
PDT Logic

A Probabilistic Doxastic Temporal Logic
for Reasoning about Beliefs
in Multi-agent Systems

Technical Report

Institut für Informationssysteme
Universität zu Lübeck

Karsten Martiny
Universität zu Lübeck,
Lübeck, Germany,

karsten.martiny@uni-luebeck.de

Ralf Möller
Universität zu Lübeck,
Lübeck, Germany,

moeller@uni-luebeck.de

June 22, 2016

Abstract

We present Probabilistic Doxastic Temporal (PDT) Logic, a formalism to represent and rea-
son about probabilistic beliefs and their temporal evolution in multi-agent systems. This
formalism enables the quantification of agents’ beliefs through probability intervals and in-
corporates an explicit notion of time. We discuss how over time agents dynamically change
their beliefs in facts, temporal rules, and other agents’ beliefs with respect to any new in-
formation they receive. We introduce an appropriate formal semantics for PDT Logic and
show that it is decidable. Alternative options of specifying problems in PDT Logic are possi-
ble. For these problem specifications, we develop different satisfiability checking algorithms
and provide complexity results for the respective decision problems. The use of probabil-
ity intervals enables a formal representation of probabilistic knowledge without enforcing
(possibly incorrect) exact probability values. By incorporating an explicit notion of time,
PDT Logic provides enriched possibilities to represent and reason about temporal relations.

Contents

1 Introduction 4

2 Related Work 6

3 PDT Logic: Syntax and Semantics 9
3.1 Syntax . 9
3.2 Semantics . 11

3.2.1 Possible Worlds . 12
3.2.2 Threads . 13
3.2.3 Kripke Structures . 15
3.2.4 Subjective Posterior Temporal Probabilistic Interpretations 16
3.2.5 Frequency Functions . 19
3.2.6 Semantics of the Belief Operator . 21

3.3 Evolution over Time . 23
3.3.1 Evolution of Probabilistic Interpretations 25
3.3.2 Evolution of Beliefs . 26

4 Satisfiability Checking for PDT Logic 30
4.1 A Model Checking Algorithm . 31
4.2 A Compact Problem Specification . 33

4.2.1 Identification of Key Parameters from a Set of Belief Formulae . . . 34
4.3 Representing the Satisfiability Problem as a Linear Program 37

4.3.1 Representation of Subjective Posterior Probabilities 38
4.3.2 Extracting Linear Constraints from Belief Formulae 42
4.3.3 Transformation into a Disjunctive Program 46
4.3.4 Transformation into a 0-1 Mixed Integer Linear Program 48

4.4 Prior Constraints on Possible Threads . 49
4.4.1 A Taxonomy of Belief Formulae . 50
4.4.2 Constraining Possible Worlds at Individual Time Points 56

4.5 Representative Threads . 59
4.5.1 Generating Representative Threads 60
4.5.2 A Thread Generation Example . 66
4.5.3 Properties of the Representative Thread Generation 70

5 Conclusion 72

References 73

3

1. Introduction

Logical analysis of knowledge and belief has been an active topic of research in diverse fields
such as philosophy (Hintikka, 1962), economics (Aumann, 1976), game theory (Harsanyi,
1967, 1968a, 1968b), and computer science (Fagin, Halpern, Moses, & Vardi, 1995). Nu-
merous extensions to modal epistemic logic have been made to reason about knowledge in
multi-agent settings (Fagin et al., 1995; Baltag & Moss, 2004), to add probabilistic knowl-
edge (Fagin & Halpern, 1994; Cripps, Ely, Mailath, & Samuelson, 2008), and to analyze
the dynamic evolution of knowledge (van Ditmarsch, van der Hoek, & Kooi, 2007).

In most realistic scenarios, an agent has only incomplete and inaccurate information
about the actual state of the world, and thus considers several different worlds as actually
being possible. As it receives new information (e.g., it observes some facts that currently
hold), it has to update its beliefs about possible worlds such that they are consistent with
this new information. These updates can for example result in regarding some (previously
considered possible) worlds as impossible or judging some worlds to be more likely than
before. Thus, in addition to analyzing the set of worlds an agent believes to be possible,
it is also useful to quantify these beliefs in terms of probabilities. This provides means to
specify fine-grained distinctions between the range of worlds that an agent considers possible
but highly unlikely, and worlds that seem to be almost certainly the actual world.

When multiple agents are involved in such a setting, an agent may not only have varying
beliefs regarding the facts of the actual world, but also regarding the beliefs of other agents.
In many scenarios, the actions of one agent will not only depend on its belief in ontic facts
(i.e., facts of the actual world), but also on its beliefs in some other agent’s beliefs.

To illustrate how reasoning about other agents’ beliefs can yield significant advantages
in practical scenarios, we start with the following informal description of an application
from the cyber security domain (a formal analysis of this example using PDT Logic has
been presented in (Martiny, Motzek, & Möller, 2015)): Suppose that an adversary is trying
to break into a computer system. This is usually done with an attack graph to detect
and exploit potential vulnerabilities of the system. An attack graph specifies a set of
paths (i.e., sequences of actions) to carry out an attack. Several paths of the attack graph
might be used in parallel, potentially by different agents (for instance, a number of infected
computers controlled by a botnet). Usually, attack patterns specified by one attack graph
are used multiple times, which has two important ramifications: the adversary will learn
from experience which of the paths yield a high probability of successfully breaking into a
system. Defenders in turn will be able to gain knowledge of the attack graph through the
repeated observation of certain patterns. Thus, when a system is under attack, the defender
will have beliefs about both the chosen attack paths and the adversary’s belief regarding the
success of the respective path. Thus, the defender can choose countermeasures effectively
by reacting only on paths where these nested beliefs are high and which indeed pose a threat
according the system’s mission impact model.

To formalize reasoning about such beliefs in multi-agent settings, we present Probabilis-
tic Doxastic Temporal (PDT) Logic. PDT Logic builds upon recent work on Annotated
Probabilistic Temporal (APT) Logic (Shakarian, Parker, Simari, & Subrahmanian, 2011;
Shakarian, Simari, & Subrahmanian, 2012) and provides a formalism which enables repre-
senting and reasoning about dynamically changing quantified temporal multi-agent beliefs

4

through probability intervals and incorporates a subset of epistemic actions (Baltag & Moss,
2004). Using concepts from APT Logic as a semantic foundation, PDT Logic merges work
on epistemic logic with recent work on temporal logic (Shakarian et al., 2011, 2012). Apart
from reasoning about imprecise probabilities, this introduces the temporal concept of fre-
quency functions into epistemic temporal logic.

Quantifying probabilistic knowledge through probability intervals instead of single prob-
ability values yields two main advantages. On the one hand, using probability intervals
significantly eases the task of formally representing existing knowledge of a human domain
expert. In most cases, a domain expert can give reasonable probability estimates of her
knowledge, but will inevitably fail at giving correct precise numerical values on these prob-
abilities. Consider for instance a weather forecast: most people find it easy to give coarse
probabilistic quantifications such as “the chance of rain is high”, while virtually nobody
could quantify this through an exact numerical value. Employing exact numerical values
in a formal representation would then inevitably introduce errors in the probability model.
Thus, the use of probability intervals provides means to express probabilistic knowledge as
precisely as possible without enforcing unrealistic precision. On the other hand, there are
many scenarios where probabilities (and even rough estimates of them) are simply unavail-
able, while bounds on these values may be known. To illustrate this, consider the scenario
described in (Ellsberg, 1961):

Example 1.1 (The Ellsberg paradox (Ellsberg, 1961)). Imagine an urn known to contain
30 red balls and 60 black and yellow balls, the latter in unknown proportion. One ball is
to be drawn at random from the urn; the following actions are considered: Action I is “a
bet on red”, II is “a bet on black”.

Now, it is easy to see that any rational agent would believe that action I will be suc-
cessful with a probability of 1/3. For action II, no such quantification is possible because
the respective probability is unknown. Yet omitting any probabilistic information about
action II altogether would ignore some available information about the unknown probability
value, namely that it is somewhere between 0 and 2/3. This example exhibits two different
types of uncertainty: the former action is subject to risk, i.e., the outcome is unknown, but
occurs with known probability, while the later action is subject to ambiguity (also known as
Knightian uncertainty), where the probability is unknown (Bradley,). Through probability
intervals, PDT Logic is able to work with such imprecise probabilities. The width of a
probability interval can then give additional information about the certainty of a probabil-
ity quantification. Naturally, a narrow interval is associated with a high certainty of the
respective probability and vice versa, a wide interval is associated with low certainty.

PDT Logic employs an explicit notion of time and thereby facilitates the expression
of richer temporal relations. This allows for the analysis of temporal doxastic problems
beyond the scope of previous work. The resulting framework provides means to reason
about the temporal evolution of beliefs in multi-agent systems. Two different applications
of this framework are possible: First, any agent of the respective multi-agent system can
employ this framework online during a run of the system to reason about its own beliefs.
By analyzing nested beliefs as introduced above, this gives an agent also means to reason
about probable evolutions of other agents’ belief states. Second, this framework can be used

5

offline by an external observer to analyze whether desired evolutions of a given system are
possible.

The remainder of this work is structured as follows: The next section presents related
work about knowledge in multi-agent systems and APT Logic. Then, in Section 3, the
syntax of PDT Logic is introduced, followed by the definition of a formal semantics. Decision
algorithms and complexity results for PDT Logic are discussed in Section 4. While the
formally defined semantics is based on precise probability values, this section shows that
satisfiability in PDT Logic can be decided even if only imprecise probabilities are given.
Finally, the paper concludes with Section 5.

2. Related Work

Approaches to formalize reasoning about knowledge and belief date back to Hintikka’s work
on epistemic logic (Hintikka, 1962). Hintikka proposed to represent knowledge through sets
of states or worlds, together with a binary relation for every agent, to determine which worlds
are indistinguishable for an agent. This approach has sparked multiple branches of research
on epistemic logic, which are still active topics of research today. These branches of research
can be broadly classified into four (not mutually exclusive) areas that are relevant for our
work: multi-agent epistemic logic, probabilistic epistemic logic, epistemic temporal logic,
and dynamic epistemic logic.1 In the following, we give an overview of the key contributions
in each area and discuss existing approaches that merge these fields of research.

Early research on epistemic logic culminated in the influential work Reasoning about
Knowledge (Fagin et al., 1995), which provides a unified presentation of various preceding
contributions on epistemic logic. This work uses a so-called interpreted systems approach
to represent knowledge in multi-agent systems, where time is represented through runs. A
run is a sequence of a system’s global states and it thus identifies the state of a system
for every time point. Among other contributions, this work provides notions for multi-
agent epistemic modalities such as nested knowledge, distributed knowledge, and common
knowledge.

Several works have extended epistemic logic to represent dynamic evolutions of knowl-
edge. This direction of research is known as Dynamic Epistemic Logic (DEL). The first
work to formally analyze the dynamics of knowledge is (Plaza, 1989) (reprinted in (Plaza,
2007)). In this contribution, Plaza introduces public communication events (now commonly
known as public announcements) to analyze the dynamic evolution of knowledge in groups
upon truthful public announcements of facts to a group of agents. Independently from
(Plaza, 1989) a related approach for a public announcement logic was proposed in (Ger-
brandy & Groeneveld, 1997). In (Baltag, Moss, & Solecki, 1998) and (Baltag & Moss,
2004) the dynamic approach to epistemic logic is generalized to incorporate a variety of
complex epistemic actions. Here, epistemic updates themselves are represented through

1. To simplify the following discussion, we do not explicitly distinguish between epistemic and doxastic
logics in this section, but use “epistemic” as a general term. Strictly speaking, epistemic formalisms deal
with knowledge, while doxastic formalisms deal with beliefs. The usual axiomatic definition of knowledge
in the literature uses the Truth Axiom, which stipulates that an agent can only know true facts. Omitting
this axiom then leads to the notion of belief. Even though not unanimously accepted (cf. e.g., (Halpern,
Samet, & Segev, 2009)), this axiom is usually considered as the key distinction between knowledge and
belief.

6

Kripke models. This extends dynamic epistemic logic to represent a variety of additional
epistemic actions such as private group announcements (i.e., announcements where agents
outside of the receiving group are unaware of this announcement), lies (i.e., untruthful an-
nouncements), and combinations thereof. In PDT Logic, we use public and private group
announcements, but we assume that all announcements are truthful. A thorough treatment
of dynamic epistemic logic can be found in (van Ditmarsch et al., 2007). A recent overview
of this field can be found in (van Eijck, 2014).

An alternative approach of modeling the evolution of knowledge is to combine epistemic
logic with some temporal system. One example for this are the aforementioned interpreted
systems from (Fagin et al., 1995). Another approach of modeling temporal aspects in
epistemic logic was proposed by (Parikh & Ramanujam, 2003). This approach is known as
Epistemic Temporal Logic (ETL). Here, possible situations are represented through sets of
histories, with local histories for every agent, which represent the respective agent’s previous
observations. Based on these histories, knowledge based semantics of messages are defined,
and it is shown that messages can vary in meaning, depending on the respective context
of the message’s receiver. The temporal model we employ in PDT Logic is closely related
to epistemic temporal logic. Instead of specifying local histories for every agent, we define
the semantics of PDT Logic with respect to a global history. However, the local contexts
in the sense of ETL can easily be extracted from the global history by filtering this history
for the respective agents’ observations.

The traditional work on epistemic logic discussed so far does not allow to quantify an
agent’s degree of belief in certain facts; it can only be specified whether an agent does or
does not know (resp. believe) some fact. To remove this limitation, several approaches have
been proposed to combine logics of knowledge and belief with probabilistic quantifications.
Fagin and Halpern laid the foundation for this combination in their seminal paper (Fagin &
Halpern, 1994). They define a belief operator to quantify lower bounds on the probabilities
that an agent assigns to a formula. This is modeled by associating a probability space
with each state and each agent. In their framework, it is generally not guaranteed that
formulae define measurable sets, but they present some properties that can guarantee the
measurability of such sets. In contrast, the semantics defined for PDT Logic always produces
events with measurable probabilities. A special case of the framework introduced in (Fagin
& Halpern, 1994) is presented in (Milch & Koller, 2000). Just as in PDT Logic, in this
formalism it is assumed (i) that there exists a common prior probability distribution over
the set of worlds and (ii) that each agent’s local probability distribution at some world is
derived from the global distribution conditioned on the respective set of worlds the agent
considers possible. The additional feature in (Milch & Koller, 2000) is that models are
represented as Bayesian networks to find the probabilities of defined formulae. In (van der
Hoek, 1997), the logic PFD is introduced, and later extended in (de Carvalho Ferreira,
Fisher, & van der Hoek, 2008). Like (Fagin & Halpern, 1994), this framework introduces an
operator to quantify the lower bounds of probabilistic beliefs. Probabilistic values in this
work are semantically restricted to a finite base set of probability values, yielding a logically
compact framework that enables efficient implementations.

A variety of approaches have been proposed to extend probabilistic epistemic logics to
dynamic frameworks: (Kooi, 2003) restricts the probabilistic epistemic logic from (Fagin
& Halpern, 1994) to finite settings and combines it with the dynamic epistemic logic from

7

(Gerbrandy & Groeneveld, 1997) to create Probabilistic Dynamic Epistemic Logic (PDEL).
This work analyzes the effects on probabilistic beliefs upon public announcements. As this
framework is based on dynamic epistemic logic, it does not have capabilities to represent
temporal relationships; features regarding the past cannot be expressed at all, and features
regarding the future can only be expressed to a limited extent as the result of certain
actions. In (van Benthem, 2003) this framework is extended to analyze the results of
various epistemic actions as described in (Baltag et al., 1998). Another extension to this
framework is proposed in (van Benthem, Gerbrandy, & Kooi, 2009b), where different sources
of probabilities are distinguished. A simplification of this approach is presented in (van
Eijck & Schwarzentruber, 2014). This paper distinguishes itself from the above work on
probabilistic epistemic logic in that certainty is equated with knowledge. Other works make
an explicit distinction between belief with probability 1 and knowledge. The difference
between these two concepts is often illustrated with repeatedly throwing a fair coin: the
event that the coin shows head at least once is 1 for an infinite number of repetitions. Yet
no agent can know in this example that the coin will eventually show head. As PDT Logic
works only with countable models in finite time frames, we can adopt the view from (van
Eijck & Schwarzentruber, 2014) and consider certainty and knowledge as equivalent in our
models. Deviating from these approaches to extend epistemic logic with probabilities, PDT
Logic provides a belief operator with probability interval quantifications, so that both lower
and upper bounds on the probability values can be specified explicitly. This provides a
natural means to represent imprecise probabilities as discussed in the introduction.

In dynamic epistemic logic, it is only possible to reason about step-wise changes in
the future. In order to reason about temporal relations, (Sack, 2008) extends the update
mechanism of dynamic epistemic logic with temporal operators, namely previous-time and
next-time operators. In (Sack, 2009), this approach is extended to probabilistic frame-
works by augmenting the work on probabilistic dynamic epistemic logic (Kooi, 2003) with
a previous-time operator and the ability to reason about continuous probabilities. These
approaches enrich dynamic epistemic logic with the ability to reason about events in the
past. In (van Benthem, Gerbrandy, Hoshi, & Pacuit, 2009a), a systematic and precise com-
parison between ETL (called TEL in (van Benthem et al., 2009a)) and DEL is given and it
is shown how these approaches can be merged into a single framework.

(Shakarian et al., 2011) and (Shakarian et al., 2012) introduce APT Logic, a framework
to represent probabilistic temporal evolutions of worlds in threads. APT Logic assigns
prior probabilities to every thread and uses these probabilities to determine probabilities
of events occurring in specific threads. To represent temporal relationships between events,
APT Logic introduces the concept of frequency functions. We utilize the approach of APT
Logic to create a doxastic multi-agent framework that supports explicit reasoning about
temporal relationships through the adoption of frequency functions. While the explicit
notion of time in our formalism increases the complexity of decision problems, it significantly
enhances the expressibility of temporal relations. For instance, in contrast to all approaches
with implicit representations of time, in PDT Logic we are able to specify that events occur
within a certain time interval (cf. the introduction of frequency functions below).

8

3. PDT Logic: Syntax and Semantics

In this section, we discuss how beliefs in multi-agent systems can be formalized. We start
with defining the syntax of PDT Logic, discuss the employed model of time, and provide
a formal semantics. The proposed formalism enables the expression of different types of
beliefs and can quantify these beliefs using imprecise probabilities. By introducing a suitable
update rule we show how agents’ beliefs evolve over time and how agents can update their
beliefs such that new information is correctly integrated into their belief state.

3.1 Syntax

We assume the existence of a function-free and quantifier-free fragment of first order logic2

language L with finite sets of constant symbols Lcons and predicate symbols Lpred, and an
infinite set of variable symbols Lvar. Every predicate symbol p ∈ Lpred has an arity. A term
is any member of the set Lcons ∪ Lvar. A term is called a ground term if it is a member
of Lcons. If t1, .., tn are (ground) terms, and p is a predicate symbol in Lpred with arity n,
then p(t1, ..., tn) is a (ground) atom. If a is a (ground) atom, then a and ¬a are (ground)
literals. The former is called a positive literal, the latter is called a negative literal. The set
of all ground literals is denoted by Llit. As usual, B denotes the Herbrand Base of L, i.e.,
the set of all ground atoms that can be formed through from Lpred and Lcons.

Time is modeled in discrete steps and we assume that all agents reason about an arbitrar-
ily large, but fixed-size window of time. The set of time points is given by τ = {1, ..., tmax}.
The set of agents is denoted by A. Again, we assume that this set may be arbitrarily large,
but of finite size. To describe what agents observe, we define observation atoms as follows.

Definition 3.1 (Observation atoms). For any non-empty group of agents G ⊆ A and
ground literal l ∈ Llit, ObsG(l) is an observation atom. The set of all observation atoms is
denoted by Lobs.

Intuitively, the meaning of a statement of the form ObsG(l) is that all agents in the group
G observe that the fact l holds. Note that l may be a negative literal and therefore we can
explicitly specify observations of certain facts being false (such as “it is not raining”). We
assume that the agents in G not only observe that l holds, but that each agent in G is also
aware that all other agents in G make the same observation. In the line of (Baltag & Moss,
2004), observations can be viewed as the effects of private group announcements of a fact
l to a group G (i.e., l becomes common knowledge within G, while all agents outside of G
remain entirely oblivious of the observation): it represents an epistemic action, i.e., it alters
the belief states of all agents in G (as formally defined below), but does not influence the
ontic facts of the respective world.

Definition 3.2 (Formulae). Both atoms and observation atoms are formulae. If F and G
are formulae, then F ∧G, F ∨G, and ¬F are formulae. A formula is ground if all atoms of
the formula are ground.

Example 3.1 (Coin toss). Consider two agents 1, 2 and a coin that is tossed. The event
that the coin lands heads is denoted by the primitive proposition Head, and accordingly,

2. We use a first order structure for our language definition to have a syntactically convenient way of
representing observations. Apart from this, propositional logic could be used as a base language.

9

the coin lands tails is denoted by ¬Head. Let us assume that the coin actually lands heads.
Then, all sets of possible observations in this scenario are {Obs{1}(Head)}, {Obs{2}(Head)},
{Obs{1}(Head), Obs{2}(Head)}, {Obs{1,2}(Head)}.

Note that there is a difference between the third and the fourth set: in the former
scenario, both agents observe the outcome of the coin throw but both are unaware that the
other agent actually made the same observation. In the latter scenario, both agents observe
the outcome and are aware that the other agent observes the same. Since we do not allow
for nesting of observations (i.e., expressions such as ObsG1(ObsG2(l))) in PDT Logic, only
a subset of the epistemic actions discussed in (Baltag & Moss, 2004) can be represented in
our formalism. While this limits the expressivity of epistemic actions to some extent, we
can ensure that the resulting set of possible observations Lobs is always finite and therefore
we can show that PDT Logic is decidable (as shown in Section 4). Further, note that the
formal concept of observations is not limited to express passive acts of observing facts, but
can instead be used to model a wide range of actions: for instance, in the above example
one could also use Obs{1,2}(Head) to model the act of one agent telling the other about
the outcome of the coin throw—the ramifications of the communication act are exactly the
same as they would be in a shared observation (assuming that agents do not lie).

To express temporal relationships, we define temporal rules following the approach of
APT rules from (Shakarian et al., 2011). The definition of temporal rules already relies on
the concept of frequency functions, even though these are defined in the next section. We
still introduce temporal rules now to enable a clearly separated presentation of syntax and
semantics of PDT Logic.

Definition 3.3 (Temporal rules). Let F,G be two ground formulae, ∆t a time interval,
and fr a name for a frequency function (as defined below in Section 3.2.5). Then rfr∆t(F,G)
is called a temporal rule.

Frequency functions provide information about temporal connections between events.
The meaning of an expression rfr∆t(F,G) is to be understood as “F is followed by G in ∆t
time units w.r.t. frequency function fr”. Frequency functions enable the specification of
various types of temporal relations. For example, they can be used to determine how often
F is followed by G within ∆t time units or how often F is followed by G exactly after ∆t
time units. The usage of fr in the syntax of temporal rules is used to specify a set of possible
names for the employed types of frequency function.

Now, we can define the belief operator B`,u
i,t′ to express agents’ beliefs. Intuitively, B`,u

i,t′ (ϕ)
means that at time t′, agent i believes that some fact ϕ is true with a probability p ∈ [`, u].
Particularly, the intuitive meaning of belief in a temporal rule is that agent i believes
that G will hold according to rfr∆t(F,G), given that F holds at some time point. We call
the probability interval [`, u] the quantification of agent i’s belief. We use Ft to denote
that formula F holds at time t and, accordingly, ObsG(l)t to denote that an observation
ObsG(l) occurs at time t. We call these expressions time-stamped formulae and time-
stamped observation atoms, respectively.

Definition 3.4 (Belief formulae). Let i be an agent, t′ a time point, and [`, u] ⊆ [0, 1].
Then, belief formulae are inductively defined as follows:

1. If F is a ground formula and t is a time point, then B`,u
i,t′ (Ft) is a belief formula.

10

2. If rfr∆t(F,G) is a temporal rule, then B`,u
i,t′ (r

fr
∆t(F,G)) is a belief formula.

3. If F and G are belief formulae, then so are B`,u
i,t′ (F), F ∧ G , F ∨ G , and ¬F .

For a belief B`,u
i,t′ (ϕ) about something, we call ϕ the belief object. Belief operators are the

atomic elements in PDT Logic, i.e., any expression B`,u
i,t′ (ϕ) (including possibly nested belief

formulae) is called an atom. We use script fonts (e.g., F) to distinguish belief formulae
from standard formulae. Note that we can have both ontic facts and observation atoms
as standard formulae (cf. Definition 3.2) and therefore agents can also have beliefs about
possible observations.

The use of probability intervals [`, u] provides an option to represent imprecise probabil-
ities (Bradley,): When using imprecise probabilities, it is usually assumed that the degree
of belief in some proposition is not represented using a single probability function p(·), but
instead through a set P of such functions. Then, the belief state P (ϕ) in a proposition ϕ is
represented through the set

P (ϕ) = {p(ϕ) : p ∈ P}.
For this set of probabilities P (ϕ), so-called lower and upper envelopes are defined as P (ϕ) =
inf P (ϕ) and P (ϕ) = supP (ϕ), respectively. The belief quantifications in our belief operator
represent such imprecise probabilities and the ` and u values of the probabilistic belief can be
considered as the lower and upper envelopes P and P of the respective imprecise probability.

Remark 3.1. We decided to index both the belief operators B`,u
i,t′ (ϕ) and facts Ft appearing

as belief objects ϕ with time stamps to allow for a concise representation of temporal
relations. Alternatively, one could use the more traditional approach (cf. (Sack, 2009) for
example) and introduce previous-time and next-time operators into the language to express

temporal relationships between t and t′ in B`,u
i,t′ (Ft). Then, we could also omit the temporal

index t′ of the belief operator and instead evaluate whether the belief holds at time t′ of
the model. However, these are merely syntactic considerations that do not impact the
underlying formalism. Thus we decided to encode time explicitly into the belief operators
to avoid the introduction of additional temporal operators. Moreover, belief operators can
also be used to express general temporal relationships of the modeled domain. We will
illustrate this point in detail in Section 4.

3.2 Semantics

In this section, we will provide a formal semantics for PDT Logic that captures the intuitions
explained above. To ease understanding of the presentation, we start with the introduction
of an example, to which we will return repeatedly when introducing the various concepts of
the semantics. For an illustration of our formalism’s features, we use a simplified exemplary
domain. While the practical use of this example is somewhat limited, it serves to illustrate
how PDT Logic can be applied, and especially how the analysis of multi-agent beliefs can
yield valuable information when deciding on meaningful actions. The resulting insights can
then be easily applied to more sophisticated domains.

Example 3.2 (Trains). Let Alice and Bob be two agents living in two different cities CA
and CB, respectively. Suppose that Alice wants to take a train to visit Bob. Unfortunately,

11

there is no direct connection between cities CA and CB, so Alice has to change trains at a
third city CC . We assume that train T1 connects CA and CC , and train T2 connects CC and
CB. Both trains usually require 2 time units for their trip, but they might be running late
and arrive one time unit later than scheduled. Alice requires one time unit to change trains
at city CC . If T1 runs on time, she has a direct connection to T2, otherwise she has to wait
for two time units until the next train T2 leaves at city CC . If a train is running late, she
can call Bob to let him know. These calls can be modeled as shared observations between
Alice and Bob. For instance, if Alice wants to tell Bob that train T1 is running late (i.e., T1

does not arrive at CC at the expected time), this can be modeled as Obs{AB}(¬at(T1, CC))
at the expected arrival time.

3.2.1 Possible Worlds

Ontic facts and corresponding observations (e.g., as described in the above example) form
worlds (or states in the terminology of (Fagin et al., 1995)). A world ω consists of a set
of ground atoms and a set of observation atoms, i.e., ω ∈ 2B∪Lobs .3 We use a ∈ ω and
ObsG(l) ∈ ω to denote that an atom a, resp. observation atom ObsG(l), holds in world ω.
Since agents can only observe facts that actually hold in the respective world, we can define
admissibility conditions of worlds w.r.t. the set of observations:

Definition 3.5 (Admissible worlds). A world ω is admissible, iff for every observation atom
ObsG(l) ∈ ω

1. the observed fact holds, i.e., x ∈ ω if l is a positive literal x, and x 6∈ ω if l is a negative
literal ¬x, and

2. for every subgroup G′ ⊂ G, ObsG′(l) ∈ ω.

We use adm(ω) to denote that a world ω is admissible.

The set of all possible worlds is denoted by Ω and the set of admissible worlds by Ω̂.
For the following discussion in this section we assume that some specification of Ω̂ is given.
While it is possible to employ the usual definition of Ω as the set of all combinations of
ground atoms and observation atoms (Ω = 2B∪Lobs), and Ω̂ as the maximum subset of Ω
complying with Definition 3.5, this usually contains a vast number of worlds which are
blatantly impossible according to the respective problem modeled. Therefore, we assume
that a succinct specification of a set of admissible worlds depending on the respective domain
is given. The main reason for this assumption is to simplify the following presentation—we
will describe a method to obtain such a set algorithmically in Section 4.

Remark 3.2. As already discussed in Section 3.1, for group observations ObsG(l) every
agent i ∈ G is aware that all other agents in G have observed this fact. Together with

3. Most formalisms in epistemic logic do not encode facts directly into the worlds, but instead use a set of
named states s1, s2, ... and some valuation function π(si) to determine which facts hold in world si (cf.
(Fagin et al., 1995)). This is mainly done to obtain the option of having multiple worlds si, sj where the
same facts hold (i.e., π(si) = π(sj)), but the knowledge states of the agents differ. As described below,
in PDT Logic worlds appear within threads, and thus it is possible that worlds with the same valuation
appear at some time point in multiple threads. Thus, in our formalism we can encode facts directly into
the possible worlds and save the valuation function without limiting the epistemic expressivity.

12

Definition 3.5, the semantics of observations is then equivalent to the usual semantics of
common knowledge. In (Fagin et al., 1995), a definition of common knowledge is given
through the fixed-point axiom: A fact l is common knowledge among a group G if and
only if all members of G know that l is true and is common knowledge. Thus, we could also
equivalently use the established common knowledge operator CG(l) instead of the previously
defined observation atoms ObsG(l). However, the concept of common knowledge is usually
used to describe emergent states of agents’ knowledge. On the other hand, in the context
of our approach, observations are an extrinsic feature that will result in the emergence of
other belief states. To keep a clear distinction of the intended use of the operator, we will
therefore continue to use ObsG(l) instead of CG(l).

Example 3.3 (Trains continued). For Example 3.2, we have ground terms A, B, CA, CB,
CC , T1, and T2, representing Alice, Bob, three cities, and two trains. Furthermore, we have
atoms on(y, x) indicating that person y is on train x, and at(x, z) indicating that train x
is at city z. Finally, we have observation atoms of the kind ObsG(at(x, z)), indicating that
the agents in G observe that train x is at station z. A possible world can for example be
ω1 = {at(T1, CA), on(A, T1), Obs{A}(at(T1, CA))}, indicating that train T1 is at city CA and
A has boarded that train.

We define satisfaction of a ground formula F by a world ω in the usual way (Lloyd,
1987):

Definition 3.6 (Satisfaction of ground formulae). Let F, F ′, F ′′ be ground formulae and ω
a world. Then, F is satisfied by ω (denoted ω |= F) if and only if:

case F = a for some ground atom a: a ∈ ω.

case F = ¬F ′ for some ground formula F ′: ω 6|= F ′.

case F = F ′ ∧ F ′′ for formulae F ′ and F ′′: ω |= F ′ and ω |= F ′′.

case F = F ′ ∨ F ′′ for formulae F ′ and F ′′: ω |= F ′ or ω |= F ′′.

We say that a formula F is a tautology if ω |= F for all admissible worlds ω ∈ Ω̂. We
say that a formula F is a contradiction if there is no world ω ∈ Ω̂ such that ω |= F . We use
the usual symbols > and ⊥ to denote tautologies and contradictions, respectively.

3.2.2 Threads

To model temporal evolutions of the problem domain we use the definition of threads from
(Shakarian et al., 2011):

Definition 3.7 (Thread). A thread Th is a mapping from the set of time points τ to the
set of admissible worlds: Th : τ → Ω̂

Thus, a thread is a sequence of worlds and Th(t) identifies the actual world at time t
according to thread Th. The set of all possible threads (i.e., all possible sequences con-
structible from τ and Ω̂) is denoted by T . Again, we refrain from directly working with
T , and instead assume that any meaningful problem specification gives information about
possible temporal evolutions of the system. We use T̂ to represent this set of relevant pos-
sible threads. For notational convenience, we assume that there is an additional prior world
Th(0) for every thread.

13

T
h
i

t

T
h
1

T
h
2

T
h
3

T
h
4

T
h
5

T
h
6

T
h
7

T
h
8

T
h
9

1

a
t(
T
1
,C

A
)

on
(A

,T
1
)

a
t(
T
1
,C

A
)

on
(A

,T
1
)

a
t(
T
1
,C

A
)

on
(A

,T
1
)

a
t(
T
1
,C

A
)

on
(A

,T
1
)

a
t(
T
1
,C

A
)

on
(A

,T
1
)

a
t(
T
1
,C

A
)

on
(A

,T
1
)

a
t(
T
1
,C

A
)

on
(A

,T
1
)

a
t(
T
1
,C

A
)

on
(A

,T
1
)

a
t(
T
1
,C

A
)

on
(A

,T
1
)

2

on
(A

,T
1
)

on
(A

,T
1
)

on
(A

,T
1
)

on
(A

,T
1
)

on
(A

,T
1
)

on
(A

,T
1
)

on
(A

,T
1
)

on
(A

,T
1
)

on
(A

,T
1
)

3

O
bs

{A
,B

}
(¬

a
t(
T
1
,C

c
))

on
(A

,T
1
)

O
bs

{A
}

(¬
a
t(
T
1
,C

c
))

on
(A

,T
1
)

O
bs

{A
,B

}
(¬

a
t(
T
1
,C

c
))

on
(A

,T
1
)

O
bs

{A
}

(¬
a
t(
T
1
,C

c
))

on
(A

,T
1
)

O
bs

{A
,B

}
(¬

a
t(
T
1
,C

c
))

on
(A

,T
1
)

O
bs

{A
}

(¬
a
t(
T
1
,C

c
))

on
(A

,T
1
)

a
t(
T
1
,C

C
)

on
(A

,T
1
)

a
t(
T
1
,C

C
)

on
(A

,T
1
)

a
t(
T
1
,C

C
)

on
(A

,T
1
)

4

a
t(
T
1
,C

C
)

on
(A

,T
1
)

a
t(
T
1
,C

C
)

on
(A

,T
1
)

a
t(
T
1
,C

C
)

on
(A

,T
1
)

a
t(
T
1
,C

C
)

on
(A

,T
1
)

a
t(
T
1
,C

C
)

on
(A

,T
1
)

a
t(
T
1
,C

C
)

on
(A

,T
1
)

a
t(
T
2
,C

C
)

on
(A

,T
2
)

a
t(
T
2
,C

C
)

on
(A

,T
2
)

a
t(
T
2
,C

C
)

on
(A

,T
2
)

5

on
(A

,T
2
)

on
(A

,T
2
)

on
(A

,T
2
)

6

a
t(
T
2
,C

C
)

on
(A

,T
2
)

a
t(
T
2
,C

C
)

on
(A

,T
2
)

a
t(
T
2
,C

C
)

on
(A

,T
2
)

a
t(
T
2
,C

C
)

on
(A

,T
2
)

a
t(
T
2
,C

C
)

on
(A

,T
2
)

a
t(
T
2
,C

C
)

on
(A

,T
2
)

O
bs

{A
,B

}
(¬

a
t(
T
2
,C

B
))

on
(A

,T
2
)

O
bs

{A
}

(¬
a
t(
T
2
,C

B
))

on
(A

,T
2
)

a
t(
T
2
,C

B
)

on
(A

,T
2
)

7

a
t(
T
2
,C

B
)

a
t(
T
2
,C

B
)

on
(A

,T
2
)

on
(A

,T
2
)

on
(A

,T
2
)

on
(A

,T
2
)

on
(A

,T
2
)

on
(A

,T
2
)

on
(A

,T
2
)

on
(A

,T
2
)

8

a
t(
T
2
,C

B
)

a
t(
T
2
,C

B
)

O
bs

{A
}

(¬
a
t(
T
2
,C

B
))

O
bs

{A
}

(¬
a
t(
T
2
,C

B
))

O
bs

{A
,B

}
(¬

a
t(
T
2
,C

B
))

O
bs

{A
,B

}
(¬

a
t(
T
2
,C

B
))

on
(A

,T
2
)

on
(A

,T
2
)

on
(A

,T
2
)

on
(A

,T
2
)

on
(A

,T
2
)

on
(A

,T
2
)

9

a
t(
T
2
,C

B
)

a
t(
T
2
,C

B
)

a
t(
T
2
,C

B
)

a
t(
T
2
,C

B
)

on
(A

,T
2
)

on
(A

,T
2
)

on
(A

,T
2
)

on
(A

,T
2
)

111111

222222

1

Figure 1: Visualization of the possible threads Thi from Example 3.2. For an easier distinc-
tion, shared observations between A and B are marked in blue, single observations
of A are marked in red, and all situations where Alice is on train 1 or train 2
are marked in green and orange, respectively. Note that if a train is running late
(the respective threads are marked with according circles), there are always two
possible threads: one where only A observes this and one where both share the
observation. 14

Following Definition 3.6, we use Th |= Ft to denote that thread Th satisfies formulae F
at time t (i.e., Th |= Ft ≡ Th(t) |= F). Accordingly, we use T |= Ft to denote that every
thread Th ∈ T satisfies formula F at time t.

We assume that the system is synchronous, i.e., the agents have a global clock. Thus,
even if an agent does not observe anything in world Th(t), it is still aware of time passing
and can therefore distinguish between worlds Th(t) and Th(t− 1).

Example 3.4 (Trains continued). The description from Example 3.2 (p. 11) yields the
set of possible threads T̂ depicted in Figure 1. Note that this is a manually specified set
of threads containing only threads that comply with the description in Example 3.2. The
set of all possible threads T would contain a vast number of additional threads that are
irrelevant to the described scenario.

3.2.3 Kripke Structures

With the definition of threads, we can use a slightly modified version of Kripke structures
(Kripke, 1963). As usual, we define a Kripke structure as a tuple 〈Ω̂,K1, ...,Kn〉, with the
set of admissible worlds Ω̂ and binary relations Ki on Ω̂ for every agent i ∈ A. Thus, the
Kripke relation (also called possibility relation) for agent i at world ω is defined as

Ki(ω) = {ω′ : (ω, ω′) ∈ Ki} (1)

Intuitively, (ω, ω′) ∈ Ki specifies that in world ω, agent i considers ω′ also as a possible
world. In other words, with its current information agent i is unable to distinguish worlds
ω and ω′.

We initialize the Kripke structure such that all threads are considered possible at time
t = 0:

∀Th ∈ T̂ : Ki(Th(0)) =
⋃

Th′∈T̂

{Th′(0)}, i ∈ A (2)

With the evolution of time, each agent can eliminate the worlds that do not comply with its
respective observations. Through the elimination of worlds, an agent will also reduce the
set of threads it considers possible (if—due to some observation—a world ω is considered
impossible at a time point t, then all threads Th with Th(t) = ω are considered impossible).
We assume that agents have perfect recall and therefore will not consider some thread
possible again if it was considered impossible at one point. Thus, Ki is updated w.r.t. the
agent’s respective observations, such that it considers all threads possible that both comply
with its current observations and were considered possible at the previous time point:

Ki(Th(t)) =
{
Th′(t) :

(
Th′(t− 1) ∈ Ki(Th(t− 1))∧

{ObsG(l) ∈ Th(t) : i ∈ G} = {ObsG(l) ∈ Th′(t) : i ∈ G}
)}

(3)

The following two corollaries describe key properties of Ki that follow immediately from
the definitions in (2) and (3):

Corollary 3.1 (Equivalence relation). Ki defines an equivalence relation over the possible
worlds Ki(Th(t)) for time points t ∈ τ .

15

Corollary 3.2 (Reduction of considered threads). The set of threads Th′ considered possible
w.r.t. Ki is narrowing to a smaller and smaller subset over time, i.e., {Th′ : Th′(t) ∈
Ki(Th(t))} ⊆ {Th′ : Th′(t− 1) ∈ Ki(Th(t− 1))} for all Th ∈ T̂ and t ∈ τ .

Note that updates of Ki are defined such that new information is incorporated instan-
taneously, i.e., if at time t an agent observes some fact, it updates its possibility relations
already at time t such that it considers every world impossible that does not comply with
the observation of time t.

Example 3.5 (Trains continued). From Figure 1, we obtain that at time 1, the only
possible world is {at(T1, CA), on(A, T1)}, which is contained in all possible threads. Thus,
Ki(Thj(1)) contains exactly this world for all agents i and threads j. Consequently, both
agents consider all threads as possible at time 1.

Now, assume that time evolves for two steps and the actual thread is Th4 (i.e., train
T1 is running late, but A does not inform B about this). Both agents will update their
possibility relations accordingly, yielding

KA(Th4(3)) = {{Obs{A}(¬at(T1, CC)), on(A, T1)}}

and

KB(Th4(3)) = {{at(T1, CC), on(A, T1)}, {Obs{A}(¬at(T1, CC)), on(A, T1)}},

i.e., A knows that T1 is not on time, while B is unaware of T1 being late, since he still
considers a situation possible where train T1 is at city CC at time t = 3.

3.2.4 Subjective Posterior Temporal Probabilistic Interpretations

Each agent has probabilistic beliefs about the expected evolution over time. This is ex-
pressed through subjective temporal probabilistic interpretations:

Definition 3.8 (Subjective posterior probabilistic temporal interpretation). Given a set of
possible threads T̂ , some thread T̊ h ∈ T̂ , a time point t′ > 0 and an agent i, the function

I T̊ hi,t′ : T̂ → [0, 1] specifies the subjective posterior probabilistic temporal interpretation from

agent i’s point of view at time t′ in thread T̊ h, i.e., a probability distribution over all possible

threads:
∑

Th∈T̂ I T̊ hi,t′ (Th) = 1. Since the probabilistic interpretations over possible threads

depend on the respective perspective of agent i, T̊ h marks the point of view for a subjective

interpretation. Thus, we call T̊ h the point of view (pov) thread of interpretation I T̊ hi,t′ .

The concept of point of view threads can be seen as conditional probabilities: A subjec-

tive posterior probabilistic interpretation I T̊ hi,t′ specifies agent i’s probabilistic interpretation

at time t′ given that T̊ h is the actual thread. Different threads yield different evolutions
of the world and—since every possible thread can be taken as a pov thread— may induce
different probabilistic interpretations of an agent. Thus, the notion of pov threads allows
to reason about hypothetical beliefs of an agent, for instance if possible future beliefs are
analyzed or nested beliefs are evaluated.

16

To simplify notation, we see I T̊ hi,t′ as a vector and occasionally represent a probabilistic

interpretation I T̊ hi,t′ over a vector of possible threads T̂ as a vector as well, so that the jth

element of I T̊ hi,t′ refers to the probability assigned to thread Thj .

The prior probabilities of each agent for all threads are then given by I T̊ hi,0 (Th). Since
all threads are indistinguishable a priori, there is only a single prior distribution needed

for each agent (i.e., ∀Th, T̊h, T̊ h′ ∈ T̂ : I T̊ hi,0 (Th) = I T̊ h
′

i,0 (Th)). Furthermore, in order
to be able to reason about nested beliefs (as discussed below), we assume that the prior
probability assessments of all agents are commonly known (i.e., all agents know how all
other agents assess the prior probabilities of each thread). This in turn requires that all
agents have exactly the same prior probability assessment over all possible threads: if two
agents have different, but commonly known prior probability assessments, we essentially
have an instance of Aumann’s well-known problem of “agreeing to disagree” (Aumann,
1976). Intuitively, if differing priors are commonly known, it is common knowledge that
(at least) one of the agents is at fault and should revise its probability assessments. As a
result, we have only one prior probability distribution which is the same from all viewpoints,
denoted by I. Note that I directly corresponds to the concept of temporal probabilistic
interpretations in (Shakarian et al., 2011).

Remark 3.3. We could use the prior probability distribution I as an alternative method
to distinguish between the set of all possible threads T and the set of threads T̂ relevant
to a specific problem domain. To do so, we simply assign all unwanted threads Th 6∈ T̂ a
probability of zero.

Example 3.6 (Trains continued). A meaningful prior interpretation is

I(T̂) =
(
0.7 0.02 0.09 0.02 0.09 0.01 0.02 0.02 0.03

)
,

which assigns the highest probability to Th1 (no train running late), lower probabilities to
the threads where one train is running late and A informs B (Th3 and Th5), even lower
probabilities to the events that either both trains are running late and A informs B (Th7,
Th8, and Th9) or that one train is running late and A does not inform B (Th2 and Th4),
and lowest probability to the thread where both trains are running late and A does not
inform B (Th6). Note that I represents the prior interpretation for the train example and
thus is the same for every agent i ∈ A and every possible pov thread T̊ h.

Even though we only have a single prior probability distribution over the set of possible
threads, it is still necessary to distinguish the viewpoints of different agents in different
threads, as the following definition of interpretation updates shows.

Whenever an agent updates its Kripke relations according to Equation (3) (p. 15), it
is necessary to update the probabilistic interpretations of that agent to match the new
knowledge. An intuitive way to update the probabilities is conditioning on the remaining
worlds in the agent’s Kripke structure. We want to point out that conditioning is a suitable
choice in PDT Logic, although it is known to produce undesired or incorrect results in many
cases, most notably in the Monty Hall problem (vos Savant, 1990). In (Grünwald & Halpern,
2003) it is discussed that naive conditioning tends to produce errors because updates are
carried out in a simplified space where several events are collapsed since they are seemingly

17

one event. If one uses so-called sophisticated conditioning instead (i.e., conditioning in the
sophisticated space, which means that all possible events are represented), probabilities are
updated correctly. As the semantics of PDT Logic is based on an exhaustive specification of
all relevant threads, conditioning in a proper specification of all relevant threads is inherently
sophisticated in the sense of (Grünwald & Halpern, 2003) and will therefore produce correct
results. One can easily verify that with the following update rule, well-known probability
puzzles such as the Monty Hall Problem (vos Savant, 1990) can be correctly represented in
PDT Logic. Thus, we use the following conditioning-based update rule:

Definition 3.9 (Interpretation update). Let i be an agent, t′ a time point, and T̊ h a pov
thread. Then, if the system is actually in thread T̊ h at time t′, agent i’s probabilistic
interpretation over the set of possible threads is given by the update rule:

I T̊ hi,t′ (Th) =

1

αT̊h
i,t′
· I T̊ hi,t′−1(Th) if Th(t′) ∈ Ki(T̊ h(t′))

0 if Th(t′) 6∈ Ki(T̊ h(t′))
(4)

with 1

αT̊h
i,t′

being a normalization factor to ensure that
∑

Th∈T̂ I T̊ hi,t′ (Th) = 1:

αT̊ hi,t′ =
∑

Th∈T̂ ,

Th(t′)∈Ki(T̊ h(t′))

I T̊ hi,t′−1(Th) (5)

The invocation of Ki in the update rule yields obvious ramifications about the evolution
of interpretations, as stated in the following corollary:

Corollary 3.3 (Nonzero probabilities). The subjective temporal probabilistic interpretation

I T̊ hi,t′ of an agent i assigns nonzero probabilities exactly to the set of threads that i still

considers possible at time t′, i.e., I T̊ hi,t′ (Th) > 0 iff (Th(t), T̊ h(t)) ∈ Ki
Essentially, the update rule assigns all impossible threads a probability of zero and

scales the probabilities of the remaining threads such that they are proportional to the
probabilities of the previous time point. With a given prior probability distribution I over

the set of possible threads, the subjective posterior probabilities I T̊ hi,t′ in a specific pov thread

T̊ h for all agents i and all time points t′ are induced by the respective observations contained

in T̊ h. We use I T̊ h to denote the set of all subjective posterior interpretations I T̊ hi,t′ induced

in pov thread T̊ h.

Example 3.7 (Trains continued). Applying the update rule from (4) to the situation
described in Example 3.5 (p. 16), with I as given in Example 3.6, yields the updated
interpretation for A:

I T̊ h4
A,3 =

(
0 0 0 0.4 0 0.2 0 0.4 0

)
(6)

i.e., A considers exactly those threads possible, where the train is running late and she does
not inform B (threads Th4, Th6, and Th8). Due to the lack of any new information, B
can only eliminate the situations where A does indeed inform him about being late at time
point 3, and thus B’s interpretation is updated to:

I T̊ h4
B,3 ≈

(
0.82 0.02 0.10 0.02 0 0.02 0 0.02 0

)
. (7)

18

Th(1) Th(2) Th(3) Th(4) Th(5) Th(6) Th(7) Th(8)

F G F G G F G F

Figure 2: Example thread Th with τ = {1, ..., 8}, adopted from (Shakarian et al., 2011).
This figure shows each world that satisfies formula F or formula G.

3.2.5 Frequency Functions

To represent temporal relationships within threads, we adapt the concept of frequency func-
tions as introduced in (Shakarian et al., 2011). Frequency functions provide a flexible way of
representing temporal relations between the occurrences of specific events. To illustrate the
motivation behind using frequency functions, consider the exemplary thread Th depicted
in Figure 2. In this thread, one of the events F or G occurs at every time point from t = 1
to t = 8. As discussed in (Shakarian et al., 2011), there are multiple ways of characterizing
temporal relationships between the events F and G: For instance, one might specify how
often event F is followed by event G in, say, exactly 2 time points. According to Figure 2,
this happens in one out of four occurrences of F in Th. It might prove meaningful to ex-
clude the final occurrence of F in Th when determining this frequency, because naturally an
occurrence of F at tmax cannot be followed by a subsequent occurrence of G. Excluding the
final occurrence of F would yield one out of three for the desired frequency. Alternatively,
one could also specify how often F is followed by G within the next two time points. For the
exemplary thread from Figure 2, this would produce frequencies of 1 and 0.75 respectively,
again depending on whether the final occurrence of F is included.

This example illustrates already four different possible definitions of temporal relations
between events. To maintain flexibility in expressing temporal relations, we do not com-
mit to specific definitions in PDT Logic, but instead we adapt an axiomatic definition of
frequency functions:

Definition 3.10 (Frequency functions, adapted from (Shakarian et al., 2011)). Let Th be
a thread, F and G be ground formulae, and ∆t ≥ 0 be an integer. A frequency function fr
maps quadruples of the form (Th, F,G,∆t) to [0, 1] such that the following axioms hold:

(FF1) If G is a tautology, then fr(Th, F,G,∆t) = 1.

(FF2) If F is a tautology and G is a contradiction, then fr(Th, F,G,∆t) = 0.

(FF3) If F is a contradiction, fr(Th, F,G,∆t) = 1.

(FF4) If G is not a tautology, and either F or ¬G is not a tautology, and F is not a
contradiction, then there exist threads Th1, Th2 ∈ T such that fr(Th1, F,G,∆t) 6=
fr(Th2, F,G,∆t).

Axioms (FF1) to (FF3) ensure that in special cases—i.e., (G ≡ >), (F ≡ ⊥), or (F ≡
>, G ≡ ⊥)—frequency functions behave as temporal implications with premise F and
conclusion G. Axiom (FF4) enforces non-trivial frequency functions by requiring that in all

19

cases not covered by the first three axioms, there must be at least two threads with differing
frequency values.

Remark 3.4. This definition mostly corresponds to the definition of frequency functions in
(Shakarian et al., 2011), except that we do not require ∆t > 0. In (Shakarian et al., 2011),
frequency functions are only intended to express temporal relationships and therefore ∆t is
limited to nonzero values. By additionally allowing ∆t = 0, we obtain a concise framework
that can express both temporal relationships and static constraints within one time point.
This will be exploited in the next section, where decision procedures for PDT Logic are
discussed.

To illustrate the concept of frequency functions, we now present formal definitions for
point and existential frequency functions adapted from (Shakarian et al., 2011) that repre-
sent the informal descriptions of frequencies from above:

The point frequency function pfr expresses how frequently some event F is followed by
another event G in exactly ∆t time units:

pfr(Th, F,G,∆t) =
|{t : Th(t) |= F ∧ Th(t+ ∆t) |= G}|
|{t : (t ≤ tmax −∆t) ∧ Th(t) |= F}| (8)

If the denominator is zero, we define pfr to be 1. The denominator counts the total number of
occurrences of F in a given thread Th and the numerator counts the number of occurrences
of F followed by G after exactly ∆t time units. Thus, the ratio pfr expresses how frequently
F is followed by G in exactly ∆t time units. Note that the denominator only considers
occurrences of F up to time tmax − ∆t. This is done to reflect the previously discussed
intuition that occurrences of F in the last ∆t time points should be excluded from the
frequency, because there is no possibility that they can be followed by a subsequent G after
∆t time units.

The existential frequency function efr expresses how frequently some event F is followed
by another event G within the next ∆t time units:

efr(Th, F,G,∆t) =

efn(Th, F,G,∆t, 0, tmax)

|{t : (t ≤ tmax −∆t) ∧ Th(t) |= F}|+ efn(Th, F,G,∆t, tmax −∆t, tmax)
, (9)

with

efn(Th, F,G,∆t, t1, t2) =|{t : (t1 < t ≤ t2) ∧ Th(t) |= F

∧ ∃t′ ∈ [t,min(t2, t+ ∆t)] (Th(t′) |= G)}|

The function efn counts the number of occurrences of F followed by a subsequent occurrence
of G within the next ∆t time units. The first summand of the denominator again counts the
total number of occurrences of F up to the time point tmax −∆t. In the second summand
of the denominator, additional occurrences of F followed by G within ∆t time units. The
intuition of this definition is again to exclude occurrences of F in the final ∆t time units if
they are not followed by G. Since G may occur within the range ∆t, but this range cannot
be fully considered for the final ∆t time points, only occurrences of F with an according
subsequent occurrence of G are considered for these final time points. Consequently, the

20

ratio efr expresses how frequently some event F is followed by G within the next ∆t time
units without letting single occurrences of F in the final ∆t time points decrease the ratio.

Returning to the exemplary thread Th from Figure 2, we can evaluate the frequency
functions for the given thread: Suppose that we want to determine how often F is followed
by G exactly after two time steps. This can be expressed through a point frequency function:

pfr(Th, F,G, 2) =
1

3
.

If instead we want to know how often F is followed by G within the next two time steps,
we can use an existential frequency function:

efr(Th, F,G, 2) =
3

3
= 1

It should be noted that frequency functions can be used to model temporal relationships
usually expressed through temporal operators. For instance, pfr with ∆t = 1 reflects
the next operator and efr with ∆t = tmax reflects the future operator. The meaning
of additional temporal operators such as until can be captured through the definition of
additional frequency functions, if required.

3.2.6 Semantics of the Belief Operator

Now, with the definitions of subjective posterior probabilistic temporal interpretations and
the introduction of frequency functions, we can provide a formal semantics for the belief
operators defined in Section 3.1. This semantics extends definitions from (Shakarian et al.,
2011) for the satisfiability of static interpretations to obtain a formal definition of proba-
bilistic multi-agent beliefs.

Definition 3.11 (Belief Semantics). Let i be an agent and I T̊ hi,t′ be agent i’s interpretation

at time t′ in pov thread T̊ h. Then, it follows from this interpretation that agent i believes
at time t′ with a probability in the range [`, u] that

1. (Belief in ground formulae)

a formula F holds at time t (denoted by I T̊ hi,t′ |= B`,u
i,t′ (Ft)) iff

` ≤
∑

Th∈T̂ ,Th(t)|=F

I T̊ hi,t′ (Th) ≤ u. (10)

2. (Belief in rules)

a temporal rule rfr∆t(F,G) holds (denoted by I T̊ hi,t′ |= B`,u
i,t′ (r

fr
∆t(F,G))) iff

` ≤
∑
Th∈T̂

I T̊ hi,t′ (Th) · fr(Th, F,G,∆t) ≤ u. (11)

3. (Nested beliefs)

a belief B
`j ,uj
j,t (ϕ) of some other agent j holds at time t′ (denoted by

21

I T̊ hi,t′ |= B`,u
i,t′ (B

`j ,uj
j,t (ϕ))) iff

` ≤
∑
Th∈T̂

ITh
j,t |=B

`j ,uj
j,t (ϕ)

I T̊ hi,t′ (Th) ≤ u. (12)

The intuition behind this semantics is as follows. For beliefs in ground formulae Ft, the

subjective posterior probabilities I T̊ hi,t′ (Th) of an agent i at time t′ in pov thread T̊ h are
added for all threads Th that satisfy F at time t. Thus, the sum in (10) represents the

exact probability that I T̊ hi,t′ assigns to Ft. If this sum is within the specified boundaries [`, u],

the respective belief B`,u
i,t′ (Ft) holds for agent i at time t′ in pov thread T̊ h.

For beliefs in rules, the subjective posterior probabilities I T̊ hi,t′ (Th) for every thread are

weighted with the corresponding frequency fr(Th, F,G,∆t) from rule rfr∆t(F,G). Thus,

the weighted sum of I T̊ hi,t′ (Th) in (11) represents the exact probability that I T̊ hi,t′ assigns to
the temporal relation between F and G according to frequency function fr. For beliefs
in rules, the belief object rfr∆t(F,G) only contains information about the type of frequency
function fr, while constraints on the respective frequency values are given through the belief
quantification [`, u], i.e., an agent does not have probabilistic beliefs in specific frequency
values.

Remark 3.5. It should be noted that the semantics of beliefs in rules in (11) together
with the axiomatic definition of frequency functions in Definition 3.10 (p. 19) yields cer-
tain constraints on satisfiable beliefs in rules rfr∆t(F,G). If G is a tautology or F is a
contradiction (i.e., in Definition 3.10 FF1 or FF3 are satisfied), it holds for the respective
frequency function that fr(Th, F,G,∆t) = 1 for every possible thread Th, and thus, any

belief B`,u
i,t′ (r

fr
∆t(F,G)) is satisfiable if and only if the belief is quantified with u = 1, regard-

less of the set of threads T̂ or the corresponding interpretation I T̊ hi,t′ . Analogously, if F is a

tautology and G is a contradiction (i.e., FF2 is satisfied), any belief B`,u
i,t′ (r

fr
∆t(F,G)) is only

satisfiable for ` = 0.

For nested beliefs B`,u
i,t′ (B

`j ,uj
j,t (ϕ)), the expression is unnested by first determining all

possible pov threads Th for agent j such that B
`j ,uj
j,t (ϕ) is satisfied. If B

`j ,uj
j,t (ϕ) corresponds

to a belief in a fact or in a rule, (10) respectively (11) can be used to identify threads Th

such that IThj,t |= B
`j ,uj
j,t (ϕ). Otherwise, if ϕ represents another belief formula, the belief has

to be unnested recursively until the innermost belief of the expression is obtained. Then, for

all threads Th with IThj,t |= B
`j ,uj
j,t (ϕ), agent i’s subjective posterior probabilities I T̊ hi,t′ (Th)

are added again to determine whether the outer belief holds. Note that agent i does not
know the actual beliefs of agent j. However, due to the assumption of common and equal
priors discussed in Section 3.2.4, agent i is able to reason about agent j’s hypothetical
interpretation updates given that the system is in a specific thread. Thus, agent i is able
to compute (12) without knowing j’s exact beliefs.

Example 3.8 (Trains continued). We can use a point frequency function to express beliefs
about the punctuality of trains. Assume that both A and B judge the probability of a
train running late (i.e., arriving after 3 instead of 2 time units, expressed through the

22

temporal rule rpfr3 (at(T1, CA), at(T1, CC))) as being at most 0.4. This yields the following
belief formulae

B0,0.4
i,0 (rpfr3 (at(T1, CA), at(T1, CC)))

B0,0.4
i,0 (rpfr3 (at(T2, CC), at(T2, CB)))

, i ∈ {A,B}. (13)

For the temporal rules expressed in these belief formulae, we obtain the following frequencies
from Figure 1 (p. 14):

pfr(Th, at(T1, CA), at(T1, CC), 3) = 0 for Th ∈ {Th1, ..., Th3}
pfr(Th, at(T1, CA), at(T1, CC), 3) = 1 for Th ∈ {Th4, ..., Th9}
pfr(Th, at(T2, CC), at(T1, CB) , 3) = 0 for Th ∈ {Th1, Th4, Th5}
pfr(Th, at(T2, CC), at(T1, CB), 3) = 1 for Th ∈ {Th2, Th3, Th6, ..., Th9}

Combining these frequency values with the prior interpretation

I(T̂) =
(
0.7 0.02 0.09 0.02 0.09 0.01 0.02 0.02 0.03

)
,

given in Example 3.6 (p. 17) yields the sum∑
Th∈T̂

I(Th) · pfr(Th, F, G, 3) = 0.19

for both F = at(T1, CA), G = at(T1, CC) and F = at(T2, CC), G = at(T2, CB). As this sum
is within the belief quantification [`, u] = [0, 0.4], the belief formulae in (13) are valid. Note
that the prior probabilities from Example 3.6 have been specified such that both trains are
late with the same probability, and thus the respective sums for the above frequencies are
the same.

From the above definitions, we can use the belief about some fact F to quantify the
belief about the negation of this fact ¬F :

Corollary 3.4 (Belief in negated facts). Let B`,u
i,t′ (Ft) be an agent’s quantified temporal belief

about some fact F according to Definition 3.11. Then, the agent’s belief in the negation of

this fact ¬F is given as B`′,u′

i,t′ (¬F) with `′ = 1− u and u′ = 1− `.

3.3 Evolution over Time

In order to completely specify a problem in PDT Logic, we introduce the concept of doxastic
systems. In the following, we assume that all syntacical objects are finite.

Definition 3.12 (Doxastic system). Let A be a set of agents, T̂ be a set of threads, A
|A|×|T̂ |
0

be a matrix of prior probability distributions across T̂ for every agent in A, and F be a

set of frequency functions. Then, we call the quadruple D = 〈A, T̂ ,F , A|A|×|T̂ |0 〉 a doxastic
system.

23

Note that several of the parameters discussed before are not explicitly specified in a
doxastic system: neither the set of possible worlds Ω, the set of ground atoms B, the set of
observation atoms Lobs, nor the set of time points τ are explicitly specified. However, all
relevant information regarding these parameters is already contained in the specification of
T̂ .

Remark 3.6. Since all agents share a common prior, all rows of A0 are the same. Thus,
one could obtain a more parsimonious problem specification by only providing the single
unique row vector of prior probabilities. The choice of using the matrix A0 nonetheless
is for notational purposes only: it will simplify the presentation of interpretation update
operations later on.

Definition 3.13 (Admissibility of doxastic systems). Let D = 〈A, T̂ ,F , A|A|×|T̂ |0 〉 be a
doxastic system. D is called admissible iff every world (implicitly) defined in T̂ is admissible

(according to Definition 3.5, p. 12) and all rows of A
|A|×|T̂ |
0 sum to one.

To identify specific situations in a doxastic system after some time has passed and some
observations occurred, we furthermore define pointed doxastic systems:

Definition 3.14 (Pointed doxastic system, pds). Let D = 〈A, T̂ ,F , A|A|×|T̂ |0 〉 be a doxastic
system and H be a set of time-stamped observation atoms such that all observation atoms
from H occur in at least one of the worlds (implicitly) defined in T̂ . Then we call the pair
〈D,H〉 a pointed doxastic system.

Definition 3.15 (Admissibility of pointed doxastic systems). Let 〈D,H〉 be a pointed
doxastic system, and T̂ the set of threads from D. 〈D,H〉 is called admissible iff D is
admissible and there exists a thread Th ∈ T̂ such that ∀ObsG(l)t ∈ H : ObsG(l) ∈ Th(t)
(i.e., T̂ must contain at least one thread that complies with all timed observations from H).

Intuitively, the set of timed observations specified in a pds points to a certain situation
in a doxastic system. One could view t̂(H) = max{t : ∃ObsG(l)t ∈ H} as the present time in
a pds: the most recent observation occurred at t̂(H), all observations that actually occurred
in the past (t < t̂(H)) are specified in H (and are thus deterministic in retrospective), and
no further information about future observations t > t̂(H) is given. In this sense, H specifies
a certain history up to t̂(H) in a doxastic system and points to the last event of this history.

Example 3.9 (Trains continued). A doxastic system for the train example can be specified
as

D = 〈{A,B}, {Th1, ..., Th9}, {pfr, efr}, A0〉,
with

A0 =

(
0.7 0.02 0.09 0.02 0.09 0.01 0.02 0.02 0.03
0.7 0.02 0.09 0.02 0.09 0.01 0.02 0.02 0.03

)
.

To identify the situation described in Example 3.5 (p. 16, T1 is running late), we can specify
the following pointed doxastic system:

〈D, {Obs{A}(¬at(T1, CC)3)}〉

24

3.3.1 Evolution of Probabilistic Interpretations

In accordance with the prior probability matrix A0 from Definition 3.12, we define an

interpretation matrix AT̊ ht to store the interpretations of all agents A (with n denoting the
number of agents |A|) across all threads Th1, ..., Thm given that the doxastic system is in
pov thread T̊ h at time t:

AT̊ ht =

I T̊ h1,t (Th1) . . . I T̊ h1,t (Thm)

...
. . .

...

I T̊ hn,t (Th1) . . . I T̊ hn,t (Thm)

 (14)

With the definition of Ki from Equation (3) (p. 15), the update rule from Equation (4)
(p. 18), and using the prior probability matrix A0 from Definition 3.12, we can provide an

update matrix U T̊ ht to calculate the interpretation matrix for any pov thread T̊ h at any
time point t (◦ denotes the element-wise multiplication of matrices):

AT̊ ht = AT̊ ht−1 ◦ U T̊ ht (15)

with

(uT̊ ht)ij =

0 if Thj(t) 6∈ Ki(T̊ h(t))
1

αT̊h
i,t′

if Thj(t) ∈ Ki(T̊ h(t)) (16)

and αT̊ hi,t′ a normalization factor as defined in Equation (5) (p. 18).

The time-stamped observations specified in the history H of a pds 〈D,H〉 induce an
updated set of reachability relations Ki(Th(t)) for every thread Th that complies with
the given observations (for threads Th⊥ that do not comply with the given observations
Ki(Th⊥(t)) = ∅). These updated reachability relations in turn yield the updated interpre-

tations in AT̊ ht . The complete state of interpretations at any time point for every possible
pov thread T̊ h1, ..., T̊ hm can then be specified as a block matrix, which we call the belief
state (bs) of a pds at time t:

bs(〈D,H〉, t) =
(
AT̊ h1
t , ..., AT̊ hmt

)
(17)

We use bs(〈D,H〉) to denote the sequence of all belief states bs(〈D,H〉, t) from t = 1 to
t = tmax.

This definition of belief states can be seen as a specification of conditional probabilities:
the kth entry of bs(〈D,H〉, t) specifies the interpretations of all agents across all threads at
time t given that the system is in pov thread T̊ hk. Thus—as every thread is considered as
a potential pov thread—a full specification of an agent’s belief state for m threads requires
m ·m conditional probabilities for every time point t. This is a very general representation
of belief states to allow for an easy evaluation of subjective posterior interpretations at
arbitrary time points and pov threads and for an intuitive definition of belief state updates.
However, this general definition contains some redundant information. By leveraging cer-
tain properties of the semantics of PDT Logic, we identify means to obtain compressed
representations of the belief state in the following.

25

Corollary 3.5 (Null vectors in AT̊ hkt). Due to the definition of (16), the ith row of AT̊ hkt is
~0 iff agent i’s actual observations (as specified in H) do not match the observations specified
in thread Thk.

Proposition 3.6 (Belief state compression). Let 〈D,H〉 be a pointed doxastic system and
let t be a time point such that t ≤ t̂(H). Then, without any loss of information, the belief
state bs(〈D,H〉, t) at time t can be represented through

bs(〈D,H〉, t)′ =
(
~v1,t, ..., ~vn,t

)T
(18)

with one probability distribution vector ~vi,t per agent i.

Proof. It follows directly from Corollaries 3.3 (p. 18) and 3.5 that the matrices AT̊ hkt from
bs(〈D,H〉, t) with nonzero rows i are exactly those that correspond to threads considered
possible by agent i at time t.

From the properties of Ki given in Corollary 3.1 (p. 15) follows that all worlds Th′(t) ∈
Ki for t ≤ t̂(H) are indistinguishable to agent i and therefore are associated with the same
interpretation. Thus, all nonzero ith rows of the matrices in bs are identical. Defining ~vi,t
as these unique nonzero rows i of bs, we obtain the representation of (18). Information
about impossible pov threads (as described in Corollary 3.5) is still maintained as they are
assigned a probability of 0 in ~vi,t.

It is important to note that this compressed representation is only applicable to time
points t ≤ t̂(H), because in retrospective an agent is able to classify threads into two
categories: those that comply with the observations so far (i.e., those that are considered
possible), and those that do not. For time points t > t̂(H) this classification is not possible
becauseKi(Th(t)) then depends on future observations and can therefore lead to a branching
of several distinct interpretations depending on the respective observations.

3.3.2 Evolution of Beliefs

In order to analyze the temporal evolution of beliefs, we use the update rule from (15) to
update belief states. Since different possible observations yield different branches in the
evolution of beliefs, we have to update every thread in the belief state individually, using

the respective update matrices U T̊ ht as defined in (16):

bs(〈D,H〉, t) = bs(〈D,H〉, t− 1) ◦ (U T̊ h1
t , ..., U T̊ hmt) (19)

Furthermore, to analyze satisfiability and validity of arbitrary finite belief expressions
B`,u
i,t′ (ϕ) w.r.t. a given pds 〈D,H〉, we define an auxiliary belief vector~b(ϕ) for different beliefs

B`,u
i,t′ (ϕ). This vector ~b(ϕ) contains one entry (~b(ϕ))j for every possible thread Thj ∈ T̂ and

is defined as follows:

a) B`,u
i,t′ (Ft) : (~b(Ft))j =

{
1 if Thj(t) |= F

0 if Thj(t) 6|= F

b) B`,u
i,t′ (r

fr
∆t(F,G)) : (~b(rfr∆t(F,G)))j = fr(Thj , F,G,∆t)

c) B`,u
i,t′ (B

`k,uk
k,t (ϕ)) : (~b(B`k,uk

k,t (ϕ)))j =

{
1 if IThjk,t |= B`k,uk

k,t (ϕ)

0 if IThjk,t 6|= B`k,uk
k,t (ϕ)

(20)

26

Note that in the case of nested beliefs, the respective entries (~b(ϕ))j are set to one if the
inner belief holds in thread Thj , i.e., it is assumed that Thj is the point of view thread for

agent k and then it is checked whether k’s belief B`k,uk
k,t (ϕ) is satisfied in this thread.

Using (19) and (20), we can determine a matrix Pt′(ϕ) with the probabilities pT̊ hki,t′ (ϕ)
that each agent i assigns at time t′ to some event ϕ, for all possible pov threads
T̊ h1, ..., T̊ hm:4

Pt′(ϕ) = bs(〈D,H〉, t′) ·
(
~b(ϕ), ...,~b(ϕ)

)T
=

pT̊ h1

1,t′ . . . pT̊ hm1,t′

...
. . .

...

pT̊ h1
n,t′ . . . pT̊ hmn,t′

 (ϕ) (21)

For n agents and m threads, this results in a n×m matrix. The rows of this matrix can
be seen as conditional probabilities: agent i believes at time t′ that a fact ϕ is true with

probability pT̊ hki,t′ (ϕ) given that the system is in pov thread T̊ hk.

Remark 3.7. Computation of Pt′(ϕ) is straightforward for cases 20.a) and 20.b). To compute
the probabilities for nested beliefs in 20.c), we start with computing the innermost belief
(which is an instance of case 20.a) or case 20.b) since we assume finite expressions), and
then compute the nested beliefs iteratively.

Using Definition 3.11 (p. 21) and Equation (21), we can provide a definition for the
satisfiability and validity of beliefs:

Definition 3.16 (Validity and satisfiability of beliefs). Let B be a belief formula as defined
in Definition 3.4 (p. 10), 〈D,H〉 a pointed doxastic system, and Pt′(ϕ) the corresponding
matrix of probabilities at time t′ as defined in (21). B is satisfiable (valid) w.r.t. 〈D,H〉 iff

1. For B = B`,u
i,t′ (ϕ):

For at least one (all) thread(s) T̊ hk ∈ T̂ , the entries in row i of Pt′(ϕ) satisfy ` ≤
pT̊ hki,t′ (ϕ) and u ≥ pT̊ hki,t′ (ϕ).

2. For B = ¬B`,u
i,t′ (ϕ):

For at least one (all) thread(s) T̊ hk ∈ T̂ , the entries in row i of Pt′(ϕ) satisfy ` >

pT̊ hki,t′ (ϕ) or u < pT̊ hki,t′ (ϕ).

3. For B = B1 ∧B2:
For at least one (all) thread(s) T̊ hk ∈ T̂ , the entries in the corresponding rows of
Pt′(ϕ) satisfy both B1 and B2.

4. For B = B1 ∨B2:
B1 is satisfiable (valid) or B2 is satisfiable (valid).

4. Since we have to consider every possible pov thread T̊ hk, we have to multiply every matrix AT̊h
t ∈

bs(〈D,H〉, t) with ~b(ϕ), thus we need to use the vector
(
~b(ϕ), ...,~b(ϕ)

)T

with m rows.

27

Remark 3.8. The distinction between valid and satisfiable belief formulae is only of interest
for beliefs at time t > t̂(H). For time points t ≤ t̂(H) an agent’s belief is uniquely deter-
mined through the given observations (cf. Proposition 3.6), resulting in a single probability
associated to any belief. Therefore, all invalid belief formulae for t ≤ t̂(H) are unsatisfiable.

From Definition 3.4 (p. 3.4) it follows that the belief object of an atomic belief formula B
as in Definition 3.16-1 can again be any arbitrary belief formula. If the inner belief formula
B′ is one of the cases defined in Definition 3.16, validity and satisfiability of the entire
expression B = B`,u

i,t′ (B
′) follows inductively from the above definition: If for at least one

(all) thread(s) T̊ hk ∈ T̂ , both the inner belief formula B′ is satisfied and the limits for the

outer belief of the respective thread are satisfied, the entire belief formula is B = B`,u
i,t′ (B

′)
satisfiable (valid).

Definition 3.16 gives rise to an important property of the belief operator, as the following
lemma shows:

Lemma 3.7 (Distributivity of the belief operator). Let B = B`,u
i,t′ (ϕ1 ⊗ ϕ2) be a belief

formula with a belief object (ϕ1 ⊗ ϕ2) and a connective ⊗ ∈ {∧,∨}. Then, we can express

B equivalently as B′ = B`,u
i,t′ (ϕ1)⊗B`,u

i,t′ (ϕ2).

Proof. This result follows immediately from the validity and satisfiability of beliefs in Def-
inition 3.16:

The formula B = B`,u
i,t′ (ϕ1 ∨ ϕ2) is satisfiable (valid) iff for at least one (all) thread(s)

T̊ hk ∈ T̂ it holds that T̊ hk |= ϕ1 or T̊ hk |= ϕ2 and the respective entries in Pt′(ϕ) satisfy

Definition 3.16-1. For the former case, B`,u
i,t′ (ϕ1) is satisfiable (valid) as well, while for the

latter case B`,u
i,t′ (ϕ2) is satisfiable (valid), which reflects exactly the definition of disjunctive

belief formulae from Definition 3.16-4. Thus, B′ = B`,u
i,t′ (ϕ1)∨B`,u

i,t′ (ϕ2) is satisfiable (valid)

iff B = B`,u
i,t′ (ϕ1 ∨ ϕ2) is satisfiable (valid).

Similarly, the formula B = B`,u
i,t′ (ϕ1 ∧ ϕ2) is satisfiable (valid) iff for at least one (all)

thread(s) T̊ hk ∈ T̂ it holds that both T̊ hk |= ϕ1 and T̊ hk |= ϕ2 hold and the respective

entries in Pt′(ϕ) satisfy Definition 3.16-1. Then, both B`,u
i,t′ (ϕ1) and B`,u

i,t′ (ϕ2) are satisfiable

(valid) and thus, the formula B′ = B`,u
i,t′ (ϕ1) ∧ B`,u

i,t′ (ϕ2) is satisfiable (valid) according

to definition Definition 3.16-3. Thus, B′ = B`,u
i,t′ (ϕ1) ∧ B`,u

i,t′ (ϕ2) is satisfiable (valid) iff

B = B`,u
i,t′ (ϕ1 ∧ ϕ2) is satisfiable (valid).

To illustrate the evolution of beliefs, we finish the train example with an analysis of
expected arrival times.

Example 3.10 (Trains continued). From D, as specified in Example 3.9 (p. 24), we can
infer that Bob (and of course Alice, too) can safely assume at time 1 that Alice will arrive
at time 8 at the latest with a probability in the range [0.9, 1], as expressed in the belief
formula

BB,t = B0.9,1
B,t (refr7 (on(A, T1), (at(T2, CB) ∧ on(A, T2)))) (22)

28

with t = 1. For this rule, we obtain the frequencies

efr(Th, at(T1, CA), (at(T2, CB) ∧ on(A, T2)), 7) = 1 for Th ∈ {Th1, ..., Th5},
efr(Th, at(T1, CA), (at(T2, CB) ∧ on(A, T2)), 7) = 0 for Th ∈ {Th6, ..., Th9},

i.e., in threads Th1, ..., Th5 from Figure 1 (p. 14), the event (at(T2, CB)∧ on(A, T2)) occurs
within 7 time points following the event on(A, T1) from time t = 1 (and thus at time t = 8
at latest), while in threads Th6, ..., Th9, the event (at(T2, CB) ∧ on(A, T2)) occurs only at

time t = 9, which is outside of the scope of refr7 and thus yields a frequency of zero.
At time point 1, Bob still considers all threads as possible, and thus Bob’s subjective

posterior probabilistic interpretation

I T̊ hB,1(T̂) =
(
0.7 0.02 0.09 0.02 0.09 0.01 0.02 0.02 0.03

)
is equal to the prior interpretation given in Example 3.6 (p. 17) for all possible pov threads
T̊ h. Combining this interpretation with the frequencies given above yields the sum∑

Th∈T̂

I T̊ hB,1(Th) · efr(Th, at(T1, CA), (at(T2, CB) ∧ on(A, T2)), 7) = 0.92

and thus formula BB,1 is valid.
Now, consider the previously described situation, where T1 is running late and A does

not inform B about it. This leads to the updated interpretations given in (6) and (7) on
page 18, i.e.,

I T̊ h4
A,3 = (0 0 0 0.4 0 0.2 0 0.4 0), and

I T̊ h4
B,3 ≈ (0.82 0.02 0.10 0.02 0 0.02 0 0.02 0).

These updates lead to a significant divergence in the belief of the expected arrival time:
The corresponding sum with respect to Alice’s updated interpretation is∑

Th∈T̂

ITh4
A,3 (Th) · efr(Th, at(T1, CA), (at(T2, CB) ∧ on(A, T2)), 7) = 0.4, (23)

(24)

obtained by Alice’s subjective posterior probability assignment of thread Th4, which is the
only nonzero summand in the above sum; all other threads Th are either impossible from
Alice’s point of view (i.e., ITh4

A,3 (Th) = 0 for threads Th ∈ {Th1, Th2, Th3, Th5, Th7, Th9}),
or the corresponding frequency is zero (for threads Th6 and Th8). Thus, Alice’s belief in
arriving at time point 8 at the latest is drastically reduced, as the lower bound ` of Alice’s
belief may not exceed 0.4. For instance,

B0.4,1
A,3

(
refr8 (on(A, T1), (at(T2, CB) ∧ on(A, T2)))

)
, (25)

is now a valid belief formula. The corresponding sum for Bob’s belief at time point 3 is∑
Th∈T̂

ITh4
B,3 (Th) · efr(Th, at(T1, CA), (at(T2, CB) ∧ on(A, T2)), 7) = 0.96, (26)

29

obtained by summing over Bob’s subjective posterior interpretations for threads Th1, ..., Th4;
the remaining threads again only contribute zero summands because either Bob’s proba-
bility assignment or the corresponding frequency is zero for those threads. Thus, Bob’s
previous belief (expressed in (22)) remains valid at time point t = 3, denoted by BB,3.

Even though Alice’s beliefs have changed significantly, she is aware that Bob maintains
beliefs conflicting with her own, as is shown by the following valid expression of nested
beliefs:

B1,1
A,3(BB,3)

To verify that this nested belief holds, we need to consider all threads that Alice considers
possible (Th4, Th6, Th8) and determine what Bobs hypothetical beliefs would be in these
threads. For Th4, this has already been analyzed in (26). Since threads Th4, Th6, and
Th8 are indistinguishable to Bob at time point 3, the same analysis results hold for all
three threads. Consequently, BB3 holds in every thread that Alice considers possible and
therefore the sum for this nested belief is∑

Th∈T̂
ITh
B,3|=BB,3

I T̊ hi,t′ (Th) = 1,

i.e., Alice knows that Bob’s belief is outdated.
Finally, consider the pointed doxastic system 〈D, Obs{AB}(¬at(T1, CC))3〉, i.e., the same

situation as before with the only difference that Alice now shares her observation of the
delayed train with Bob. It immediately follows that Bob updates his beliefs in the same
way as Alice, which in turn yields an update in Alice’s beliefs about Bob’s beliefs so that
now the following expression is valid (because 1 is not a valid lower bound any longer):

¬B1,1
A,3(BB,3)

This example shows how Alice can reason about the influence of her own actions on
Bob’s belief state and therefore she can decide on actions that improve Bob’s utility (as he
does not have to wait in vain).

4. Satisfiability Checking for PDT Logic

In this section we will describe procedures to check whether there exists a model for some
given set of belief formulae B. For the discussions in this chapter, we assume that all models
and sets of formulae are finite. We start with formally defining the satisfiability checking
problem in PDT Logic. Using the semantics from the previous section, we derive a model
checking algorithm based on fully specified doxastic systems. Afterwards, we show how a
set of belief formulae can be used to specify a problem in PDT Logic and—together with a
given set of threads—how this can be transformed into a mixed integer linear program in
order to employ existing solvers to decide satisfiability of PDT Logic formulae. Finally, we
show how suitable threads can be derived from a given set of belief formulae automatically.

If a fully specified doxastic system 〈D,H〉 is given, we can define the problem of checking
whether a set of belief formulae B is satisfiable with respect to this doxastic system as

follows. Recall from Section 3.2.4 that we use I T̊ h to denote the set of all subjective

posterior interpretations I T̊ hi,t′ induced by a prior interpretation I in a pov thread T̊ h.

30

Definition 4.1 (Satisfiability Checking for PDT Logic). Let 〈D,H〉 be a pointed doxastic
system with the set of threads T̂ and according prior interpretation I specified in 〈D,H〉,
and B be a set of belief formulae. We say that B is satisfiable w.r.t. 〈D,H〉 if there exists
a thread T̊ h in T̂ such that the corresponding interpretations satisfy all belief formulae B
from B:

sat(B, 〈D,H〉) ≡ ∃T̊ h ∈ T̂ :
(
∀B ∈ B : I T̊ h |= B

)
(27)

If such a specification is given, checking satisfiability of B with respect to 〈D,H〉 corre-
sponds to checking whether 〈D,H〉 is a model for B. We continue with introducing a model
checking procedure for this fully specified input. Afterwards, we discuss how satisfiability
of a set of belief formulae B can be decided if no prior probabilities, or neither threads nor
prior probabilities are given.

4.1 A Model Checking Algorithm

A first approach of developing an algorithm to check whether a given set of belief formulae
B is satisfied by a given pointed doxastic system 〈D,H〉 (i.e., checking whether 〈D,H〉 is
a model for B) can be obtained through a direct application of the semantics of the belief
operator given in Definition 3.11 (p. 21). Algorithm 1 shows the resulting model checking
procedure. It starts with computing the belief states for all possible evolutions of the world
from t = 1 to tmax. Afterwards, it iterates through all belief formulae B ∈ B and potential
pov threads T̊ hk to determine whether the interpretation in the respective pov thread is
able to satisfy the current belief formula. If a thread is unable to satisfy some belief formula,
it is excluded from the set of potential pov threads for subsequent checks. If at least one
potential pov thread remains after all belief formulae have been checked (i.e., there is at
least one thread T̊ hk so that all belief formulae B ∈ B are satisfied), 〈D,H〉 is a model for
B.

Theorem 4.1 (Soundness and completeness of Algorithm 1). The decision procedure Al-
gorithm 1 is sound and complete and therefore a model checking procedure for PDT Logic.

Proof. Since the presented algorithm is essentially an inductive application of Definition 3.16
(p. 27), it is easy to see that it yields a sound and complete decision procedure for PDT

Logic. Basic belief formulae (B`,u
i,t′ (Ft) and B`,u

i,t′ (r
fr
∆t(F,G))) return satisfiability results by

directly using the respective semantic definitions from (10) and (11) as calculation rules.

For every possible compound belief formula of PDT Logic (¬B`,u
i,t′ (ϕ), B`,u

i,t′ (B), B′∧B′′, and
B′ ∨B′′), the procedure provides an appropriate rule according to Definition 3.16 to break
down these formulae iteratively until base formulae are obtained, which can be decided as
above.

The asymptotic complexity of Algorithm 1 depends on the number of belief operators
B`,u
i,t′ (ϕ) contained in B:

Theorem 4.2 (Time complexity of Algorithm 1). Let B be a set of belief formulae and let
k be the number of belief operators contained within B. Then, using Algorithm 1 to check
whether a given pointed doxastic system 〈D,H〉 with m threads is a model for B has time
complexity O(k ·m).

31

Algorithm 1 Model Checking
procedure ModelChecking(〈D,H〉,B)

bs(〈D,H〉, 0)← (ATh1
0 , ..., AThm

0)
for t← 1, tmax do . compute all belief states

bs(〈D,H〉, t)← bs(〈D,H〉, t− 1) ◦ (UTh1
t , ..., UThm

t)

for B ∈ B do
for T̊ hk ∈ T̂ do

if not Check(bs(〈D,H〉), T̊ hk,B)) then . check if B is satisfied in T̊ hk
T̂ ← T̂ \ {T̊ hk} . otherwise remove T̊ hk from threads to check

if T̂ = ∅ then
return false . exit if no T̊ h can satisfy B

return true . success if T̂ is nonempty after checking all B ∈ B

function Check(bs(〈D,H〉), T̊ hk,B)
switch (B) . check formulae according to Def. 3.16

case B`,u
i,t′ (ϕ):

if ϕ = B′ then . check nested belief formulae recursively (B′ is a belief formula)

if not Check(bs(〈D,H〉), T̊ hk,B′)) then
return false

Pt′ ← bs(〈D,H〉, t′) ·~b(ϕ) . use ~b(ϕ) from (20) to compute Pt′ with elements p
T̊hk
i,t′

return (` ≤ pT̊hk
i,t′ and u ≥ pT̊hk

i,t′) . true if p
T̊hk
i,t′ ∈ [`, u]

case ¬B`,u
i,t′ (ϕ):

Pt′ ← bs(〈D,H〉, t′) ·~b(ϕ)

return (` ≥ pT̊hk
i,t′ or u ≤ pT̊hk

i,t′) . true if p
T̊hk
i,t′ 6∈ [`, u]

case B′ ∧B′′:
return (Check(bs(〈D,H〉), T̊ hk,B′) and

Check(bs(〈D,H〉), T̊ hk,B′′))

case B′ ∨B′′:
return (Check(bs(〈D,H〉), T̊ hk,B′) or

Check(bs(〈D,H〉), T̊ hk,B′′))

32

Proof. For a given pds with m threads and k belief formulae in B, the main procedure calls
the check function at most m · k times. If B is a base formula with only a single belief
operator B`,u

i,t′ (ϕ), a single call of the check function will return a result. Otherwise, if a

belief formula B contains more than one belief operator B`,u
i,t′ (ϕ), the check function will

be called recursively, until base formulae are obtained. Thus, for k belief operators in B,
the satisfaction checks are performed at most k · m times, yielding a time complexity of
O(k ·m).

From Theorem 4.2 we immediately obtain a complexity result for the model checking
problem in PDT Logic:

Corollary 4.3 (Complexity of model checking for PDT Logic). The model checking problem
for PDT Logic is in PTIME.

This result shows that model checking of a set of belief formulae w.r.t. a given pointed
doxastic system can be done in polynomial time. If a fully specified pds (and thereby an
exhaustive specification of the set of possible threads T̂) is given, this result shows that
Algorithm 1 presents a tractable procedure to perform the model checking task. However,
this approach has a significant drawback as it assumes an exhaustive specification of T̂
together with precise prior probability assignments I(T̂). Although there are some problem
domains that actually come with such a specification (e.g., cf. the cyber security scenario
described in the introduction), this assumption renders Algorithm 1 infeasible for most
problem domains. To overcome this problem, we will proceed with discussing a different
approach, which enables satisfiability checking without requiring a specification of exact
probabilities. Moreover, we show how representative threads with respect to a set of belief
formulae B can be constructed automatically, so that positive satisfiability results can
potentially be obtained without requiring a full materialization of all possible threads T̂ .

4.2 A Compact Problem Specification

Up until now we used a (pointed) doxastic system to specify a problem domain for model
checking a set of belief formulae B in PDT Logic. In the following sections, we show how
we can reformulate the problem such that an extended set of belief formulae together with a
value for tmax is used. The main idea of this approach is that background knowledge regard-
ing the target domain is not given through an explicit specification of possible threads and
according probabilities, but instead through sets of rules in B that describe how the target
domain may evolve over time. This approach has several advantages: In most scenarios,
compared to requiring an exhaustive set of possible threads, specifying a set of rules (which
can be expressed as prior beliefs) gives a more natural means of specifying background
knowledge of the problem domain (e.g., cf. Example 3.2 on page 11, which actually starts
with a verbal description of rules and only later introduces the corresponding set of possible
threads). Furthermore, using a set of rules to describe a problem domain is a fairly estab-
lished approach and therefore this approach will provide options to simplify transformation
of existing problem specifications into PDT Logic. Finally, since the set of possible threads
grows exponentially with every additional time point in the set of time points τ and every
additional ground atom of the language L, an exhaustive problem specification through
the set of possible threads quickly becomes infeasible, while the same situation could be

33

described succinctly through a small set of rules. Even though such a succinct specifica-
tion shifts the exponential nature of this problem from the required input specification to
computational efforts, we show that the exponential effect can be curtailed with heuristics
when constructing possible threads automatically.

4.2.1 Identification of Key Parameters from a Set of Belief Formulae

To simplify the following discussion, we will restrict temporal rules to only use the point
frequency function pfr. Recall that point frequency functions are used to specify that
some event F is followed by another event G after exactly ∆t time points, while existential
frequency functions efr are used to specify that some event F is followed by another event G
within a time interval ∆t. If existential frequency functions are required to specify a problem
domain, we can rewrite them as disjunctions of point frequency functions, as the following
proposition shows. If further frequency functions are defined, the presented techniques can
be easily adapted.

Proposition 4.4 (efr rewriting). An existential frequency function efr can be equivalently
represented as a disjunction of point frequency functions pfr:

refr∆t(F,G) ≡
∨

∆̃t: 0≤∆̃t≤∆t

rpfr
∆̃t

(F,G)

Recall that, according to Definitions 3.12 and 3.14 on page 23, the specification of a pds
consists of a set of agents A, a set of threads T̂ , a set of frequency functions F , a matrix of

prior probability distributions A
|A|×|T̂ |
0 , and a set of time-stamped observations H.

Since we will only use point frequency functions in the following, the set of frequency
functions F is always fixed to {pfr}, and thus there is no need to specify this set separately.

Instead of explicitly specifying the set of agents A, we can just determine it from the
belief expressions B`,u

i,t′ (ϕ) contained in the set of belief formulae B. With a slight abuse of

notation, we use B`,u
i,t′ (ϕ) ∈ B to denote that belief operator B`,u

i,t′ (ϕ) appears somewhere in
a set of belief formulae B. Then, we can define the set of agents AB specified through a set
of belief formulae B as

AB = {i : B`,u
i,t′ (ϕ) ∈ B} (28)

Generally, it is possible that the explicit specification of the set of agents A is larger than
the set AB. However, it is obvious that if no beliefs are expressed for some agent i (i.e.,
i ∈ A and i 6∈ AB), this agent will not influence satisfiability checking results whatsoever.
Thus, this agent can simply be disregarded and, consequently, it suffices to use the set AB.

Similarly, instead of specifying the set of ground atoms of the language L through the
sets of predicates Lpred and constants Lcons, we can define a set of event formulae FB

representing all belief objects occurring in a set of belief formulae B as

FB =
{
F :

(
B`,u
i,t′ (Ft) ∈ B ∨ B`,u

i,t′ (r
fr
∆t(F,G)) ∈ B ∨ B`,u

i,t′ (r
fr
∆t(G,F)) ∈ B

)}
. (29)

This definition gives rise to a potential definition of the set of possible worlds Ω as
the Herbrand base BFB of FB (resp. the set of admissible worlds Ω̂ ⊆ Ω complying with

34

Definition 3.5 (p. 12). However, as we will show later, there are more options to constrain
the sets of possible worlds to allow for a more concise problem representation.

Note that according to Definition 3.2 (p. 9), formulae may include both atoms and
observation atoms. Consequently, FB does not only specify ontic facts of possible worlds,
but also possible observations of these ontic facts. With this approach, occurrences of
observations are limited to the ones specified in FB. This can be seen as the specification
of a sensor model for groups of agents G ⊆ AB.

Remark 4.1. A strict application of (29) would prohibit simple specifications of group ob-
servations ObsG(l) with |G| > 1 in B. To ensure that the set of admissible worlds actually
contains worlds with ObsG(l), a full specification of such an observation as

∧
G′⊆G ObsG′(l)

in B would be required (otherwise there might be no world ω ∈ BFB with ω |= ObsG(l)
that satisfies the second property in the definition of possible worlds (cf. Definition 3.5)).
However, the required full specification of an observation for admissible worlds can be de-
termined solely through the simple observation specification ObsG(l). In order to keep the
specification of B as compact as possible, we allow for simple specifications ObsG(l) and
assume that they are expanded with

∧
G′⊂G ObsG′(l) while creating FB.

An alternative approach would be to construct FB only through ontic facts appearing
in B and create a set of admissible worlds by combining all ontic facts with all possible
admissible observations w.r.t. Definition 3.5. These approaches differ in the requirements
of observation specifications: the former requires to specify every possible observation ex-
plicitly, while the latter requires to exclude every impossible observation explicitly. Since in
most scenarios the set of observations actually being possible (w.r.t. the problem domain)
is significantly smaller than the set of all admissible observations, the presented approach
will usually yield a more compact problem specification. If desired, one could employ the
latter approach instead without impacting the functionality of the following methods.

Background knowledge regarding the target domain—that was given through an explicit
representation of possible threads before—can now also be specified as prior beliefs (i.e.,

beliefs B`,u
i,0 (ϕ)) in B. Recall from Section 3.2.4 that we assume a commonly known prior

distribution I T̊ hi,t which is equal for all agents i ∈ AB. As the belief semantics is defined

with respect to the probabilistic interpretations I T̊ hi,t′ (cf. Definition 3.11, p. 21), it follows

that every prior belief B`,u
i,0 (ϕ) is common knowledge as well. Consequently, we can express

background knowledge as prior beliefs of any arbitrary agent i ∈ AB.

As pointed out in Section 3, satisfiability of beliefs in temporal rules B`,u
i,t′ (r

fr
∆t(F,G))

with certain properties are independent of the respective set of threads T̂ or the associated
interpretation I(T̂) (cf. Remark 3.5, p. 22): if the respective frequency function corresponds
to FF1, FF2, or FF3 of Definition 3.10 (i.e., F is a contradiction, G is a tautology, or F is
a tautology and G is a contradiction), beliefs are either trivially satisfied for quantifications
with u = 1 (resp. ` = 0) or generally unsatisfiable. In the former case, trivially satisfiable
beliefs can be disregarded without influencing satisfiability results, while for the latter case
satisfiability checking can terminate immediately with a negative result. Thus, in the fol-
lowing we assume that B contains only beliefs in rules that do not correspond to frequency
function axioms FF1-FF3.

35

Example 4.1 (Trains revisited). An informal verbal description of the train problem was
given in Example 3.2 (p. 11) with a corresponding formal specification through a set of
possible threads T̂ in Example 3.4 (p. 15)and probability assignments in Example 3.6 (p. 17).
Using the above considerations on the expression of background knowledge as beliefs in rules,
we can reformulate the verbal rules given in Example 3.2 together with the probabilistic
information from Example 3.6 as a set of formal beliefs B with according explanations
below:

B=

B1 = B1,1
A,0

(
at(T1, CA)1

)
∧B1,1

A,0

(
on(A, T1)1

)
,

B2 =
B.81,.81
A,0

(
rpfr0 (at(T1, CA), punct(T1))

)
(B′2)

∧ B.81,.81
A,0

(
rpfr0 (at(T2, CC), punct(T2))

)
, (B′′2)

B3 =
B1,1
A,0

(
rpfr3 (punct(T1) ∧ at(T1, CA), at(T2, CC) ∧ on(A, T2))

)
(B′3)

∧ B1,1
A,0(rpfr5 (¬punct(T1) ∧ at(T1, CA), at(T2, CC) ∧ on(A, T2))

)
, (B′′3)

B4 =
B1,1
A,0

(
rpfr2 (punct(T2) ∧ at(T2, CC), at(T2, CB) ∧ on(A, T2))

)
(B′4)

∧ B1,1
A,0

(
rpfr3 (¬punct(T2) ∧ at(T2, CC), at(T2, CB) ∧ on(A, T2))

)
, (B′′4)

B5 = B1,1
A,0

(
rpfr0 (¬punct(train) ∧ at(train, city), Obs{A}(¬punct(train)))

)
,

B6 = B.93,.93
A,0

(
rpfr2 (Obs{A}(¬punct(train)), Obs{AB}(¬punct(train)))

)
,

train ∈ {T1, T2},
city ∈ {CA, CB}

Note that all beliefs are expressed for time t = 0, i.e., these are prior beliefs that are by
definition commonly known among all agents. All beliefs expressed in this example are
assigned to A, but they could equivalently be assigned to B or to both.

B1 states that train T1 is at city CA at time t = 1 and that Alice is on that train. B2

states that both agents believe that trains are punctual (denoted by punct(train)) with a
probability of 0.81. The probability values in this example are obtained by summing over the
probabilities given in Example 3.6 for all threads given in Example 3.4 where the respective
belief object is satisfied. To have an equivalent representation of the previous example, we
use exact probability values (i.e., ` = u) instead of intervals. Note that punct(train) is an
additional predicate with a variable train that helps to formulate the background knowledge
in a concise way. Formula B2 does not yet specify what the consequences of a non-punctual
train are, only that a train is expected to be punctual with a certain probability. B3 states
that Alice is able to board train T2 after three time steps if train T1 is punctual and that
Alice has to wait for two additional time points otherwise. B4 states that train T2 will
arrive at city CB two time points after being in city CC . Otherwise she will arrive one
time point later. B5 states that Alice will always notice when her train leaves a city not

36

punctually. This is an example for a sensor model specification as discussed above. Finally,
B6 states that Alice will call Bob with a probability of 0.93 if her train is not punctual.

Example 4.2 (Trains continued). With the definition of the set of belief formulae B from
the above example, we can now also specify the set of event formulae FB required to model
the possible scenarios described through B:

FB =

at(T1, CA), at(T1, CB), at(T2, CB), at(T2, CC),

on(A, T1), on(A, T2), punct(T1), punct(T2),

Obs{A}(¬punct(T1)), Obs{AB}(¬punct(T1)),

Obs{A}(¬punct(T2)), Obs{AB}(¬punct(T2))

To simplify the following discussion, we assume that conjunctive formulae B = B′ ∧

B′′ ∈ B are replaced with individual formulae of the respective conjuncts: B = B \
{B} ∪ {B′,B′′}. This does not impact the satisfiability checking properties of B because
all formulae in B have to be satisfied simultaneously in order to return a positive result
and thus, both B′ and B′′ have to be satisfied, regardless of their representation as two
individual formulae or as one conjunction.

Now, what remains to be determined is the set of threads T̂ , a corresponding prior

probability distribution I(T̂) (resp. a matrix of prior probability distributions A
|A|×|T̂ |
0 ,

where every row is formed by I(T̂)), and possibly a set of time-stamped observation atoms
H. The tasks of determining T̂ and H can be treated jointly: since the set of relevant
threads needs to be determined anyway, we simply create T̂ such that T̂ |= H.

In the next section we will show how we can transform a set of PDT Logic belief formulae
B together with a given set of threads T̂ into a linear program in order to determine
satisfiability of B with respect to T̂ . Afterwards, we will discuss how a suitable set of
threads T̂ to represent the information contained in B can be constructed automatically.
Using these results, it is possible to model a problem domain in PDT Logic solely through
a set of belief formulae B together with the specification of a maximum time point tmax.
All other key parameters of the domain—such as the set of agents and the set of ground
atoms—can be extracted from B automatically.

4.3 Representing the Satisfiability Problem as a Linear Program

The considerations from the previous section show that most parameters for a problem
specification can be extracted from a given set of belief formulae B. In this section, we
assume that only a set of belief formulae B together with a set of possible threads T̂ is given.
B is then satisfiable with respect to T̂ (denoted by sat(B, T̂)) if a prior interpretation I(T̂)
can be found such that all belief formulae in B are satisfied. By extracting linear constraints
on I(T̂) from B, we show how the satisfiability problem can be transformed into a linear
program. Checking satisfiability of B with respect to T̂ is then equivalent to checking
whether the corresponding linear program has a feasible solution.

For a given set of threads with an unknown prior interpretation I(T̂), the satisfiability
checking task significantly increases in complexity compared to the model checking task.
Formulation of the satisfiability checking problem in Definition 4.1 (p. 31) might be some-
what delusive: As the existence of a single thread in the context of some interpretation

37

suffices to verify satisfiability of a set of belief formulae B, it appears intuitive to develop
a method to construct such a thread—if possible—and neglect the other threads, or, vice
versa, start with the entire set of threads T̂ and iteratively prune all threads that fail to sat-
isfy any formula from B. In fact, such a pruning approach was used in Algorithm 1 (p.32)
to check whether a given set of threads is a model for a set of belief formulae. Unfortunately,
these approaches are inapplicable if the prior interpretation is unknown. As the semantics of
belief operators (cf. Definition 3.11 (p. 21) relies on subjective posterior probabilistic inter-
pretations (i.e., on probability assignments for multiple threads), it is generally not possible
to find a single thread T̊ h satisfying the satisfiability checking problem from Definition 4.1
without determining probabilities for all threads. Vice versa, it is generally not possible
to discard any thread, because determining whether it satisfies any belief formula can only
be done if its respective probability assignment is known. Instead, we will show that belief
formulae can equivalently be expressed as sets of linear constraints on the unknown prior
interpretation I(T̂). Then, checking satisfiability of B is equivalent to checking whether
there is a possible assignment to I(T̂) so that all constraints are satisfied.

We will use xk to denote the unknown prior probability of thread Thk, i.e., if T̂ contains
m threads, then its unknown prior probability assignment is represented as

I(T̂) =
(
x1, · · · , xm

)T
. (30)

The goal of the following methods is to provide constraints on the xk so that all belief
formulae B ∈ B are satisfied. Since these variables represent a probability distribution
over the set of threads, there are two obvious constraints to begin with:

0 ≤ xk ≤ 1, ∀k ∈ {1, ...,m} (31)

and
m∑
k=1

xk = 1 (32)

4.3.1 Representation of Subjective Posterior Probabilities

Since the semantics of beliefs is defined in terms of the respective agents’ subjective prob-
ability assignments in the respective pov thread, we need means to express the subjective

posterior probabilistic interpretations I T̊ hi,t′ of an agent i in terms of the prior probability
values xk. These interpretations change at a time point t whenever an observation Obs{i}(l)t
is possible for agent i. If an observation is possible for an agent, we can partition the set of
threads into two sets: one partition containing the set of threads where agent i does observe
the respective fact l and one partition where agent i does not observe the respective fact.
The subjective probability assignments need to be updated within each partition to reflect
this information about observation occurrences: Taking every thread within a partition as
a possible pov thread, the probability assignments for all other threads within this partition
need to be scaled according to the update rule in Definition 3.9 and the pov thread specific
probability assignments for all threads outside of the respective partition need to be set to
zero.

Generally, this leads to one vector of subjective probabilities over all threads for every
possible pov thread (cf. the Definition of belief states in Equation (17), p. 25). However, we

38

can leverage the semantic properties of PDT Logic to obtain a parsimonious representation
of the updated subjective probabilities without representing every pov thread explicitly.
Note that all threads within one partition as described above are indistinguishable to agent
i at the respective time point (i.e., all threads within one partition exhibit exactly the same
set of observations for agent i up to time point t) and therefore receive the same probability
assignment for every possible pov thread within this partition (cf. Proposition 3.6, p. 26).
Consequently, the updated probability assignments for every thread in T̂ can receive only
one of two different types of value assignments: a scaled version of the thread’s previous
probability assignment according to Definition 3.9 (p. 18), or zero, depending on whether
the agent actually observes the fact l or not. The following proposition shows that we do not
need to consider the cases with zero probabilities in order to perform satisfiability checking
tasks.

Proposition 4.5 (Irrelevance of zero-interpretations). Let I T̊ hi,t′ be the subjective posterior

probability interpretation at time t′ for some agent i in pov thread T̊ h (i.e., this interpreta-
tion is determined through the prior interpretation and interpretation updates corresponding
to pov thread T̊ h). If this interpretation assigns a probability of zero to some thread Th (i.e.,

I T̊ hi,t′ (Th) = 0), then satisfiability of any subsequent nontrivial belief Bi,t′′(ϕ) with t′′ > t′ is

independent of I T̊ hi,t′ (Th).

Proof. Every belief B`,u
i,t′ (ϕ) with ` > 0 in a fact or in another belief (i.e., ϕ = Ft or

ϕ = B
`j ,uj
j,t (·)) requires that there needs to be at least one thread Th with a nonzero

probability such that Th |= ϕ. Therefore, a thread Th with I T̊ hi,t′ (Th) = 0 can clearly not

prove satisfiability of a belief B`,u
i,t′′(ϕ) with t′′ ≥ t′. A negative satisfiability result (i.e., B

is unsatisfiable w.r.t. T̂) cannot be obtained from such a zero assignment either, because
any consistent interpretation (i.e., the probability assignments of all threads sum to one)
needs to assign a nonzero probability to at least one thread, which could then possibly
satisfy the belief. The same considerations hold for beliefs B`,u

i,t′ (ϕ) with ` = 0 and u < 1:

Although a thread with I T̊ hi,t′ (Th) = 0 satisfies the lower bound ` = 0, the upper bound u < 1

requires the existence of another thread Th′ with a nonzero probability I T̊ hi,t′ (Th′) > 0 such

that Th′ |= ¬ϕ. Consequently, I T̊ hi,t′ (Th) = 0 can only prove satisfiability of beliefs B`,u
i,t′ (ϕ)

with ` = 0 and u = 1. These are trivial beliefs that are satisfied by every thread and
every possible probability assignment and thus, their satisfiability can be proven without

I T̊ hi,t′ (Th) = 0, too.

Analogous considerations hold for beliefs in rules: A belief B`,u
i,t′ (r

fr
∆t(F,G)) with ` > 0

requires the existence of a thread with a nonzero probability such that fr(Th, F,G,∆t) > 0,

and thus a thread Th with I T̊ hi,t′ (Th) = 0 cannot prove satisfiability of this belief. Satisfia-

bility of a belief B`,u
i,t′ (r

fr
∆t(F,G)) with ` = 0 and u < 1 depends on the respective frequencies

fr(Th′, F,G,∆t) in additional threads Th′ with nonzero probabilities.

As a result of this proposition, we can merge the nonzero entries from both cases (agent
i observes the fact l and agent i does not observe the fact l) into a single probability
distribution vector for each agent i and time point t. This yields a modified version of the

39

update rule from Definition 3.9. We will use this modified update rule to determine linear
constraints on the unknown prior probabilities xk.

Definition 4.2 (Modified update rule). Let i be an agent, t′ be a time point where some ob-
servation Obs{i}(l) can occur and Th be a thread. Then, a compressed subjective posterior

probability assignment Ǐi,t′(Th) for agent i at time t′ for thread Th is given through

Ǐi,t′(Th) =
1

αThi,t′
· Ǐi,t′−1(Th) (33)

with αThi,t′ again being a normalization factor to ensure that the probabilities of all threads
that agent i considers possible sum to one:

αThi,t′ =
∑

Th′(t′)∈Ki(Th(t′))

Ǐi,t′(Th′)

Example 4.3 (Modified update rule). To illustrate the modified update rule, we return to
the situation described in Example 3.7 (p. 18). In this example we assumed that train T1

is running late and A does not inform B about it. This resulted in the following updated
interpretation for A:

I T̊ h4
A,3 = I T̊ h6

A,3 = I T̊ h8
A,3 =

(
0 0 0 0.4 0 0.2 0 0.4 0

)
In the given example, two additional hypothetical partitions of the set of threads T̂ are
possible for Alice at time point t = 3 . If train T1 is running late and A does inform
B about it, threads Th5, Th7, and Th9 are indistinguishable to A, yielding the updated
subjective interpretation

I T̊ h5
A,3 = I T̊ h7

A,3 = I T̊ h9
A,3 =

(
0 0 0 0 0.14 0 0.65 0 0.21

)
If T1 is on time, Alice considers threads Th1, Th2, and Th3 as possible. The corresponding
subjective interpretation is then

I T̊ h1
A,3 = I T̊ h2

A,3 = I T̊ h3
A,3 =

(
0.86 0.03 0.11 0 0 0 0 0 0

)
These three different subjective interpretations have nonzero entries exactly for the threads
that are in the partitions of the respective pov thread. Since the partitions are not overlap-
ping, we can merge the nonzero entries into a single probability vector

ǏA,3 =
(
0.86 0.03 0.11 0.4 0.14 0.2 0.65 0.4 0.21

)
.

Note that in this modified update rule, the update for each pov thread does not spec-
ify interpretations over all threads anymore, but instead only the reflexive interpretations
for each thread Th, given that Th is the pov thread, are used. As discussed above, for
the satisfiability problem this is still a sufficient representation of posterior probabilities,
because all other potential pov threads T̊ h in the respective partition are indistinguishable
to agent i and therefore yield exactly the same interpretations. It should be noted how-
ever that Ǐi,t′(Th) is not a probabilistic vector anymore, i.e., its elements do not sum to

40

one. Compared to the representation of belief states from Section 3.3.1 (p. 25), information
about distinguishable worlds is lost. Thus, reconstruction of an agent’s belief state from this
representation is only possible with an additional specification of the respective relations
Ki.

Returning to the problem representation from (30) (p. 38), we can use the modified up-
date rule to obtain an inductive definition of subjective posterior probabilities based on the

respective (unknown) prior probabilities xk. If I(T̂) =
(
x1, · · · , xm

)T
is the prior inter-

pretation over the set of threads, agent i’s compressed subjective posterior interpretations
Ǐi,t′ at the time point t′ of the first possible interpretation can be represented as

Ǐi,t′(T̂) =
(

1
α1
i,t′
· x1, · · · , 1

αm
i,t′
· xm

)T
, (34)

with the update factors αki,t′ determined through

(
α1
i,t′ · · · αmi,t′

)T
=
(
x1, · · · , ·xm

)
·

κi,t

′

1,1 · · · κi,t
′

1,m
...

. . .
...

κi,t
′

m,1 · · · κi,t
′

m,m

 ,

κi,t
′

j,k =

{
1 if Thk(t

′) ∈ Ki(Thj(t′))
0 if Thk(t

′) 6∈ Ki(Thj(t′))

with a (symmetric) matrix of indicators κi,t
′

j,k denoting whether agent i considers thread
Thk possible in thread Thj at time t′. Using (34) as the base case, we can then define
interpretation updates for the next possible observation at time t′′ inductively as

Ǐi,t′′(T̂) =
(

1
α1
i,t′′
· 1
α1
i,t′
· x1, · · · , 1

αm
i,t′′
· 1
αm
i,t′
· xm

)T
(35)

To simplify notation, in the following we use a single factor aki,t′ to represent the ag-

gregated sequence of scaling factors (αki,t1 · αki,t2 · ...) for all observations that can occur at
time points t1, t2, ... between t = 1 and t = t′ for agent i, i.e., agent i’s subjective posterior
interpretations Ǐi,t′(T̂) at time t′ are given as

Ǐi,t′(T̂) =
(
a1
i,t′ · x1, · · · , ami,t′ · xm

)T
. (36)

Note that potential interpretation updates for an agent i can occur at some time point t
if and only if some observation Obs{i}(l) is possible at that time point. Hence, for any time
interval between two possible observations, the subjective interpretations are constant:

Proposition 4.6 (Piecewise constant interpretations). Let t1 and t2 with t1 < t2 be two
time points such that observations for an agent i are possible at t1 and t2, but at no time
point t in between t1 and t2. Then, the compressed subjective interpretation Ǐi,t′(T̂) is
constant for all time points t1 ≤ t < t2:

∀t ∈ [t1, t2 − 1] : Ǐi,t(T̂) = Ǐi,t1(T̂)

This proposition states that all constraints identified in the following section do not
only restrict the subjective interpretations at single time points, but instead restrict the
interpretations for the respective time interval between any two possible observations.

41

4.3.2 Extracting Linear Constraints from Belief Formulae

Now that we have established representation (36) of subjective posterior interpretations in
terms of the unknown prior probabilities xk, we can use this representation to extract linear
constraints on the xk from the set of belief formulae B.

We assume that the distributive property of the belief operator from Lemma 3.7 (p. 28)

is applied whenever possible, i.e., belief formulae B`,u
i,t′ (B1 ⊗ B2) with ⊗ ∈ {∧,∨} are

separated into B`,u
i,t′ (B1)⊗B`,u

i,t′ (B2). Furthermore, without loss of generality, we can assume
that conjunctive formulae B = B1∧B2 are replaced through B\{B}∪{B1,B2} and that
trivial beliefs (with ` = 0 and u = 1) are removed from B.

Moreover, we assume that all belief formulae B ∈ B are represented in negation normal
form (NNF), i.e., the negation operator is only applied to atoms. Since any arbitrary logic
formula can equivalently be expressed as a formula in NNF (cf. e.g., (Baaz, Egly, Leitsch,
Goubault-Larrecq, & Plaisted, 2001)), this assumption does not restrict B either.

With these assumptions, the following types of belief formulae B can occur in B:

• atomic belief formulae B = B`,u
i,t′ (ϕ)

• negated atomic belief formulae B = ¬B`,u
i,t′ (ϕ)

• disjunctive belief formulae B = B1 ∨B2

For each of these types, we will now show how the respective formula can be expressed as
a set of linear constraints on the prior probabilities xk.

Atomic Belief Formulae Using the parsimonious representation of subjective posterior
interpretations Ǐi,t′(Th) given through the modified update rule in Definition 4.2 requires
an adaption when deciding satisfiability of belief formulae. Before, satisfaction of a belief
formula in a given pov thread could be determined by summing over the respective sub-
jective interpretations of all threads in which the belief object is satisfied. Threads that
an agent does not consider possible anymore w.r.t. the given pov thread are automatically
“excluded” as they have a probability assignment of zero. In the compressed representation,
the respective probability assignments for threads considered impossible are overloaded with
different probability assignments given that the agent is in another pov thread, as illustrated
in Example 4.3. We obtain an adapted version of satisfiability testing by explicitly ensuring
that only those interpretations of threads are summed that are still considered possible
w.r.t. the respective pov thread. As this additional constraint only excludes summands
with zero-values, the original semantics is still maintained. Thus, we use equivalence classes
Ci,t′ = {C1

i,t′ , C2
i,t′ , ...} to represent the set of distinguishable situations for agent i at time t′.

Naturally, two threads Th1, Th2 are indistinguishable and therefore in the same equivalence
class for agent i at time t′, if they exhibit exactly the same observations for agent i for all
time points t ∈ {1, .., t′}. All threads outside of a particular equivalence class receive a
probability of zero for every pov thread T̊ h within the respective equivalence class and—as
discussed in the previous section—therefore do not contribute to the satisfiability proper-
ties. Then, in the belief semantics from Definition 3.11 (p. 21), instead of summing over all
threads Th ∈ T̂ with certain properties, we can restrict the range to Th ∈ Cki,t : (T̊ h ∈ Cki,t)
while maintaining the original semantics. Naturally, a belief formula is then satisfiable if

42

there exists at least one equivalence class that satisfies the respective beliefs. For instance,
a belief in a fact B`,u

i,t′ (Ft) is satisfiable with respect to an agent i’s compressed subjective

posterior interpretation Ǐi,t′ at time t′ iff

∃Cki,t′ ∈ Ci,t′ : ` ≤
∑

n: (Thn∈Cki,t′∧Thn(t)|=F)

ani,t′ · xn ≤ u (37)

Such a constraint can equivalently be expressed as a set of linear inequalities with
conjunctive and disjunctive connectives, leading to an alternative representation of the
satisfiability problem.

Corollary 4.7 (Alternative satisfiability representation for atomic beliefs). Let Ǐi,t′(T̂) =(
a1
i,t′ · x1, · · · , ami,t′ · xm

)T
and Ǐj,t(T̂) =

(
a1
j,t · x1, · · · , amj,t · xm

)T
be the compressed

representation of agent i and j’s respective subjective posterior probabilities at time t′ and
t, respectively, as given in (36), and let Ci,t′ and Cj,t be the sets of worlds that agent i and
agent j can distinguish at the respective time point. Then, an atomic belief expression B is
satisfiable w.r.t. Ǐi,t′(T̂) for

1. belief in a fact B = B`,u
i,t′ (Ft) iff

∨
Ck
i,t′∈Ci,t′

((∑
n: (Thn∈Cki,t′
∧Thn(t)|=F)

−ani,t′ · xn ≤ −`
)
∧
(∑
n: (Thn∈Cki,t′
∧Thn(t)|=F)

ani,t′ · xn ≤ u
))

(38)

2. belief in a rule B = B`,u
i,t′ (r

pfr
∆t(F,G)) iff

∨
Ck
i,t′∈Ci,t′

((∑
n: (Thn∈Cki,t′)

−ani,t′ · xn · pfr(Thn, F,G,∆t) ≤ −`
)

∧
(∑
n: (Thn∈Cki,t′)

ani,t′ · xn · pfr(Thn, F,G,∆t) ≤ u
))

(39)

43

3. nested belief B = B`,u
i,t′ (B

`j ,uj
j,t (ϕ)) iff

∨
Ck
i,t′∈Ci,t′

((∑
n: (Thn∈Ckj,t)∧

Thn|=ϕ ∧ ({Ckj,t∩Cki,t′}6=∅)

−anj,t · xn ≤ −`j
)

∧
(∑

n: (Thn∈Ckj,t)∧
Thn|=ϕ ∧ ({Ckj,t∩Cki,t′}6=∅)

anj,t · xn ≤ uj

)

∧
(∑

n: Thn∈{Ckj,t∩Cki,t′}
∧ Thn|=ϕ

−ani,t′ · xn ≤ −`
)

∧
(∑

n: Thn∈{Ckj,t′∩C
k
i,t′}

∧ Thn|=ϕ

ani,t′ · xn ≤ u
))

(40)

As discussed above, the representations for satisfiability of beliefs in facts (38) and beliefs
in rules (39) are obtained directly by replacing the range of threads T in the sum with the
respective set of threads Ckj,t′ considered possible by agent i at time t′. The inequalities for
nested beliefs (40) are obtained by ensuring in the first two lines that in every situation
that agent i conceives as a possible situation for agent j (expressed through the constraint
n : (Thn ∈ Ckj,t) ∧ Ckj,t ∩ Cki,t′ 6= ∅), agent j’s belief in the respective fact ϕ (expressed
through the constraint Thn |= ϕ) is within [`j , uj]. The latter two lines ensure that for
these respective situations, the outer belief of agent i is satisfied, as well. Note that the
belief object ϕ in (40) might contain additional belief operators, i.e., beliefs with multiple
levels of nesting are expressed. In this case, evaluation of Th |= ϕ in the first two lines
of (40) yields additional constraints of type (38)–(40), such that the formula is evaluated
recursively.

Negated Atomic Belief Formulae To satisfy a negated atomic belief formula B =
¬B`,u

i,t′ (ϕ), the accumulated probabilities of all threads that satisfy the belief object ϕ in

an equivalence class Cki,t′ must be either lower than ` or higher than u, i.e., the individual
disjuncts in (38)–(40) have to be negated. By pushing the negations inward and using∑
···

(· · ·) as a representative for the respective sums defined in (38) and (39) to express

satisfiability of atomic beliefs, we can represent negations of the according beliefs expressed
in (38) and (39) as

∨
Ck
i,t′∈Ci,t′

((
−
∑
···

(· · ·) < `
)
∨
(
−
∑
···

(· · ·) < −u
))

. (41)

If nested beliefs as defined in (40) contain negated belief operators, this can be expressed
accordingly by replacing the conjunctive constraints on ` and u (resp. `j and uj) with the
corresponding disjunctive constraints (41) for negated atomic belief formulae.

44

Disjunctive Belief Formulae With the above inequalities, the required constraints for
a disjunctive formula B = B1 ∨B2 can easily be expressed as an additional disjunction of
inequalities. Let C1 and C2 be the sets of inequalities to express satisfiability of B1 and B2

according to (38)–(41), respectively. Then, the constraints for B can be expressed as

C1 ∨ C2 (42)

Example 4.4 (Trains continued). In Example 4.1 (p. 35), a set of belief formulae B has
been given for the train example. To illustrate the extraction of linear constraints from
this set, we continue to use the set of threads depicted in Figure 1 (p. 14) with a minor
modification: to reflect the model specified in B of Example 4.1, we assume that the
predicate punct(train) is explicitly encoded in the respective threads. Moreover, for the
sake of the example we assume that the prior probabilistic interpretations are yet unknown.
We use x1, ..., x9 to denote these unknown probabilities. Note that for our example, we
are only dealing with prior beliefs, i.e., we only have one equivalence class C = T̂ and
all scaling factors ani,t′ are equal to one. This significantly eases the presentation of this
example. Of course, in general we have to deal with both multiple equivalence classes and
multiple varying scaling factors. As this highly increases complexity of the presentation, we
refrain from giving explicit examples for these cases. The constraints from B are extracted
as follows:

• For belief B′2 = B.81,.81
A,0

(
rpfr0 (at(T1, CA), punct(T1))

)
:

pfr(Th, at(T1, CA), punct(T1), 0) = 1 for Th ∈ {Th1, ..., Th3}
pfr(Th, at(T1, CA), punct(T1), 0) = 0 for Th ∈ {Th4, ..., Th9}

and thus application of rule (39) yields the constraints

−x1 − x2 − x3 ≤ −0.81

x1 + x2 + x3 ≤ 0.81

In this special case where ` = u, we can simplify this constraint to

x1 + x2 + x3 = 0.81

Since all of the rules exhibit this property, we slightly deviate from (39) and only
give the equivalent equality constraints for subsequent rules in order to simplify the
presentation.

Accordingly, for belief B′′2 = B.81,.81
A,0

(
rpfr0 (at(T2, CC), punct(T2))

)
we obtain:

pfr(Th, at(T2, CC), punct(T2), 0) = 1 for Th ∈ {Th1, Th4, Th5}
pfr(Th, at(T2, CC), punct(T2), 0) = 0 for Th ∈ {Th2, Th3, Th6..., Th9}

with the corresponding constraints

x1 + x4 + x5 = 0.81

45

• For belief B6 = B.93,.93
A,0

(
rpfr2 (Obs{A}(¬punct(train)), Obs{AB}(¬punct(train)))

)
:

for Th ∈ {Th1, Th3, Th5, Th9} :

pfr(Th,¬punct(train), Obs{AB}(¬punct(train)), 2) = 1,

for Th ∈ {Th2, Th4, Th6} :

pfr(Th,¬punct(train), Obs{AB}(¬punct(train)), 2) = 0,

for Th ∈ {Th7, Th8} :

pfr(Th,¬punct(train), Obs{AB}(¬punct(train)), 2) = 0.5

and thus application of rule (39) yields the constraint

x1 + x3 + x5 + 0.5 · x7 + 0.5 · x8 + x9 = 0.93

• For the remaining beliefs, the respective belief objects are satisfied in every thread
and thus we only obtain the redundant constraints

9∑
k=1

xk = 1.

One can easily verify that prior probabilistic interpretation given in Example 3.6, i.e.,

x =
(
0.7 0.02 0.09 0.02 0.09 0.01 0.02 0.02 0.03

)
indeed is a solution with respect to the above constraints. Of course, for the given
example, this solution was expected, as B was defined such that it exactly reflects the
situation described in the examples from the previous section.

4.3.3 Transformation into a Disjunctive Program

For every belief formula B ∈ B, the above extractions of linear constraints yield a set of
inequalities of the form

ai,1x1 + ai,2x2 + ... + ai,mxm ≤ bi, (43)

with xj representing the unknown prior probabilities of threads Th1, ..., Thm, the coefficients
ai,j set to the respective values of ani,t′ if they contribute to this constraint and set to zero
otherwise, and the value b1 set to the respective limit obtained through ` or u.

As Corollary 4.7 shows, every belief formula B ∈ B yields a disjunctive set of inequality
constraints, i.e., every belief formula B introduces branches in the set of linear constraints.
By collecting all inequalities of the form (43) that constrain a single branch, we can express
the constraints in matrix form:

Ax ≤ b, (44)

with

A =

a1,1 · · · a1,m
...

. . .
...

an,1 · · · an,m

 , x =

x1

· · ·
xm

 , and b =

 b1
· · ·
bm

46

This form of representation has a close connection to linear programming (LP). Linear
programming (e.g., (Murty, 1983)) is a solution method to optimization problems where
some linear function of a set of continuous variables xk is to be optimized with respect to
a given set of linear constraints. While the task of satisfiability checking does not require
any optimization and thus actually solving a linear program is not required for this work,
we will exploit similarities between our sets of linear constraints and LP in order to show
how the satisfiability problem can be solved.

The standard form of an LP problem (Murty, 1983) gives a set of constraints exactly in
the form of (44). Every solution x that satisfies these constraints is called feasible and the
entire solution space for (44) is called feasible region. Thus, checking whether a set of belief
formulae B is satisfiable is equivalent to checking whether a corresponding LP problem
has a non-empty feasible region. For standard LP problems with constraints of the form
(44), the feasible region is a convex polytope, which allows performing this check with little
computational effort (Garey & Johnson, 1979).

Unfortunately, extracting linear constraints from a set of belief formulae B as described
in Section 4.3.2 does not yield a single set of constraints in the form of (44), but instead
a disjunction of different sets of constraints. This gives rise to the representation of the
satisfiability checking problem as a disjunctive program (DP) (Balas, 1998):

Corollary 4.8 (Satisfiability Checking as a Disjunctive Program). Let B be a set of belief
formulae, let T̂ be a set of threads and let D be the set of all disjunctive branches d of linear
constraints extracted from B and T̂ according to the extraction rules (38)-(42). Then, the
satisfiability checking problem can be formulated as a disjunctive program (Balas, 1998):∨

d∈D
Adx ≤ bd (45)

B is satisfiable with respect to T̂ , denoted by sat(B, T̂), if (45) has a solution.

A disjunctive program is called bounded, if the range of every variable xk is restricted
through lower and upper bounds. Since we will rely on the bounded property subsequently,
we state the following result:

Lemma 4.9 (Satisfiability Checking as a Bounded DP). Let B be a set of belief formulae
and T̂ be a set of threads. Checking satisfiability of B with respect to T̂ can be represented
as a bounded disjunctive program.

Proof. This is a straightforward result: Corollary 4.8 shows that satisfiability checking
for PDT Logic can be represented as a disjunctive program in the form of (45). Since
every variable xk in (45) represents a probability value, all xk are naturally bounded by
0 ≤ xk ≤ 1.

In a disjunctive program, the feasible region cannot be guaranteed to be convex anymore,
nor can it be guaranteed that the solution space even represents a connected region. This
significantly increases the complexity of determining whether a nonempty solution space
exists. To analyze this problem in more detail and to show connections to established
solution approaches, we will discuss in the next section how a disjunctive program in the
form (45) can be further transformed.

47

4.3.4 Transformation into a 0-1 Mixed Integer Linear Program

The concept of linear programs with continuous variables xk subject to linear constraints of
the form (43) can be extended to so-called mixed integer linear programs (MILPs) (Schrijver,
1986). Opposed to standard linear programming, for MILPs it is not required that all
variables xk have a continuous domain. Instead, MILPs can use a mix of both continuous
and integer variables. There are several equivalent ways of representing a MILP, we adopt
the representation from (Fischetti, Glover, & Lodi, 2005), which specifies the constraints of
a MILP as

Ax ≤ b
xj integer ∀j ∈ I

with an index set I indicating which of the variables xj are integer variables. A special
case of MILPs are 0-1 mixed integer linear programs (Williams, 2009), where the integer
variables xj are restricted to binary values:

Ax ≤ b (46)

xj ∈ {0, 1} ∀j ∈ I

By augmenting the set of variables x with binary switching variables xj for every possible
disjunction, it is possible to represent disjunctive programs in the form of (45) as 0-1 MILPs
in the form of (46) (Balas, 1985). This leads to a central result for satisfiability checking in
PDT Logic:

Theorem 4.10 (Satisfiability Checking as 0-1 MILP). Let B be a set of belief formulae
and T̂ be a set of threads. The problem of checking satisfiability of B with respect to T̂
can be transformed into a corresponding 0-1 mixed integer linear program M so that B is
satisfiable with respect to T̂ iff M has a feasible solution.

Proof. Lemma 4.9 shows that satisfiability checking for PDT Logic can be represented as
a bounded disjunctive program, such that a set of belief formulae B is satisfiable iff the
corresponding bounded disjunctive program has a feasible solution. The proof of Theorem
4.4 in (Balas, 1985) shows that every bounded disjunctive program can be equivalently
represented as a 0-1 mixed integer program M . Consequently, satisfiability checking for
PDT Logic is equivalent to checking whether M has a feasible solution.

We can leverage Theorem 4.10 to obtain complexity results for the satisfiability problem
in PDT Logic:

Theorem 4.11 (Complexity of PDT SAT w.r.t. a given set of threads). Checking satisfi-
ability of a set of PDT Logic belief formulae B with respect to a given set of threads T̂ is
NP-complete.

Proof. It is generally known that checking whether a bounded 0-1 mixed integer linear
program has a feasible solution is NP-complete (cf. (Bienstock, 1996)). As Theorem 4.10
shows that satisfiability checking in PDT Logic with respect to a given set of threads T̂ can
be reformulated as a 0-1 MILP with bounded variables xk (cf. Lemma 4.9), it follows that

48

satisfiability checking for a set of belief formulae B with respect to a given set of threads
T̂ is in NP.

Arbitrary propositional formulae F (cf. Definition 3.2, p. 9) can be expressed in PDT
Logic by using them as a belief object for a strict prior belief B1,1

i,0 (F). Since it is well known
that the boolean satisfiability problem (SAT) is NP-complete (Cook, 1971), it follows that
any problem in NP can be transformed to a satisfiability checking problem in PDT Logic.
Hence, the satisfiability checking problem in PDT Logic is NP-hard and consequently NP-
complete.

The NP-completeness result shows that the problem is in NP and therefore we immedi-
ately obtain another important property of the satisfiability problem in PDT Logic:

Corollary 4.12 (Decidability of PDT SAT). Checking satisfiability of a set of PDT Logic
belief formulae B is decidable.

MILPs have been subject to extensive research for decades, and thus an ample variety of
solving methods has been proposed (e.g., (Balas, Ceria, & Cornuéjols, 1993), (Balas, Ceria,
& Cornuéjols, 1996), (Balas & Perregaard, 2002), to name some of the most notable work
on MILP solving, and especially (Fischetti et al., 2005) and (Bertacco, Fischetti, & Lodi,
2007) to find feasible solutions of MILPs). This research gave rise to various efficient imple-
mentations of MILP solvers, both commercial (e.g., (ILOG,), (Gurobi Optimization, Inc.,
)) and non-profit products (e.g., (Gnu Project,), (Computational Infrastructure For Oper-
ations Research (COIN-OR) Project,)). For a given set of threads, PDT Logic satisfiability
checking can be reformulated as a 0-1 MILP problem, and thus any of these state-of-the-art
MILP solvers can be exploited for relatively fast satisfiability checks for most instances of
PDT Logic belief formulae B with respect to a given set of threads T̂ .

The results from this section show how satisfiability of a set of PDT Logic belief for-
mulae B can be decided with respect to a given set of threads, even if no specific prior
probability assignment is specified. As the overall goal of this section is the design of a
decision procedure that requires only a set of belief formulae B as an input, we continue
the discussion of satisfiability testing with the development of a method to automatically
construct a set of threads representing the background knowledge specified in B.

4.4 Prior Constraints on Possible Threads

To determine whether the set of belief formulae B is satisfiable, we need to obtain a set
of possible threads that reflects the background knowledge specified in B. In this section,
we describe how we can identify certain constraints on the set of possible threads T̂ prior
to actually starting to generate threads that represent the information specified in B. To
identify such prior constraints, we discuss different properties of the belief formulae con-
tained in B. Using these properties, we can create a taxonomy of belief formulae depending
on the respective impact on the set of possible threads T̂ . Beliefs with certain properties
can then be used to constrain the search space for sets of possible threads prior to actu-
ally search for these sets. After discussing prior constraints in this section, we use these
results in Section 4.5 to develop a decision procedure for PDT Logic that requires neither
a specification of probabilities nor a specification of possible threads.

49

4.4.1 A Taxonomy of Belief Formulae

The set of belief formulae B may contain beliefs with various features that will have different
impacts on the sets of admissible worlds at specific time points t. We will discuss these
features below and show how they yield a taxonomy of belief formulae. This taxonomy
allows for the classification of beliefs into three different types with respect to their impact
on the sets of admissible worlds. In particular, we can identify beliefs that are independent
of any specific probability assignment and of any Kripke relations Ki. This classification is
for technical purposes: beliefs that depend neither on specific probability assignments nor
on specific Kripke relations can be used to derive initial constraints on the sets of possible
worlds at some or all time points t ∈ tmax. We use Ω̂B to denote the set of all worlds
admissible with respect to a set of belief formulae B, and we use Ω̂B(t) to denote the set
of admissible worlds with respect to a set of belief formulae B at time t.

Recall that there are three different kinds of beliefs: beliefs in facts, beliefs in rules, and
beliefs in beliefs. As before, we differentiate between prior beliefs that hold at time point
t = 0 (and are therefore commonly known among all agents) and posterior beliefs that hold
at time points t > 0.

We can further distinguish beliefs in rules B`,u
i,t′ (r

pfr
∆t(F,G)) with respect to ∆t: we call

rpfr∆t(F,G) a static rule if ∆t = 0 and we call rpfr∆t(F,G) a dynamic rule if ∆t > 0. Accordingly,
we can separate beliefs in rules into beliefs in static rules and beliefs in dynamic rules,
respectively. These beliefs differ with respect to their temporal impact: a static rule will
constrain the possible worlds instantaneously, i.e., rpfr0 (F,G) states that there can be no
world ω such that both ω |= F and ω 6|= G hold. A dynamic rule on the other hand requires
that whenever a world ω with ω |= F occurs, there must be another world ω′ with ω′ |= G
after ∆t time steps.

Finally, we can classify beliefs with respect to their probabilistic quantifications: we call
a belief B`,u

i,t′ (ϕ) strict, if both ` = u = 0 or ` = u = 1. For the sake of simplicity, in the
following we assume without loss of generality that strict beliefs are always represented with
` = u = 1. Any strict belief B0,0

i,t (ϕ) can easily be rewritten as B1,1
i,t (¬ϕ).5 We call a belief

trivial if ` = 0 and u = 1. Obviously, these beliefs are trivially satisfied by any arbitrary
interpretation, thus they do not impact satisfiability checking results at all and therefore
can be removed from B.

Remark 4.2. From the definition of the belief semantics (Definition 3.11, p. 21) it follows for
the special case of strict beliefs B1,1

i,t (ϕ) that (i) agent i considers the occurrence of the belief
object’s complement ¬ϕ as impossible and (ii) that this occurrence is indeed impossible.
Thus, strict beliefs comply with the common definitions of knowledge as justified true belief
and belief that is stable with respect to the truth (cf. e.g., (Shoham & Leyton-Brown, 2009,
page 433)). Consequently, we could also refer to a strict belief as knowledge and equivalently
use the established knowledge operator Ki(ϕ) instead of B1,1

i (ϕ).

Remark 4.3. Note that the concept of strict beliefs only applies to positive beliefs B1,1
i,t (ϕ).

For the negation of such a belief, ¬B1,1
i,t (ϕ), it follows from Definition 3.16 (p. 27) that there

5. If the belief object ϕ is a temporal rule rfr∆t(F,G), we represent ¬ϕ as rfr∆t(F,¬G). This is possible because
we do not need to consider frequency functions that correspond to axioms FF1-FF3 from Definition 3.10
(p. 19) and only use point frequency functions pfr. If other frequency functions are used, their negations
need to be defined accordingly.

50

is at least one thread that does not satisfy the belief object ϕ, which in turn implies ` < 1.
Consequently, these beliefs ¬B1,1

i,t (ϕ) are considered as non-strict in the following discussion.

Using these features, we can create a taxonomy of beliefs as depicted in Figure 3 to
identify prior constraints on the set of possible threads. This taxonomy is obtained by
successively distinguishing between strict and non-strict, prior and posterior beliefs, between
beliefs in facts, rules and nested beliefs, and finally between beliefs in static and dynamic
rules. Nested beliefs are only considered as strict (prior) beliefs, if all involved beliefs are
strict (prior), otherwise they are considered as non-strict (posterior). If a nested belief is
actually strict and prior, we can unnest this belief and consider only the innermost belief
expression: since prior beliefs are commonly known and therefore identical for all agents
i ∈ AB, it is evident that for any strict belief of any agent i, all other agents know that agent
i has this strict belief. Consequently, strict prior beliefs can be nested to an arbitrary depth
without introducing any further constraints: they are satisfied exactly if the innermost
belief is satisfied. Thus, we do not need to consider nested strict prior beliefs explicitly.

This taxonomy gives rise to three different types of belief formulae with respect to their
impact on the sets of admissible worlds:

Definition 4.3 (Belief formula typification). A set of belief formulae B can be categorized
into three different types of beliefs:

• Type 0: These are beliefs that restrict the set of admissible worlds Ω̂B(t) at every
time point t ∈ τ . Thus, type 0 beliefs have the highest impact because they can be
exploited to prune the set of admissible worlds Ω̂B globally. An evaluation of these
beliefs relies neither on a specific probability assignment nor on any given Kripke
structures Ki.

• Type 1: These are beliefs that restrict sequences of possible worlds. Moreover, they
can potentially restrict the sets of admissible worlds Ω̂B(t) at specific time points.
Thus, type 1 beliefs have less impact than type 0 beliefs because they can only be
exploited to prune the sets of admissible worlds Ω̂B(t) locally. Again, an evaluation
of these beliefs relies neither on a specific probability assignment nor on any given
Kripke structures Ki.

• Type 2: This type encompasses all remaining beliefs in B that are neither type 0 nor
type 1 beliefs. These beliefs are situation-specific and cannot be used to prune the
sets of admissible worlds a priori. Satisfiability of these beliefs depends on a suitable
probability assignment or on the evaluation of Kripke structures in the respective
threads.

We use Tk(B) to denote the set of type k beliefs from B.

The main goal of this belief formula taxonomy is to identify constraints on possible
worlds ω and possible threads Th that can be evaluated prior to searching for a suitable
probability assignment, namely by using the belief formulae in T0(B) and T1(B) to prune
the search space of possible sets of threads T̂ that may show satisfiability of B. It should
be noted that the existence of a thread Th ∈ T̂ violating a belief from T0(B) or T1(B)
technically does not preclude satisfiability of B with respect to T̂ , as there is a special

51

T0(B)

T1(B)

TF
1 (B)

T2(B)

Type 0: These beliefs
have the highest impact,
because they restrict every
world at every time point.

Type 1: These beliefs restrict threads in-
dependently of any probabiliy assignment.
Moreover, they can potentially restrict pos-
sible worlds at individual time points.

Type 2: All remain-
ing beliefs; they can be
treated the same way.

all beliefs

strict beliefs

` = 1

prior beliefs

t′ = 0

belief in rules
B1,1

i,0 (rfr∆t(F,G))

belief in static rules
∆t = 0

belief in dynamic rules
∆t > 0

belief in facts
B1,1

i,0 (Ft)

disjunctive belief
formulae

B1,1
i,0 (ϕ1) ∨B1,1

i,0 (ϕ2) ∨ · · ·

belief in beliefs

B1,1
i,0 (B`′,u′

j,t (·))

If all ` = 1, only
the innermost be-
lief is of interest

posterior beliefs

t′ > 0

belief in rules
B1,1

i,t′(r
fr
∆t(F,G))

belief in static rules
∆t = 0

belief in dynamic rules
∆t > 0

belief in facts
B1,1

i,t′(Ft)

disjunctive belief
formulae

B1,1
i,0 (ϕ1) ∨B1,1

i,0 (ϕ2) ∨ · · ·

belief in beliefs
B`,u

1,1′(B
1,1
j,t (·))

non-strict beliefs

` < 1

Figure 3: Taxonomy of belief formulae

52

case of a suitable probability assignment: If there is a thread Th ∈ T̂ such that some
belief B ∈ T0(B) or B ∈ T1(B) is not satisfied, there could still be suitable probability
assignments I(T̂) such that sat(B, T̂) holds iff I(Th) = 0. The effect of excluding such a
thread Th from T̂ or assigning a prior probability I(Th) of zero is the same (cf. Remark 3.3,
p. 17), i.e., the respective thread is marked as impossible. Since we aim at reducing both
the search space of possible threads and the input to the satisfiability check sat(B, T̂), we
exploit belief formulae in T0(B) and T1(B) to exclude impossible threads prior to searching
for suitable probability assignments.

Type 0 belief formulae As depicted in Figure 3, the set of type 0 belief formulae is
formed by formulae with strict prior beliefs in static rules B1,1

i,0 (rpfr0 (F,G)) from B. Since
prior beliefs represent the background knowledge and since it follows from the definition of
strict beliefs that they cannot be violated in any world, it is clear that the rule rpfr0 (F,G)
has to be always satisfied. As this is a static rule, it has to be satisfied in every world
ω ∈ Ω̂B. We define the set of type 0 beliefs as

T0(B) = {B ∈ B : B = B1,1
i,0 (rpfr0 (F,G))} (47)

with arbitrary formulae F and G.

Type 1 belief formulae The set of type 1 beliefs contains all strict prior beliefs that
are not in the set T0(B). The contributions of this set T1(B) are twofold: As T1(B) only
comprises strict prior beliefs, every thread in a potential set of threads T̂ has to satisfy all
beliefs B ∈ T1(B). Moreover, constraints from T1(B) may constrain the sets of worlds
Ω̂B(t) at individual time points t ∈ τ regardless of any specific thread. According to
Figure 3, we define the set of type 1 beliefs as

T1(B) =
{
B ∈ B :

(
B = B1,1

i,0 (Ft)

∨B = (B1,1
i,0 (rpfr∆t(F,G)) ∧∆t > 0)

∨B = (B1,1
i,0 (ϕ1) ∨B1,1

i,0 (ϕ2) ∨ · · ·)
)}

(48)

For a potential set of possible threads T̂ , the beliefs specified in this set T1(B) have to
be satisfied by every thread Th ∈ T̂ . Note that satisfiability of beliefs in dynamic rules and
disjunctive belief formulae generally depends on worlds ω at multiple time points and thus
satisfiability of T1(B) cannot be ensured by only constraining sets of worlds at single time
points. However, by analyzing strict prior beliefs in facts and their potential interplay with
dynamic rules we can derive constraints for the sets of worlds Ω̂B(t) at specific time points
t ∈ τ as follows.

Strict prior beliefs in facts B = B1,1
i,0 (Ft) restrict the set of admissible worlds Ω̂B(t) at

time t by enforcing that F holds at every world ω ∈ Ω̂B(t). In the following, we use TF
1 (B)

to denote such strict prior beliefs in facts F at certain time points t. Moreover, we use
B |= Ft as a shorthand for B1,1

i,0 (Ft) ∈ B to denote that B enforces F at time t.

Through interplay with existing constraints on sets possible worlds Ω̂B(t) at individual
time points t, strict beliefs in dynamic rules can yield additional constraints: For a belief
formula B = B1,1

i,0 (rpfr∆t(F,G)),∆t > 0, additional constraints might be derived, depending

on the type of belief in the respective rule’s premise F : if (T0(B) ∪TF
1 (B)) |= Ft is given,

53

we can extract a strict prior belief in a fact B′ = B1,1
i,0 (Gt+∆t), which then again restricts

the set of possible worlds at time point t+ ∆t and is therefore added to TF
1 (B).

Since dynamic rules can be considered as temporal implications (cf. Definition 3.10 from
Section 3), these rules can also be applied backwards to obtain additional constraints: If a

belief formula B = B1,1
i,0 (rpfr∆t(F,G)),∆t > 0 is given and the rule’s negated conclusion ¬G

is already enforced at some time point t (i.e., (T0(B)∪TF
1 (B)) |= ¬Gt), the rule’s premise

F cannot be satisfied at time t−∆t. Thus, we can add the belief B′ = B1,1
i,0 (¬Ft−∆t) as an

additional constraint to TF
1 (B).

Extending the set of type 1 beliefs through dynamic rules may lead to a chained ex-
tension: if we have a belief in a dynamic rule B1,1

i,0 (rpfr∆t(F,G)) and a corresponding belief

B1,1
i,0 (Ft) ∈ TF

1 (B), this will lead to the additional belief B1,1
i,0 (Gt+∆t) ∈ TF

1 (B), which

in turn might trigger another dynamic rule B1,1
i,0 (rpfr∆t(G,G

′)). Analogously, any additional

belief in TF
1 (B) could also trigger further backward rule applications.

To capture all constraints that emerge from forward and backward chaining of strict
dynamic rules, we define the set TF

1 (B) as the following fix-point set:6

TF
1 (B) = {B1,1

i,0 (Ft) ∈ B}

∪ {B1,1
i,0 (Gt+∆t) :

(
∆t > 0 ∧ B1,1

i,0 (rpfr∆t(F,G)) ∈ B

∧
(
(T0(B) ∪T1(B)) |= Ft

))
}

∪ {B1,1
i,0 (¬Ft−∆t) :

(
∆t > 0 ∧ B1,1

i,0 (rpfr∆t(F,G)) ∈ B

∧
(
(T0(B) ∪T1(B)) |= ¬Gt

))
} (49)

After having determined all constraints on individual time points, we can reduce this
set TF

1 (B) such that it contains at most one belief B1,1
i,0 (Ft) for every time point t. If

TF
1 (B) contains multiple beliefs B1,1

i,0 (Ft), B
1,1
i,0 (Gt) regarding the same time point t, we

can replace them by a joint belief B1,1
i,0 (F ′t) with F ′ = F ∧ G. Note that this substitution

uses Lemma 3.7 (p. 28) to merge different belief expressions into one expression with a
conjunctive belief object. We still assume that belief formulae with conjunctions of belief
operators are separated into atomic belief formulae.

Type 2 belief formulae The set of type 2 belief formulae consists of all beliefs in B that
are neither type 0 nor type 1 beliefs. Thus we define this set as

T2(B) = (B \T0(B)) \T1(B) (50)

6. For this representation, we have only considered the influence of temporal rules for the set TF
1 (B). In

principle, information from disjunctive formulae B = B1,1
i,0 (ϕ1) ∨ · · · ∨ B1,1

i,0 (ϕn) in T1(B) could yield

additional constraints on the sets Ω̂B(t): If TF
1 (B) enforces n−1 disjuncts in B to be false, the remaining

disjunct must be satisfied. As the belief objects of the respective disjuncts might be dynamic rules again,
a formal representation of this consideration would result in a rather intricate specification. Since we have
to ensure that any potential thread satisfies all beliefs in T1(B) anyways, omitting disjunctive formulae
in the construction of TF

1 (B) does not impact satisfiability results. Yet an actual implementation of the
described procedures could exploit this consideration to obtain additional pruning conditions in special
cases.

54

Example 4.5 (Trains continued). Continuing with the set of belief formulae B from Ex-
ample 4.1 (p. 35) and assuming that conjunctive formulae B = B′ ∧ B′′ are treated as
individual formulae B′ and B′′, we obtain the following sets of typed belief formulae:

T0(B) =
{
B1,1
A,0

(
rpfr0 (¬punct(train) ∧ at(train, city), Obs{A}(¬punct(train)))

)}
(B5)

T1(B) =
{
B1,1
A,0

(
at(T1, CA)1

)
, (B′1)

B1,1
A,0

(
on(A, T1)1

)
, (B′′1)

B1,1
A,0

(
rpfr3 (punct(T1) ∧ at(T1, CA), at(T2, CC) ∧ on(A, T2))

)
, (B′3)

B1,1
A,0(rpfr5 (¬punct(T1) ∧ at(T1, CA), at(T2, CC) ∧ on(A, T2))

)
, (B′′3)

B1,1
A,0

(
rpfr2 (punct(T2) ∧ at(T2, CC), at(T2, CB) ∧ on(A, T2))

)
(B′4)

B1,1
A,0

(
rpfr3 (¬punct(T2) ∧ at(T2, CC), at(T2, CB) ∧ on(A, T2))

)}
, (B′′4)

TF
1 (B) =

{
B1,1
A,0

(
at(T1, CA)1

)
, (B′1)

B1,1
A,0

(
on(A, T1)1

)}
, (B′′1)

T2(B) = B \T0(B) \T1(B)

= {B.81,.81
A,0

(
rpfr0 (at(T1, CA), punct(T1))

)
, (B′2)

B.81,.81
A,0

(
rpfr0 (at(T2, CC), punct(T2))

)
, (B′′2)

B.93,.93
A,0

(
rpfr2 (Obs{A}(¬punct(train)), Obs{AB}(¬punct(train)))

)
} (B6)

The taxonomy of belief formulae provides means to construct sets of admissible worlds
Ω̂B(t) for every time point t ∈ τ . Type 0 beliefs (i.e., beliefs with the highest impact)
constrain the global set of possible worlds Ω̂B. Certain beliefs of type 1—materialized in
the set TF

1 (B)—can then give additional constraints for specific time points t, such that
only subsets Ω̂B(t) ⊆ Ω̂B need to be considered as possible worlds for time t. The sets
T0(B) and T1(B) together provide satisfiability conditions that are independent of any
specific probability assignments. Then, only beliefs of type 2 need to be considered as
probabilistic constraints to check whether B can be satisfied with respect to T̂ , i.e., the
satisfiability problem sat(B, T̂) from the previous section can be reduced to sat(T2(B), T̂),
if unsatisfiability of B has not yet been shown through constraints in T0(B) and T1(B).
Since the prior constraints define necessary conditions for any potential thread, they give
rise to a definition of thread soundness with respect to a given set of belief formulae B:

Definition 4.4 (Thread soundness). Let B be a set of belief formulae, and let T0(B) and
T1(B) be the set of type 0 and type 1 belief formulae in this set, respectively. Then, a
thread Th is sound with respect to B (denoted snd(Th,B)) if it satisfies all belief formulae
from T0(B) and T1(B):

snd(Th,B) ≡ ∀B ∈ (T0(B) ∪T1(B)) : Th |= B (51)

55

Accordingly, we use snd(T̂ ,B) to denote that all threads Th ∈ T̂ are sound.

Note that this definition only relies on strict prior beliefs and the soundness property can
therefore be verified for every thread individually, without having to consider other threads
or probability assignments. Thus, a simplified version of the model checking procedure from
Section 4.1 can be used to verify soundness. The intuition behind this property is that we
can verify it easily prior to checking sat(B, T̂) and can therefore obtain a reduced version
of the satisfiability problem:

Theorem 4.13 (Reduced satisfiability checking). Let B be a set of belief formulae, let
T2(B) be the set of type 2 beliefs in B according to (50), and let T̂ be a set of sound
threads. Then, B is satisfiable with respect to T̂ iff T2(B) is satisfiable with respect to T̂ :

sat(B, T̂) ∧ snd(T̂ ,B) ≡ sat(T2(B), T̂) (52)

Proof. This follows directly from Definition 4.4: snd(T̂ ,B) is defined so that it satisfies all
belief formulae in the sets T0(B) and T1(B). Consequently, these sets resemble tautologies
with respect to T̂ and therefore do not have any impact on the satisfiability checking
properties. Thus, instead of checking B for satisfiability, it suffices to check the set (B \
T0(B)) \T1(B), which is exactly the definition of T2(B).

4.4.2 Constraining Possible Worlds at Individual Time Points

Using the classification of beliefs in B into the three different types, we can now continue
with constructing sets of possible worlds Ω̂B(t) for every time point t ∈ τ . The main goal of
this section is an identification of obvious pruning conditions for possible worlds at specific
time points. Since we are in the process of searching for a set of possible threads that
satisfies a set of belief formulae B, any constraints on the sets Ω̂B(t) have the potential to
significantly reduce the later used search space. Thus, the results of this section highlight
possible optimizations for an implementation of a PDT Logic sat solver. Even if the fol-
lowing constraints are not—or only partially—applied, the search for possible threads as
described in subsequent Section 4.5 can be carried out, yet with a potentially larger search
space.

Since the set of type 0 beliefs has to be satisfied in every admissible world, we can define
the global set of admissible worlds Ω̂B as follows:

Definition 4.5 (Global set of admissible worlds). Let B be a set of belief formulae, with
the corresponding sets of belief objects FB and type 0 beliefs T0(B). Then, the set of
admissible worlds Ω̂B w.r.t. B is given as

Ω̂B =
{
ω ∈ BFB :

(
adm(ω) ∧ ∀B1,1

i,0 (rpfr0 (F,G)) ∈ T0(B) : ω |= (¬F ∨G)
)}

. (53)

Remark 4.4. This definition uses adm(ω) to ensure that all worlds ω ∈ Ω̂B are admissible
as defined in the external Definition 3.5 (p. 12). Alternatively, we could use the existing
formalism to encode these admissibility conditions directly as strict prior beliefs in B:
B1,1
i,0 (rpfr0 (ObsG(l), l)) and ∀G′ ⊂ G : B1,1

i,0 (rpfr0 (ObsG(l), ObsG′(l))) represent conditions 1
and 2 of Definition 3.5, respectively. However, since these conditions are independent of the
respective problem being modeled, we do not include them in the problem-specific belief
set B, but use them as external constraints.

56

Example 4.6 (Trains continued). The global set of worlds Ω̂B admissible with respect to
B from Example 4.1 (p. 35) can be automatically constructed from all combinations of
events from FB shown in Example 4.2 (p. 37), given that these combinations are admissible
with respect to Definition 3.5 and satisfy the type 0 beliefs in T0(B) from Example 4.4
(p. 45). We refrain from enumerating all of these worlds explicitly and instead describe
which worlds are excluded from the Herbrand base BFB of FB: From FB it follows that the
only possible shared observation between A and B is the fact that a train is not punctual
(Obs{AB}(¬punct(train))). In every possible world where this observation occurs, admis-
sibility conditions require that both agents A and B observe that the respective train is
not punctual and that the train is indeed not punctual. Furthermore, the beliefs in T0(B)
require that there is a corresponding observation for A at every possible world where a
train is not punctual (which incidentally also enforces admissibility conditions for these
observations).

Next, we can build upon the set of globally admissible worlds Ω̂B and use the set of
type 1 beliefs to further prune the set of admissible worlds Ω̂B(t) at individual time points
t:

Definition 4.6 (Local sets of admissible worlds). Let B be a set of belief formulae with
the corresponding sets of admissible worlds Ω̂B, TF

1 (B) be the set of materialized strict
prior beliefs induced by T0(B) and T1(B), and τ be a set of time points. Then, the set of
admissible worlds Ω̂B(t) w.r.t. B at time t ∈ τ is given as

Ω̂B(t) =
{
ω ∈ Ω̂B :

(
∀B1,1

i,0 (Ft) ∈ TF
1 (B) : ω |= F

)}
. (54)

Example 4.7 (Trains continued). To obtain the scenario from the original Example 3.2,
we assume tmax = 9. From the set TF

1 (B) identified in Example 4.5, we can restrict the set
of worlds at time 1 to

Ω̂B(1) =
{
ω ∈ Ω̂B : ω |= (at(T1, CA) ∧ on(A, T1))

}
For all other time points, there are no options for further restrictions, thus the respective
local sets Ω̂B(t) of possible worlds for all time points t 6= 1 remain at Ω̂B.

Using Definition 4.6, we can now formulate constraints for the set of sound threads T̂ :

∀Th ∈ T̂ , ∀t ∈ τ : Th(t) ∈ Ω̂B(t). (55)

Note that this constraint provides a necessary but not sufficient condition for thread
soundness. To illustrate this, consider Example 4.5 again: the set TF

1 (B) requires that
{at(T1, CA), on(A, T1)} holds at every possible world at time t = 1 and thus we can con-
strain Ω̂B(1) as shown in Example 4.7, because any thread violating this constraint is
inherently unsound. On the other hand, a thread according to (55) may contain the
fact, say punct(T1) ∈ Th(1), which—according to B′3—only yields a sound thread if
{at(T2, CC), on(A, T2)} ⊆ Th(4) holds as well. Thus, (55) provides general constraints on
the set of threads with respect to beliefs from T0(B) and TF

1 (B), while additional beliefs
from T1(B) can discard individual threads by catching any potential unsatisfiable interplay
of possible worlds at different time points.

57

Of course, in general it is possible that the methods discussed so far result in special
cases: for one thing, it is possible that B induces a set T0(B) ∪ TF

1 (B) of inconsistent
beliefs, i.e., it will contain beliefs that contradict each other. Then, Ω̂B or Ω̂B(t) for some
t will be empty. This precludes the creation of any set of threads T̂ such that I(T̂) |= B.
In this case, satisfiability checking can terminate immediately with a negative result. For
another, it is possible that the above simplification process will result in an empty set
T2(B). In this case, there are no probabilistic constraints that could impact satisfiability of
B and thus it is unnecessary to search for a suitable probability assignment. In this case, it
needs to be checked whether any of the threads in compliance with (55) is sound according
to Definition 4.4. If such a thread can be found, satisfiability checking can terminate
immediately with a positive result, otherwise B is unsatisfiable. Verifying soundness of a
single thread can be done with a simplified version of the model checking procedure from
Section 4.1 and is therefore in PTIME (cf. Corollary 4.3). However, as the number threads
satisfying condition (55) can grow exponentially with the number of ground atoms and the
number of time points, the problem of finding a sound thread is more complex:

Theorem 4.14 (Complexity of finding a sound thread). Let B be a set of belief formulae
such that all included formulae are grounded. Deciding whether there exists a sound thread
with respect to B, as defined in Definition 4.4, is NP-complete.

Proof. According to Definition 4.4, a set is sound if it satisfies all formulae from the set
T0(B) ∪T1(B). By treating the belief objects’ atoms F at all time points t as individual
variables Ft, we can transform beliefs in facts and belief in rules from T0(B) ∪T1(B) into
a boolean sat problem as follows:7

B1,1
i,0 (Ft) ⇒ Ft

B1,1
i,0 (rpfr∆t(F,G)) ⇒

tmax−∆t∧
t=0

(¬Ft ∨Gt+∆t)

Accordingly, disjunctive belief formulae can then be expressed through transforming every
disjunct individually. This transformation requires at most tmax conjuncts for every belief
operator and can therefore be performed in linear time. Since the boolean sat problem is
known to be NP-complete (Cook, 1971), it follows that searching for a sound thread with
respect to B is in NP.

NP-hardness of this problem has already been shown in the proof of Theorem 4.11
(p. 48) and consequently it follows that searching for a sound thread with respect to B is
NP-complete.

It should be noted that this result analyzes the worst-case complexity of the problem,
but in practice finding a sound thread is usually not dominated by this worst case. In most
cases, a sound thread can be found easily by employing the principle of least effort: For
belief in temporal rules B1,1

i,0 (rpfr∆t(F,G)), choosing worlds ω such that ω |= ¬F ensures that
consequences of this rule do not have to be evaluated at other time points. Accordingly, for

7. This transformation is only defined for temporal rules with point frequency functions pfr. If other
frequency functions are used, the transformation has to be adapted accordingly.

58

disjunctive rules a disjunct should be selected such that no temporal rule is triggered by this
fact. Of course, this is only a heuristic that may not give a sound thread immediately for
every input B, but it represents a feasible approach for most problems. We will illustrate
this approach with an example subsequently.

In this work, we only consider ground formulae for PDT Logic. In general, the formalism
as introduced in Section 3 allows the treatment of non-ground formulae as well. However,
for non-ground formulae the complexity result from Theorem 4.14 does not hold, because
transformation into a boolean sat problem is then exponential in the number of possible
groundings. Finding a sound thread then requires the use of sophisticated grounding proce-
dures, (e.g., (Dal Palù, Dovier, Pontelli, & Rossi, 2009) and (Faber, Leone, & Perri, 2012)),
which is beyond the scope of this work.

Now that sets of possible worlds are identified for every time point t ∈ τ , we can proceed
with creating sets of representative threads with respect to these constraints. The aim of
the following discussion is the successive generation of a set of representative threads T̂
such that sat(B, T̂) can be decided.

4.5 Representative Threads

Using Definition 4.4 and constraint (55) gives rise to a potential definition of the set of
possible threads T̂ by constructing all possible combinations of sound world sequences from
Ω̂B(t) for all t ∈ τ . However, this would still result in an unnecessarily large set of possible
threads. Instead of constructing all of these threads explicitly, we will heuristically create
representative threads that represent excerpts from the situations modeled by T2(B). This
approach uses heuristics to successively expand the set of representative threads. As soon as
a suitable set of threads (i.e., a model for B) is found, the decision procedure can terminate
with a positive result. If a set of representative threads does not show satisfiability of
B, additional threads are created until either a positive satisfiability result is obtained
or all possible threads have been created. Consequently, the heuristic search for models
constitutes a complete decision procedure for PDT Logic.

For the following discussion, we assume that the set T2(B) is nonempty, i.e., there are
additional constraints that need to be satisfied by the generated set of threads. Otherwise,
if the set T2(B) was empty, satisfiability could already be determined by checking whether
a sound thread with respect to B exists, as discussed in the previous section and there
would be no need to generate any specific set of threads.

For all beliefs in facts B`,u
i,t′ (Ft) from B, the dual belief in the negated fact B`′,u′

i,t′ (¬Ft)
with `′ = 1 − u and u′ = 1 − ` (cf. Corollary 3.4, p. 23) has to be satisfied as well. For

beliefs in rules B`,u
i,t′ (r

fr
∆t(F,G)), satisfiability depends on the accumulated subjective poste-

rior interpretations of all threads weighted with their respective frequencies. The goal of
the following procedure is to successively create threads for every belief in a fact B`,u

i,t′ (Ft)
in T2(B), such that we obtain representatives for the set of threads that (i) satisfy the
respective fact Ft and for the set of threads that satisfy ¬Ft, and (ii) exhibit varying fre-

quencies for all beliefs in temporal rules B`,u
i,t′ (r

fr
∆t(F,G)) ∈ T2(B). Consequently, belief

formulae can be considered as splitting rules and their application to generate representa-
tive threads results in a procedure similar to tableau-based methods. However, beliefs in
temporal rules can induce splits both forward and backward in time and thus—unlike con-

59

ventional tableau-based methods—the following procedure does not create a tree structure,
but instead a set of sequences that represent possible threads. A key difference between
the generation of representative threads and other logical sat solvers is that in PDT Logic
it is virtually impossible to discard any generated potential thread: the probabilistic na-
ture of the semantics requires that not only threads are considered where a given formula
holds, but also threads where it does not. Thus, even threads violating the objects of given
belief formulae are usually required to show satisfiability of a corresponding set of belief
formulae B. The following discussion provides a general outline for a decision procedure
in PDT Logic if only a set of belief formulae B is given. An actual implementation of
these methods is possible, but to obtain feasible run times for practical problems, various
optimization techniques from research on logic reasoning implementations would need to be
implemented, which is beyond the scope of this work.

4.5.1 Generating Representative Threads

Since the existence of any non-strict belief in a fact B`,u
i,t′ (Ft) requires the existence of at

least two threads—one, where the respective belief object is satisfied and one, where it is
not8—we start with creating two threads from 〈Ω̂B(1), ..., Ω̂B(tmax)〉 such that we obtain a
set T̂ = 〈Th1, Th2〉 with Th1 |= ϕ and Th2 |= ¬ϕ for all belief objects ϕ = Ft contained
in the set T2(B) to obtain a minimal set of set threads T̂ such that all belief formulae
B ∈ T2(B) can potentially be satisfied. This set will then subsequently be expanded with
additional threads until either a suitable set of threads to show satisfiability of T2(B) is
found, or until no more additional threads can be created.

To allow for a concise notation, in the following we adapt the frequency notation for all
belief objects and use (1 · ϕ) to denote that ϕ is true, (0 · ϕ) to denote that ϕ is false, and
generally (x · ϕ) to denote that ϕ holds with frequency x. Of course, values 0 < x < 1 can
only occur for belief objects that represent temporal rules. With this notation, we try to
create initial sound threads such that

Th1 |=
∧
j

(1 · ϕj), and (56)

Th2 |=
∧
j

(0 · ϕj) (57)

holds for the respective belief objects ϕj of all belief formulae Bj ∈ T2(B).9

This initial set T̂ = {Th1, Th2} is meant to represent the two extreme choices for possible
threads with respect to T2(B) to provide a suitable starting point for the subsequently
employed search heuristic. In general, it is not necessarily possible to create such extreme
threads in compliance with (56) and (57) for every possible set of belief formulae T2(B). For

instance, T2(B) might contain conflicting beliefs in facts B`,u
i,t′ (Ft) and B`,u

i,t′ (¬Ft). Obviously,
no single thread can satisfy both belief objects simultaneously, but it might still be possible

8. Technically, a non-strict belief B`,u
i,t′(ϕ) could be satisfied with a single thread Th such that Th |= ϕ if

the belief’s quantification has an upper bound u = 1. This might give rise to further optimizations for
an actual implementation, but for the sake of simplicity, we do not consider this case explicitly.

9. This notation is slightly simplified: for disjunctive belief formulae Bj = B`,u
i,t′(ϕ

′
j) ∨B`,u

i,t′(ϕ
′′
j), we use ϕj

as an abbreviation for ϕ′
j ∨ ϕ′′

j .

60

to create a set of threads such that—together with a suitable probability assignment—both
beliefs can be satisfied. Thus, (56) and (57) characterize the intended goal when creating
the initial threads Th1, Th2, but do not represent hard constraints on these threads.

To find suitable threads that match these constraints, we employ the principle of least
effort by adding as few facts as possible to each thread: For every belief in a fact B`,u

i,t′ (Ft),
we add the explicit constraints F ∈ Th1(t) and F 6∈ Th2(t), such that Th1 represents the
thread where all belief objects are true and Th2 represents the set where all belief objects are
false. For beliefs in rules B`,u

i,t′ (r
fr
∆t(F,G)) we add G ∈ Th1(t+∆t) (resp. ¬F ∈ Th1(t−∆t))

whenever another constraint enforces F ∈ Th1(t) (resp. ¬G ∈ Th2(t)). If no occurrence of
F respectively ¬G is enforced in Th1, a rule rfr∆t(F,G) is trivially satisfied with frequency
1 (i.e., there are no occurrences where F is not followed by G in ∆t steps) and no further
constraints need to be added. Analogously, for Th2 we need to ensure that F holds at
least once and that whenever F ∈ Th2(t) holds, ¬G ∈ Th2(t + ∆t) holds, as well. For

disjunctive belief formulae B`,u
i,t′ (ϕ1) ∨ B`,u

i,t′ (ϕ2), we need to ensure that belief object ϕ1 or
ϕ2 holds in thread Th1, as described above, and that ¬ϕ1 ∧ ¬ϕ2 holds in thread Th2. If
possible, the respective belief object ϕ1 or ϕ2 for thread Th1 should be chosen such that no
additional beliefs are triggered (we say that a belief is triggered by a fact F , if the existence
of F enforces another constraint through a belief in a temporal rule or a disjunctive belief
formula). Nested belief formulae are treated as above with respect to their innermost belief
object. If some constraint cannot be applied because it is in conflict with previously added
constraints from T2(B), it is simply skipped in this stage. As the creation of Th1 and Th2 is
only the initialization step for a heuristic search of possible set threads, skipped constraints
will still be considered later in subsequent expansions.

Whenever a constraint regarding a fact F is added to Th1 or Th2, it is necessary to
check whether this triggers additional rules from set of type 1 beliefs T1(B). If necessary,
resulting facts are added to the respective threads. This application works analogously
to the construction of the set TF

1 (B) as described in Section 4.4.1. Finally, if all belief
formulae have been processed, we search for a sound thread with respect to the created
constraints. Usually, a sound thread can be found easily by choosing all facts that are
yet unconstrained in Th1 and Th2 such that they do not trigger any additional beliefs.
Especially, for possible worlds Th(t) that are unconstrained, we can choose Th(t) = ∅ if B
does not contain any belief in rules with purely negative preconditions or disjunctive belief
formulae that are not satisfiable by ∅. More generally, the principle of least effort should
be employed such that worlds ω are selected so that no further belief formulae need to be
considered. Such a selection is impossible if and only if the addition of both F and ¬F to
some world triggers additional beliefs. Then, the consequences of adding the respective fact
need to be evaluated, as well. The resulting set T̂ = {Th1, Th2} then provides a minimal
set of representative threads that that can be used to check sat(T2(B), T̂).

In the following, we show how the principle of least effort can be used to obtain repre-
sentative threads as efficiently as possible. The constraints used in the following example
provide the minimal number of constraints that need to be enforced to obtain representa-
tive threads for the desired threads Th1 and Th2. For all worlds ω without any specific
constraints, we simply use ω = ∅. One can easily verify that this indeed yields threads in
compliance with (56) and (57).

61

Example 4.8 (Trains continued). We continue the train example with the sets of typed
belief formulae specified in Example 4.5 (p.55). In Example 4.7 (p. 57), it was shown that
the set of worlds at time 1 Ω̂B(1) is restricted such that {at(T1, CA), on(A, T1)} ⊆ ω for
every world ω ∈ Ω̂B(1). The set T2(B) contains three non-strict belief formulae, namely

T2(B) = {B.81,.81
A,0

(
rpfr0 (at(T1, CA), punct(T1))

)
, (B′2)

B.81,.81
A,0

(
rpfr0 (at(T2, CC), punct(T2))

)
, (B′′2)

B.93,.93
A,0

(
rpfr2 (Obs{A}(¬punct(train)), Obs{AB}(¬punct(train)))

)
} (B6)

By evaluating these belief formulae, we obtain constraints on the possible worlds in
threads Th1 and Th2. A visualization of the following steps is given in Figure 4.

Analysis of belief formula B′2 results in the constraints punct(T1) ∈ Th1(1) and
punct(T1) 6∈ Th2(1). These facts in turn trigger rules B′3 and B′′3 , respectively:

B1,1
A,0

(
rpfr3 (punct(T1) ∧ at(T1, CA), at(T2, CC) ∧ on(A, T2))

)
and (B′3)

B1,1
A,0(rpfr5 (¬punct(T1) ∧ at(T1, CA), at(T2, CC) ∧ on(A, T2))

)
, (B′′3)

resulting in the additional constraints {at(T2, CC), on(A, T2)} ⊆ Th1(4) and {at(T2, CC),
on(A, T2)} ⊆ Th2(6).

Application of belief formula B′′2 then yields the additional facts punct(T2) ∈ Th1(4)
and punct(T2) 6∈ Th2(6). Again, this triggers rules from T1(B):

B1,1
A,0

(
rpfr2 (punct(T2) ∧ at(T2, CC), at(T2, CB) ∧ on(A, T2))

)
and (B′4)

B1,1
A,0(rpfr3 (¬punct(T2) ∧ at(T2, CC), at(T2, CB) ∧ on(A, T2))

)
, (B′′4)

resulting in the additional constraints Th1(6) = at(T2, CB), on(A, T2) and Th2(9) =
at(T2, CB), on(A, T2).

Note that belief formula

B1,1
A,0

(
rpfr0 (¬punct(train) ∧ at(train, city), Obs{A}(¬punct(train)))

)
(B5)

from T0(B) provides a global constraint on the set of possible worlds Ω̂B such that
Obs{A}(¬punct(train)) holds in every world where ¬punct(train) holds, and thus we obtain
for thread Th2 the additional factsObs{A}(¬punct(T1)) ∈ Th2(1) andObs{A}(¬punct(T1)) ∈
Th2(6).

Finally, rule

B.93,.93
A,0

(
rpfr2 (Obs{A}(¬punct(train)), Obs{AB}(¬punct(train)))

)
(B6)

62

Th1

Th2

1 · · · 4 · · · 6 · · · 9 t

at(T1, CA), on(A, T1)

punct(T1)

at(T1, CA), on(A, T1)

¬punct(T1)

Obs{A}(¬punct(T1))

at(T2, CC), on(A, T2)

punct(T2)

at(T2, CB), on(A, T2)

at(T2, CC), on(A, T2)

¬punct(T2)

Obs{A}(¬punct(T2))

at(T2, CB), on(A, T2)

B′
2

B′
3 B′′

2
B′

4

B′′
2

B5

B′′
3 B′′

2

B5

B′′
4

1

Figure 4: Visualization of the representative thread set generation for the train example.
Both threads start with the given facts at(T1, CA), on(A, T1). Applications of
formulae from T2(B)—such that Th1 contains positive belief objects and Th2

contains negative belief objects—are marked in blue, additional constraints from
T0(B) and T1(B) are marked in red.

does not change the created threads Th1, Th2: in Th1 the rule’s precondition is never
enforced to be satisfied and thus the resulting frequency is one, while the lack of any
observation in Th2—even though there are nonpunctual trains—ensures that the resulting
frequency is zero.

When trying to solve the resulting problem sat(T2(B), {Th1, Th2}), the non-strict belief
formulae yield the following constraints on Th1:

B′2 : 0.81 ≤ I(Th1) ≤ 0.81

B′′2 : 0.81 ≤ I(Th1) ≤ 0.81

B6 : 0.93 ≤ I(Th1) ≤ 0.93

Clearly, these constraints cannot be satisfied simultaneously and therefore the set T̂ =
{Th1, Th2} is insufficient to show satisfiability of T2(B) (and therefore B).

If the created set of threads fails to show satisfiability of T2(B), additional threads can
be created to continue searching for an expanded set T̂ such that T2(B) can be satisfied
with respect to T̂ . Based on an existing thread Th, an additional thread Th′ can be created
by ensuring that one conjunct for Th1 or Th2 in (56) and (57) is not satisfied anymore,
i.e., from a given thread Th with existing constraints (xk · ϕk), a new thread Th′ can be
obtained through the substitution

Th |=
∧
j

(xj · ϕj) ⇒ Th′ |=
∧
j 6=k

(xj · ϕj) ∧ x′k · ϕk, x′k 6= xk. (58)

Every such substitution of one conjunct with a new constraint provides a choice point to
direct the continuation of the search for a suitable set of threads. The constraint notation
in 58 is used to provide a formal characterization of choice points. In practice, a new thread
Th′ satisfying the above constraint can usually be created easily through the addition of new
or the modification of existing facts in Th as follows. To simplify the following discussion,
we assume that the expansion keeps a history of expansion steps and resulting consequences,
such that all effects of adding an additional F can be undone if the respective fact F is
changed for a newly created thread.

63

Definition 4.7 (Principle of least effort (ple) expansion). Let T̂ be a set of threads and let
T2(B) be a set of type 2 belief formulae. A principle of least effort expansion creates an
expanded set T̂ ′ = T̂ ∪ {Th′} according to a single application of one of the following rules.

• For a (possibly negated) belief in an a fact B`,u
i,t′ (Ft) ∈ T2(B): If there exists a thread

Th ∈ T̂ such that F ∈ Th(t) (resp. F 6∈ Th(t)) is not yet enforced, Th′ is created as
a duplication of Th with the additional constraint F ∈ Th(t) (resp. F 6∈ Th(t)).

• For a belief in a temporal rule B`,u
i,t′ (r

fr
∆t(F,G)) ∈ T2(B): If there exists a thread

Th ∈ T̂ such that F ∈ Th(t) but G ∈ Th(t + ∆t) (resp. G 6∈ Th(t + ∆t)) is not
yet enforced, Th′ is created as a duplication of Th with the additional constraint
G ∈ Th(t+ ∆t) (resp. G 6∈ Th(t+ ∆t)).

• For a disjunctive belief formula B = (B`,u
i,t′ (ϕ1)∨B`,u

i,t′ (ϕ2)∨ · · ·) ∈ T2(B): If possible,

expansion is carried out with respect to one belief B`,u
i,t′ (ϕ) as described in the two

previous steps.

• Nested beliefs are again treated with respect to their innermost belief object.

• If the new thread Th′ is created from Th through the addition of F ∈ Th′ for some
fact F and time point t and F 6∈ Th was enforced in the original thread Th, the
consequences of adding F 6∈ Th are undone in the new thread Th′.

Then, for the created thread Th′, additional belief formulae from T1(B) that are
triggered by this modification need to be evaluated to obtain a sound thread, as
described above for the creation of initial threads Th1, Th2.

The intuition behind this ple-expansion is to create additional threads that satisfy an
alternative set of belief objects ϕ contained in the set T2(B) with as little effort as possible.
In general, it is possible to add constraints on arbitrary facts at arbitrary time points and
then continue with a successive expansion based on this thread. However, this would result
in a rather aimless exploration of the exponential search space. Following the ple-expansion
instead helps to direct the search for a suitable model guided by the rules specified in
T2(B). To illustrate this, consider Figure 4 from the previous example: Possible ple-
expansions could for example result in an additional thread by altering the punctuality of
train T2. Clearly, the resulting situations are intended in this model, as they were already
considered in the original thread specification (cf. Figure 1, p. 14). On the other hand, by
deviating from the ple-expansion, one could add additional facts—say at(T1, CA), on(A, T1)
at arbitrary time points t > 1. This could then give rise to multiple subsequent expansions
of the resulting thread and may actually serve to generate a model for B, while such a
situation was not intended by the specification of B. The example about train punctuality
also illustrates the requirement of an undo operation: The fact punct(T2) ∈ Th1(4) produced
the additional constraint {at(T2, CB), on(A, T2)} at time t = 6. Clearly, this constraint
should not be enforced any longer if—based on Th1—a new thread Th′ is created such that
punct(T2) 6∈ Th′(4).

With information about violated constrains from the linear program corresponding to
sat(T2(B), {Th1, Th2}), we can perform a dependency-directed selection of choice points:

64

If the lower bound of a belief B`,u
i,t′ (ϕk) cannot be satisfied with the current set of threads,

an additional thread Th′ can be created with the existing constraints on Th1 or Th2 and
substituting the respective constraint on ϕk, as shown in (58).

The dependency of choice points on violated lower bounds can best be illustrated through
the results from the previous example: Clearly, the upper bounds induced by B′2 and B′′2
and the lower bound induced by B6 hinder satisfiability of T2(B) with respect to the created
threads. Using the belief object of formula B′2 (or B′′2) to create an additional thread Th3

yields the updated constraint

B′2 : 0.81 ≤ I(Th1) + x · I(Th3) ≤ 0.81

with a factor x depending on the frequency of the respective belief object in Th3, while the
constraint induced by B6 remains unchanged. As a result, the new constraint only allows
for lower values of I(Th1), and thus the lower bound induced by B6 remains unsatisfiable.
Using the belief object of formula B6 to create an additional thread instead yields the
constraint

B6 : 0.93 ≤ I(Th1) + x · I(Th3) ≤ 0.93,

which—through nonzero values for x and I(Th3)—potentially allows for lower values on
I(Th1). Note that this example only uses atomic belief formulae. For disjunctive belief

formulae B = (B`,u
i,t′ (ϕ1)∨B`,u

i,t′ (ϕ2)∨· · ·), any of the respective belief objects with a violated
lower bound can be used to direct the selection of subsequent choice points (given that no
other disjunct of B is satisfiable, of course).

Combining information about violated lower bounds with the principle of least effort
provides a multi-stage heuristic to proceed with a dependency-directed selection of choice
points:

Definition 4.8 (Dependency-directed search heuristic). Let T2(B) be a set of type 2 belief
formulae and let T̂ be a set of threads such that ¬sat(T2(B), T̂) holds. Then, to enable a
dependency-directed search for an expanded set T̂ ′ ⊃ T̂ such that sat(T2(B), T̂ ′) holds, T̂
is expanded with an additional thread Th′ 6∈ T̂ according to the following rules.

1. If the existing set of threads T̂ fails to satisfy lower bounds of constraints induced by
a belief formula B with belief object ϕ and an additional thread Th′ can be obtained
through one ple-expansion with respect to ϕ, T̂ is expanded to T̂ ′ = T̂ ∪ {Th′}.

2. Otherwise, if no dependency-directed ple-expansion is possible, another ple-expansion
is applied to T̂ , if possible.

3. Finally, if no ple-expansion is possible in T̂ , an additional thread Th′ can be created
by adding the constraint F ∈ Th(t) (resp. F 6∈ Th(t)) for arbitrary facts F that are
not yet constrained in Th(t).

The intuition behind this heuristic is that information about violated probabilistic con-
straints should be used to select a suitable next expansion step, if possible. Otherwise,
other possible ple-expansion steps should be performed to use rules from T2(B) to guide the

65

search. Only if no further ple-expansions are possible, additional constraints should be em-
ployed to continue the search. Restricting possible expansions with respect to criterion 1 to
one step follows the principle of least effort, again: To illustrate this, consider Example 4.8:
It was shown that the created set of threads {Th1, Th2} fails to satisfy the lower bound of
belief formula B6. In thread Th1, there is no world Th1(t) |= Obs{A}(¬punct(train)) such
that the precondition of the rule in B6 is satisfied. Consequently, there is no single step
ple-expansion of Th1 that could change the constraints induced by B6. On the other hand,
Th2 provides two such choice points and should therefore be preferred for expansion. Note
that the soundness requirement will determine choices for all unconstrained facts. Thus,
in general the proposed expansion may produce threads that are already contained in T̂
by constraining facts that have been determined before. We will not consider this scenario
explicitly but instead assume that in such cases, further expansion steps are performed until
an additional thread is created.

4.5.2 A Thread Generation Example

To illustrate the expansion of a set of threads T̂ with respect to the dependency-directed
search heuristic from Definition 4.8, in the following we resume the train example.

Example 4.9 (Trains continued). In the previous example, a set of threads T̂ = {Th1, Th2}
has been created that fails to show satisfiability of T2(B). Consequently, the heuristic from
Definition 4.8 should be used to iteratively expand this set until an expanded set of threads
T̂ ′ is created such that a model for B is obtained or no further expansions of T̂ ′ are possible.
Belief formula

B6 = B.93,.93
A,0

(
rpfr2 (Obs{A}(¬punct(train)), Obs{AB}(¬punct(train)))

)
has already been identified as a belief formula which yields constrains with an unsatisfiable
lower bound and this should therefore be used to guide the subsequent expansion. As
already discussed before, no single-step ple-expansion of Th1 is possible to influence the
constraints induced by B6. Therefore we continue with an expansion based on thread Th2.
A visualization of the following steps is given in Figure 5.

There are two worlds in Th2 where Obs{A}(¬punct(train)) is satisfied, namely
Obs{A}(¬punct(T1)) ∈ Th2(1) and Obs{A}(¬punct(T2)) ∈ Th2(6). Both of these occur-
rences allow for an ple-expansion. We choose Th2(1) to perform the expansion. This yields
a new thread Th3 with the additional constraint Obs{A,B}(¬punct(T1)) ∈ Th3(3), while all
constraints from Th2 remain intact, since there are no constraints that need to be undone
by adding Obs{A,B} ∈ Th3(3).

The expanded set T̂ ′ = T̂ ∪ {Th3} can then be used to check sat(T2(B), T̂ ′). In thread
Th3, the rule contained in B6 is satisfied in one of two occurrences of Obs{A}(¬punct(train))
and therefore yields a frequency of 0.5. Consequently, through transformation into a linear
program we obtain the constraints

B′2 : 0.81 ≤ I(Th1) ≤ 0.81

B′′2 : 0.81 ≤ I(Th1) ≤ 0.81

B6 : 0.93 ≤ I(Th1) + 0.5 · I(Th3) ≤ 0.93

66

Th1

Th2

Th3

Th4

1 · · · 3 4 · · · 6 · · · 8 9 t

at(T1, CA), on(A, T1)

punct(T1)

at(T1, CA), on(A, T1)

¬punct(T1)

Obs{A}(¬punct(T1))

at(T2, CC), on(A, T2)

punct(T2)

at(T2, CB), on(A, T2)

at(T2, CC), on(A, T2)

¬punct(T2)

Obs{A}(¬punct(T2))

at(T2, CB), on(A, T2)

at(T1, CA), on(A, T1)

¬punct(T1)

Obs{A}(¬punct(T1))

at(T2, CC), on(A, T2)

¬punct(T2)

Obs{A}(¬punct(T2))

Obs{A,B}(¬punct(T1))

at(T1, CA), on(A, T1)

¬punct(T1)

Obs{A}(¬punct(T1))

at(T2, CC), on(A, T2)

¬punct(T2)

Obs{A}(¬punct(T2))

Obs{A,B}(¬punct(T1)) Obs{A,B}(¬punct(T2))

B′
2

B′
3 B′′

2
B′

4

B′′
2

B5

B′′
3 B′′

2

B5

B′′
4

B6

B6

1

Figure 5: Visualization of ple-expansions for the train example. Applications of formulae
from T2(B) are marked in blue, additional constraints from T0(B) and T1(B)
are marked in red. Expansion steps are marked in green.

Apparently, B6 allows for lower values of I(Th1) for the this set T̂ ′. From the constraints
induced by B′2 (resp. B′′2) we still obtain I(Th1) = 0.81. Then, the constraint induced
by B6 requires I(Th3) = 0.24 (since 0.81 + 0.5 · 0.24 = 0.93). This is still no suitable
probability assignment since the sum over all priors exceeds one. Consequently, the thread
set expansion continues. The above constraints show that—according to condition 1 of the
search heuristic—thread Th3 is now a suitable candidate for further expansion with respect
to the belief object of B6.

Thus, based on Th3, we create an additional thread Th4 through ple-expansion. In this
case, the only possible expansion step is Obs{A,B} ∈ Th4(8), which results in a frequency of

one for the rule contained in B6. Thus, testing sat(Tk(B), T̂ ′) with the further expanded
set T̂ ′ yields the following constraints:

B′2 : 0.81 ≤ I(Th1) ≤ 0.81

B′′2 : 0.81 ≤ I(Th1) ≤ 0.81

B6 : 0.93 ≤ I(Th1) + 0.5 · I(Th3) + 1 · I(Th4) ≤ 0.93

These constraints are now satisfiable, for instance with

I(T̂ ′) =
(
0.81, 0.07, 0, 0.12

)
.

Thus, sat(T2(B), T̂ ′) returns a positive result and satisfiability checking of B can terminate
with this result.

This result concludes satisfiability testing of the set of belief formulae B originally
specified in Example 4.1 (p. 35). Nevertheless, for illustration purposes we show the result
of further applications of ple-expansion steps in Figure 6. Changes in the additionally
created threads are obtained through a further respectively different application of a belief
formula from T2(B), marked in blue in the respective threads. Worlds Th(t) that remain
unconstrained after a saturated application of ple-expansions are marked with “/”. All of
these worlds then give rise to further expansions according to step 3 of the search heuristic.

67

1
2

3
4

5
6

7
8

9
t

T
h
1

T
h
2

T
h
3

T
h
4

T
h
5

T
h
6

T
h
7

T
h
8

T
h
9

///// /

///// /
//////

//// //
/

///// //

/////

/////

a
t(
T
1
,
C

A
),
o
n
(A

,
T
1
)

p
u
n
ct
(T

1
)

a
t(
T
2
,C

C
),
on

(A
,T

2
)

p
u
n
ct
(T

2
)

a
t(
T
2
,C

B
),
on

(A
,T

2
)

a
t(
T
1
,
C

A
),
o
n
(A

,
T
1
)

¬p
u
n
ct
(T

1
)

O
bs

{A
}(
¬p

u
n
ct
(T

1
))

a
t(
T
2
,C

C
),
on

(A
,T

2
)

¬p
u
n
ct
(T

2
)

O
bs

{A
}(
¬p

u
n
ct
(T

2
))

a
t(
T
2
,C

B
),
on

(A
,T

2
)

a
t(
T
1
,
C

A
),
o
n
(A

,
T
1
)

¬p
u
n
ct
(T

1
)

O
bs

{A
}(
¬p

u
n
ct
(T

1
))

a
t(
T
2
,C

C
),
on

(A
,T

2
)

¬p
u
n
ct
(T

2
)

O
bs

{A
}(
¬p

u
n
ct
(T

2
))

O
bs

{A
,B

}(
¬p

u
n
ct
(T

1
))

a
t(
T
2
,C

B
),
on

(A
,T

2
)

a
t(
T
1
,
C

A
),
o
n
(A

,
T
1
)

¬p
u
n
ct
(T

1
)

O
bs

{A
}(
¬p

u
n
ct
(T

1
))

a
t(
T
2
,C

C
),
on

(A
,T

2
)

¬p
u
n
ct
(T

2
)

O
bs

{A
}(
¬p

u
n
ct
(T

2
))

O
bs

{A
,B

}(
¬p

u
n
ct
(T

2
))

O
bs

{A
,B

}(
¬p

u
n
ct
(T

2
))

a
t(
T
2
,C

B
),
on

(A
,T

2
)

a
t(
T
1
,
C

A
),
o
n
(A

,
T
1
)

¬p
u
n
ct
(T

1
)

O
bs

{A
}(
¬p

u
n
ct
(T

1
))

a
t(
T
2
,C

C
),
on

(A
,T

2
)

¬p
u
n
ct
(T

2
)

O
bs

{A
}(
¬p

u
n
ct
(T

2
))

a
t(
T
2
,C

B
),
on

(A
,T

2
)

a
t(
T
1
,
C

A
),
o
n
(A

,
T
1
)

p
u
n
ct
(T

1
)

a
t(
T
2
,C

C
),
on

(A
,T

2
)

¬p
u
n
ct
(T

2
)

O
bs

{A
}(
¬p

u
n
ct
(T

2
))

O
bs

{A
,B

}(
¬p

u
n
ct
(T

2
))

a
t(
T
2
,C

B
),
on

(A
,T

2
)

a
t(
T
1
,
C

A
),
o
n
(A

,
T
1
)

p
u
n
ct
(T

1
)

a
t(
T
2
,C

C
),
on

(A
,T

2
)

¬p
u
n
ct
(T

2
)

O
bs

{A
}(
¬p

u
n
ct
(T

2
))

a
t(
T
2
,C

B
),
on

(A
,T

2
)

O
bs

{A
,B

}(
¬p

u
n
ct
(T

2
))

a
t(
T
1
,
C

A
),
o
n
(A

,
T
1
)

¬p
u
n
ct
(T

1
)

O
bs

{A
}(
¬p

u
n
ct
(T

1
))

a
t(
T
2
,C

C
),
on

(A
,T

2
)

p
u
n
ct
(T

2
)

a
t(
T
2
,C

B
),
on

(A
,T

2
)

a
t(
T
1
,
C

A
),
o
n
(A

,
T
1
)

¬p
u
n
ct
(T

1
)

O
bs

{A
}(
¬p

u
n
ct
(T

1
))

a
t(
T
2
,C

C
),
on

(A
,T

2
)

p
u
n
ct
(T

2
)

a
t(
T
2
,C

B
),
on

(A
,T

2
)

O
bs

{A
,B

}(
¬p

u
n
ct
(T

2
))

B
′ 2

B
′ 3

B
′′ 2

B
′ 4

B
′′ 2

B
5

B
′′ 3

B
′′ 2

B
5

B
′′ 4

B
6

B
6

B
6

B
′′ 2

B
5

B
′′ 4

B
6

B
′ 4

B
′′ 2

B
6

1

Figure 6: Visualization of continued ple-expansions for the train example. Applications of
formulae from T2(B) are marked in blue, additional constraints from T0(B) and
T1(B) are marked in red. Expansion steps originating from Th1 and Th2 are
marked in green and orange, respectively. Unconstrained worlds are marked with
“/”.

68

Some comments on the resulting set of threads from this example are necessary. Com-
paring the final threads depicted in Figure 6 with the original set of threads introduced in
Figure 1 shows that the expansion result largely corresponds to the original specification
(except differing thread labels). There are some notable differences however.

• First of all, there is the additional predicate punct(train), which was introduced in
Example 4.1 (p. 35) to allow for a concise specification of the background knowledge.
As the concept of nonpunctual trains (and especially the respective ramifications)
are implicitly encoded in Figure 1 as well, this does not change the properties of the
modeled example.

• With the explicit representation of train punctuality, observations of nonpunctual
trains can be expressed explicitly in this example, while the previous example uses
the ramifications of nonpunctual trains to model observations. Since rules B3 and
B4 assert that ramifications of punctual respectively nonpunctual trains are common
knowledge among Alice and Bob, both modeling alternatives preserve the intended
meaning of the example.

• Another difference is the timing of Alice’s observations. In the original example we
assumed that such an observation occurs at the time point when a train was supposed
to arrive at the destination city. In the current example we assume that Alice already
observes that a train is not punctual when leaving the departure city. The reason
for this change is solely for illustration purposes: specifying in rule B5 that Alice
immediately observes a nonpunctual train yields a type 0 belief and thus serves to
illustrate how additional facts can be obtained through global constraints. Since rule
B6 ensures that potential calls to Bob (i.e., shared observations) occur two time points
after Alice’s original observation, the intended model of the original example is still
maintained.

• The above points are only concerned with specific details of the modeled domain.
Comparing the set threads from Figure 1 with the threads from Figure 6 also shows a
more general modeling problem: for instance, analyzing the worlds at time point 2 in
Figure 6 shows that Alice is not (necessarily) on train T1, while she is on this train both
at the previous time point and later time points. Naturally, one should expect that
Alice is on the train at all intermediate time points between boarding and exiting the
train. This is an instance of the frame problem (e.g., (Reiter, 2001)) that occurs when
specifying dynamic systems through logic formulae. Generally, the frame problem is
concerned with finding a suitable set of axioms to describe adequate evolutions of the
world. From a modeling perspective, evolutions where Alice vanishes and reappears
while on a train ride are obviously no adequate evolutions of the world. An application
of the final step of the search heuristic could then yield a tremendous blow-up of the
considered set of threads. For the modeled problem, this would clearly result in
unintended models, but the resulting models could still serve to show satisfiability of
the respective set of belief formulae B, even though this result might not be desired.
This problem could be fixed by adding successor state axioms in the style of (Reiter,
2001), e.g., specifying that if Alice is on a train, she remains there for the next time
point unless she explicitly exits the train.

69

4.5.3 Properties of the Representative Thread Generation

In this section, we provide results to connect the set of representative threads to the sat-
isfiability problem of PDT Logic and discuss the complexity of generating representative
threads.

Theorem 4.15 (PDT Logic Decision Procedure). Let B be a set of PDT Logic belief
formulae, and let T̂ = {Th1, Th2} be the initial set of threads with length tmax obtained
from B according to Equations (56) and (57). Iteratively expanding this set according to
the search heuristic from Definition 4.8 and testing sat(T2(B), T̂ ′) for the expanded sets T̂ ′
until (i) sat(T2(B), T̂ ′) returns a positive result, or (ii) T̂ ′ is fully expanded with respect to
the search heuristic yields a sound and complete decision procedure for sat(B, tmax).

Proof. Both the initial set of threads T̂ = {Th1, Th2} and the expanded sets T̂ ′ ob-
tained through ple-expansion steps are defined such that only sound threads according
to Definition 4.4 are considered. Theorem 4.13 (p. 56) states that the decision problem
sat(T2(B), T̂) is equivalent to sat(B, T̂) if the set T̂ contains only threads that are sound
with respect to B. A positive result for sat(B, T̂) for threads with length tmax shows
that T̂ is a model for B and thus sat(B, tmax) follows. Consequently, a positive result for
sat(T2(B), T̂ ′) always proofs that B is satisfiable for tmax time points.

On the other hand, if no model for B has been found and it is not possible to create
additional threads according to the search heuristic from Definition 4.8 (p. 65), the search
space is fully explored. From this it follows that no model for B with tmax time points
exists and therefore B is unsatisfiable for tmax time points. Consequently, it follows that
the PDT Logic decision procedure is sound.

With these properties, the completeness result is straightforward: For any arbitrary
input B and tmax, either a model can be found or non-existence of such a model can be
proven through a full exploration of the search space, and thus completeness of the procedure
follows.

In the following, we analyze the complexity of generating representative threads for a
set of belief formulae B.

Theorem 4.16 (Complexity of representative thread generation). Let B be a set of belief
formulae. Creating a set of expanded representative threads T̂ ′ for B is in EXPSPACE.

Proof. The maximum number of possible threads for a given set of belief formulae B is
determined through the size |FB| and the maximum time point tmax. Recall from Equa-
tion (29) (p. 34) that we use FB to identify all event formulae from B and use this as the set
of ground atoms to construct possible worlds. Since every PDT Logic formula contains at
most two event formulae, we obtain the constraint |FB| ≤ 2 · |B|. The largest set of possible
threads is then obtained as the sequences of combinations of all possible worlds over all
time points, yielding 22·tmax·|B| possible threads. In the worst case, all |FB| ≤ 2 · |B| repre-
sentative threads are created before obtaining a satisfiability result. Consequently, creating
all possible representative threads is in the complexity class DSPACE(2p(n)), which is the
class EXPSPACE.

From this theorem, we immediately obtain complexity results for the satisfiability prob-
lem sat(B, tmax).

70

Corollary 4.17 (Complexity of PDT SAT without a given set of threads). Checking satis-
fiability of a set of PDT Logic belief formulae B without a specification of possible threads
is in EXPSPACE.

Proof. The generation of representative threads is in EXPSPACE, as shown in Theo-
rem 4.16. For a given set of threads Theorem 4.11 shows that satisfiability checking in
PDT Logic is in NP. Thus, this does not further increase complexity of the PDT sat prob-
lem without a given set of threads and it follows that this problem is in EXPSPACE.

Some comments on these results are necessary. Since the decision procedure outlined
in Theorem 4.15 yields an exponential expansion of possible threads T̂ ′—which all need
to be fed into the decision problem sat(T2(B), T̂ ′)—the exponential space requirement is
evident. However, as we have illustrated with the example, positive satisfiability results can
possibly be already obtained through small sets of possible threads T̂ ′ with a diminutive
size compared to the entire search space. Moreover, the discussion of the train example has
shown that a major part of the search space stems from insufficient rule specifications. This
is not a specific problem of our formalism nor the presented decision procedure, but a general
problem of rule-based modeling approaches, namely the aforementioned frame problem. An
incomplete model specification then leads to the generation of unintended models, which
serve to show satisfiability of the modeled problem, but have not been intended by the
respective modeler. This could lead to the worst case—both from a complexity and from
a model perspective—that after an exponential execution of the decision procedure, the
result only shows that the input specification does not specify the intended model. The
problem can be addressed on the modeling side by providing additional axioms to ensure
that no unintended model is generated. However, this leads to a significant increase in the
specification size and it is difficult to ensure through rule specifications that indeed every
unintended model is prevented.

The ple-expansion steps could be used as a heuristic to discriminate between intended
and unintended models: As shown in the train example, only applying ple-expansion steps
results in a relatively small set of threads, which indeed corresponds to the intention of
the model, while any further expansions inherently leads to an exponential growth of the
set of threads and introduces only additional unintended models. Thus, omitting the final
step of the search heuristic would give a significantly faster termination of the decision
procedure, even though the resulting procedure cannot prove unsatisfiable sets of formulae
any longer. However, one could use the expansion procedure to create the set of intended
threads first and—possibly after an inspection by the modeler—continue to use this set to
perform satisfiability checks with respect to the intended model.

The runtime of the expansion procedure and resulting satisfiability checks is clearly
tilted towards the positive side: If a set of belief formulae is satisfiable, there is a good
chance that satisfiability can be shown in a small number of steps. Negative results on
the other hand can only be obtained after an exhaustive exploration of the search space.
However, for many applications negative satisfiability results are required. For instance,
checking entailment B |= B can be checked through the reformulation ¬sat(B ∪ ¬B).
For applications relying on such a reformulation, the presented procedure is unfavorable
because positive entailment results can never be obtained efficiently. One could overcome
this problem as sketched above by generating a set of intended threads first and then use

71

this set to perform subsequent satisfiability tests—once a set of threads is given, the decision
problem’s complexity significantly decreases, as shown in Section 4.3.

5. Conclusion

In this work, by extending APT Logic to dynamic scenarios with multiple agents, we have
developed a general framework to represent and reason about the belief change in multi-
agent systems. Next to lifting the single-agent case of APT Logic to multiple agents, we
have also provided a suitable semantics to the temporal evolution of beliefs. The resulting
framework extends previous work on dynamic multi-agent epistemic logics by enabling the
quantification of agents’ beliefs through probability intervals. An explicit notion of tempo-
ral relationships is provided through temporal rules building on the concept of frequency
functions.

The quantification of beliefs with probability intervals instead of precise values has
the advantage that when domain experts model a problem, they can not only provide
background knowledge about the problem domain, but can also specify their certainty in
the respective specifications. Narrow interval quantifications reflect a high certainty and
vice versa. This can be a significant advantage compared to other probabilistic approaches,
because in most approaches, sharp probability values are required which a human can
usually not express with precise values and thus has to rely on guesses. Specifying precise
values, when these are actually not precisely known can yield misleading results. PDT Logic
is not exposed to this problem, because it is not required to guess sharp values to specify a
problem.

We have shown that there are two alternative ways of specifying problems in PDT Logic,
either through explicit enumerations of possible threads or through a set of appropriate
rules. Both approaches exhibit their specific advantages and drawbacks: For many problem
domains, requiring an exhaustive enumeration of all possible threads poses a severe obstacle
for modeling the respective scenarios, as the combinatorial blow-up renders the specification
practically unmanageable. On the other hand, there are problem domains (e.g., attack
graphs in cyber security scenarios) that come with such an explicit specification anyways.
For these types of problems, we have shown that it is possible to check satisfiability of these
models very efficiently.

To overcome modeling disadvantages of the thread-based approach, we have also shown
how a problem domain can be solely specified through a set of PDT Logic belief formulae.
For most problem domains, this is a more natural way of specifying the problem. Also, this
provides means to easily adapt many existing problems—that are specified in other formal
languages as sets of rules—to PDT Logic. On the other hand, waiving the requirement
of an exhaustive thread specification and according probabilities extremely increases the
problem complexity of checking satisfiability of a set of PDT Logic formulae. Nevertheless,
even when only imprecise probabilities are given, the resulting problem remains decidable
and the increased complexity might be curtailed through search heuristics.

Combinations of both approaches are possible as well: If an exhaustive specification
of possible threads is given, but probability intervals are only specified through beliefs
with imprecise probabilities, the satisfiability problem can be transformed into a 0-1 mixed
integer linear program. As there are a variety of efficient solvers available for this class of

72

problems, this transformation provides a means to exploit existing optimizations to check
satisfiability of PDT Logic formulae.

References

Aumann, R. J. (1976). Agreeing to Disagree. The Annals of Statistics, 4 (6), 1236–1239.

Baaz, M., Egly, U., Leitsch, A., Goubault-Larrecq, J., & Plaisted, D. (2001). Normal Form
Transformations. In Robinson, A., & Voronkov, A. (Eds.), Handbook of Automated
Reasoning, chap. 5, pp. 273 – 333. MIT Press.

Balas, E. (1985). Disjunctive Programming and a Hierarchy of Relaxations for Discrete
Optimization Problems. SIAM Journal on Algebraic Discrete Methods, 6 (3), 466–
486.

Balas, E. (1998). Disjunctive Programming: Properties of the Convex Hull of Feasible
Points. Discrete Applied Mathematics, 89 (1), 3–44.

Balas, E., Ceria, S., & Cornuéjols, G. (1993). A Lift-and-project Cutting Plane Algorithm
for Mixed 0-1 Programs. Mathematical Programming, 58 (3), 295–324.

Balas, E., Ceria, S., & Cornuéjols, G. (1996). Mixed 0-1 Programming by Lift-and-project
in a Branch-and-cut Framework. Management Science, 42 (9), 1229–1246.

Balas, E., & Perregaard, M. (2002). Lift-and-project for Mixed 0-1 Programming: Recent
Progress. Discrete Applied Mathematics, 123 (1), 129–154.

Baltag, A., & Moss, L. S. (2004). Logics for Epistemic Programs. Synthese, 139 (2), 165–224.

Baltag, A., Moss, L. S., & Solecki, S. (1998). The Logic of Public Announcements, Common
Knowledge, and Private Suspicions. In Proceedings of the Seventh Conference on
Theoretical Aspects of Rationality and Knowledge, TARK 98, pp. 43–56.

Bertacco, L., Fischetti, M., & Lodi, A. (2007). A Feasibility Pump Heuristic for general
Mixed-Integer Problems. Discrete Optimization, 4 (1), 63–76.

Bienstock, D. (1996). Computational Study of a Family of Mixed-Integer Quadratic Pro-
gramming Problems. Mathematical Programming, 74 (2), 121–140.

Bradley, S. Imprecise probabilities. In Zalta, E. N. (Ed.), The Stanford Encyclopedia of
Philosophy.

Computational Infrastructure For Operations Research (COIN-OR) Project, T. CBC (Coin-
or branch and cut) user guide. http://www.coin-or.org/Cbc/index.html. accessed:
2016-04-15.

Cook, S. A. (1971). The Complexity of Theorem-proving Procedures. In Proceedings of the
Third Annual ACM Symposium on Theory of Computing, STOC 71.

Cripps, M. W., Ely, J. C., Mailath, G. J., & Samuelson, L. (2008). Common Learning.
Econometrica, 76 (4), 909–933.

Dal Palù, A., Dovier, A., Pontelli, E., & Rossi, G. (2009). Gasp: Answer set programming
with lazy grounding. Fundamenta Informaticae - Advances in Computational Logic,
96 (3), 297–322.

73

de Carvalho Ferreira, N., Fisher, M., & van der Hoek, W. (2008). Specifying and Reasoning
about Uncertain Agents. International Journal of Approximate Reasoning, 49 (1),
35–51.

Ellsberg, D. (1961). Risk, Ambiguity, and the Savage Axioms. The Quarterly Journal of
Economics, 75 (4), 643–669.

Faber, W., Leone, N., & Perri, S. (2012). The intelligent grounder of DLV. In Correct
Reasoning: Essays on Logic-Based AI in Honour of Vladimir Lifschitz. Springer.

Fagin, R., & Halpern, J. Y. (1994). Reasoning about Knowledge and Probability. Journal
of the ACM, 41 (2), 340–367.

Fagin, R., Halpern, J. Y., Moses, Y., & Vardi, M. Y. (1995). Reasoning About Knowledge.
MIT Press.

Fischetti, M., Glover, F., & Lodi, A. (2005). The Feasibility Pump. Mathematical Program-
ming, 104 (1), 91–104.

Garey, M. R., & Johnson, D. S. (1979). Computers and Intractability; A Guide to the Theory
of NP-Completeness. W. H. Freeman & Co.

Gerbrandy, J., & Groeneveld, W. (1997). Reasoning About Information Change. Journal
of Logic, Language and Information, 6 (2), 147–169.

Gnu Project, T. GLPK: GNU Linear Programming Kit.
http://www.gnu.org/software/glpk/glpk.html. accessed: 2016-04-15.

Grünwald, P. D., & Halpern, J. Y. (2003). Updating Probabilities. Journal of Artificial
Intelligence Research, 19 (1), 243–278.

Gurobi Optimization, Inc. Gurobi optimizer reference manual.
http://www.gurobi.com/documentation/. accessed: 2016-04-15.

Halpern, J. Y., Samet, D., & Segev, E. (2009). Defining Knowledge in Terms of Belief: The
Modal Logic Perspective. The Review of Symbolic Logic, 2 (3), 469–487.

Harsanyi, J. C. (1967). Games with Incomplete Information Played by ‘Bayesian’ Players.
Part I. The Basic Model. Management Science, 14 (3), 159–182.

Harsanyi, J. C. (1968a). Games with Incomplete Information Played by ‘Bayesian’ Players.
Part II. Bayesian Equilibrium Points. Management Science, 14 (5), 320–324.

Harsanyi, J. C. (1968b). Games with Incomplete Information Played by ‘Bayesian’ Players.
Part III. The Basic Probability Distribution of the Game. Management Science, 14 (7),
486–502.

Hintikka, J. (1962). Knowledge and Belief: An Introduction to the Logic of the Two Notions.
Cornell University Press.

ILOG, I. CPLEX Optimizer. http://www-01.ibm.com/software/commerce/optimization/cplex-
optimizer/. accessed: 2016-04-15.

Kooi, B. P. (2003). Probabilistic Dynamic Epistemic Logic. Journal of Logic, Language and
Information, 12 (4), 381–408.

Kripke, S. A. (1963). Semantical Considerations on Modal Logic. Acta Philosophica Fennica,
16, 83–94.

74

Lloyd, J. W. (1987). Foundations of Logic Programming, 2nd Edition. Springer.

Martiny, K., Motzek, A., & Möller, R. (2015). Formalizing Agents’ Beliefs for Cyber-Security
Defense Strategy Planning. In CISIS 2015 - Proceedings of the 8th International Con-
ference on Computational Intelligence in Security for Information Systems, Burgos,
Spain, 15-17 June, 2015.

Milch, B., & Koller, D. (2000). Probabilistic Models for Agent’s Beliefs and Decisions. In
Proceedings of the Sixteenth Annual Conference on Uncertainty in Artificial Intelli-
gence, UAI 00. Morgan Kaufmann Publishers Inc.

Murty, K. G. (1983). Linear Programming. John Wiley & Sons.

Parikh, R., & Ramanujam, R. (2003). A Knowledge Based Semantics of Messages. Journal
of Logic, Language and Information, 12 (4), 453–467.

Plaza, J. (1989). Logics of public communications. In Proceedings of the Fourth International
Symposium on Methodologies for Intelligent Systems: Poster session program, ISMIS
89. Oak Ridge National Laboratory.

Plaza, J. (2007). Logics of Public Communications. Synthese, 158 (2), 165–179.

Reiter, R. (2001). Knowledge in Action: Logical Foundations for Specifying and Implement-
ing Dynamical Systems. MIT Press.

Sack, J. (2008). Temporal Languages for Epistemic Programs. Journal of Logic, Language
and Information, 17 (2), 183–216.

Sack, J. (2009). Extending Probabilistic Dynamic Epistemic Logic. Synthese, 169 (2), 241–
257.

Schrijver, A. (1986). Theory of Linear and Integer Programming. John Wiley & Sons.

Shakarian, P., Parker, A., Simari, G., & Subrahmanian, V. S. (2011). Annotated Probabilis-
tic Temporal Logic. ACM Transactions on Computational Logic, 12 (2), 14:1–14:44.

Shakarian, P., Simari, G. I., & Subrahmanian, V. S. (2012). Annotated Probabilistic Tem-
poral Logic: Approximate Fixpoint Implementation. ACM Transactions on Compu-
tational Logic, 13 (2), 13:1–13:33.

Shoham, Y., & Leyton-Brown, K. (2009). Multiagent Systems: Algorithmic, Game-
Theoretic, and Logical Foundations. Cambridge University Press.

van Benthem, J. (2003). Conditional Probability Meets Update Logic. Journal of Logic,
Language and Information, 12 (4), 409–421.

van Benthem, J., Gerbrandy, J., Hoshi, T., & Pacuit, E. (2009a). Merging Frameworks for
Interaction. Journal of Philosophical Logic, 38 (5), 491–526.

van Benthem, J., Gerbrandy, J., & Kooi, B. (2009b). Dynamic Update with Probabilities.
Studia Logica, 93 (1), 67–96.

van der Hoek, W. (1997). Some Considerations on the Logic PFD: A Logic combining
Modality and Probability. Journal of Applied Non-Classical Logics, 7 (3), 287–307.

van Ditmarsch, H., van der Hoek, W., & Kooi, B. (2007). Dynamic Epistemic Logic.
Springer.

75

van Eijck, J. (2014). Dynamic epistemic logics. In Johan van Benthem on Logical and
Informational Dynamics, chap. 7, pp. 175–202. Springer.

van Eijck, J., & Schwarzentruber, F. (2014). Epistemic Probability Logic Simplified. In
Goré, R., Kooi, B. P., & Kurucz, A. (Eds.), Advances in Modal Logic 10, invited and
contributed papers from the tenth conference on ”Advances in Modal Logic,”, AiML
14. College Publications.

vos Savant, M. (1990). Ask Marilyn. Parade Magazine, 16.

Williams, H. P. (2009). Logic and Integer Programming. Springer.

76

