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Abstract
Dry-bulk shipping is crucial for a functioning global trade economy. Thus, additional research
is highly relevant to further improve bulk shipping operations. Dry-bulk shipping involves many
entities interacting with each other in an uncertain environment that changes over time. To assist
dry-bulk vessel operators in how to position their vessels, efficient query answering and decision
support is necessary. Therefore, we investigate existing modelling formalism and inference al-
gorithms regarding which aspects of dry-bulk shipping are already realisable. Although not all
challenges are already well-understood, we show that a lifted dynamic approach tackles most of
the challenges involved in handling dry-bulk shipping.
Keywords: MEU; Relational Temporal Probabilistic Models; Lifting; Application

1. Introduction

With the growth of the world economy, the need for seaborne transportation of dry-bulk commodi-
ties has increased over the years. Dry-bulk commodities are non-liquid, unpacked goods that have
undergone little to no processing, like iron ore, coal, or grains. Typically, these commodities are
transported for further processing from their mining regions to different places on the globe. In
contrast to liner shipping, where individual containers can be rented on a fixed route with fixed
timetables, it is common in bulk shipping to transport bulk goods by order of one client on individ-
ual routes. Companies operating vessels and cargo suppliers negotiate contracts individually. The
dry-bulk shipping industry is closely related to the commodity industry. Commodity trade flows
emerge based on export and import as natural resources (commodities) are unevenly distributed
over the earth. Vessels perform voyages, representing these trade flows, by transporting cargo from
export nations to import nations. As such, dry-bulk shipping has a strong geospatial component:
Vessels travel between ports, and ports are in countries, which are on continents. However, trade
flows are not being evaluated based on landmass. Instead, they are analyzed from an ocean-centric
perspective by splitting the world into different regions, e.g., West- and East-Australia or North-,
Mid-, and South-Pacific. To give another example: The ports Vancouver and Seven Islands are both
in Canada, but one is located on the west coast (Pacific) and the other on the east coast (Atlantic).

For the transportation of cargoes, a fee per ton, called freight rate, is charged. Freight rates are
negotiated between shipping companies and cargo suppliers. Thus, freight rates are priced dynam-
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ically, influenced by conditions in regions. Operators try to position their vessels in regions with
high export volume of bulk commodities to benefit from good freight rates (with good meaning
high rates). It is less likely to find cargo-contracts for bulk vessels in typical import regions. In case
cargo-contracts are available in import regions, lower freight rates are normally paid due to an over-
supply of bulk vessels in these regions (which is common as high demand for goods equals many
vessels discharging, thus, a lot of unladen vessels being on site with the need for further business).
Hence, higher freight rates are paid to vessel owners for transporting goods to regions with high
demand to compensate for lower freight rates on the way back to the origin. Another challenge for a
vessel owner in positioning their vessels arises if export regions become supersaturated if too many
vessels are on site. Therefore, operators on the one hand need to keep track of export and import
behavior of countries and on the other hand of other vessels being operated.

The dry-bulk shipping market is a volatile environment characterized by uncertainty as decisions
of participators in the industry, like cargo suppliers and owners of vessels, are not transparent to the
market and are driven by each participator’s own belief on how the market is evolving. From the
perspective of a company operating vessels on the market, it is of high interest to know how other
operators position their fleet, how trade flows will change over time, and how to position its ships
to maximize own profits given all this uncertainty.

From a theoretical perspective, the dry-bulk shipping market contains various entities (shipping
agents, vessels, regions) in relation to each other and requires reasoning under uncertainty, specif-
ically for providing decision support. As such, we are looking at formalisms and algorithms from
the field of statistical relational AI (StaRAI). Within StaRAI, we consider dynamic, probabilistic
modeling techniques as a mechanism to enable vessel operators making more informed decisions
w.r.t. to the constantly changing market environment. Probabilistic models allow for representing
complex domains using probability distributions over a set of random variables (randvars).

The contributions of this paper are:
(i) A comparison of probabilistic formalisms for modeling the dry-bulk shipping market.

(ii) A parameterized probabilistic dynamic decision model (PDDecM) of the dry-bulk shipping
market from the perspective of a vessel operator.

(iii) An analysis of the matureness of decision support in the dry-bulk shipping PDDecM using an
algorithm called meuLDJT (Gehrke et al., 2019).

A short empirical evaluation looks at available implementations to answer queries on the PDDecM.
In the course of the paper, we present which aspects of dry-bulk shipping are already captured with
existing models and where challenges still exist. Specifically, we present three challenges, namely,
non-stationary processes, liftability, and a more expressive query language.

The remainder of this paper has the following structure: We begin by highlighting the character-
istics of dry-bulk shipping and derive requirements on probabilistic models, followed by an evalua-
tion of commonly used probabilistic models which meet our requirements. We show that PDDecMs
and meuLDJT meet most of our requirements. We conclude with some ongoing challenges that
need to be addressed to bring formalisms and algorithms even closer to real-world applications.

2. Requirements

Efficient query answering and decision support depends on the expressiveness of the model and the
efficiency of inference algorithms. We first motivate characteristics of our setting and investigate
the fit of common probabilistic models.
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2.1 Model Characteristics

We generalize the dynamics of the dry-bulk shipping market as follows: (i) Vessels are operated by
agents, (ii) performing voyages between different zones on the earth, (iii) for the transportation of
various commodities, (iv) depending on supply and demand, (v) both changing over time. Vessels,
agents, zones, and commodities can be seen as entities, which stand in relation to each other, e.g.,
vessels are operated by agents. Generally speaking, we face a probabilistic, relational scenario with
a temporal component. Additionally, a large domain size with already over ten thousand dry-bulk
vessels as per year 2019 (UNCTAD, 2019) requires for models with compact representations.

Actions and decisions of players on the market are not fully transparent. Thus, every partic-
ipant’s decisions are driven by their own belief on how the market is evolving. A single operat-
ing agent, who only has a very limited view on the market, is confronted with various questions
about market conditions: (i) For which commodities remains a need for transportation in a zone?
(ii) How is demand for commodities affected given a set of vessels already being in a zone? (iii) Are
freight rates high in a specific zone? (iv) Which results are expected w.r.t. to the payment of freight
rates given actions on how to position vessels? The questions lead to queries given a probabilistic
model regarding probabilities of events, probability distributions, and actions leading to a maxi-
mum expected utility, MEU for short. Thus, probabilistic inference with different types of queries
is required such as computing prior and posterior marginals and solving MEU problems.

Further, being able to interpret decisions or calculations of inference algorithms is important,
e.g., which actions or entities have the highest influence on an MEU. Explainable decision support is
essential as human expertise still need to be put into consideration as not every aspect of the dry-bulk
shipping market can be measured or specified in a model. To summarize, the following characteris-
tics and requirements have to be considered when setting up an appropriate model: (a) probabilistic,
relational nature, (b) temporal behavior, (c) efficient marginal query answering, (d) sequential
decision support, and (e) compact representation (large domain). Next, we benchmark existing
models and inference algorithms w.r.t. these characteristics and requirements.

2.2 Benchmarking Existing Approaches

Probabilistic graphical models allow for representing relational models using probability distribu-
tions and exploiting independencies between randvars. More specifically, temporal behavior within
an uncertain environment is commonly described in the propositional case by dynamic probabilistic
graphical models, like dynamic Bayesian networks/factor graphs/Markov networks or by partially
observable Markov decision processes (POMDP). In the relational case, there exist counterparts
such as relational DBNs (Sanghai et al., 2005), parameterised factor graphs (Poole, 2003), Markov
logic networks (Richardson and Domingos, 2006), or first-order POMDPs.

POMDPs generalize Markov decision processes by maintaining a probability distribution over
the set of all possible states. Solving a POMDP means calculating a policy that specifies an optimal
action to be performed for each state an agent believes to be in. The optimal action maximizes
the expected reward of the agent over a defined horizon. As such, POMDPs allow for sequential
decision support (Item d) in probabilistic scenarios (Item a), with temporal behavior implicitly con-
tained in POMDPs (Item b). But, providing a policy as solution does not allow for further marginal
queries (Item c). Additionally, large domain sizes (Item e) are not addressed. The first-order vari-
ant of POMDPs builds on logic, allowing problems to be represented in a more compact manner
(Wang and Schmolze, 2005; Sanner and Kersting, 2010), incorporating Item e. Still, algorithms to
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solve POMDPs are offline, meaning that best actions for all possible states are calculated prior to
execution in the form of a policy (Ross et al., 2008), which does not allow for marginal queries.

Therefore, we turn to dynamic probabilistic graphical models. Dynamic models have one model
(Bayesian net, factor graph, Markov net) copied for each timesteps with randvars of a timestep t
connected to randvars of the previous timestep t − 1. They represent the state space in a factored
form, with Bayesian nets being a directed formalism and the other two undirected ones. Transferred
to the bulk-shipping scenario, each randvar describes an instance, or more specifically, the behavior
of an entity at any given timestep t such as a specific vessel being operated by a particular agent,
the amount of cargo needed to be transported out of a specific zone, or the level of a freight rate in
a zone. Such formalisms represent probabilistic, relational scenarios including temporal behavior
(Items a and b). Variable elimination (VE) (Zhang and Poole, 1994) is an algorithm for exact
inference enabling query answering (Item c) in them. Still, the modeling formalisms do not cater
for sequential decision making (Item d) and do not handle large domain sizes very well (Item e).

Probability and utility theory make up decision theory, in which probabilistic models are ex-
tended with action and utility nodes. The MEU principle says that a rational agent should choose
an action in the current state that maximizes its expected utility based on the probability of reaching
an outcome state. A utility function is used to rate the desirability of states. An agent selects those
actions over time, triggering transitions from a current state to the next state, which lead to the max-
imum expected utility. But these models still do not cater for large domains (Item e) and in general,
inference in them is intractable (Koller and Friedman, 2009), which becomes especially apparent
with large domains, yielding models with many randvars. Enumerating all entities using randvars
is impractical with thousands of vessels operating in multiple zones. Lifted inference approaches
reduce computational work as inference is performed using representatives for sets of indistinguish-
able randvars, which allows for tractable inference w.r.t. domain sizes (Niepert and Van den Broeck,
2014). PDDecMs provide a formalism based on factor graphs to compactly represent a probabilis-
tic scenario with many entities in relation to each other and include actions and utilities to support
decision making (Gehrke et al., 2019). Markov logic networks (MLNs) (Richardson and Domin-
gos, 2006) represent another form of probabilistic relational model fulfilling Items a, c, and e. In
contrast to PDDecMs, MLNs use weighted rules. There exist a dynamic variant (Kersting et al.,
2009) and a decision-theoretic variant (Nath and Domingos, 2009) but no combination of both and
therefore, no inference algorithm handling both aspects in a concerted effort. Additionally, for now,
we do not want to impose any structure on the relationship between entities by using rules, where
factor-based formalisms allow for keeping the relationship more vague. For PDDecMs, meuLDJT
(Gehrke et al., 2019) efficiently solves lifted MEU problems, while also answering marginal queries.
Together, PDDecMs and meuLDJT fulfill our requirements (Items a to e).

In the following sections, we set up a PDDecM for dry-bulk shipping and examine meuLDJT
for answering questions as given above.

3. A Formal Model of Dry-bulk Shipping

In this section, we build a formal model of dry-bulk shipping step by step. The model itself addresses
the core fundamentals of the dynamics of the dry-bulk shipping market, as motivated in Section 1,
focusing on vessels and their movements (ignoring agents and different commodities for now). We
start with a static model. Based on the static model, we specify a dynamic model. Taking the
dynamic model, we introduce actions and utilities to finish modeling dry-bulk shipping.
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3.1 Parameterized Probabilistic Model

The first step of setting up the dry-bulk shipping model is specifying a static model in the form
of a parameterized probabilistic model (PM). The PM will describe dry-bulk shipping without the
temporal and decision-theoretic components, encoding entities like vessels and zones and relations
between them. The definition of a PM has its roots in work by Poole (2003) and Taghipour et al.
(2013a) and is mainly based on the work by Braun and Möller (2016).

PMs are based on factor graphs, using logical variables (logvars) as parameters for randvars
(parameterized randvar, PRV for short). PRVs compactly represent sets of randvars that are consid-
ered indistinguishable without further evidence. Logvars have domains that contain constants. For
certain scenarios, one might wish to restrict logvars to certain constants, which is why PRVs are
often accompanied by a constraint indicating admissible constants. Constraints act as an abstraction
for, e.g., instances stored in a database such as vessels. PRVs are combined using parametric factors
(parfactors) to represent relations. A parfactor describes a factor, mapping argument values to real
values (potentials), of which at least one is non-zero. In the following, we formally define PMs.

Definition 1 Let R be a set of randvar names, L a set of logvar names, Φ a set of factor names, and
D a set of constants. All sets are finite. Each logvarL has a domainD(L) ⊆ D. A constraint is a tu-
ple (X , CX ) of a sequence of logvars X = (X1, . . . , Xn) and a set CX ⊆ ×ni=1D(Xi). The symbol
> for C marks that no restrictions apply, i.e., CX = ×ni=1D(Xi). A PRV R(L1, . . . , Ln), n ≥ 0
is a construct of a randvar R ∈ R possibly combined with logvars L1, . . . , Ln ∈ L. If n = 0,
the PRV is parameterless and forms a propositional randvar. The term R(A) denotes the possible
values (range) of a PRV A. An event A = a denotes the occurrence of PRV A with range value
a ∈ R(A). We denote a parfactor g by φ(A)|C with A = (A1, . . . , An) a sequence of PRVs,
φ : ×ni=1R(Ai) 7→ R+ a function with name φ ∈ Φ, and C a constraint on the logvars ofA. A PRV
A or logvar L under constraint C is given by A|C or L|C , respectively. We may omit |> in A|>,
L|>, or φ(A)|>. The term gr(P ) denotes the set of all instances of P w.r.t. given constraints. An
instance is an instantiation (grounding) of P , substituting the logvars in P with a set of constants
from given constraints. A PMG is a set of parfactors {gi}ni=1, representing the full joint distribution
PG = 1

Z

∏
f∈gr(G) f with Z as normalizing constant.

Given a parfactor φ(A)|C , φ is identical for the propositional randvars in gr(A|C), compactly en-
coding a model with recurring structures. Figure 1 shows a graphical depiction of a PM. Variable
nodes (ellipses) correspond to PRVs, factor nodes (boxes) to parfactors. Edges occur between factor
and variable nodes whenever the parfactor of the factor node contains the PRV behind the variable
node. The PM depicted describes the dynamics of supply and demand in different zones Z on the
globe using the PRVs Supply(Z) and Demand(Z). Vessels V move between zones, captured by
InArea(Z, V ), which represent trade flows: Vessels can be found in zones with high supply (to
load cargo), in zones with high demand (to discharge cargo), and in between while traveling. To
infer in which zone new, and, more importantly, cost-covering cargo contracts can be closed, the
level of freight rates Rate(Z) are a key figure.

Need for transportation in the dry-bulk industry is mainly driven by supply and demand. Addi-
tionally, the availability of other vessels have an impact on finding cargo contracts. Owners, who
have vessels in regions with supply, can charge lower freight rates for the transportation, as they
do not need to be compensated for expenses for traveling to these regions. The potentials in the
parfactors need to reflect this behavior. Parfactor g1 encodes that supply of goods in a specific zone,
given vessels being in the same zone, has a direct effect on the freight rate in this zone, e.g., having
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Demand(Z)

g2
InArea(Z, V )

g1
Supply(Z)

Rate(Z)

Figure 1: Parameterized probabilistic model G (and G0)

high supply plus only a few vessels most probably results in high freight rates. Parfactor g2 encodes
that demand for goods in a zone additionally affects the number of vessels in the zone as a high
demand usually yields many vessels on site for discharging.

Formally, we have the randvar names R = {Supply,Rate, InArea,Demand} and the log-
var names L = {Z, V } with logvar Z denoting zones with domain D(Z) = {z1, . . . , znz}, and
logvar V denoting vessels with domain D(V ) = {v1, . . . , vnv}. Using R and L, we build the
PRVs Supply(Z), Rate(Z), InArea(Z, V ), Demand(Z). The PRV InArea(Z, V ) has a boolean
range. For sake of simplicity, the other PRVs have three range values: ∀R ∈ {Supply(Z), Rate(Z),
Demand(Z)} : R(R) = {high,medium, low} The PM is given by G = {gi}2i=1 with

g1 = φ1(Supply(Z), Rate(Z), InArea(Z, V )), g2 = φ2(InArea(Z, V ), Demand(Z)).

The semantics of a PM is given by grounding and building a full joint probability distribu-
tion. Querying the model corresponds to asking for probability distributions of a randvar using a
model’s full joint distribution and fixed events as evidence. Query answering algorithms seek to
avoid grounding and building a full joint distribution when answering a query.

Supply and demand of goods change over time and, in consequence, vessel positions change
accordingly. Therefore, we look at parameterized dynamic probabilistic models (PDMs) next.

3.2 Parameterized Probabilistic Dynamic Model

Based on static PMs, we define PDMs (Gehrke et al., 2018). A PDM is given by a pair of PMs, one
representing an initial time step and the other how the model transitions from one time step to the
next. PDMs are based on the first-order Markov assumption, i.e., randvars from time slice t depend
only on randvars from the preceding time slice t−1. PDMs model a stationary process, i.e., changes
from one time step to the next follow the same distribution. A formal definition of PDMs follows.

Definition 2 A PDM is a pair of PMs (G0, G→) where G0 is a PM representing the first time step
with PRVs A0 and G→ is a two-slice PM using PRVs At−1 and At where Aπ is a set of PRVs
from time slice π. G→ contains inter-slide parfactors φ(A)|C , which have arguments A under
constraint C containing PRVs from both At−1 and At, encoding transitioning from time step t − 1
to t. Unrolling (G0, G→) for T timesteps, i.e., instantiating (G0, G→) for a given number of time
steps using G0 for the initial time step and appending G→ to the corresponding PRVs for the other
time steps, forms a PM, representing the full joint distribution P(G0,G→),T .

Figure 2 shows the PM as described before with temporal information added. It forms G→
with the PM in Fig. 1 forming G0. The parfactors gS , gV , and gD are inter-slice parfactors. The
submodel to the left and the submodel to right of these inter-slice parfactors are duplicates of each
other, with the left referencing time step t− 1 and the right referencing time step t.

The semantics of a PDM is given by unrolling the PDM (forming a PM), followed by grounding
and building a full joint distribution (as with PMs).
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Supplyt(Z)

g1t

InAreat(Z, V )
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Demandt(Z)
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Figure 2: Two-slice parameterized probabilistic model G→

Definition 3 Given a PDM G, a ground PRV Qt, and evidence E0:t, the expression P (Qπ | E0:t),
π ∈ {0, . . . , T}, t ≤ T , denotes a query w.r.t. P(G0,G→),T . The problem of answering P (Aiπ | E0:t)
is called prediction for π > t, filtering for π = t, and smoothing for π < t.

PDMs allow for representing the relational and temporal aspects of the dry-bulk shipping sce-
nario. The factorization in PDMs enables compactly encoding the full joint. The next step is to add
actions and utilities to the PDM to cover the last open item, sequential decision making (Item d).

3.3 Parameterized Probabilistic Dynamic Decision Model

PDMs allow for (conditional) marginal queries, but their expressiveness is limited in terms of se-
quential online decision making. Besides asking questions on the overall setting of the current
world, an agent’s goal is to plan its fleet in a way that good freight rates can be expected such that
the overall fleet performs the best. PDDecMs are PDMs with action and utility nodes added to
efficiently solve an MEU problem (Gehrke et al., 2019). A rational agent should chose the action
which maximizes the expected utility given evidence. More specifically w.r.t. our case, an operator
of a fleet wants to benefit from good freight rates being paid for voyages performed between specific
zones. The utility of having vessels in a certain zone depends on the freight rate in that zone.

A formal definition of PDDecMs follows in which actions and utilities are represented by PRVs
as well. Additionally, for the temporal case, we define a utility transfer function which connects two
utility PRVs to pass utility values of a time slice t to the next time slice t+ 1.

Definition 4 Let Φu be a set of utility factor names. A parfactor is a utility parfactor µ(A)|C
if its output is a utility U where C is a constraint on the logvars of A and µ is defined by µ :
×A∈A\{U}R(A) 7→ R, with name µ ∈ Φu. The output of µ is the value of U . A utility transfer
function λ has utility PRVs U and non-utility PRVs A as input and one utility PRV U0 as output.
The function λ specifies how the value of U0 is additively changed, possibly depending on A.

A PDDecM G is a PDM (G0, G→) with an additional set Gu0 of utility parfactors for G0 and an
additional setGu→ of utility parfactors and utility transfer functions forG→. The term rv(Gu) refers
to all probability PRVs in Gu = Gu0 ∪ Gu→. Gu represents the combination of all utilities UG,T =∑

v∈×r∈rv(gr(Gu,T ))R(r) f with gr(G,T ) denoting unrolling and grounding G for T timesteps.
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g2t−1

Demandt−1(Z)
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Figure 3: Parameterized probabilistic dynamic decision model (G0: nodes with t, t = 0), G→: all)

With utility transfer functions, PDDecMs transfer utility values to the next time step and allow
for discounting. Figure 3 shows the PDDecM resulting from the dry-bulk shipping PDM. We add
to G→ one action PRV ReDis(Z, V ) (square), one utility PRV (diamond), utility parfactors (grid
pattern), and a utility transfer parfactor gU (black). G0 would consist of the PRVs and parfactors in
Fig. 3 indexed t with t = 0. Actions correspond to redistributing a vessel V to a zone Z in the next
time step. The utility in a time step is calculated based on the level of freight rates and the vessels
of an agent benefiting from them.

W.r.t. the requirements derived in Section 2, PDDecMs are able to describe our temporal, rela-
tional domain (Items a and b) in a compact matter utilizing the idea of lifting (Item e). PDDecMs
also allow for efficient marginal query answering (Item c) and sequential decision support (Item d).
Next, we examine more precisely how query answering is done in PDDecMs.

4. Query Answering

For decision support and marginal query answering, we use the inference algorithm meuLDJT
(Gehrke et al., 2019). Next, we define the temporal MEU problem that meuLDJT solves and recap
meuLDJT, and look at an empirical study.

4.1 The Temporal MEU Problem

Before looking at meuLDJT, we define the temporal MEU problem, for which we need utility
queries in addition to the (probability) queries, defined in 3.

Definition 5 Given a PDDecM G, a ground PRV Q, and evidence E, the expression P (Q|E) de-
notes a probability query w.r.t PG and the expression U(Q,E) refers to a utility w.r.t. UG.

The expected utility of a PDDecM G, given an assignment to action PRVs a and a maximum
number of timesteps T , is calculated as:

eu(E,a, T ) =
∑

v∈×r∈rv(G,T )R(r)

P (v|E,a) · U(v,E,a) (1)

where rv(G,T ) refers to all PRVs in G if G were unrolled for T timesteps.
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The expected utility eu as per Eq. (1) is basically determined by summing out all probability
PRVs (iterate over range values of PRVs involved) given evidence and actions a. Transferred to our
model, as depicted in Fig. 3, calculating, e.g., the expected utility of Util0 without any evidence
given corresponds to summing out all PRVs in G0. The MEU problem is defined as follows:

meu[G|E, T ] = (a∗ = arg max
a

eu(E,a, T ), eu(E,a∗, T )). (2)

Using the utility transfer function, the expected utility is calculated for one time step and then its
value is passed to the next time step. The utility value of the last time step corresponds to the overall
utility value. Equation (2) refers to selecting the sequence of actions with maximum expected utility.

4.2 meuLDJT

The algorithm, meuLDJT, is an algorithm that forms a helper structure for handling temporal aspects
and multiple queries efficiently, see the work by Gehrke et al. (2019) for details. meuLDJT answers
queries for a finite horizon T . For each time step, it calculates a utility, which is multiplied by the
number of groundings, and then passed to the next time step. When answering an MEU query,
meuLDJT constructs all action sequences by setting them as evidence to answer the expected utility
query. In the end, the action sequence with the maximum expected utility value is returned.

The important part for this paper is that meuLDJT uses lifted variable elimination (LVE) (Poole,
2003; Taghipour et al., 2013a) as a subroutine during its calculations. LVE exploits symmetries that
lead to duplicate calculations: query answering is done by eliminating PRVs, which are not part
of the query, by so called lifted summing out. Basically, VE is computed for one instance and
exponentiated to the number of isomorphic instances represented. A lifted solution to a query on a
model means that meuLDJT computes an answer without grounding a part of the model. LVE as the
subroutine carrying out the computations is guaranteed to not ground a logvar during its calculations
if individual parfactors do not contain more than two logvars or if individual PRVs do not contain
more than one logvar (Taghipour et al., 2013b). The dry-bulk shipping model in its current form
contains only two logvars per parfactor and as such has a lifted solution regarding LVE.

Next, we look at an empirical evaluation, considering available implementations for actually
answering queries on our model.

4.3 Empirical Evaluation

For the empirical evaluation, we have considered the following implementations: (i) Alchemy1

for lifted, static models, (ii) Forclift2 for lifted, static models, (iii) UUMLN3 for lifted, temporal
models but its calculations are all performed on a ground level, (iv) the implementation of the static
version of LDJT4 for PMs (lifted, static), and (v) the implementation of LDJT5 for PDMs, which
also includes a propositional version of LDJT. Since the first three implementations can only handle
boolean ranges and do not support decision-theoretic constructs, we use the PDM (G0, G→) as
depicted in Figs. 1 and 2 with boolean ranges as inputs. For comparison, we also use (G0, G→)
with the original ranges as input for LDJT. Given (G0, G→), we ask a filtering query P (Ratet(z1))

1. http://alchemy.cs.washington.edu
2. https://github.com/UCLA-StarAI/Forclift
3. https://www.uni-ulm.de/en/in/ki/inst/alumni/thomas-geier/
4. https://www.ifis.uni-luebeck.de/index.php?id=518
5. https://www.ifis.uni-luebeck.de/index.php?id=483
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Figure 4: Runtimes in milliseconds [ms] with varying T on the x-axis; |D(V )| ∈ {10, 100, 1000},
ranges as given in paper (“orig”) or all boolean (“bool”)

for each t ∈ {1, . . . , T} with T ∈ {10, 20, . . . , 100, 200, . . . , 1000} without any evidence (Forclift
does not support lifted evidence), which leads to T queries per run. For D(V ), we use |D(V )| ∈
{10, 100, 1000}. We keep D(Z) constant at |D(Z)| = 10. We unroll the PDM for T timesteps to
get static models. As the first three implementations use (dynamic) MLNs as inputs, we transform
the parfactor-based model into an equivalent MLN as described in Van den Broeck (2013).

We report total runtimes averaged over five runs, with a cutoff time of 3 hours and 16GB of
working memory. Since UUMLN always answers queries for each possible grounding, we interpo-
late from the total number of queries UUMLN answers, to the number of queries UUMLN would
only need to answer. We expect the lifted, static models to perform worse than the lifted, tempo-
ral models since they are not able to handle the temporal aspect properly. Additionally, we expect
LDJT to perform better than its propositional counterpart as well as UUMLN, since they do their
calculations on a propositional level. For LDJT, we expect runtimes to depend at maximum linearly
on T with only filtering queries and polynomially on domain sizes.

Figure 4 shows runtimes in milliseconds for the LDJT implementation with original (filled sym-
bols) and boolean ranges (hollow) for all three domain sizes (10: circles, 100: triangles, 1000:
squares) over all T as well as runtimes for UUMLN for a domain size of 10 and T until 200 (star).
For larger T , UUMLN has triggered the cutoff time, which shows that lifted calculations have an
advantage over ground calculations. All other implementations run into memory errors, except with
the smallest model (|D(V )| = 10, T = 10), triggering the cutoff time, which fulfills our expecta-
tion that algorithms for static models cannot handle temporal models very well. The numbers show
that the LDJT runtimes exhibit a linear dependence over time. The runtimes of LDJT for different
domain sizes exhibit a polynomial increase since the difference between the lines indicate a close
to linear factor. The runtimes of LDJT with the original ranges are higher than the runtimes with
boolean ranges as LVE has to sum out only two instead of three values for each elimination.

The empirical evaluation supports that lifted, temporal formalisms work best for temporal rela-
tional probabilistic problems.

5. Open Challenges

Given our modeling of the dry-bulk shipping market, we have made some assumptions that may not
hold and have identified three main challenges in terms of query answering.
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Non-stationary Process The assumption of stationarity is often not compatible with real-world
applications such as the one described here. Non-stationarity can manifest itself in something as
simple as domain sizes changing over time since ships are constantly built or dumped depending
on commercial and environmental factors. Non-stationary processes are barely covered in proposi-
tional or lifted inference as they further complicate an already hard problem.

Liftability The model here addresses the core fundamentals of the dry-bulk shipping market.
More aspects might be worth incorporating in the model, e.g., different commodities C or different
operating agents A from Section 1. Adding more logvars may lead to losing liftability. In terms
of scalability by liftability, we need new lifting operators that can handle three-and-more-logvar
parfactors or ways to transform an input model into an equivalent liftable model. Friedman and Van
den Broeck (2020) work on solving a similar problem, reformulating database queries with three
variables into equivalent queries with two variables under certain conditions.

Action Modelling For decision support in dry-bulk shipping, a more sophisticated action model
is necessary, where actions depend on each other or do not take effect directly in the next timestep,
which would require leaving behind the Markov-1 assumption of one timeslice only depending
on the previous timeslice. One example are vessels being sent to new regions (ReDis(Z, V )).
Travel times between the different zones may simply vary due to their geographical position. Thus,
redistributing vessels does not always take effect in the next timeslice.

6. Conclusion and Outlook

This paper examines existing formalisms and inference algorithms for the dry-bulk shipping con-
text with the following requirements and characteristics considered: (a) probabilistic, relational
nature, (b) temporal behavior, (c) efficient marginal query answering, (d) sequential decision sup-
port, and (e) compact representation (large domain). PDDecMs together with meuLJDT fulfill the
requirements of compactly representing relations and entities over time and answering (conditional)
marginal queries while also enabling sequential decision support on a lifted instead of a proposi-
tional level. Additionally, the evaluation has shown that using an approach explicitly handling time
outperforms static approaches if time moves on.

Nonetheless, the model described in this paper addresses only the core fundamentals of the
dry-bulk shipping market, abstracting away certain entities and relations as well as specific behav-
ior regarding changing dynamics over time. We have identified three main challenges about the
stationarity of the underlying process, the liftability of the calculations, and the effect of actions,
which are interesting avenues for future work.
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T. Braun and R. Möller. Lifted Junction Tree Algorithm. In Proceedings of KI 2016: Advances in
Artificial Intelligence, pages 30–42. Springer, 2016.

T. Friedman and G. Van den Broeck. Symbolic Querying of Vector Spaces: Probabilistic Databases
Meets Relational Embeddings. In 9th International Workshop on Statistical Relational AI at the
34th AAAI Conference on Artificial Intelligence, 2020.

11



FINKE ET AL.
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