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Abstract. The lifted dynamic junction tree algorithm (LDJT) answers
filtering and prediction queries efficiently for probabilistic relational tem-
poral models by building and then reusing a first-order cluster represen-
tation of a knowledge base for multiple queries and time steps. Unfortu-
nately, a non-ideal elimination order can lead to unnecessary groundings.

1 Introduction

Areas like healthcare, logistics or even scientific publishing deal with probabilistic
data with relational and temporal aspects and need efficient exact inference algo-
rithms. These areas involve many objects in relation to each other with changes
over time and uncertainties about object existence, attribute value assignments,
or relations between objects. More specifically, publishing involves publications
(relational) for many authors (objects), streams of papers over time (temporal),
and uncertainties for example due to missing information. For query answering,
our approach performs deductive reasoning by computing marginal distributions
at discrete time steps. In this paper, we study the problem of exact inference and
investigate unnecessary groundings can occur in temporal probabilistic models.

We propose parameterised probabilistic dynamic models (PDMs) to repre-
sent probabilistic relational temporal behaviour and introduce the lifted dynamic
junction tree algorithm (LDJT) to exactly answer multiple filtering and predic-
tion queries for multiple time steps efficiently [5]. LDJT combines the advantages
of the interface algorithm [10] and the lifted junction tree algorithm (LJT) [2].
Poole [12] introduces parametric factor graphs as relational models and pro-
poses lifted variable elimination (LVE) as an exact inference algorithm on re-
lational models. Further, de Salvo Braz [14], Milch et al. [8], and Taghipour et
al. [15] extend LVE to its current form. Lauritzen and Spiegelhalter [7] intro-
duce the junction tree algorithm. To benefit from the ideas of the junction tree
algorithm and LVE, Braun and Möller [2] present LJT, which efficiently per-
forms exact first-order probabilistic inference on relational models given a set
of queries. Specifically, this paper shows that a non-ideal elimination order can
lead to groundings even though a lifted run is possible for a model. LDJT reuses
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an first-order junction tree (FO jtree) structure to answer multiple queries and
reuses the structure to answer queries for all time steps t > 0. Unfortunately,
due to a non-ideal elimination order unnecessary groundings can occur.

Most inference approaches for relational temporal models are approxima-
tive. Additional to being approximative, these approaches involve unnecessary
groundings or are only designed to handle single queries efficiently. Ahmadi et
al. [1] propose lifted (loopy) belief propagation. From a factor graph, they build
a compressed factor graph and apply lifted belief propagation with the idea of
the factored frontier algorithm [9], which is an approximate counterpart to the
interface algorithm. Thon et al. [16] introduce CPT-L, a probabilistic model for
sequences of relational state descriptions with a partially lifted inference algo-
rithm. Geier and Biundo [6] present an online interface algorithm for dynamic
Markov logic networks (DMLNs), similar to the work of Papai et al. [11]. Both
approaches slice DMLNs to run well-studied static MLN [13] inference algorithms
on each slice individually. Vlasselaer et al. [18,17] introduce an exact approach,
which involves computing probabilities of each possible interface assignment.

The remainder of this paper has the following structure: We introduce PDMs
as a representation for relational temporal probabilistic models and present
LDJT, an efficient reasoning algorithm for PDMs. Afterwards, we show how
unnecessary groundings can occur and conclude by looking at extensions.

2 Parameterised Probabilistic Dynamic Models

Parameterised probabilistic models (PMs) combine first-order logic, using logical
variables (logvars) as parameters, with probabilistic models [4].

Definition 1. Let L be a set of logvar names, Φ a set of factor names, and
R a set of random variable (randvar) names. A parameterised randvar (PRV)
A = P (X1, ..., Xn) represents a set of randvars behaving identically by combining
a randvar P ∈ R with X1, ..., Xn ∈ L. If n = 0, the PRV is parameterless. The
domain of a logvar L is denoted by D(L). The term range(A) provides possible
values of a PRV A. Constraint (X, CX) allows to restrict logvars to certain
domain values and is a tuple with a sequence of logvars X = (X1, ..., Xn) and a
set CX ⊆ ×ni=1D(Xi). > denotes that no restrictions apply and may be omitted.
The term lv(Y ) refers to the logvars in some element Y . The term gr(Y ) denotes
the set of instances of Y with all logvars in Y grounded w.r.t. constraints.

Let us set up a PM for publications on some topic. We model that the
topic may be hot, conferences are attractive, people do research, and publish in
publications. From R = {Hot,DoR} and L = {A,P,X} with D(A) = {a1, a2},
D(P ) = {p1, p2}, and D(X) = {x1, x2, x3}, we build the boolean PRVs Hot and
DoR(X). With C = (X, {x1, x2}), gr(DoR(X)|C) = {DoR(x1), DoR(x2)}.

Definition 2. We denote a parametric factor (parfactor) g with ∀X : φ(A) |C.
X ⊆ L being a set of logvars over which the factor generalises and A =
(A1, ..., An) a sequence of PRVs. We omit (∀X :) if X = lv(A). A function
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φ : ×ni=1range(A
i) 7→ R+ with name φ ∈ Φ is defined identically for all grounded

instances of A. A list of all input-output values is the complete specification for
φ. C is a constraint on X. A PM G := {gi}n−1i=0 is a set of parfactors and se-
mantically represents the full joint probability distribution PG = 1

Z

∏
f∈gr(G) f

where Z is a normalisation constant.

Adding boolean PRVs Pub(X,P ) and AttC(A), Gex = {gi}1i=0, g0 =
φ0(Pub(X,P ), AttC(A), Hot) | >, g1 = φ1(DoR(X), AttC(A), Hot) | > forms a
model. All parfactors have eight input-output pairs (omitted). Figure 1 depicts
Gex with four variable nodes for the PRVs and two factor nodes for g0 and g1

with edges to the PRVs involved. Additionally, we can observe the attractiveness
of conferences. The remaining PRVs are latent.

The semantics of a model is given by grounding and building a full joint
distribution. In general, queries ask for a probability distribution of a randvar
using a model’s full joint distribution and fixed events as evidence.

Definition 3. Given a PM G, a ground PRV Q and grounded PRVs with fixed
range values E = {Ei = ei}i, the expression P (Q|E) denotes a query w.r.t. PG.

To define PDMs, we use PMs and the idea of how Bayesian networks give
rise to dynamic Bayesian networks [5]. We define PDMs based on the first-order
Markov assumption. Further, the underlying process is stationary.

Definition 4. A PDM is a pair of PMs (G0, G→) where G0 is a PM repre-
senting the first time step and G→ is a two-slice temporal parameterised model
representing At−1 and At where Aπ is a set of PRVs from time slice π.

Figure 3 shows how the model Gex behaves over time. Gex→ consists of Gex

for time step t−1 and for time step t with inter-slice parfactor for the behaviour
over time. In this example, the parfactor gH is the inter-slice parfactors.
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Fig. 3. Gex
→ the two-slice temporal parfactor graph for model Gex
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Definition 5. Given a PDM G, a ground PRV Qt and grounded PRVs with
fixed range values E0:t = {Eit = eit}i,t, P (Qt|E0:t) denotes a query w.r.t. PG.

The problem of answering a marginal distribution query P (Aiπ|E0:t) w.r.t.
the model is called prediction for π > t and filtering for π = t.

3 Lifted Dynamic Junction Tree Algorithm

To provide means to answer queries for PMs, we introduce LJT, mainly based
on [3]. Afterwards, we present LDJT [5] consisting of FO jtree constructions for
a PDM and a filtering and prediction algorithm.

3.1 Lifted Junction Tree Algorithm

LJT provides efficient means to answer queries P (Q|E), with a set of query
terms, given a PM G and evidence E, by performing the following steps: (i) Con-
struct an FO jtree J for G. (ii) Enter E in J . (iii) Pass messages. (iv) Compute
answer for each query Qi ∈ Q. We first define an FO jtree and then go through
each step. To define an FO jtree, we need to define parameterised clusters (par-
clusters), the nodes of an FO jtree.

Definition 6. A parcluster C is defined by ∀L : A|C. L is a set of logvars, A
is a set of PRVs with lv(A) ⊆ L, and C a constraint on L. We omit (∀L :) if
L = lv(A). A parcluster Ci can have parfactors φ(Aφ)|Cφ assigned given that
(i) Aφ ⊆ A, (ii) lv(Aφ) ⊆ L, and (iii) Cφ ⊆ C holds. We call the set of assigned
parfactors a local model Gi.
An FO jtree for a model G is J = (V,E) where J is a cycle-free graph, the
nodes V denote a set of parcluster, and the set E edges between parclusters. An
FO jtree must satisfy the following properties: (i) A parcluster Ci is a set of
PRVs from G. (ii) For each parfactor φ(A)|C in G, A must appear in some
parcluster Ci. (iii) If a PRV from G appears in two parclusters Ci and Cj, it
must also appear in every parcluster Ck on the path connecting nodes i and j in
J . The separator Sij of edge i− j is given by Ci ∩Cj containing shared PRVs.

LJT constructs an FO jtree using a first-order decomposition tree (FO dtree),
enters evidence in the FO jtree, and passes messages through an inbound and an
outbound pass, to distribute local information of the nodes through the FO jtree.
To compute a message, LJT eliminates all non-seperator PRVs from the parclus-
ter’s local model and received messages. After message passing, LJT answers
queries. For each query, LJT finds a parcluster containing the query term and
sums out all non-query terms in its local model and received messages.

Figure 2 shows an FO jtree ofGex with the local models of the parclusters and
the separators as labels of edges. During the inbound phase of message passing,
LJT sends messages from C1 to C2 and for the outbound phase a message from
C2 to C1. If we want to know whether Hot holds, we query for P (Hot) for which
LJT can use either parcluster C1 or C2. Thus, LJT can sum out AttC(A) and
DoR(X) from C2’s local model G2, {g1}, combined with the received messages.
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3.2 LDJT: Overview

LDJT efficiently answers queries P (Qt|E0:t), with a set of query terms {Qt}Tt=0,
given a PDMG and evidence {Et}Tt=0, by performing the following steps: (i) Con-
struct offline two FO jtrees J0 and Jt with in- and out-clusters from G. (ii) For
t = 0, using J0 to enter E0, pass messages, answer each query term Qiπ ∈ Q0,
and preserve the state. (iii) For t > 0, instantiate Jt for the current time step
t, recover the previous state, enter Et in Jt, pass messages, answer each query
term Qiπ ∈ Qt, and preserve the state.

Next, we show how LDJT constructs the FO jtrees J0 and Jt with in- and
out-clusters, which contain a minimal set of PRVs to m-separate the FO jtrees.
M-separation means that information about these PRVs make FO jtrees in-
dependent from each other. Afterwards, we present how LDJT connects the
FO jtrees for reasoning to solve the filtering and prediction problems efficiently.

3.3 LDJT: FO Jtree Construction for PDMs

LDJT constructs FO jtrees for G0 and G→, both with an incoming and outgoing
interface. To be able to construct the interfaces in the FO jtrees, LDJT uses the
PDM G to identify the interface PRVs It for a time slice t.

Definition 7. The forward interface is defined as It = {Ait | ∃φ(A)|C ∈ G :
Ait ∈ A ∧ ∃A

j
t+1 ∈ A}, i.e., the PRVs which have successors in the next slice.

For Gex→ , which is shown in Fig. 3, PRVs Hott−1 and Pubt−1(X,P ) have
successors in the next time slice, making up It−1. To ensure interface PRVs I
ending up in a single parcluster, LDJT adds a parfactor gI over the interface to
the model. Thus, LDJT adds a parfactor gI0 over I0 to G0, builds an FO jtree J0
and labels the parcluster with gI0 from J0 as in- and out-cluster. For G→, LDJT
removes all non-interface PRVs from time slice t − 1, adds parfactors gIt−1 and
gIt , constructs Jt, and labels the parcluster containing gIt−1 as in-cluster and the
parcluster containing gIt as out-cluster.

The interface PRVs are a minimal required set to m-separate the FO jtrees.
LDJT uses these PRVs as separator to connect the out-cluster of Jt−1 with the
in-cluster of Jt, allowing to reusing the structure of Jt for all t > 0.

3.4 LDJT: Proceeding in Time with the FO Jtree Structures

Since J0 and Jt are static, LDJT uses LJT as a subroutine by passing on a
constructed FO jtree, queries, and evidence for step t to handle evidence en-
tering, message passing, and query answering using the FO jtree. Further, for
proceeding to the next time step, LDJT calculates an αt message over the inter-
face PRVs using the out-cluster to preserve the information about the current
state. Afterwards, LDJT increases t by one, instantiates Jt, and adds αt−1 to
the in-cluster of Jt. During message passing, αt−1 is distributed through Jt.

Figure 4 depicts how LDJT uses the interface message passing between time
step three to four. First, LDJT sums out the non-interface PRV AttC3(A) from
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Fig. 4. Forward pass of LDJT (local models and labeling in grey)

C2
3’s local model and the received messages and saves the result in message α3.

After increasing t by one, LDJT adds α3 to the in-cluster of J4, C1
4. α3 is then

distributed by message passing and accounted for during calculating α4.

4 Unnecessary Groundings in LDJT

Unnecessary groundings have a huge impact on temporal models, as groundings
during message passing can propagate through the complete model. LDJT has an
intra and inter FO jtree message passing phase. Intra FO jtree message passing
takes place inside of an FO jtree for one time step. Inter FO jtree message passing
takes place between two FO jtrees. To prevent groundings during intra FO jtree
message passing, LJT successfully proposes to fuse parclusters [3]. Unfortunately,
having two FO jtrees, LDJT cannot fuse parclusters from different FO jtrees.
Hence, LDJT requires a different approach to prevent unnecessary groundings
during inter FO jtree message passing.

Let us now have a look at Fig. 4 to understand inter FO jtree message
pass can induce unnecessary groundings due to the elimination order. Fig. 4
shows Jt instantiated for time step 3 and 4. To compute α3, LDJT eliminates
AttC3(A) from C2

3’s local model. The elimination of AttC3(A) leads to ground-
ings, as AttC3(A) does not contain all logvars,X and P are missing. Additionally,
AttC3(A) is not count-convertible. Assuming AttC3(A) would also be included
in the parcluster C1

4, LDJT would not need to eliminate AttC3(A) in C2
3 any-

more and therefore calculating α3 would not lead to groundings. Therefore, the
elimination order can lead to unnecessary groundings.

5 Conclusion

We present the need to prevent unnecessary groundings in LDJT by changing
the elimination order. We currently work on an approach to prevent unnecessary
groundings, as well as extending LDJT to also calculate the most probable ex-
planation. Other interesting future work includes a tailored automatic learning
for PDMs, parallelisation of LJT, and improved evidence entering.
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