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A B S T R A C T   

The aspiration for insight into human cognitive processing has traditionally driven research in cognitive science. 
With methods such as the Hidden semi-Markov Model-Electroencephalography (HsMM-EEG) method, new ap-
proaches have been developed that help to understand the temporal structure of cognition by identifying 
temporally discrete processing stages. However, it remains challenging to assign concrete functional contribu-
tions by specific processing stages to the overall cognitive process. In this paper, we address this challenge by 
linking HsMM-EEG3 with cognitive modelling, with the aim of further validating the HsMM-EEG3 method and 
demonstrating the potential of cognitive models to facilitate functional interpretation of processing stages. For 
this purpose, we applied HsMM-EEG3 to data from a mental rotation task and developed an ACT-R cognitive 
model that is able to closely replicate human performance in this task. Applying HsMM-EEG3 to the mental 
rotation experiment data revealed a strong likelihood for 6 distinct stages of cognitive processing during trials, 
with an additional stage for non-rotated conditions. The cognitive model predicted intra-trial mental activity 
patterns that project well onto the processing stages, while explaining the additional stage as a marker of non- 
spatial shortcut use. Thereby, this combined methodology provided substantially more information than either 
method by itself and suggests conclusions for cognitive processing in general.   

1. Introduction 

Gaining insight into human information processing is one of the 
prime endeavours of cognitive science. To this end, electroencephalog-
raphy (EEG) is a notably central and fruitful neuropsychological method 
of data acquisition for modern research on cognition. Especially in 
complex cognition research (Funke, 2010), EEG monitoring has turned 
out to be an indispensable tool. Despite this, there are limits to its 
explanatory power: in most cases, experimental effects are derived from 
heavily filtering EEG signals by location, frequency spectra, event rela-
tion, or combinations of these factors. Interpretations of entire activity 
patterns, i.e. the cortical distribution of all active signals during a given 
time span, are seldom considered. 

Cognitive modelling has been similarly useful in helping to gain a 
deeper understanding of how the interplay of cognitive processes results 
in particular patterns of behaviour. Simulating task demands and human 

task solving within cognitive constraints, cognitive models allow for the 
verification of theories about cognitive processing. They enable under-
standing of intra-trial processes, predicting distinct cognitive activity 
during specific time spans. Cognitive architectures like ACT-R offer a 
proven, reliable framework for the generation of valid models by 
differentiating cognitive processes into separate modules. Cognitive 
models can be evaluated by their predictive power of reaction times 
(RTs), learning curves or individual behaviour (e.g. strategies, errors 
etc.) during human solving of a task. 

Yet, a direct comparison of the proposed cognitive mechanisms with 
neural activity remains difficult, even more so on a fine-grained tem-
poral scale: model output and EEG signals are not directly comparable to 
each other, as high EEG activity rarely equals a heightened effort in a 
clearly defined cognitive process. This in turn can be alleviated by the 
application of Markov models: by further post-processing of EEG signals, 
they can be put in a context of time series which are generated by 
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patterns of common neuronal activity in a particular sequence relative 
to cognitive events. These contexts thus represent manifestations of 
cognitive processing stages. While such newly created processing stages 
offer a way to aggregate activity patterns over time, they elude easy 
interpretation regarding their semantic content, that is, their contribu-
tion to the task solving process as a whole. 

Associating cognitive process assumptions with Markov models 
provides intriguing possibilities to further understand the inner work-
ings of higher order cognition. An additional level of interpretation thus 
becomes available, providing additional information not apparent from 
each respective method applied by itself. This paper demonstrates the 
advantages of this methodology by way of a mental rotation study. 

In the remainder of this introduction we will first introduce the 
concept of processing stages in the context of cognition research, fol-
lowed by the related issue of interpretability. Then, we will give an 
introduction to the method of cognitive modelling. After that, we will 
outline mental rotation as the exemplary subject that we will use for our 
demonstration. Finally, the section closes with the hypotheses under-
lying this paper. 

1.1. Cognitive processing stages 

Processing stages are defined as successive processes between stim-
ulus and response that together make up one trial, where one processing 
stage begins only when the preceding one has ended (Sternberg, 1969). 
The research interest in processing stages in cognitive tasks can be dated 
back to the 19th century where Donders (1868) argued that subtracting 
the RTs of two tasks that hypothetically share all but one processing 
stage would yield the duration of that processing stage. Building on this 
RT-based approach, Sternberg (1969) proposed the so-called additive 
factor method that assumes overall RTs to vary depending on experi-
mental manipulations. Separate processing stages can, as per this 
reasoning, be identified based on additive effects of certain manipula-
tions on overall RT. 

Behavioural measures are however insufficient for the identification 
of the temporal structure in a cognitive process. The RT itself cannot be 
decomposed into stages, that is, the absolute durations of the discovered 
stages cannot be determined and their order remains unclear (Sternberg, 
1969). To alleviate these limitations, stage-identifying methods based 
on neuropsychological data are needed. As an answer, the MVPA-HMM 
method, which is based on functional magnetic resonance imaging 
(fMRI), was introduced (Anderson and Fincham, 2014a; Anderson et al., 
2012). This method combines hidden Markov models (HMMs) with 
multivariate pattern analysis (MVPA) to identify the number and 
duration of processing stages in a mathematical problem solving task 
based on fMRI data. A HMM simulates a system that is at any given time 
in one of a set of distinct states, between which it transitions at certain 
times. ‘Hidden’ refers to the fact that the stochastic process underlying 
the Markov model is not observable (Rabiner, 1990). 

However, fMRI-based methods are limited by their poor temporal 
resolution that only allows for the identification of multi-second stages 
in tasks lasting on the order of 10+ seconds (Anderson et al., 2016). EEG, 
on the other hand, has a millisecond resolution. Therefore, EEG-based 
stage-identifying methods allow for the identification of much briefer 
stages, and hence for an investigation of elementary cognitive processes 
(Anderson et al., 2016; Borst and Anderson, 2015). Borst et al. (2013) 
proposed to identify processing stages in trial-wise EEG data by means of 
machine-learning techniques that were initially outlined by Sudre et al. 
(2012). They applied this method to an associative recognition memory 
task and identified three main processing stages which they labelled as 
perceptual encoding stage, retrieval stage, and decision stage, respec-
tively. Anderson et al. (2016) proposed an EEG-based HsMM-MVPA 
method that combines hidden semi-Markov models (HsMMs), where 
“semi” refers to a type of HMM characterised by variable state durations 
(Rabiner, 1990), with MVPA to identify processing stages based on brief 
sinusoidal peaks, so-called “bumps”, that are added to the ongoing EEG 

signal and mark the onsets of distinct processing stages. Just like Borst 
et al. (2013), they applied this method to the study of associative 
recognition and found evidence for six processing stages in this task. 
Additionally, they applied their method to a data set on the Sternberg 
working memory task and identified five processing stages. The 
EEG-based HsMM-MVPA method has since been applied to a variety of 
fields in neuropsychology, e.g., associative recognition (Anderson et al., 
2018; Portoles et al., 2018; Zhang et al., 2017), visual working memory 
(Zhang et al., 2018a), arithmetic retrieval (Anderson et al., 2018), a 
combined memory and arithmetic task (Zhang et al., 2018b), or stimulus 
categorisation (Berberyan et al., 2020; Walsh et al., 2017). 

With HsMM-EEG3, Borst and Anderson (2015) proposed another 
stage-identifying method. In their approach, just like in the 
HsMM-MVPA method by Anderson et al. (2016), a processing stage 
corresponds to a state of the HsMM. In contrast to HsMM-MVPA, it is not 
defined by an initial “bump”, but by a period of constant neuronal ac-
tivity, called neuronal signature. Borst and Anderson (2015) define the 
HsMM-EEG method in four basic steps: (1) HsMMs with different 
numbers of states are fitted to a set of trial-wise EEG data, where only 
HsMMs with linear structures are considered (i.e, state 1 always tran-
sitions to state 2, state 2 to state 3, etc.). (2) The number of HsMM states, 
representing the processing stages that best describe the task solving 
process is identified by comparing the likelihoods of the fitted HsMMs 
using leave-one-out-cross-validation (LOOCV). (3) The resulting HsMM 
is inspected for number, order, durations, and neuronal signature of the 
stages. (4) The functions of the identified processing stages are deduced. 
The authors note that while being similar to microstate analysis, 
HsMM-EEG also differs from this established approach in that neuronal 
signatures are assumed to be fixed, numbers of states are to be deter-
mined, and all EEG data is taken into account during the parameter 
estimation procedure, with the latter difference being advantageous for 
determining the optimal number of states (Borst and Anderson, 2015). 

Anderson et al. (2016) applied their HsMM-MVPA method to the 
same EEG data as Borst and Anderson (2015) and confirmed the results 
regarding number and duration of processing stages, as well as influence 
of experimental conditions on processing stage duration. This suggests 
that HsMM-EEG provides a robust approach to processing stage identi-
fication from EEG data (Anderson et al., 2016). 

Through the identification of clearly differentiated stages, this 
method allows to temporally structure EEG data segments spanning 
complete experimental trials. This structure then opens the possibility 
for examining cognitive processes in an informative way: How many 
processing stages does a cognitive process consist of, how is the total 
duration of a cognitive process distributed among these processing 
stages, which processing stages vary in duration between different 
experimental conditions, and to what extent? Other than in ERP ana-
lyses, which are either stimulus-locked or response-locked and only look 
at a fixed period within an EEG data segment, the HsMM-EEG method 
allows to use the entire EEG signal from the beginning of an experi-
mental trial until a subject’s response (Borst and Anderson, 2015), 
allowing for substantial insights into information processing during a 
task solving process without presupposing strong hypotheses about what 
mental step is happening at which point in time. Further, as opposed to 
established methods of EEG data analysis, HsMM-EEG enables the 
identification of all stages that compose a concrete cognitive process and 
thereby offers to examine qualitatively different stages of information 
processing within one analysis. These possibilities make the HsMM-EEG 
method a promising tool for various research questions in the fields of 
neuropsychology and cognition research that aim at the timing and 
sequence of human information processing. 

Thinking of cognitive processes as sequences of clear-cut stages rai-
ses important conceptual questions, however. Processing stages are by 
definition distinct, while in human cognition many processes happen in 
parallel. Still, we argue that through the application of likelihood-based 
methods, distinct phases of neuronal activity patterns can be detected 
that mark clearly definable stages within a cognitive process. These 
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processing stages are in the first place a statistical phenomenon. 
Nevertheless, by combining the HsMM-EEG method with cognitive 
modelling data we aim at finding real world manifestations of these 
stages. 

1.2. Interpreting cognitive processing stages 

A challenge of stage-identifying methods lies in identifying each 
stage’s functional contribution to the cognitive process, since the ground 
truth is inaccessible, that is, the cognitive process cannot be directly 
observed (Anderson and Fincham, 2014a; Berberyan et al., 2020). Se-
mantic interpretation of cognitive processing stage content can be 
approached by examining the results of a stage-identifying analysis for 
differences in stage durations between different experimental condi-
tions. If the duration of a certain stage varies with conditions, that stage 
is likely to contain information processing that differs between the 
relevant conditions (Berberyan et al., 2020; Borst and Anderson, 2015; 
Zhang et al., 2018a). Also, functional interpretation of stage content can 
be guided by pre-existing knowledge about the task-solving process 
under investigation (Borst and Anderson, 2015; Zhang et al., 2018b). 

These approaches are, however, limited for several reasons. When 
the results of a stage-identifying analysis are compared for different 
experimental conditions, the most significant semantic interpretations 
will be found for those processing stages that effectively differ in dura-
tion between conditions. Moreover, this calls for specific requirements 
of an experimental design for it to be meaningfully analysable with a 
stage-identifying method, since it presupposes that conditions can be 
outlined beforehand in terms of the cognitive demands they make on 
subjects to solve the respective task. Likewise, relying on previous 
findings about the cognitive process under investigation will produce 
the most meaningful results for tasks already backed by substantial 
knowledge of the underlying cognitive processes. We thus argue that the 
applicability of stage-identifying methods is as of yet limited. Further 
sources of information about semantic stage content are needed that 
enrich these approaches with easily interpretable information. 

As a solution, we propose to use cognitive modelling. As it allows for 
the simulation of mental activity during task solving by subjects, it offers 
a unique way to formalise and test theories on intra-trial human 
reasoning processes. We developed an ACT-R cognitive model that 
simulates the same task that subjects performed in the underlying EEG 
study, and that implements a well-validated theory about how specific 
cognitive processes evolve over time. Hence, the ACT-R model consti-
tutes a theory-driven source of semantic information about the cognitive 
process under investigation. This semantic information shall then allow 
inference of the content of processing stages that were identified by the 
data-driven HsMM-EEG method. 

1.3. Cognitive modelling 

Cognitive architectures are frameworks that enable simulations of 
task behaviour based on psychological models and assumptions about 
cognitive processes. They consist of sets of rules and constraints that are 
derived from the current state of research in cognitive science and allow 
researchers to implement psychological or process models into a 
standardised form (Newell, 1990). The resulting cognitive models 
simulate human behaviour during task solving and generate predictions 
about behavioural markers such as RTs, error rates or strategy decisions. 
When creating these models for a specific task, this task is simulated 
within the cognitive architecture as well. A set of adjustable parameters 
allows for a better fit to data from human experiments in regards to 
timing or task errors, while still adhering to cognitive constraints. 
Especially useful for exploring human biases, common errors or 
complicated tasks, cognitive architectures allow for insights beyond 
psychological or mathematical models. In contrast to a psychological 
model, cognitive models can be used to generate predictions for a 
myriad of different task variants and contexts, while simultaneously 

offering explainability and transparency not possible with mathematical 
models. This in turn makes them uniquely useful for testing hypotheses 
on human task solving, e.g. effects of experimental conditions, strategy 
choices or individual strengths and weaknesses. 

The most common demands and constraints of cognitive modelling 
have been unified and formalised as Common Model of Cognition 
(CMC), originally called Standard Model of the Mind (Laird et al., 2017). 
The CMC aims to set a universally valid formalisation of cognition, i.e. a 
standardised abstraction for its implementation in an arbitrary compu-
tational architecture. It proposes guidelines on (processing) structure, 
memory and information content, learning as well as somatosensory 
interfaces. Currently, the most complete implementation of re-
quirements posed of a unified standard model is the modular cognitive 
architecture ACT-R. It encodes cognitive models in the form of a 
declarative knowledge base on one hand, and procedural production 
rules on the other (Anderson and Lebiere, 2014). Information in ACT-R 
is symbolic, meaning objects, concepts etc. are referred to by symbols (as 
opposed to visual or mathematical references). Knowledge is repre-
sented in the form of chunks, basic units of information that are known 
(world knowledge) or learned (task-specific knowledge). Production 
rules are processing steps that manage the exchange of information 
between ACT-R’s modules, structures that implement specific forms of 
cognitive processing, for instance visual, motor or imaginal cognition. 
Thus, these modules instantiate cognition on a conceptual level between 
psychological and neurobiological measures, akin to the algorithmic 
level in Marr’s three Levels of Analysis (computational, algorithmic, 
implementational; Marr, 1982). As these modules can run indepen-
dently of and in parallel to each other, the activity of each module can be 
used as an additional predictive measure that can be generated by a 
cognitive model. While modules are not exact analogues to brain areas, 
they are close enough both functionally and structurally to exhibit 
common features, and as such efforts have been made to compare 
module activity to brain activity in a meaningful manner. The following 
literature section lists a selection of papers about using ACT-R to predict 
cognitive processes. 

ACT-R is able to generate activity predictions for all of its modules 
during a task, facilitating comparisons between this module activity and 
other, external measures. For instance, activity produced by the visual 
module can be related to human data on visual perception, e.g. from eye 
tracking experiments (Byrne et al., 1999). ACT-R was used to simulate 
cognitive workload and effects of multitasking of subjects during an air 
traffic controller task (Lebiere et al., 2001), measuring workload by the 
proportion of time the model spent on critical tasks on one hand and 
subject self-reports on the other. The authors reported a high accuracy of 
the cognitive model regarding human performance, producing a good fit 
in terms of RTs and errors. Jo et al. (2012) generated a workload mea-
sure from the aggregated activity of selected modules during memo-
risation, visuomanual and menu selection tasks. The predicted workload 
was then compared to NASA-TLX self-reports from subjects in corre-
sponding studies, resulting in a high correlation between both. In a 
military unit dispatch task, Stevens et al. (2019) introduce Cognitive 
Metrics Profiling, a custom set of workload predictions based on the 
performance of an ACT-R model, and suggest it could be used to predict 
and eventually replace physiological measurements like heart rate, EEG, 
and eye movements. 

Further research outlined methods to relate ACT-R output to brain 
imaging data, particularly fMRI. fMRI provides high spatial resolution of 
activity for the whole brain, including medial structures such as basal 
ganglia or hippocampi, and thus lends itself easily to comparisons with 
cognitive models. Anderson et al. (2003) showed that module activity 
produced by a model solving an algebraic task was able to predict BOLD4 

responses present in fMRI data of subjects solving the same task. The 

4 Blood Oxygen Level Dependency; a slow but reliable measure for locally 
increased oxygen consumption and therefore activity in the brain. 
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same method was applied by Stocco and Anderson (2008) to differen-
tiate between functionally different structures, showing domain-specific 
processing of algebraic tasks in part explained by a cognitive model. In 
2008, Anderson and colleagues associated activity generated by the four 
ACT-R modules for declarative, imaginal, goal, and procedural pro-
cessing during a complex, high-order task with fMRI activity in 
pre-selected areas5 (Anderson et al., 2008b). Subsequently, they were 
able to differentiate active brain areas in time by the task progression 
predicted by the model. Anderson et al. (2008a) similarly showed up 
methodological hurdles that need to be overcome for valid model-brain 
comparisons on BOLD response in complex cognition tasks, like tem-
poral variability between trials or model-fit assessment. Anderson and 
Fincham (2014b) already link HMM states – as identified by their 
fMRI-based multi-voxel pattern analysis – and corresponding processing 
stages to ACT-R module activity, arguing that states may reflect time 
periods when the current goal demands a rather constant pattern of 
resource deployment. They suggest HMM states to serve as outlines for 
developing more detailed information processing models. Also, they 
suggest to use ACT-R models as a source of information on how 
consistent activation patterns within states should be expected to be. 
Nonetheless, the higher spatial resolution of fMRI compared to EEG 
already allows for easier interpretation of semantic stage content. 
Tenison and Anderson (2016) examined mathematical fluency and 
proposed designing ACT-R models of skill acquisition based on stages 
derived from HMMs of fMRI data. 

In the vein of the works above, module activity can also be compared 
to EEG data. These offer the advantage of higher temporal resolution of 
cortical neuronal activity sampling, with the downside of lower spatial 
resolution and lack of access to inner brain regions. Nonetheless, EEG’s 
fine-grained temporal information facilitates research into activity se-
quences as predicted by ACT-R. The following review only includes 
works that directly relate ACT-R output, i.e. time course or module ac-
tivity, to EEG data – studies that model behavioural data and only 
inform EEG data by proxy are omitted. With an attentional blink task, 
van Vugt (2012) related module activity to EEG, finding correlates not 
only between modules and specific topographies, but specific frequency 
bands as well. A second study by the researcher proposed markers in 
EEG oscillation for information transfer between ACT-R modules (van 
Vugt, 2013), while another follow-up study further established how 
modules can predict cortical coherence (van Vugt, 2014). 

EEG data can be post-processed into so called epochs, sections of EEG 
with a fixed length. These epochs are often created based on experi-
mental trials which enables a standardised view of EEG potentials 
relating to each trial. The resulting event-related potentials (ERPs) can 
then be compared to ACT-R output. Griffiths et al. (2011) designed 
cognitive models able to reproduce the timing and firing patterns of 
ERPs in children with a simple selective attention task and were able to 
generate a very high fit of the model prediction to the recorded ERPs. 
Cassenti et al. (2011) improved ACT-R models by applying temporal 
constraints on the models’ time course inferred from ERP components. 
In 2016, Prezenski and Russwinkel outlined a method for both vali-
dating ACT-R models directly with EEG instead of behavioural data and 
verifying additional ACT-R modules, based on matching modules to 
clusters generated by an Independent Component Analysis (Prezenski 
and Russwinkel, 2016). This method was further developed in a paper 
by Klemm et al. (2021) and applied to an associative recognition task. 

Klaproth et al. (2020) introduced an ACT-R model based on EEG 
recordings and interactions of aeroplane pilots that was able to “trace”, i. 
e. predict expert behaviour and produce crucial alerts on deviations 
from the expected behaviour, using a brain-computer interface to train a 
classifier on ERP markers and subsequently adapt the model to the 
classifier. Borst et al. (2013) used the information on processing stages 

gained from their own EEG-based classifier method in an associative 
recognition task to evaluate an ACT-R model. Similarly, Borst and 
Anderson (2015) used the results from their HsMM-EEG study on asso-
ciative recognition to assess three different theories of associative 
recognition, where one theory is implemented in an ACT-R model. 
Anderson et al. (2016) used an ACT-R model of associative recognition 
to constrain an HsMM model. 

As complex approaches are best applied to well-known, proven ex-
periments, we chose the popular mental rotation paradigm for a com-
bined HsMM-EEG and cognitive model analysis. Mental rotation serves 
as a good exemplary paradigm since it is highly likely to contain qual-
itatively different stages involving at least visual, spatial and decision- 
making components. Also, it can be studied in straightforward neuro-
psychological and behavioural experimental settings consisting of a se-
ries of experimental trials with clear-cut temporal markers (trial onset, 
stimulus onsets, and response). 

1.4. Mental rotation 

Mental rotation is a mainstay in experimental psychology, particu-
larly in spatial cognition research. As one of the most popular paradigms 
for testing mental spatial transformation abilities, its simplicity has lent 
itself to the investigation of distinctions in cognitive processing, leading 
to a rich history of landmark studies. Shepard and Metzler (1971) 
introduced mental rotation as an experimental paradigm, in which two 
abstract objects consisting of linear arrangements of cubes are presented 
side-by-side. The objects are either exact copies or mirrored forms of one 
another and, depending on the experiment condition, are rotated 0–180◦

on the picture plane and/or in depth. Subjects are tasked with deciding if 
the two objects match or not, and need to mentally rotate either of the 
objects to reach an informed conclusion. The frequently replicated re-
sults showed a linear effect of rotation disparity with no difference be-
tween axes, implying mental transformations happen at a constant rate 
of rotation. 

Analysing ocular fixations during a mental rotation study, Just and 
Carpenter (1976) first outlined a proposal for generating cognitive 
stages deduced from eye movements of their subjects. Scan paths and 
fixation lengths were considered respective markers for individual 
stages of processing during a trial. They proposed three sequential task 
solving steps, distinguished by processes underlying eye movement: a 
search stage, a transformation and comparison stage, and a confirmation 
stage. 

Yuille and Steiger (1982) further evaluated processes involved in 
mental rotation and possible task solving strategies by using stimuli 
varying in complexity. On the basis that object complexity directly in-
fluences RT, they differentiated between two main strategies selected by 
familiarity with an object: a piecemeal strategy separates stimuli into 
their respective features and successively transforms them separately to 
reach a conclusion, while a holistic strategy skips individual features and 
rotates an object as a whole. Effectively, the first strategy is based on 
procedural processing and the latter strategy on declarative processing. 
The holistic strategy thus allows for much faster task processing than the 
piecemeal approach, but relies on the object being sufficiently familiar 
to the subject, i.e. by being processed repeatedly throughout the 
experiment. This distinction in holistic (or wholesale) and piecemeal 
strategies proved to be a popular explanation for both the influence of 
object complexity and a learning effect over the course of the experiment 
(Bethell-Fox and Shepard, 1988; Yuille and Steiger, 1982). Moreover, 
these strategies can be linked to the more general declarative and pro-
cedural strategies respectively, commonly found in psychology or 
cognitive science and a popular explanation for task learning effects (e.g. 
Smith, 1994 or Ashby and Crossley, 2010). 

Cognitive models of mental rotation have been presented before, for 
example by Peebles (2019a) or Peebles (2019b). Slight changes to the 
visual module of ACT-R enabled rudimentary spatial processing fea-
tures. Using a simplified mental rotation in 2D space, both wholesale 

5 namely lateral inferior prefrontal, posterior parietal, and anterior cingulate 
cortices, as well as caudate nuclei, respectively. 
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and piecemeal strategies were included and reached a close fit to human 
task data. 

A review paper by Harris et al. (2013) found indications for the 
generalizability of mental rotation findings to processes of mental 
spatial transformation in general. While differences between paradigms 
were found, spatial transformation paradigms seem to differ mostly in 
whether they are rigid or non-rigid transformations, i.e. transforming 
the perspective or the object itself, with mental rotation being rigid and 
mental folding non-rigid. 

Work by Khooshabeh et al. found individual differences in the in-
fluence of object appearance on mental rotation difficulty, suggesting 
that subjects with poor spatial ability incorporate additional features 
like colour or distinctiveness, while high ability solvers mostly relied on 
abstract spatial representations (Khooshabeh et al., 2013). They also 
reaffirmed the finding that the piecemeal strategy is preferably used for 
complex objects or by subjects with lower solving ability. 

Mental rotation serves as one of the most popular and well-defined 
paradigms in spatial cognition research. A deeper understanding of 
the cognitive mechanisms guiding mental rotation task solving would 
therefore undoubtedly help grasp other spatial phenomena, both ab-
stract and applied. For instance, the number and extent of the HsMM- 
extracted stages could correlate with differences in strategy use or 
spatial ability on the subject side, or with stimulus complexity on the 
experiment side. As such, it seemed ideal for the application of this 
rather exploratory method. 

1.5. Research goals 

We claim that (1) the HsMM-EEG method is a powerful tool to 
extract the number, sequence, and duration, i.e. the structure of pro-
cessing stages during a cognitive process from EEG data, and that (2) 
ACT-R models provide a useful source of information about cognitive 
processes that can guide the semantic interpretation of these processing 
stages. We therefore argue that (2a) linking the HsMM-EEG method 
with ACT-R models, thereby combining a data- and a theory-driven 
approach, extends the interpretability of HsMM-EEG results. We addi-
tionally explore if (2b) further insights into cognitive processing stages 
in mental rotation are possible by bringing together the HsMM-EEG 
method with an ACT-R model of mental rotation. By extension, we 
analyse if (2c) common features are apparent visually or statistically in 
both data sets, and if our conclusions are applicable to spatial cognitive 
processing in general. To the best of our knowledge, this work is the first 
to apply a stage-identifying method to EEG data from a mental rotation 
study, and from a spatial task in general. 

2. Methods 

Our analyses are based on experimental data from two neuropsy-
chological mental rotation studies. HsMMs were fit to EEG recordings. A 
cognitive model for the task was designed and fit to behavioural data, 
incorporating an additional ACT-R module for spatial processing and 
able to predict behavioural task outcomes and cortical activity. The 
HsMMs and the predictions by the cognitive model are then compared 
and set in relation to each other. 

2.1. Experiment 

The data used for both cognitive model and HsMM analysis was 
collected as part of a master’s thesis (Schischigin, 2014), as well as a 
bachelor’s thesis (Raddatz, 2014). The studies were based on the 
experimental paradigm used by Shepard and Metzler (1971) and origi-
nally conducted to explore the influence of navigation strategy and sex 
differences in mental rotation, respectively. 

Altogether, 42 subjects were acquired in both studies (22 subjects, 11 
female from Schischigin, 2014; 20 subjects, 10 female from Raddatz, 
2014). For the HsMM-EEG analysis, 19 subjects were excluded. 

Exclusion criteria were erroneous EEG data files (three subjects), 
missing behavioural data files (one subject), extremely long RTs, when a 
subject’s mean RT in more than 35% of conditions was larger than the 
mean RT plus two standard deviations (SDs) (three subjects), electrode 
impedance above 5 kΩ (seven subjects), and an extreme occurrence of 
movement artefacts (five subjects). Since the HsMM-EEG method is 
based on single trials and therefore noise is not reduced by averaging 
over trials as in ERP analysis, exclusion due to extreme occurrence of 
artefacts was handled liberally. Exclusion due to electrode impedance 
and artefacts was blind to behavioural data. In the final sample (N = 23, 
15 male) the mean age was 30.52 years (SD = 8.42) with a range from 21 
to 52 years. All subjects were right-handed and had normal or 
corrected-to-normal vision. 

Written informed consent was obtained from all subjects. They were 
compensated with either 8€ or course credit. On average, subjects spent 
60 min on an experiment run. Trials were presented on a monitor in a 
darkened room. Each trial started with the presentation of a fixation 
cross for 1 s. Afterwards, the first stimulus (reference stimulus) was pre-
sented as-is on either the left or the right side of the screen. After 1 more 
second, the second stimulus (target stimulus) was presented on the other 
side rotated by either 0◦, 50◦, 100◦, or 150◦ on the picture plane, 
depending on the trial condition (see Fig. 1 for an example). 

Each stimuli pair was selected from a set of 16 figures, taken from 
Peters and Battista (2008). Figures consisted of a set of 10 white cubes 
with black outlines, attached together in 3–4 straight lines each. Pre-
sentation side and figure type were balanced for every subject. The task 
consisted in discerning if the two shown stimuli depicted the same 
figure, or if the target stimulus showed a mirrored version of the figure. 
Subjects were instructed to mentally rotate one of the objects clockwise 
until an informed decision could be reached. Responses were given per 
two vertically aligned buttons with the right hand (left hand in Schi-
schigin, 2014), with the top button for a “same” answer and the bottom 
button for a “mirrored” answer. Each possible trial combination was 
presented during an experiment block with 6 blocks overall, resulting in 
768 trials in sum.6 

Behavioural as well as EEG data were collected in each study. EEG 
measurements were recorded by 64 electrodes per the 10–20 system and 
a sample rate of 500 Hz. The FCz electrode was used as online reference. 
Note that with 64 electrodes, the EEG data used in the present work was 
recorded with twice as many electrodes as the EEG data recorded by 
Borst and Anderson (2015) who used 32 electrodes. A 250 Hz low-pass 
filter was applied to avoid aliasing artefacts. The signal was amplified 
via BrainAmps (Brain Products GmbH, 2014). 

2.2. HsMM-EEG method 

2.2.1. EEG preprocessing 
Subject-wise EEG data were first re-referenced offline to the Cz 

channel and a 0.016 Hz high-pass filter was applied. In addition, a 
0.5–30 Hz band-pass filter was applied to attenuate high-frequency 
noise. Power line noise was removed with a 50 Hz DFT filter. The 
subject-wise continuous EEG data was epoched from reference stimulus 
onset until subject response. The data was then downsampled to 100 Hz. 
Within each subject data set, the first 30 trials (20 training trials plus the 
first 10 trials of the first experimental block) were removed since 
“warming-up” effects can be assumed for this early experimental phase, 
in that subjects are typically converting from a slow, declarative to a 
smooth, procedural execution of the task (Anderson et al., 2004). Like-
wise, the last 30 trials were removed due to possible fatigue effects. Also, 
trials with RTs longer than two SDs from mean RT per subject, as well as 
trials containing muscle or jump artefacts as identified by visual in-
spection, were excluded. For each subject, only trials that were solved 

6 16 figures * 4 rotation conditions * 2 sameness conditions * 6 blocks = 768 
trials. 
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correctly were considered for further analyses. Overall, 9,84% of trials 
were rejected due to RT outliers, artefacts or incorrect subject responses. 

The subject-wise EEG recording was decomposed into independent 
components by means of the EEGLAB infomax algorithm (Bell and Sej-
nowski, 1995). Components reflecting eye blinks and saccades or 
heartbeat were visually identified and projected out of the data. Sub-
sequently, the VEOG and the Cz electrode (as the offline reference) were 
excluded from the EEG data set, leaving 62 channels. The trial-wise EEG 
epochs were baseline-corrected to remove random signal drift within 
trials, with the baseline window spanning the whole trial length. In ERP 
analyses such drift would disappear due to the averaging procedure. 
Since the HsMM estimation uses single-trial data as input, removal of 
random variation between trials is especially important (Borst and 
Anderson, 2015). 

Note that to date no objective criteria exist for tailoring EEG data 
preprocessing to the HsMM-EEG analysis. Therefore, to ensure meth-
odological similarity, our preprocessing followed the procedure applied 
by Borst and Anderson (2015) concerning the steps of band-pass filtering 
including the exact filter span, removal of incorrect trials, and the ne-
cessity of baseline correction. To ensure consideration of task specifics, 
the steps of re-referencing and high-pass filtering including the filter size 
followed the procedure of Raddatz (2014). 

2.2.2. HsMM-EEG analysis 
Our application of the HsMM-EEG method is based on the steps 

conducted by Borst and Anderson (2015) (see Fig. 2 for an overview of 
the procedure). We point the interested reader to the original paper for a 
detailed description of the underlying stochastic concepts. 

In the HsMM-EEG analysis, two main parameters are estimated for 
each state i: (1) A brain signature Mi that reflects the average EEG 
activation pattern during this processing stage, and (2) the gamma 
distributions Gin that represent the state’s durations (and their vari-
ability) for the conditions n of the experiment. Borst and Anderson 
(2015) note that since the HsMM-EEG method assumes that the brain 
signatures are the same for each condition and conditions only differ in 
their duration estimates, conditions should be analysed jointly only if 
they can be hypothesised to consist of the same duration and order of 
processing stages; where this is not the case, conditions should be 
committed to separate HsMM-EEG analyses. For our analysis of the 
mental rotation task we decided to analyse the experimental conditions 
with a 0◦ rotation disparity between reference and target stimulus (in 
the following: non-rotated conditions) separately from those conditions 

with a 50◦, 100◦, or 150◦ rotation disparity (in the following: rotated 
conditions). We hypothesise that the rotated experimental conditions 
involve different processing stages than the non-rotated conditions, 
which are special conditions in that subjects do not have to execute 
mental rotation at all to solve the task. 

Prior to the actual HsMM-EEG analyses, the preprocessed EEG data 
had to pass through a preparation procedure that is tailored to the 
HsMM-EEG method. We based this preparation on the concepts and 
suggestions by Borst and Anderson (2015). First, so-called “snapshots”, 
each spanning 80 ms, were created by restructuring the data. From eight 
10 ms samples in 62 real channels we created one 80 ms snapshot with 
496 virtual channels (consequently, each real channel appeared 8 times 
in a snapshot, representing the different time points within the 80 ms 
period; see Borst and Anderson (2015) for a discussion of 80 ms as 
snapshot length). Creating snapshots allows for presenting the temporal 
profile of the data to the HsMM estimation procedure, which is impor-
tant because crucial information is contained in the temporal profile of 
the EEG data (Borst et al., 2013). Also, it reduces the amount of data 
points in a trial for the HsMM-estimation process. After snapshot crea-
tion, each data point contained information not only about the mean 
voltage in each channel, but also about whether this voltage increased or 
decreased over the 80 ms interval of each channel (Borst and Anderson, 
2015). After snapshot creation, each trial was composed of a certain 
number of snapshots (with snapshots that crossed into the post-response 
period being excluded). The second step in the data preparation pro-
cedure was to normalise each virtual channel to a mean of 0 and a 
standard deviation of 1, and to apply a spatial principal component 
analysis (PCA) to the 492 virtual channels. Afterwards, the results of the 
PCA were again normalised. This was performed across all subjects, 
resulting in a single set of PCA coefficients and PCA components 
matching across subjects. In accordance with Borst and Anderson 
(2015), we decided to use the first 100 PCA components for the 
HsMM-EEG analysis. 

For the HsMM-EEG analysis, we adapted the HsMM algorithms 
provided by Borst and Anderson (2015). The PCA matrix and four 
additional vectors indicating subject, trial, snapshot-in-trial, and 
experimental condition for each snapshot were entered into the algo-
rithms. Thereby, those brain signatures Mi and gamma distributions Gin 
that maximise the likelihood of the data, given a particular number of 
states, were calculated. Since the 100 PCA factors are basically distrib-
uted as independent normals, each brain signature Mi is described by a 
vector of 100 means μik that represent independent normal distributions 

Fig. 1. Two examples of a mental rotation trial as presented to subjects. After a fixation cross is displayed for 1s (first column), the reference stimulus is displayed 
(second column) left or right of the fixation cross. Following another 1s, the target stimulus appears (third column) opposite of the reference. Both figures remain on 
screen until a response is given. Top row: same stimuli, bottom row: mirrored stimuli. 
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with unit variance (Borst and Anderson, 2015). 
Following Borst and Anderson (2015), we applied a LOOCV with a 

subsequent sign test to check if the extra parameters explain sufficient 
extra variance to be justified, since HsMMs with more states have more 
parameters to fit the data and will thus typically result in a better fit. The 
LOOCV method estimated maximum-likelihood parameters for an 
r-state HsMM using the data of all but one subject. The data of the 
remaining subject was then split in half, and maximum-likelihood 
gamma distributions were estimated for the first half of the remaining 
subject’s data given the brain signatures of the other subjects. Using the 
gamma distributions and the state signatures of the other subjects, we 
calculated the log-likelihood of the second half of the remaining sub-
ject’s data. This was repeated for the other half of the remaining sub-
ject’s data. Then, the two log-likelihoods were averaged. We repeated 
this process for all subjects and for HsMMs with different numbers of 
states. 

Although the likelihood maximisation algorithm is in itself stochas-
tic, repeated runs confirmed that both the likelihood maximisation al-
gorithm as well as the LOOCV output are deterministic and always yield 
the same results when the same data is used as input. 

We used a sign test to select the HsMM with the optimal number of 
states, and chose the highest k-state model that fitted the data of a sig-
nificant number of subjects better than all (l < k)-state models. Note that 
a (k + 1)-state model will fit the data of n − 1 subjects better in the 
estimation phase because it has more parameters, even if the true 
number of states is k; however, it is at least as likely to fit the nth subject 
worse (Anderson and Fincham, 2014a). With 23 subjects, the increase 
becomes significant when at least 16 subjects improve (p < 0.05). Note 
that a high likelihood for a solution with a certain number of states does 
not mean that solutions with fewer states are wrong, rather, they may 
just be at a different level of aggregation (Borst and Anderson, 2015). 

After we had determined the optimal number of states, we estimated 
a single HsMM based on the data of all subjects. The state signatures of 
this model were then used to estimate separate gamma distributions for 
each subject and condition. Based on these gamma distributions, the 
average state duration for each subject and condition could be calcu-
lated. Using these subject-specific models, we calculated the state du-
rations per condition, averaging the state durations over all subjects. 
Further, the subject-specific models served as basis for calculating the 
probability for each snapshot to be in a certain state. We used this to 

Fig. 2. Overview of the HsMM-EEG method. Reprinted from “The discovery of processing stages: Analyzing EEG data with hidden semi-Markov models”, by Borst, J.P., & 
Anderson, J.R., 2015, NeuroImage, p. 63. 
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estimate brain activity for each state, condition, and subject by multi-
plying the EEG data of each sample with its assigned probability, sum-
ming over the resulting values, and dividing by the summed probability 
over all samples. The resulting EEG pattern for each state, condition, and 
subject was then averaged over subjects. It is important to note that 
these patterns simply represent a weighted average of the EEG signal 
(Borst and Anderson, 2015). 

2.3. Cognitive model 

The cognitive model was designed to solve a simulated version of the 
experiment described above. By taking advantage of ACT-R’s architec-
ture, the processing of each individual module and their interactions are 
controlled to simulate task solving for a mental rotation task. 

Initially, a simple cognitive process model was hypothesised, broadly 
depicting the steps necessary for task solving (Fig. 3). This process model 
is roughly modelled after the process analysis by Just and Carpenter 
(1976), who used eye tracking to discern separate phases during a 
mental rotation task, as well as the basic strategies theorised by Yuille 
and Steiger (1982). The presented stimuli are visually perceived and 
encoded into mental representations, which are then gradually rotated 
to align more closely to each other. Depending on if a certain threshold 
of similarity can be achieved, a human solver would then give a match or 
a mismatch response. Additionally, the model is allowed to bypass 
rotating if the stimuli can be visually compared directly, thereby 
creating “shortcuts” for non-rotated trials. The process formalisation 
was then developed into a production rule model, serving as the basis for 
an implementation of the cognitive model in ACT-R. Note that the 
process model is, by nature, an intuitive and subjective account of 
cognitive processes during mental rotation. Albeit resulting from a best 
effort to replicate models from established literature, it does not lay 
claim to be a complete nor a unique account of cognition during human 
mental rotation solving, and alternatives exist (e.g. Peebles, 2019a). 

The model makes use of reinforcement learning and spreading acti-
vation as learning mechanisms, implemented in ACT-R as utility learning 
and base-level learning, to simulate strategy choice and implicit prefer-
ence of productions. Base-level learning governs the strength of specific 
memory contents, like mental representations of stimuli from past trials. 
These mental representations gain stronger activation through 

repetitions, and at some point can be relied on instead of transforming 
the same object again, serving as a time-saving bypass and allowing 
faster responses. Utility learning mediates the gain of activation by 
helping the cognitive model gauge the usefulness of this reliance on task 
memory. To ensure cognitive plausibility and generalizability of the 
produced predictions, the cognitive model relies on a novel addition to 
the ACT-R architecture, the spatial module. 

Based on an idea by Gunzelmann and Lyon (2007), the spatial 
module seeks to add cognitively plausible functionality for 
three-dimensional data in ACT-R, providing a unified way of simulating 
spatial transformation tasks. In contrast to Gunzelmann and Lyon, this 
framework relies heavily on standard ACT-R mechanisms. The spatial 
module acts as both storage for mental spatial representations and a 
means of transforming the latter. To enable spatial processing of infor-
mation, chunks are extended by point clouds, representing an object in 
3D space. These spatial chunks then allow for algebraic manipulation of 
objects while maintaining full compatibility with all default ACT-R 
mechanisms. Transformations are requested by the model and, if con-
forming to architectural and modular constraints, applied to the spatial 
object. The module’s core function is calculating the time delay neces-
sary for spatial transformation, based on the hypothesised linear process 
commonly found in mental rotation studies. This processing cost is 
generated by a function based on current research, constituting an 
attempt to find a common denominator underlying mental spatial 
transformations and thus facilitating explainability, validity, and 
generalizability. Currently, the following simplified formula is used: 
Transformation delay = F ∗ x  

including a delay factor F and the raw input value of the transformation 
x. Two optional factors N representing the increased mental effort from 
successive transformations applied to the spatial representation, as well 
as M for assigning weights to different transformation modalities, were 
so far not used in this study. 

Although a cognitive model cannot be meaningfully separated into 
cognitive stages, its productions can be coarsely grouped by their pur-
pose. A model run for the experiment can thus be roughly divided into 
three approximate phases, analogous to Just and Carpenter (1976): vi-
sual encoding, transformation and comparison, and a motor response 
stage. Note that these phases are not identical to the aforementioned 

Fig. 3. Flow chart depicting a simple process model for mental rotation. Note the difference in complexity between the piecemeal (left) and the wholesale 
(right) strategy. 
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HsMM stages, but describe a grouping of theorised task-solving steps. 
Visual encoding – At the start of a trial, the model is first presented 

with the reference stimulus. The model visually perceives the complete 
object and encodes it as a mental image. Prior research (Yuille and 
Steiger, 1982) suggests a familiarity mechanism to be the deciding factor 
in a solver’s strategy choice for the rest of the trial. The model imple-
ments this in the form of instance-based learning (Gonzalez et al., 2003), 
relying on ACT-R’s base-level learning mechanism to determine if a 
prior representation can be retrieved from declarative memory or not: to 
see if the encoded stimulus is already familiar to the model, its memory 
is queried for an existing representation of the structure from earlier 
trials. If the stimulus is familiar, i.e. presented often and recently 
enough, the model proceeds with the faster wholesale strategy, while a 
novel stimulus starts the piecemeal strategy. In the latter case, the 
reference object is encoded again, but instead of the whole structure its 
individual features are now one after another saved as a separate mental 
image. Afterwards the model waits for the target stimulus to appear, 
which it then also encodes in the same manner as the reference object. 

Transformation and comparison – Once both stimuli are encoded 
and stored in the imaginal and spatial modules, respectively – simulating 
a solver actively maintaining both mental representations – the trans-
formation process starts. By using the spatial module, the two repre-
sentations are compared with each other: the similarity of both 
representations is measured and either can be declared a “match” or a 
“mismatch” directly (representing a visual shortcut) or understood to 
require mental rotation: depending on its choice of strategy, only part of 
the target or the complete object is rotated. Each rotation is followed by 
a comparison process, in which the model again gauges the similarity of 
the two representations: if similarity has improved, an additional rota-
tion is initiated; if similarity has worsened, the two objects are consid-
ered a “mismatch”. If similarity reaches the threshold, both 
representations are considered equal and a “match”. For the wholesale 
strategy, the appropriate response is prepared after one iteration of 
transformation and comparison, while during the piecemeal strategy, 
the degrees of rotation necessary to reach an informed decision are 
remembered and applied to all subsequent pieces. When all pieces reach 
the similarity threshold after being rotated in this manner, the piecemeal 
strategy concludes a “match”, otherwise a “mismatch”. 

Motor response – After collecting enough information to decide on a 
match or mismatch response, the model enters its response via a virtual 
keyboard. The model can reach this point at several times during a run:  

● “obvious” matches or mismatches are discerned directly after visual 
encoding,  

● a mismatch is returned if most, but not all pieces are spatially equal,  
● a remembered rotation value during the piecemeal strategy does not 

work on a subsequent piece and produces a mismatch,  
● rotation yields no improvement on the similarity leading to a 

mismatch,  
● all pieces of the target object match all pieces of the reference object 

after rotation during the piecemeal strategy or  
● the target object matches the reference object after rotation during 

the wholesale strategy. 

This triggers a motor action initiated by the manual module, simu-
lating a key press on the respective answer key for “match” or 
“mismatch”. Note that this means that the transformation and compar-
ison phase is not a prerequisite of the motor response stage, as a decision 
can be made purely by visual comparison. The model was fitted to the 
subjects’ RTs, aggregated for each experiment block and target rotation, 
to ensure a sufficient predictive quality of the model before generating 
module activity. Model parameters were chosen such that they produced 
high correlation and low root mean square error (RSME) between model 
and human data. Parameters used were memory retrieval latency factor, 
retrieval threshold of memory content, added retrieval request noise, 
added production utility noise, and spatial transformation time cost. 

For the generation of model predictions, each human subject in the 
experiment was individually replicated, that is, their respective order of 
trials was followed to control for sequence or learning effects. During 
each trial, the activity produced by each module is saved in binary form, 
i.e. a module is active or inactive at a specific time: a module is 
considered active when it is explicitly processing cognitive content. 
While module output is binary by nature, aggregation over multiple 
trials enables a gradient output. Module activity for this study was 
created with a 20 Hz sample rate. Only trials that were answered 
correctly by both subject and model were considered, leading to rejec-
tion of about 3.2% of model data. A more in-depth look at the model, 
and the underlying spatial module, can be found in Preuss and Russ-
winkel (2021). 

2.4. HsMM-EEG – cognitive module activity comparison 

Module activity of a cognitive model can not be considered a straight 
analogue to HsMM-EEG results: while cognitive processes are simulated 
by the model, they are not clearly separable stages as those resulting 
from HsMM-EEG. So far, there are no established approaches to relate 
both model and HsMM data to each other. For this reason both a visual 
and an exploratory statistical analysis of the two datasets was con-
ducted. On one hand, the two time series are compared visually, 
assessing potential similarities and common features. On the other hand, 
the relation between module activity patterns and HsMM stages was 
analysed statistically. As the resulting HsMM stages model data up to 
~3200 ms, only cognitive model data from 0 to 3200 ms was included in 
the analyses. 

2.4.1. Visual comparison 
As a first step, the processing stages as resulting from the HsMM-EEG 

analysis were contrasted with ACT-R module output in a purely visual 
manner. With this approach we aim to demonstrate what kind of in-
formation can be deduced from the two types of data and how they can 
be aligned. The results from the visual comparison shall be used as a first 
insight into semantic stage content. 

2.4.2. Statistical comparison 
For insight into the predictive quality of module activity patterns on 

HsMM processing stages, a chi-square test was conducted, with Cramér’s 
V offering a measure of effect size. Module activity generated by the 
cognitive model was sampled with a rate of 20 Hz and assigned to its 
respective HsMM stage in regards to trial time. Subsequently, the 
amount of active samples per module and HsMM stage were counted. 

2.5. Method summary 

We attempt to get deeper insight into mental rotation processes on a 
neuropsychological level by application of the HsMM-EEG method. 
Moreover, we aim to deliver proof-of-concept for linking the HsMM-EEG 
method with ACT-R output and propose that it advances semantic 
interpretability of distinct processing stages in a cognitive process. 

3. Results 

In this section, we will first briefly describe the behavioural results of 
the mental rotation experiment as they were originally presented by 
Raddatz (2014). With the following results of the HsMM-EEG analysis 
we aim to uncover differences in number and duration of processing 
stages between rotated and non-rotated conditions, respectively. What 
follows are the results of the model fitting process, that is, the corre-
spondence between the ACT-R model output and the experimental re-
sults. With the subsequent comparison of the HsMM-EEG results with 
the ACT-R module activities we aim for an interpretation of the semantic 
content of the identified processing stages and thereby also at a better 
understanding of the identified differences between rotated and 
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non-rotated conditions. 

3.1. Experiment results 

Raddatz (2014) conducted an ANOVA for the effect of factors rota-
tion disparity, sameness of presented stimuli, sex of subject, and sample 
source on RT. The author reported significant effects for rotation (F(3, 
102) = 126.634; p < .001) as well as sameness (F(1, 34) = 53.117; p <
.001). Post-hoc tests revealed a significant contrast for linearly 
increasing RTs with increasing rotation disparity, and significantly 
longer RTs for mirrored than same stimuli. Furthermore, the author 
conducted an ANOVA for the effect of the same factors on error rate. 
Again, significant effects were found for rotation (F(3, 102) = 41.074; p 
< .001) and sameness (F(1, 34) = 11.704, p = .002). Post-hoc tests 
revealed a significant contrast for linearly increasing error rates with 
increasing rotation disparity, except for the difference between 0◦ and 
50◦, and significantly higher error rates for mirrored than same stimuli. 

These findings replicated the commonly reported linear effect of 
rotation condition on subject performance, which indicates that subjects 
indeed performed mental rotation. Fig. 7 shows behavioural results in 
conjunction with results from the cognitive model. 

3.2. HsMM-EEG results 

Since we assume mental rotation processes to differ between non- 
rotated conditions and rotated conditions, we conducted separate ana-
lyses for rotated and non-rotated trials. For non-rotated conditions a 7- 
state HsMM was identified as providing the most likely description of the 
data while for rotated conditions, a 6-state HsMM was found to best 
account for the data. Fig. 4 shows the average gain in log-likelihood of k- 
state HsMMs over a 1-state HsMM. Table 1 shows the number of subjects 
whose log-likelihood improved from k-state HsMMs over (l < k)-state 
HsMMs. Note that the average log-likelihood can decrease with an 
increasing number of states because the likelihood estimation was in-
dependent from fitting the models (Borst and Anderson, 2015). 

In a sign-test with 23 subjects, the increase becomes significant when 
for at least 16 out of 23 subjects the likelihood for a certain number of 
stages improves over another (p < .05). For non-rotated conditions, the 
7-state HsMM had the highest log-likelihood and was more likely than 
HsMMs with fewer states for at least 16 subjects, corresponding to a 
significance level of p < .05. For rotated conditions, the 9-state HsMM 
had the highest log-likelihood, but only the 6-state HsMM turned out to 
reach significance at the level of p < .05, being more likely than HsMMs 
with fewer states for at least 16 subjects. Note that it might be possible to 
sub-divide these states into smaller states, however, there are always at 
least as many states as is indicated by the optimal number of states 
resulting from the sign test (Borst and Anderson, 2015). We will there-
fore focus on the 7-state solution for non-rotated conditions and the 
6-state solution for rotated conditions. 

Figs. 5 and 6 show the properties of the identified processing stages, 
corresponding to the states in the HsMMs. Fig. 5 shows the brain sig-
natures for the identified stages for non-rotated and rotated conditions, 
respectively. Fig. 6 shows stage durations adding up to entire experi-
mental trials, averaged over subjects, for each experimental condition. 

The brain signatures indicate that the stage-wise aggregated EEG 
activity patterns widely match between non-rotated conditions and 
rotated conditions for the first four stages as well as for the last stage. 
Moreover, the sixth stage in the non-rotated conditions seems to match 
with the fifth stage of the rotated conditions, while the sixth stage in the 
non-rotated conditions shows a pattern that does not match with any of 
the stages in the rotated conditions, indicating that the additional stage 
in the non-rotated conditions is in the fifth place. Given the apparent 
correspondence between the stages 1, 2, 3, 4, 5, and 6 in both kinds of 
conditions, we will hereinafter refer to a stage numeration from 1 to 6 
for all conditions, with the additional stage 4b only being present in the 
non-rotated conditions. 

To analyse the effect of experimental condition on processing stage 
duration, we performed a two-way ANOVA with the factors rotation 
disparity and sameness of reference and target figure. Table 2 reports the 
effects of experimental condition. To account for the seven stages, we 
consider results significant when the p-values were smaller than a 
Bonferroni-corrected threshold of .05

7 ≈ .007. 

3.3. Cognitive model results 

As a close fit between cognitive model and behavioural data is 
paramount for accurate module activity prediction, parameters of the 
cognitive model were adjusted to maximise correlation and minimise 
prediction error. A match threshold value of 20 yielded the best results 
during initial testing. For initial model fitting, experiment data was 
aggregated by condition and experiment block, resulting in 24 mean 
values which served as a basis of comparison between human and model 
data. A conservative grid search of selected parameters resulted in 162 
possible parameter combinations. Testing these combinations with the 
aim of replicating the aggregates as closely as possible resulted in an 
optimal fit to the experiment data with the following parameter values:  

● Latency factor: 0.2 (default: 1.0)  
● Retrieval threshold: −1.0 (default: 0.0)  
● Retrieval noise: 0.5 (default: none)  
● Utility noise: 1 (default: none)  
● Spatial delay: 0.03 (default: n/a) 

3.3.1. Correlation 
The parameter-fit cognitive model correlated well with behavioural 

data. A strong correlation of RTs over rotation and experiment block was 
achieved, with little deviation between predicted RTs (r(22) = 0.92; p <
.001; RMSE = 0.23). Rotation disparity by itself, aggregated over all 
blocks reached a strong correlation (r(2) = 0.97; p < .05, RMSE =
0.139), as does experiment block aggregated over all rotation conditions 
(r(4) = 0.84; p < .05, RMSE = 0.22) (see also Fig. 7). Standard deviation 
of model-predicted RTs is close to that of the behavioural data, albeit 
slightly lower (SDH = 1.953; SDM = 1.421). 

3.3.2. Regression analysis 
To test the similarity between cognitive model and behavioural data, 

a multiple linear regression analysis was performed, gauging the influ-
ence of experiment block, rotation disparity and data source (human or 
model) on RTs. The three predictors explained 53.9% of the variance 
(R2 

= 0.539, F(47, 840) = 23.04, p < .001). Rotation disparity was a 
significant predictor for RTs (β = 0.66, p < .001), as was the interaction 
between experiment block and rotation disparity (β = −0.29, p < .05). 
Data source showed no influence on RTs (β = 0.02, p = .43), showing no 
significant difference between human and model results. Fig. 7 shows a 
linear effect in the results, with increased rotation disparity effecting 
increased RTs. Over the course of the experiment blocks, RTs are 
generally lowered, with this effect being more pronounced for higher 
rotation disparity. 

3.4. HsMM-EEG – cognitive module activity comparison results 

To gain insight into the semantic content of the processing stages as 
identified by the HsMM-EEG method, we compared the results of our 
HsMM-EEG analysis to the module outputs of our ACT-R model. In the 
following, we first describe the results of an initial visual comparison 
between the two, followed by a statistical analysis. 

3.4.1. Visual comparison 
Since to date no established convention for the visual comparison of 

processing stages resulting from HsMM-EEG and ACT-R module output 
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exists, we decided for an explorative approach described in the 
following. Fig. 8 shows a comparison that aligns human RT distribution 
with mean RTs, HsMM-EEG results and ACT-R module activity. Module 
activity is aggregated over all ACT-R modules, but separated by all eight 
possible conditions to match it with the HsMM-EEG bar plots. HsMM- 
EEG processing stages are displayed as background colour for module 
activity to allow for interpretations. Human RT distributions by trend 
become wider through the progression from condition 0◦/same to 0◦/ 
mirrored, to 50◦/same, to 50◦/mirrored, to 100◦/same, to 100◦/ 
mirrored, to 150◦/same, to 150◦/mirrored (for the sake of simplicity, 
this progression will hereinafter be referred to as “increasing condition 
difficulty”). However, distributions are relatively matching the time 
span of stage 6. As expected, aggregated module activity does hardly, if 
at all, differ between conditions in the time span from 0 ms until 1000 

ms, which is the time span from reference stimulus appearance until 
target stimulus appearance. This already underpins the assumption that 
in this time period only processes occur that do not differ between 
conditions. In the time span after 1000 ms, slight deviations in the dis-
tribution of peaks and flats are visible, especially for conditions 0◦/same 
and 0◦/mirrored. The fact that aggregated module activity does not 
exhibit rightward shifts on the time axis with increasing condition dif-
ficulty, although the HsMM-EEG results suggest that the beginning of the 
stages 4, 4 b, 5 and 6 are linearly delayed with increasing condition 
difficulty, makes semantic interpretations for these stages difficult at 
this point however. Also, the module activity patterns for the 0◦/same 
and the 0◦/mirrored condition do not provide information yet about 
why there is an additional stage in these conditions. In a next step the 
ACT-R module activity will be functionally differentiated, i.e., separated 

Fig. 4. Results of the LOOCV-procedure. The average gain in log-likelihood of a k-state HsMM over a 1-state HsMM. “*” marks significant increases in log-likelihood 
over all fewer-state solutions as indicated by the sign test. 

Table 1 
Number of subjects with an increasing log-likelihood over fewer state solutions.  

Number of states Number of subjects with an increasing likelihood 
>1 state >2 states >3 states >4 states >5 states >6 states >7 states >8 states >9 states 

Without rotation 
2 23 – – – – – – – – 

3 23 6 – – – – – – – 

4 22 13 15 – – – – – – 

5 22 11 13 8 – – – – – 

6 22 14 16 14 16 – – – – 

7 22 16 17 16 18 16 – – – 

8 22 15 17 15 17 12 3 – – 

9 22 18 20 18 18 18 13 19 – 

10 22 15 16 15 17 14 11 14 11 
With rotation 
2 23 – – – – – – – – 

3 22 6 – – – – – – – 

4 22 12 17 – – – – – – 

5 22 13 18 13 – – – – – 

6 22 16 20 18 18 – – – – 

7 19 15 17 13 10 3 – – – 

8 20 13 14 13 12 5 8 – – 

9 21 16 18 17 16 12 18 17 – 

10 19 14 14 14 13 7 12 9 7  
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Fig. 5. State signatures for non-rotated (top row) versus rotated conditions (bottom row).  

Fig. 6. HsMM stages over the course of a trial, separated by all 8 condition combinations. The additional stage 4b only applies to non-rotated conditions (0◦, for same 
and mirrored stimuli). 

Fig. 7. RTs of subjects (solid black outline) and cognitive model (dashed red outline), grouped by rotation condition and experiment block.  
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by different modules. 
Fig. 9 shows the activity of six ACT-R modules separated by all eight 

possible conditions. The modules have been selected for their functional 
relevance for cognitive processes. At first sight, the following findings 
can be identified: (i) Until about 1100–1500 ms (depending on module), 
module activities do not differ at all between conditions, further un-
derpinning the assumption that before target stimulus presentation 
cognitive processes do not differ between conditions. (ii) The most 
obvious deviations become apparent for the 0◦/same condition. This 
condition shows more pronounced activity peaks than all other condi-
tions for (1) the visual-location module, after about 1500 ms, (2) the 
visual module, after about 1500 ms, (3) the imaginal module, after about 
1700 ms, and (4) the spatial module, with irregular deviations across the 
time span. (iii) Apart from the 0◦/same condition, the most pronounced 
difference between conditions becomes apparent for manual module 
activity which shows by tendency incrementally rightward-shifted ac-
tivity peaks with increasing condition difficulty. 

Following our intention to extract from ACT-R module output in-
terpretations for the processing stages that are identified by HsMM-EEG, 
we will now go through each of the identified stages for finding matches 
with phases of heightened module activities. 

Stage 1: As shown in 3.2, stage 1 has nearly the same duration across 
all conditions. During this time span, there is high, albeit decreasing 
visual-location module activity. Also, there is constant, very high 
visual module activity. 
Stage 2: As shown in 3.2, stage 2 also has nearly the same duration 
across all conditions. During this stage, there is only very little visual- 
location module activity. There is only a very short time period of 
visual module activity at the beginning of this stage. Noticeable, the 
global activity peak of the retrieval module falls within this stage. 
Imaginal module activity is slowly rising at the end of this stage. 
Stage 3: This stage differs substantially in length between condi-
tions. For all conditions, until 1000 ms, stage 3 matches increasing 
visual-location module activity, decreasing retrieval module activity, 
and peaking but then decreasing imaginal module activity. With 

increasing duration of stage 3, parts of the following patterns match 
with this stage after 1000 ms: a short phase of visual-location module 
activity which is then falling off, another visual module activity 
peak, a very low imaginal module activity peak, a first spatial 
module activity peak, no manual module activity (since the manual 
module activity peak around 1500 ms is only expressed for the non- 
rotated conditions, and in these conditions this time phase does not 
fall into stage 3). 
Stage 4: Since for this stage both the time points of beginning and 
end differ substantially between conditions, a differentiated visual 
comparison with module activities becomes quite challenging. 
Therefore, we restrict the comparison to the most obvious patterns 
here. During stage 4, there is very little or no visual module activity, 
except for the non-rotated conditions. The spatial module shows 
pronounced activity with alternating peaks and troughs during stage 
4 for all conditions. Manual module activity is rising up to a peak in 
the non-rotated conditions and the 50◦/same condition, and to a 
smaller extent in the 50◦/mirrored condition. 
Stage 4b: Both non-rotated conditions show peaks of visual-location 
and visual module activity roughly matching with stage 4b, where 
both peaks are slightly more (visual-location) or much more (visual) 
pronounced in the 0◦/same condition. Also, for the 0◦/same condi-
tion, a very slight peak in spatial module activity roughly falls into 
stage 4b. The 0◦/mirrored condition also expresses a pattern of 
fluctuating spatial module activity during this time phase. In both 
conditions, stage 4b is also characterised by considerable manual 
module activity. 
Stage 5: For the 0◦/same condition, there is a pronounced peak of 
visual-location module activity during stage 5. The 0◦/same condi-
tion shows a pronounced imaginal module activity during stage 5. 
This peak is also present but more flattened out in the 0◦/mirrored 
condition. There is considerable spatial module activity for all con-
ditions except the 0◦/same condition (absent) and the 50◦/same 
condition (very low). There is rising, very high or even peaking (50◦/ 
same condition) manual module activity for all rotated conditions. 
Stage 6: The 50◦/same condition shows a peak of visual-location 
module activity during stage 6. Visual module activity is peaking 
in the 0◦/same condition during stage 6. Imaginal module activity is 
falling off in the 0◦/same condition and increasing in the 50◦/same 
condition. Spatial module activity is oscillating on a high level for all 
conditions except 0◦/same and 50◦/same. Manual module activity is 
increasing or peaking for all rotated conditions. 

Fig. 10 shows the activity of the manual module separated by 
experimental conditions. For the “same” conditions there is an activity 
peak which is delayed with increasing rotation disparity. For each of the 
“mirrored” conditions there are multiple smaller activity peaks and ac-
tivity exhibits an oscillating pattern across the time span. At the 
beginning of the activity peaks of the non-rotated conditions, there is a 
concentrated usage of the “match” and “mismatch” shortcuts by the 
ACT-R model during the wholesale strategy, as indicated by the notches 
at the bottom line. These shortcuts also occur shortly before the addi-
tional stage 4b in the non-rotated conditions. It becomes apparent that in 
the non-rotated conditions manual module activity is not only high but 
its peaks roughly match the time phase of stage 4b. Additionally, later 
“mismatch” shortcuts during the piecemeal strategy imply late visual 
shortcuts for both 100◦ and 150◦ mismatch conditions. 

3.4.2. Chi-square test 
A chi-square test of independence was conducted to gauge the rela-

tion between ACT-R’s module activity output and the HsMM’s cognitive 
stages, that is if the pattern of active modules is distinctive for each 
cognitive stage. A strong relation was found and was highly significant 
(χ2(42, 1312524) = 887404, p < .001). Cramér’s V shows a moderate 
effect between the two factors (φc = 0.336, 95% CI [0.335, 0.3364]). 
Post-hoc tests on the predictive quality of module activity for each 

Table 2 
Effects on stage durations for subject-wise data. The significance level was 
chosen as a Bonferroni-corrected threshold of .05

7 ≈ .007. Significant effects are 
highlighted in bold type.  

Source F p η2 

stage 1 
degree .245 .87 .004 
sameness .014 .91 < .001 
degree * sameness .197 .90 .003 
stage 2 
degree 1.80 .15 .03 
sameness .10 .75 < .001 
degree * sameness .10 .96 .002 
stage 3 
degree 21.46 <.001 .26 
sameness 4.93 .03 .02 
degree * sameness .07 .98 < .001 
stage 4 
degree 6.23 <.001 .10 
sameness .49 .49 .002 
degree * sameness .07 .98 < .001 
stage 4b 
sameness 1.63 .21 .04 
stage 5 
degree 28.71 <.001 .33 
sameness .030 .59 < .001 
degree * sameness .13 .95 .001 
stage 6 
degree 19.97 <.001 .24 
sameness 8.70 .004 .04 
degree * sameness .19 .91 .002  
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individual stage were highly significant for all (Stage 1: χ2(7, 131798) 
= 182331, p < .001, Stage 2: χ2(7, 135868) = 159273, p < .001, Stage 
3: χ2(7, 412911) = 400271, p < .001, Stage 4: χ2(7, 245503) = 464435, 
p < .001, Stage 4b: χ2(7, 9407) = 17703, p < .001, Stage 5: χ2(7, 
130100) = 200694, p < .001, Stage 6: χ2(7, 246937) = 191985, p <
.001). 

Although chi-square tests with large N have a well-known bias to-
wards high significance, these results nonetheless show a non-random 
weighting of simulated activity and therefore a distinct module activ-
ity pattern for each stage indicated by standardised residual errors (see 
Fig. 11). More explicitly, stage 1 is mainly predicted by the goal, visual- 
location, and visual modules (166.37; 93.7; 323.69), stage 2 by the 
retrieval module (495.62), stage 3 by the visual-location and imaginal 
modules (300.75; 218.05), stage 4 by the spatial and production7 

modules (264.47; 107.51), stage 4b by the manual module (183.8), 
stage 5 by the spatial and manual modules (223.41; 135.06), and stage 6 
by the spatial and manual modules as well (albeit with reversed 
weighting: 106.36; 281.32). 

3.5. Summary 

The experiment replicated main effects seen e.g. in Shepard and 
Metzler (1971), namely linear increase of RT with rotation disparity and 
learning over the course of the experiment. The effects of the experiment 
were in turn closely replicated by the cognitive model regarding RTs as 
well as effects of rotation and experiment block. An investigation of 
ACT-R module activity separated by experimental conditions revealed 
insightful differences between conditions. Comparing HsMM-EEG stages 
and ACT-R module outputs visually, some stage-specific activity pat-
terns become apparent across all experimental conditions. However, for 
some HsMM-EEG stages there are differences in corresponding ACT-R 
module activity between experimental conditions. Finally, a 

Fig. 8. Comparison of experiment RT (top), aggregated module activity (middle) and HsMM stages (bottom) over the course of a trial, separated by all 8 possible 
conditions. Vertical line at 1000 ms marks target stimulus appearance. For orientation, colour of individual HsMM stages is used as background for module activity, 
oriented by trial time. Note the additional stage for the non-rotated conditions (0◦). 

7 The production module manages information exchange between all other 
ACT-R modules, comparable to the basal ganglia’s function in the brain. 
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chi-square test revealed a strong relation between module activity pat-
terns and HsMM stages, suggesting high predictiveness of one on the 
other. 

4. Discussion 

This section deals with potential interpretations of these results, 
especially how they relate to our introductory hypotheses and how they 
integrate into current cognition research, as well as an outlook on 
further research. 

4.1. Results discussion 

4.1.1. HsMM-EEG 
HsMM-EEG results for the mental rotation task reveal seven pro-

cessing stages for non-rotated conditions, but six stages for rotated 
conditions. The brain signatures resulting from the HsMM-EEG method 
indicate that the extra stage 4b in the non-rotated conditions is an 
additional stage while all other stages seem to match between condi-
tions. This points to an additional process happening in non-rotated 
conditions, which is, while being counter-intuitive, a valuable pointer 
with regards to different requirements in non-rotated compared to 
rotated mental rotation tasks. Further, the HsMM-EEG method revealed 
that stages 3, 4, 5, and 6 increase significantly in duration with 
increasing rotation disparity. Stage 6 also increases significantly in 
duration in mirrored compared to same conditions. Consequently, stages 
3, 4, 5, and 6 can be ascribed functional relevance for the mental rota-
tion process, while stages 1 and 2 are likely to contain processes that do 
not differ between conditions. 

4.1.2. Cognitive model 
To adequately compare the mental rotation cognitive model to EEG 

data, a high fit to behavioural experiment data is of high importance: 
meaningful comparisons of model output to cortical events can only 
reach high fidelity if the two time series match closely. This requirement 
was reached as seen in Fig. 7 and substantiated statistically in Section 
3.3. The linear increase of RT for rotation disparity, as well as the 
general decrease of RT over experiment blocks put forth by the model, 
mirror the experiment results well as shown by high correlation and low 
deviation, lending credence to the validity of the postulated process 
model. A good fit to increasing RTs over conditions validates the concept 
of a dedicated cognitive module for mental spatial transformations, 
while the learning effect is explained competently by the instance-based 
strategy choice and utility learning mechanisms. 

4.1.3. HsMM-EEG – cognitive module activity comparison 
Visual comparison – Until about 1000 ms, when the target stimulus 

is presented, module activities do not differ between conditions. In all 
conditions, stages 1, 2, and a part of stage 3 (in condition 0◦/same: the 
entire stage 3) fall within this time span. Stage 1 is dominated by visual- 
location and visual module activity. Stage 2 is instead mainly charac-
terised by retrieval module activity. These visual interpretations mark 
clear functional differences between stage 1 and 2, which allows much 
higher differentiation than it would be possible without ACT-R module 
activities. Apparently, during stage 1, visual processes dominate, while 
stage 2 contains mainly memory retrieval processes. Regarding stage 3, 
in the HsMM-EEG results there surprisingly is no boundary between 
stages at 1000 ms for most conditions, which marks the appearance of 
the target stimulus. Still, the ACT-R module activity provides 

Fig. 9. Comparison of selected module activity (top, in descending order: visual location, visual, retrieval, imaginal, spatial and manual module) and HsMM stages (bottom) 
over the course of a trial, separated by condition. 
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information pointing to sub-stages within stage 3: Until about 1000 ms, 
the stage is dominated by visual-location, retrieval, and imaginal pro-
cesses. After 1000 ms, there is a peak in visual module activity and, for 
those conditions with the longest durations of stage 3, spatial module 
activity. This suggests that stage 3 is a mental image building stage 
which, after target stimulus presentation, becomes a visually guided 
rotation stage. Alternatively, this effect could also point towards a 
prolonged mental image building stage with no differentiation between 
stimuli, thereby negating the cognitive model predictions. Stage 4 is 
characterised by spatial module activity, but with high visual and 
manual activity for the non-rotated conditions. This points to stage 4 
being a rotation stage with an increased visual emphasis in the non- 
rotated conditions and which contains some manual preparation in 
the non-rotated conditions. Stage 4b appears to contain mostly visual 
and motor processes for both non-rotated conditions with some spatial 
processes involved. While its function does not become apparent 
through module activity, additional markers produced for the cognitive 
model’s non-rotation shortcuts suggest this stage to mark visual 
bypassing of mental spatial transformation for simple comparisons (see 
Fig. 10). Stage 5 matches with spatial and imaginal module processes, 
with the latter by tendency being more pronounced with increasing 
rotation disparity. Interestingly, the non-rotated conditions differ from 
the remaining conditions in that for these conditions, there appear to be 
additional visual processes, and that manual activity mostly culminates 
for them. This points to stage 5, possibly similar to stage 4, being a 
rotation stage with a different pattern in conditions 0◦/same and 0◦/ 
mirrored where concluding visual processes play an important role and 
the manual response had already been executed. Stage 6 is challenging 
to interpret. For this stage, we found visual-location, visual, imaginal, 
and manual module activity for some conditions, the latter providing 
peaks for both 150◦ conditions. Spatial module activity could be found 
for all conditions. A possible interpretation is that during stage 6 mental 
rotation continues, with different degrees of visual and manual 

processes being involved, pointing towards a late response stage. 
Critically, considering visual inspection of the HsMM-EEG results, 

the brain signatures obtained for stages 4 and 5 in both the non-rotated 
as well as in the rotated conditions cannot be ruled out to contain eye 
movement patterns. During EEG data preprocessing, independent 
components reflecting eye movements were excluded, still, visual 
identification of such components always bears some risk of uncertainty. 
However, we argue that for our approach it is not crucial whether the 
brain signatures purely reflect brain activity since in the end, by 
applying the HsMM-EEG method to mental rotation and by bringing 
together HsMM-EEG with cognitive modelling, we want to enhance the 
understanding of the cognitive process as a whole. Comparison with the 
ACT-R module output shows that stages 4 and 5 are indeed characterised 
by spatial module activity, which is likely to correlate with some degree 
of eye movement. Careful conduction of EEG data cleaning appears to be 
especially important for methods such as HsMM-EEG which is based on 
weighting EEG data points (in this case, the ‘snapshots’) according to 
some criteria. Remember that for brain signature creation, snapshots are 
weighted according to their probability to belong to a certain stage. This 
is to be taken into careful consideration in further studies. Still, we 
believe that our findings regarding stage interpretations apply regard-
less of the exact source of the physiological data. 

Statistical comparison – The chi-square test results serve as a proof- 
of-concept for the statistical comparison of the two data sets: processing 
stages as predicted by HsMM-EEG show a defining pattern of module 
activity as predicted by the cognitive model. Vice versa, specific mod-
ules seem to imply the onset of specific stages. Especially both visual 
modules, the retrieval module, the imaginal module, the spatial module, 
and the manual module display a high selectivity, as do stages 1, 2, 3, 4 
and 5. In addition, high activity of the production module especially 
during stage 4 points towards rapid processing of short transformative 
processes. 

Conclusion – To the best of our knowledge, this seems to mark the 

Fig. 10. Comparison of manual module activity (top) and HsMM stages (bottom) over the course of a trial, separated by condition. Notches underneath module 
activity mark shortcut usage by the cognitive model. 
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first time that patterns of module activity can be clearly matched to 
temporally distinct cognitive processing stages. On the basis of visual 
and statistical comparison an interpretation of these stages becomes 
evident:  

● a visual search and encoding stage (stage 1),  
● an instance retrieval or familiarity stage (stage 2),  
● a mental image forming stage (stage 3),  
● a mental spatial transformation stage (stage 4),  
● an optional “shortcut” stage (stage 4b),  
● a response initialisation stage (stage 5) and  
● a motor response stage (stage 6). 

This extends prior neuropsychological research on cognitive processing 
stages (e.g. Just and Carpenter, 1976) quite well and differentiates the 
functional processing carried out in high detail. 

4.2. General discussion 

In the following we discuss whether our hypotheses have been 
confirmed by our analysis. 
Hypothesis 1. The HsMM-EEG method is a powerful tool to extract 
the number, sequence, and duration of processing stages during a 
cognitive process from EEG data. Indeed, the application of the 
HsMM-EEG method to EEG data from a mental rotation task resulted in 

meaningful likelihood estimates describing the most likely number and 
order of stages. Clear-cut results were found for average durations of 
these stages. Still, HsMM-EEG does not offer means to deal with the 
methodological challenge of temporal variability between trials and 
subjects. It remains challenging for HsMM-EEG methods to overcome 
this hurdle since possible solutions like onset-locked averaging or event- 
locked averaging, as proposed by Anderson et al. (2008a), would require 
additional steps in preprocessing of the EEG data, like averaging and 
linear detrending, that seem to be incompatible with the algorithms used 
in this study, especially with the snapshot creation that is required for 
HsMM-EEG estimation. Altogether, these HsMM-EEG results extend the 
findings of previous applications of stage-identifying methods on 
different tasks, e.g. Walsh et al. (2017), Zhang et al. (2017), Anderson 
et al. (2018), Portoles et al. (2018), Zhang et al. (2018)a, Zhang et al. 
(2018b), and Berberyan et al. (2020). 
Hypothesis 2. ACT-R models provide a useful source of informa-
tion about cognitive processes that can guide the semantic inter-
pretation of these processing stages. The cognitive model was able to 
produce differentiated module activity during trials for each condition. 
As a high level of model fit to behavioural data was reached, theories 
underlying its design were validated. The time series produced by the 
model thus provided an overall good fit to stages predicted by the 
HsMM-EEG method. A comparison between the two data sets revealed 
not only visual similarities, but statistically verifiable patterns of module 
activity distinct for each processing stage. 

Fig. 11. Standardised residuals for each possible module-stage combination as predicted by the chi-square test. Columns ordered by presumed order of activity 
during a trial. 

L. Heimisch et al.                                                                                                                                                                                                                               



Neuropsychologia 188 (2023) 108615

18

Hypothesis 2a. Combining data-driven HsMM-EEG and theory- 
driven ACT-R increases interpretability of processing stages. 
These dependent patterns in turn add semantic meaning to stages 
otherwise only discernible in distinct neuronal firing patterns: by adding 
symbolic information to intra-trial phases, the HsMM stages now offer a 
definite statement on the time span of semantic cognitive processing 
stages during task solving. This solidifies our claim that linking the 
HsMM-EEG method with ACT-R models extends the interpretability of 
HsMM-EEG results. 
Hypothesis 2b. By bringing together the HsMM-EEG method with 
an ACT-R model of mental rotation, further insights into cognitive 
processing stages are possible for mental rotation task solving. We 
successfully confirmed this hypothesis. Our results expand on research 
in cognitive processing during mental rotation tasks, e.g. Just and Car-
penter (1976) or Yuille and Steiger (1982). Applying ACT-R’s module 
information on EEG-derived HsMM stages, we were able to extract an 
additional layer of interpretability not available through cognitive 
modelling or EEG analysis alone. Additionally, we provided an indica-
tion of shortcut use, potentially explaining the existence of a stage 4b for 
non-rotated experiment conditions. A more differentiated analysis could 
subsequently shed light on a few aspects still remaining ambiguous. 

The linearity of the increase in RTs dependent on increased rotation 
between the presented stimuli is a commonly found effect in mental 
rotation research. Interestingly enough, our results seem to indicate a 
more intricate process: while the spatial transformation stage (stage 4) 
does increase in duration for more difficult conditions, the mental image 
forming stage (stage 3) increases even more so. One possible interpre-
tation would ascribe a combined mental imagery and spatial process to 
stage 3 instead, although the distinctiveness of stages inherent in HsMM- 
EEG speaks against that. Another interpretation would put emphasis on 
the preparation of an appropriate mental representation for the success 
of a trial. Further differentiation of these stages is necessary for a more 
exact answer. 
Hypothesis 2c. Common features are apparent visually or statis-
tically in both data sets, and our conclusions are applicable to 
spatial cognitive processing in general. It is as of yet unclear to what 
degree our results are generalizable, i.e. applicable to experimental 
paradigms other than mental rotation. The results presented here do 
nevertheless imply a task solving sequence commonly found in neuro-
cognitive research: visual encoding, reasoning and (motoric) response 
(e.g. Just and Carpenter, 1976). Additional research will be needed to 
discern this in detail. Our results could therefore prove useful as a guide 
towards comparing model data with brain-imaging data like EEG, out-
lining a sensible approach to detect common features or notable 
differences. 

While the application of our approach to a mental rotation task 
yielded satisfying results, it should be noted that after only a single use 
of the methodology, its falsifiability is not yet proven, i.e. that HsMM- 
EEG semantically enriched by a cognitive model would reach plau-
sible, but ultimately false conclusions. This concern is however allevi-
ated by the good, but imperfect fit of the method displayed in this paper: 
not every attribute of behavioural data was explained, instead expla-
nations were provided for prominent features only. By avoiding over- 
fitting of the combined approach on a specific task, its viability for 
other neuropsychological experimental paradigms is highly probable 
(see Anderson et al. (2008a) for a similar argument). 

The approach used in this paper establishes a method of analysis that 
allows for a more intricate connectivity between ACT-R predictions and 
EEG data. Notably, HsMM-EEG adds a clear-cut temporal dissection to 
cognitive processes that is not offered by the temporal continuity of 
neither raw EEG data nor ACT-R module output and which substantially 
facilitates a temporally structured comparison. In addition, HsMM-EEG 
validates the cognitive architecture’s modular concept even further by 
successfully allocating specific modules to time periods suggested by 

HsMM-EEG, thereby externally verifying it. By bringing together the 
HsMM-EEG method with an ACT-R model, we demonstrated a way to 
extract a high amount of information from trial-wise EEG data, 
extending established methods of EEG data analysis that focus on a fixed 
period within an EEG data segment and that do not allow for an ex-
amination of qualitatively different stages of information processing 
within one analysis. Beyond that, our approach demonstrated how the 
lacking interpretability of HsMM-EEG results can be alleviated by add-
ing semantic information from a cognitive model, clearly extending 
previous research based on neurostatistical stage-identifying methods, e. 
g. MVPA-HMM (Anderson and Fincham, 2014a), HsMM-MVPA 
(Anderson et al., 2016) or standalone HsMM-EEG (Borst and Ander-
son, 2015). Consequently, we proved that by linking HsMM-EEG as a 
data-driven method on one hand and ACT-R modelling as a 
theory-driven method on the other hand, clear and interpretable stages 
of cognitive processing can be provided. 

4.3. Open questions and outlook 

The original source of the EEG data used in this study were a master’s 
and a bachelor’s thesis, addressing an altogether different problem, with 
no intention of further post-processing. Given that, the data was opti-
mised neither for HsMM-EEG nor for cognitive model comparison. More 
bespoke data could therefore improve on the application of both 
methods. Relying on a maximum likelihood estimation approach, 
HsMM-EEG is a stochastic tool, i.e., its results always come with a quite 
high degree of uncertainty. As was described, the LOOCV procedure 
results in the most likely minimum number of HsMM states, meaning 
that the identified processing stages could possibly be further sub-
divided, at least for some subjects. Note that by relying on sign test re-
sults for significant numbers of HsMM states, we ruled out higher state 
solutions that did not become significant but that still were the most 
likely solutions for a number of subjects. In general, since the LOOCV 
procedure requires a number of subject data sets in order to produce 
stable results, HsMM-EEG is not well suited for analyses of inter- 
individual differences. For our approach, stage numbers and durations 
were always averaged across subjects and trials, making more differ-
entiated insights into inter-individual differences or individual strate-
gies difficult. The retrieval stage that the ACT-R model pointed at 
brought out the relevance of memory retrieval processes for task para-
digms relying on a limited pool of stimuli that are each presented 
multiple times. Our HsMM-EEG analysis was not sensitive enough for 
these possible differences since EEG data was not segregated into 
different experimental blocks. 

Over the course of analysis, shortcomings of the cognitive model 
(and by extension, ACT-R) became evident. All modules except the 
manual module show little to no differentiation along the time axis 
between conditions. At times, aggregated module activity shows 100% 
strength for a given time, meaning that the same module fired at the 
exact same time in every single trial. These effects should be considered 
unintended artefacts of ACT-R – its predictions are not entirely sto-
chastic and often occur in quantified, discrete time steps; at times, this 
can lead to an extensive overlap of activity during trials. The model itself 
on the other hand relies on a spatial module outlined above for the 
eponymous mental rotation. While this module aims to represent a 
universally valid approach to mental spatial transformation, the mental 
rotation task is to date the only paradigm fully tested with the spatial 
module. This entails that as of now, it remains specialised to the task at 
hand and is kept relatively simple. Still, we maintain that it offers a 
sound, reliable method of introducing spatial capabilities into a sym-
bolic architecture like ACT-R. Additional studies with other paradigms 
of spatial cognition aim to improve on this claim. The current model fit is 
close, but still leaves room for improvement – for instance, the model 
starts out much slower than human subjects in the first block, and be-
comes increasingly deterministic. These differences seem to be negli-
gible for our purposes, alternative approaches modelling human mental 
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rotation behaviour could potentially improve on this nevertheless. 
The retrieval stage pointed out by the ACT-R model brought out the 

relevance of memory retrieval processes for task paradigms relying on a 
limited pool of stimuli, each being presented multiple times. Further 
studies should apply a stage-identifying method to an EEG data set that 
is not only structured by conditions but also segregated into different 
experimental blocks. Thereby, it could be investigated whether the 
retrieval stage changes in duration over the course of the experiment. 

In the future, we plan to apply the approach outlined in this paper to 
other experimental paradigms. Currently, an application to a mental 
folding study is underway (extending and updating Preuss et al., 2019), 
including a cognitive model that also incorporates the spatial module 
presented here as well as new HsMM-EEG models. Since mental folding 
requires spatial reasoning in a similar fashion to mental rotation, those 
results will be especially interesting regarding differences and similar-
ities in cognitive processing. 

Non-spatial tasks could also benefit from this approach. Certain re-
quirements for this method did however become apparent: the task 
needs to be separable into distinct phases, preferably relying on a wide 
array of cognitive functions; it should be easily generalizable across 
subjects and not be highly individualised; it should offer a sufficient 
amount of experimental conditions; and it should ideally provide several 
behavioural measures. 

Whereas comparing cognitive model output to HsMM-EEG stages can 
further inform and infer data, it can inversely also serve as an advanced 
option for model fitting, with an emphasis on intra-trial model behav-
iour. Crucially, HsMM stages with established cognitive correlates could 
subsequently serve as benchmarks for the model to approximate in time 
frame and function, going beyond fitting models to end-of-trial RT to 
verify accurate reproduction of cognitive stages. 

In parallel to the approach outlined herein, the cognitive model is 
currently analysed in relation to cerebral clusters resulting from an In-
dependent Cluster Analysis (ICA) on the same EEG data set. Contrary to 
HsMM models that show cognitive processing over time, ICA yields a 
spatial differentiation, meaning module activity can then be assigned to 
functional structures of the brain. This promises a validation of both 
module usage with already documented functions of certain clusters, as 
well as our theories on mental spatial processing. 

While we cannot make the claim that our results are generalizable to 
overall cognition, i.e. that our proposed cognitive stages are universally 
valid across experimental task paradigms, they do however offer an 
intriguing cornerstone for further research: with the exception of the 
spatial transformative stage, the processing stages do seem to entail 
basic cognitive functions: visual search and encoding, memory retrieval, 
mental imagery, visual comparison and motor response. Yet even so, 
spatial transformative processing could be a task-specific instance of a 
general reasoning stage detectable across task paradigms. The possibil-
ity that generalizable cognitive processing stages could after all be re-
flected in a wide array of neuropsychological task environments appears 
very likely. This paper provides a clear outline for applying EEG moni-
toring and cognitive modelling to reach results not accessible by either 
method alone. Exploring facets of complex cognition seems especially 
viable using this methodology. We hope these results serve to facilitate 
similar approaches in other fields of neuropsychology and cognition 
research. 
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● Cognitive model of mental rotation: 
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● Mental rotation model data and analysis: 
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