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Abstract. An agent in pursuit of a task may work with a corpus of
documents with linked subjective content descriptions. Faced with a new
document, an agent has to decide whether to include that document in
its corpus or not. Basing the decision on only words, topics, or entities,
has shown to not lead to a balanced performance for varying documents.
Therefore, this paper presents an approach for an agent to decide if a
new document adds value to its existing corpus by combining texts and
content descriptions. Furthermore, an agent can use the approach as a
starting point for high quality content descriptions for new documents.
A case study shows the effectiveness of our approach given varying types
of new documents.
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1 Introduction

An agent that pursues a defined task or goal may work with a set of docu-
ments (corpus) as a form of reference library. A person assembling a range of
scientific articles as related work describes such a setting, with the person as
the agent, the compiling of related articles as the task, and the articles as the
library. From an agent-theoretic perspective, an agent is a rational, autonomous
unit acting in a world, perceived through sensors, fulfilling a task, e.g., an agent
providing document retrieval services given specific requests from users. For more
effective performance, the documents may be annotated with subjective content
descriptions (SCDs), which the agents expects to be relevant to its task. The task
provides a context in which SCDs add value for the agent. E.g., notes added to
specific sentences of an article may provide explanations or references. Thus,
SCDs add information relevant for the task or goal and that information has a
connection to specific words in the document.

But, what should an agent do if presented with a new document, which
typically has no SCDs? Without having thoroughly processed the new document,
the question for the agent is: Does that document have anything of value to add
in the given context? The problem is a decision making problem: Should the
agent extend its reference library with the new document or should it not?

We aim at providing an approach to making a multi-dimensional decision
in the context of the task. We focus on the SCDs in the corpus, which are
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specific to the task and have links to words in the documents. We model that
SCDs generate the words of a document. The links between an SCD and specific
words are modelled by a sequence of words in a window, with an SCD located
at the center of the window. Words closer to the SCD location are more likely
generated by the SCD than words farther away. The key idea for determining if
a document adds value to the corpus is to measure how much of a new document
without any SCDs can one generate with the existing SCDs in the corpus.

We build an SCD-word distribution for each SCD describing how likely an
SCD generates each word of the vocabulary of the corpus. The problem turns
into finding most probable SCDs (MPSCDs) for a new document given the SCD-
word distributions of the existing SCDs. Given MPSCDs of a new document and
their probabilities, an agent decides whether to extend the reference library with
that document or not. Solving the problem of finding MPSCDs exactly is infea-
sible as the vocabulary of a corpus is huge with a large number of annotations.
Therefore, we work with the similarity between vectors of SCD-word distribu-
tions and vector representations of estimated windows of the new document.
We use the cosine similarity because the vectors are sparse and cosine similarity
has a low complexity for sparse vectors. An agent identifies those SCDs that
have vector representations most similar to the window vectors, assuming that
those SCDs are the most probable ones based on the statistics of the corpus.
Using the similarities of the chosen SCDs, an agent then computes indicators
such as minimum, maximum, and average similarity. Based on that indicators,
it decides whether the new document is too similar or too dissimilar compared
to the documents in its corpus to contribute anything useful in the context of
its task. If the agent decides to extend its library with the new document, it can
even choose to retain SCDs with highest similarity, possibly adapting them, and
then use them as a basis for further enrichment, automatic [15,8] or manual.

Specifically, the contributions of this paper are: (i) solving the problem of
finding MPSCD for a new document by estimating them based on SCD-vector
comparisons, (ii) providing a decision making procedure based on MPSCD, and
(iii) a case study regarding decision making based on MPSCD given varying
new documents. Additionally, we look at two special cases: (i) For large corpora
containing documents from various topics, filtering a corpus based on topics
decreases the number of documents to consider. (ii) For adapting estimated
MPSCDs, an expectation-maximisation approach allows for optimizing window
size and positions, e.g., if interested in retaining SCDs for new documents.

The remainder of this paper starts with a look at related work. Then, we
specify notations for documents and SCDs. Next, we present our contributions,
followed by a case study. The paper ends with a conclusion and future work.

2 Related Work

Over the past 20 years, a considerable number of automatic (semantic) an-
notation systems have been developed. The systems extract named entities
from text of documents and add so-called semantic annotations from exter-
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nally available common-sense knowledge bases, enriching the documents with
machine-processable data. Some well-known automatic annotation systems are
YEDDA [16], MINTE [4], OpenCalais [12], YAGO[14], KDTA [11], or GATE [5].
Some well-known sources of common-sense knowledge are DBpedia [9], NELL [3],
and KnowledgeVault [6]. Named entities represent the link between documents
and common-sense knowledge and link prediction is used to identify semantic
annotations for an entity. Generally, link prediction describes the task of estimat-
ing the likelihood of a link (relation) existing between nodes (entities), given the
links and attributes of nodes within a graph [7]. These annotation systems aim
at developing a knowledge graph augmented with data from external sources.
The systems efficiently solve their underlying problem. However, we investigate
a different problem, deciding if a new document provides value to an agent.

Surveying methods of text mining, one can base a decision on different as-
pects, e.g., (i) similarity of text in the spirit of tf.idf [13], comparing a vec-
tor representation of a new document with vector representations of the doc-
uments in the corpus, (ii) similarity of topics in the spirit of latent Dirichlet
allocation (LDA) [2], comparing an estimated topic distribution of a new doc-
ument with topic distributions of the documents in the corpus, or (iii) entity
matching [10] using named-entity recognition (NER), comparing entities (and
relations) retrieved from the new document with entities (and relations) of the
SCDs in the corpus. All three approaches carry drawbacks: The first two, based
on bag-of-words, ignore SCDs and the order of words. Additionally, they make
it hard to model that a document has to add value, i.e., not be a rephrased
copy of an existing document or contain only unrelated data. The last approach
has the problem that NER tools might not output annotations in the context
of the task, which may lead to very few matches with SCDs of the corpus. Ad-
ditionally, the decision in each case is a one-dimensional decision, based on one
feature of the documents. Therefore, we aim at providing an approach to make
a multi-dimensional decision that considers the context of the task.

3 Preliminaries

This section specifies notations of the technical framework for this paper and
gives a brief overview of LDA, which is used for filtering large corpora (see
Section 4.4) and is part of our case study in Section 5.

3.1 Notation

We define the following terms to formalize the setting of a corpus of documents,
each document associated with a repository of additional data, i.e., SCDs.

– A word w is a basic unit of discrete data from a vocabulary V=(w1, . . . , wV ).
Each w is represented as a unit-basis vector of length V that has a value of
1 where w = wv and 0’s otherwise.

– A document d is a sequence of words (w1, . . . , wD) where each wd is from V.
The expression words(d) refers to the number of words in d.
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– A corpus D is a set of N documents {d1, . . . , dN}.
– Each document d ∈ D has a link to a document-specific repository g con-

taining a set of SCDs {(tj , {ρi}li=1)}sj=1. SCDs can take any form. As such,
their formats may be highly diverse. A standardized format would be the
Resource Description Framework (RDF) but, for our main contributions,
the specific format is irrelevant. Each t is associated with a set of positions
{ρi}li=1 in d where ρi refers to the ρi’th word in d. Given a document d
or repository g, the terms g(d) and d(g) refer to the linked document and
repository, respectively. The set of all SCDs of documents in D is given by
g(D) =

⋃
d∈D g(d).

– An SCD window wind,t,ρ refers to the words in d that surround the position
ρ of t ∈ g(d), i.e., wind,t,ρ = (w(ρ−i), ..., wρ, ..., w(ρ+i)), i ∈ N if ρ marks
the middle of the window. The position of a word w ∈ wind,t,ρ is given
by pos(w,wind,t,ρ) (0-based numbering). The size of wind,t,ρ is given by
s(wind,t,ρ), i.e., s(wind,t,ρ) = 2i+ 1 if ρ marks the middle of the window.

– Each word w ∈ wind,t,ρ is linked to an influence value I(w,wind,t,ρ). The
closer a word w is positioned to the position ρ of t, the higher is the influence
value I(w,wind,t,ρ). The influence value I(w,wind,t,ρ) of w is given by the
probability of the Binomial distribution at position pos(w,wind′,t,ρ), i.e.,

I(w,wind,t,ρ) =

(
n

k

)
· πk · (1− π)n−k, (1)

where n = s(wind′,t,ρ)− 1, k = pos(w,wind′,t,ρ), and π = ρ
n , i.e., π = 0.5 if

t is at the center of wind,t,ρ and influence values to the left and right of ρ
should be symmetric. The binomial distribution yields a probability for each
word w ∈ wind,t,ρ that is higher the closer w is to the position of t.

3.2 Latent Dirichlet Allocation

LDA [2], a well-known statistical technique, assumes that documents in a corpus
D represent a mixture of topics where each topic is characterized by a distribution
of words from a vocabulary V of D. LDA generates a topic model from the
documents in D, learning latent structures of two forms, (i) a document-topic
distribution θ for each document d ∈ D, i.e., the degree to which the content
of d relates to each topic in a set of topics and (ii) a topic-word distribution φ
describing the probability of each word from V occurring in each topic. Both
the document-topic distribution and the word-topic distribution depend on the
documents in D.

Next, we present the main contributions of this paper, context-specific corpus
enrichment based on MPSCDs.

4 Context-specific Corpus Enrichment

This section provides the theoretical foundations for MPSCDs and presents our
approach to estimating MPSCDs. Additionally, it looks into two special cases.
This section ends with decision making using MPSCDs.
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4.1 Foundations of SCDs

This paragraph formalizes the link between SCDs and the words of a document
as a basis for MPSCDs. Specifically, we model that SCDs generate the words of
a document. Each document d ∈ D has a link to its repository g(d), containing
SCDs that themselves are linked to positions in d. Words closer to an SCD
location are more likely generated by the SCD than words farther away.

Mathematically, we represent each SCD as a vector of length n, where n =
|V(D)| and each vector entry refers to a word in V(D). The entry itself is a
probability that describes how likely it is that the corresponding SCD generates
the word, yielding an SCD-word distribution for each SCD. We represent SCD-
word distributions for all m SCDs in g(D) by an m × n matrix δ(D), with the
SCD-word distribution vectors forming the rows of the matrix:

δ(D) =


w1 w2 w3 ··· wn

t1 v1,1 v1,2 v1,3 · · · v1,n
t2 v2,1 v2,2 v2,3 · · · v2,n

...

...
...

...
...

...
tm vm,1 vm,2 vm,3 · · · vm,n


We can fill δ(D) based on the documents in D and their linked SCDs. Using

a maximum-likelihood strategy, one counts for each SCD t the number of occur-
rences of each word w in the windows wind,t,ρ of t over all documents and all
positions. The occurrences are weighted by their influence value I(w,wind,t,ρ).

Algorithm 1 shows a description of forming matrix δ(D), in which δ(D)[t][w]
refers to entry at the intersection of the row of t and the column of w. The
term δ(D)[t] refers to the complete row of t. The outer loop goes through each
SCD with the three inner loops counting the weighted occurrences of words in
windows of each document. At the end of each outer loop iteration, the SCD-
word distribution of the current t is normalized to yield a probability distribution
for each SCD over the complete vocabulary. Formally, normalization is given by

vi,j =
vi,j∑n
k=1 vi,k

. (2)

To illustrate line 7 of Alg. 2, consider the following example. Assume that in
document d1, there is a window wind1,t1,ρ for SCD t1

wind1,t1,ρ = (w21, w4, w8, w15, w16, w23, w42) (3)

(0.015625, 0.09375, 0.234375, 0.3125, 0.234375, 0.09375, 0.015625) (4)

with t1 positioned at the center (w15, underlined) and the influence values in
Eq. (4) based on Eq. (1) with n = s(wind1,t1,ρ) − 1 = 6, k ∈ {0, . . . , 6}, and
entry positions corresponding to positions in Eq. (3). Based on the innermost
loop of Alg. 1, seven entries of δ(D) are updated, e.g., for w21 at position 0:

δ(D)[t1][w21] += 0.015625
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Algorithm 1 Forming SCD-word distribution matrix δ(D)

1: function buildMatrix(Corpus D)
2: Initialize an m× n matrix δ(D) with zeros
3: for each t ∈ g(D) do
4: for each d ∈ D do
5: for each wind,t,ρ ∈ d do . Iterates over ρ
6: for each w ∈ wind,t,ρ do
7: δ(D)[t][w] += I(w,wind,t,ρ) . For I, see Eq. (1)

8: Normalize δ(D)[t] . See Eq. (2)

9: return δ(D)

where δ(D)[t1][w21] refers to v1,21, which is incremented by 0.015625. Algorithm 1
updates δ(D) for the remaining words and then continues with the next window.
When Alg. 1 is finished with d1, it moves on to the next document, going through
the windows of the next document. After iterating over all documents, Alg. 1
repeats going through all documents and their windows for the remaining SCDs.

The model behind a SCD-word distribution matrix δ(D) is generative as one
could now choose M � m SCDs and sample a new document based on the
chosen SCDs. Given the generative nature, we are now interested in the most
likely SCDs to have generated words of a new document.

Thus, we look at the problem of finding those SCDs that are most probable
given the words of a new document.

4.2 The MPSCD Problem

Generally, the MPSCD problem asks for the M most probable SCDs for a doc-
ument d′ given the SCD-word distribution matrix δ(D) and the words in d′:

arg max
t1,...,tM∈g(D)

P (t1, . . . , tM |d′, δ(D)) (5)

As we do not model an influence of one SCD on the next and as we place the
M windows evenly distributed over d′, we can simplify Eq. (5) as follows

arg max
t1∈g(D)

P (t1|wind′,t1,ρ, δ(D) ∪ · · · ∪ arg max
tM∈g(D)

P (tM |wind′,tM ,ρ, δ(D)) (6)

That is there are M windows wint,d′,ρ and for each window individual MPSCDs
are estimated. The intuition is as follows: If d′ is a document from D or a close
variation of the documents in D, then Eq. (5) yields MPSCDs with high prob-
abilities. If d′ is an unknown document, the resulting MPSCDs vary in their
probability. If the vocabulary or word composition is very different, the proba-
bilities are very low on average. The closer the vocabulary and word composition
of d′ get to the characteristics of D, the higher the probabilities are. Determining
if a document adds value to a corpus is based on of how much of a new document
can one generate with high probability given δ(D) and what is too much.

Unfortunately, solving the MPSCD problem is intractable as n and m are
typically very large, which is why we estimate probability with similarity.
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4.3 Estimating MPSCDs

Based on the statistics of the corpus, we estimate Eq. (6) for an SCD t in a win-
dow wint,d′,ρ by determining the SCD in δ(D) with the most similar distribution
compared to a vector representation of wint,d′,ρ using influence values.

The setting is as follows: Given a new document d′ and the SCD-word distri-
bution matrix δ(D), we estimate M MPSCDs. Based on M , M windows wint,d′,ρ

lie over the text of d′ with a window size of σ = words(d′)
M and positions ρ starting

at σ
2 and incrementing by σ. For each wint,d′,ρ, the SCD is unknown at the start,

i.e., t = ⊥. As the words in wint,d′,ρ have an influence value based on Eq. (1),
we can build a vector δ(wind′,t,ρ) of length n. The entries δ(wind′,t,ρ)[w] are set
to 0 for each word w ∈ V not in wint,d′,ρ and set to I(w,wint,d′,ρ) otherwise.
Using cosine similarity, the SCD t most similar to δ(wind′,t,ρ) is given by:

arg max
t

δ(D)[t] · δ(wind′,t,ρ)
|δ(D)[t]| · |δ(wind′,t,ρ)|

. (7)

Algorithm 2 describes estimating MPSCDs for d′ using δ(D) given M . The out-
put is the set of MPSCDs g(d′) as well as the windows and similarities for the
MPSCDs in g(d′). The outer loop iterates over the positions of the M SCDs,
setting up a window wind′,t,ρ and a vector representation δ(wind′,t,ρ). Then,
Alg. 2 calculates cosine similarities between δ(wind′,t,ρ) and the SCD vectors in
δ(D) based on Eq. (7). It retains the SCD with the highest similarity as MPSCD
t for the window wind′,t,ρ. Our approach rests on the following proposition:

Proposition 1. Algorithm 2 estimates for a new document d′ M (locally) most
probable SCDs, i.e., Eq. (7) calculates for each window estimates of Eq. (6).

We argue that the similarity between the influence distribution over the words in
a window and the SCD-word distribution indicates that the SCD is most likely
to generate the words in the window. Another SCD generating other words
with high probability would not generate the words in the window with a high
probability and as such, does not lead to a high similarity.

The MPSCDs represent a local optimum based on the current setting of
the windows. If the agent decides on adding the new document to the corpus
and using the MPSCDs for additional tasks like query answering or document
retrieval, optimizing the initial SCDs of d′ might lead to more attuned SCDs.

4.4 Special Cases

We look at two special cases, one regarding fine-tuning MPSCDs, e.g., if inter-
ested in retaining SCDs for new documents, and one regarding large corpora.

SCD Window Adjustments. To optimize MPSCDs for a new document d′, one
can adjust the initial number of SCDs, the corresponding SCD positions, and the
window sizes in d′ to get MPSCDs with higher overall probability (or similarity).

We require the outputs of Alg. 2, (repository g(d′) for document d′, set W
containing the similarities sim and the initial windows wind′,t,ρ). To optimize
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Algorithm 2 Estimating MPSCDs

1: function estimateMPSCD(Document d′, Number M , matrix δ(D))

2: σ ← words(d′)
M

, ρ← σ
2

, W ← ∅
3: for ρ← σ

2
; ρ ≤ words(d); ρ+ = σ do

4: Set up a window wind′,t,ρ of size σ around ρ with t = ⊥
5: δ(wind′,t,ρ)← new zero-vector of length n
6: for w ∈ wind′,t,ρ do
7: δ(wind′,t,ρ)[w]+ = I(w,wind′,t,ρ)

8: t← arg maxti
δ(D)[i]·δ(wind′,t,ρ)
|δ(D)[i]|·|δ(wind′,t,ρ)|

in wind′,t,ρ

9: sim← maxti
δ(D)[i]·δ(wind′,t,ρ)
|δ(D)[i]|·|δ(wind′,t,ρ)|

10: W ←W ∪ {(sim,wind′,t,ρ)}
11: g(d′)← g(d′) ∪ {t}
12: return g(d′), W

the SCDs in g(d′), we can iteratively adjust size and position of all windows in
W and update t in each window based on Eq. (7) s.t. the overall similarity of
the M influence vectors is maximum, i.e.:

max
∑

(sim,wind′,t,ρ)∈W

sim. (8)

Optimization starts with calculating the overall similarity of the current
SCDs in g(d′) using the similarities stored in W. Then, it iteratively adjusts
windows until it reaches a local optimum for the optimization problem stated in
Eq. (8). Each window in W can be adjusted in the following four different direc-
tions: (a) extend left boundary of the SCD-window to the left,(b) extend right
boundary of SCD-window to the right,(c) shift left boundary of SCD-window
to the right, and (d) shift right boundary of SCD-window to the left. Window
adjustments (a) and (b) extend the size of window wind′,t,ρ, while window ad-
justments (c) and (d) reduce the size of window wind′,t,ρ.

Document clusters. Large corpora contain thousands of documents that may
focus on different topics. Identifying documents in a corpus D having a high
topic similarity with a new document d′ narrows down the set of possible SCDs
for d′ by considering only SCDs from similar topics. Therefore, one can form a
cluster Cd′ of d′-related documents s.t. all d ∈ Cd′ have a Hellinger distance H
of their topic distributions θ being smaller than a threshold τ , i.e., Cd′ = {d ∈
D | H(θd′ , θd) < τ},where H(θd, θd′) refers to the Hellinger distance between the
topic distributions of d and d′, respectively. The cluster Cd′ takes the place of
D in Eq. (5). The threshold τ decides on the minimum required topic similarity
between two documents d′ and d, such that d ∈ Cd′ . The best value for τ depends
on the performance of external applications working with the SCDs in g(d′). A
smaller τ means a higher similarity between documents in Cd′ .

Next, we build MPSCDs into a decision making procedure for an agent.
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4.5 Decision Making

An agent can use the MPSCDs for a new document d′ making a decision on
adding the new document d′ to the corpus or not. Obviously, this decision de-
pends on the goal of the agent. If the agent is interested in similar documents
containing new information, it may decide adding documents where half of the
SCDs have a high similarity and the other half of the SCDs have a small simi-
larity. Based on the goal of the agent, thresholds have to be set accordingly.

The agent has to decide whether to extend its corpusD with d′ if d′ adds value
relevant to its task. Document d′ may not add value if d′ has no or very little
connection to D or if d′ does not add new content. SCDs are the connection
between documents and context, signalling their value to the task. Thus, the
decision incorporates SCDs and the words that are connected to them using the
available resources D, g(D), and δ(D). An agent proceeds as follows if presented
with a new document d′: (i) Using Algorithm Alg. 2, it computes MPSCDs
{t1, . . . , tM} for d′. As a byproduct, it receives the windows and the maximum
similarities of each window in W. (ii) Based on W and {t1, . . . , tM}, the agent
makes a decision. The decision making is based on a combination of (i) maximum
similarity, (ii) mininum similarity, (iii) average similarity, and (iv) maximum and
average difference in the similarity between neighbouring windows.

Next, we look at a case study to test our multi-dimensional decision making.

5 Case Study

We present a case study illustrating the potential of the multi-dimensional deci-
sion making approach considering the initial question: Should an agent extend
its reference library with a new document or should it not? In this case study
we use two corpora containing Wikipedia articles. The first corpus contains doc-
uments about European largest cities (https://bit.ly/2kOvmwD); the second
corpus contains documents about U.S. presidents (https://bit.ly/2Z1v1G9).

We compare for both corpora our multi-dimensional decision making ap-
proach with LDA. We do not consider entity matching since entity matching
ignores context, which means that unrelated documents can share the same en-
tities and similar documents can have no matches in their entities.

The new documents we test belong to the following four types of documents:
(i) Similar documents (dsim); content of new document is very similar to the
content of documents in the corpus, e.g., the new document tells about the same
event. (ii) Extensions (dext); content of new document is similar to the content of
documents in the corpus and contains additional information unavailable in any
other document in the corpus, e.g., the new document represents an extension
of an article. (iii) Revisions (drev); the new document represents a revision of
another document in the corpus. (iv) Unrelated documents (dunrel); content of
new document is unrelated to the content of documents in the corpus.

We preprocess all documents by lowercasing characters, stemming words,
tokenizing, and eliminating tokens part of the Stanford CoreNLP stop-word list.
Afterwards, we use Stanford OpenIE [1] to automatically extract tuples from the

https://bit.ly/2kOvmwD
https://bit.ly/2Z1v1G9
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Fig. 1: Representation of the four document types dsim, dext, drev, and dunrel
using the introduced MPSCD similarity values (left) and topic similarity (right).

documents acting as SCDs for all documents within the corpus to have roughly
the same number of SCDs for all documents that are not influenced by us.

The MPSCDs of new documents support agents in their decision making
process since MPSCDs of new documents give information about the document
type. The MPSCDs are not only suitable to decide if a new document is similar
or unrelated to the documents in the corpus, but also if a new document is an
extension or a revision of a document in the corpus. We consider the following
five indicators to decide on extending a corpus with a new document or not:
(i) maximum similarity of all MPSCDs (max. sim.), (ii) minimum similarity of
all MPSCDs (min. sim.), (iii) maximum difference between highest and lowest
similarity value (∆max,min), (iv) average MPSCD similarity (avg. sim.), and
(v) maximum change between neighbouring MPSCD-windows (max. ∆win).

On the left, Fig. 1 presents the indicators for the MPSCDs for each type of
document. On the right, Fig. 1 shows two variants of comparing a new document
and the corpus using LDA. The first variant learns a new topic model for the
corpus including the new document, yielding a topic distribution for the new
document. The second variant infers the topic distribution of the new document
using an available topic model of the corpus. Similarity is given by the Hellinger
distance between two topic distributions subtracted from the value 1. Infering
the topic distribution is significantly faster than calculating a new topic model
but makes it impossible to identify the type of a new document since all simi-
larity values are similar. Generating a new topic model allows for distinguishing
an unrelated document and a revision from all types but makes it difficult to
distinguish a similar document from an extension because both documents share
nearly the same topic distribution leading to almost identical similarities.

Estimating the MPSCDs for a new document and analysing the five indica-
tors enables classification of a new document in the context of a given corpus.
Generally, the value of indicators slightly change with the corpus.
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Table 1: Document Type Indicator Comparision

city corpus president corpus

dsim dext drev dunrel dsim dext drev dunrel

Max Sim. + + + ◦ + + + ◦
Min Sim. + ◦ ◦ − ◦ ◦ ◦ −
∆max,min − ◦ − ◦ − ◦ − ◦
Avg. Sim. + ◦ + ◦ + + + ◦
Max.∆win − ◦ − ◦ − ◦ − ◦

Table 1 represents the five indicators for all four document types of the city
corpus containing articles the largest European cities and the president corpus
containing articles about the U.S. presidents. We specify a high similarity (+) for
values between 0.7 and 1, an average degree of similarity (◦) for values between
0.3 and 0.7 and a low similarity (−) for values below 0.3.

For both corpora new documents of type dsim, dext and drev share high values
for the maximum similarity. Similar documents (dsim) have a noticeable higher
minimum similarity than all other types of documents. Unrelated documents
(dunrel) have a smaller maximum similarity value compared all other types of
documents and the minimum similarity is small. The maximum similarity change
between neighbouring windows (max.∆win) of document extensions (dext) is
similar to unrelated documents while the maximum similarity change between
neighbouring windows of revisions (drev) is comparable to similar documents.

6 Conclusion and Outlook

If an agent is presented with an unknown document, this paper enables it to an-
swer the question “To extend or not to extend?” in a context-specific way. The
decision behind the question has to consider how much added value a document
provides within the context of the agent’s task. SCDs capture the context and
generate the words of documents in introduced model. For a new document, an
algorithm allows for estimating MPSCDs based on existing SCDs in the spirit of
”how much of the new document can the existing SCDs generate with high prob-
ability?” For feasibility, the algorithm uses similarity of vector representations
of word distributions. The procedure for making a decision uses the estimated
MPSCDs and their similarities. By combining indicators, an agent is able to
make a decision about documents with varying value to add.

Future work includes modelling a window sequence with a hidden Markov
model to find a most probable sequence of known and unknown segments of
a document for decision making. Another aspect is finding a global optimum,
trading off better results with more work. Currently, we are further analyzing
patterns emerging between windows to extract them for transfer learning and
investigate kernel methods to separate the different types of new documents.
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