If OU{a} £ L and L = K, then:

S'(K) = {[K]°=}u{Dyn(S) | § € S(K)} and §'(K) = {[K]?=}U{Dyn(K &g 1,
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—msco(a))} U {Dyn(S) | S € S(K) and Dyn(S) D Dyn(K Ss(k) —msco(a))}.
(Here we use the notation K=-KifK=Kad K=K if K = -K.)

The follow-up collection of systems of spheres S’ of Def. 5 are well-behaved.

An iterated operator is called stable [2] if after some step the outcomes of
the operator do not change anymore—assuming that the set of triggers in the
input sequence is finite. (Triggers may be sent more than once.) Sphere-based
revision reinterpretation is strong in the sense that it does not forget about the
reinterpretation history—and hence stability is not guaranteed.

Theorem 2. [terated sphere-based reinterpretation operators are not stable.

For the proof one may use the same example as in [2, Theorem 7.15].

5 Conclusion

Following the general idea of reinterpretation for resolving conflicts caused by
inter-ontological ambiguities, this paper defined iterable reinterpretation opera-
tors that rely on the preference structure of systems of spheres and showed (at
least for the single-step case) that it fulfills some desirable properties.

Questions for future work are: What is a full characterization of iterated
sphere-based reinterpretation operators via postulates? What is the best way to
extend the approach to handle not only concept-based literals but also whole
triggering ontologies—using still systems of spheres?
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