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Abstract. In the absence of benchmark datasets for inference algo-
rithms in probabilistic relational models, we propose an extendable bench-
marking suite named ComPI that contains modules for automatic model
generation, model translation, and inference benchmarking. The func-
tionality of ComPI is demonstrated in a case study investigating both
average runtimes and accuracy for multiple openly available algorithm
implementations. Relatively frequent execution failures along with issues
regarding, e.g., numerical representations of probabilities, show the need
for more robust and efficient implementations for real-world applications.
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1 Introduction

At the heart of many machine learning algorithms lie large probabilistic models
that use random variables (randvars) to describe behaviour or structure hid-
den in data. After a surge in effective machine learning algorithms, efficient
algorithms for inference come into focus to make use of the models learned or to
optimise machine learning algorithms further [5]. This need has lead to advances
in probabilistic relational modelling for artificial intelligence (also called statisti-
cal relational AI, StaRALI for short). Probabilistic relational models combine the
fields of reasoning under uncertainty and modelling incorporating relations and
objects in the vein of first-order logic. Handling sets of indistinguishable objects
using representatives enables tractable inference [8] w.r.t. the number of objects.

Very few datasets exist as a common baseline for comparing different ap-
proaches beyond models of limited size (e.g., epidemic [I1], workshops [7], smok-
ers [I8]). Therefore, we present an extendable benchmarking suite named ComPI
(Compare Probabilistic Inference) that allows for benchmarking implementa-
tions of inference algorithms. The suite consists of (1) an automatic generator
for models and queries, (2) a translation tool for providing the generated models
in the format needed for the implementations under test, and (3) a measurement
module that batch-executes implementations for the generated models and col-
lects information on runtimes and inference results.

In the following, we begin with a formal definition of the problem that the
benchmarked inference algorithms solve. Afterwards, we present the functions of
the modules of ComPI. Lastly, we present a case study carried out with ComPI.
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2 Inference in Probabilistic Relational Models

The algorithms considered in ComPI solve query answering problems on a model
that defines a full joint probability distribution. In this section, we formally
define a model and the query answering problem in such models. Additionally,
we give intuitions about how query answering algorithms solve these problems.

2.1 Parameterised Models

Parameterised models consist of parametric factors (parfactors). A parfactor
describes a function, mapping argument values to real values (potentials). Pa-
rameterised randvars (PRVs) constitute arguments of parfactors. A PRV is a
randvar parameterised with logical variables (logvars) to compactly represent
sets of randvars [J]. Definitions are based on [13].

Definition 1. Let R be a set of randvar names, L a set of logvar names, ©
a set of factor names, and D a set of constants (universe). All sets are finite.
Each logvar L has a domain D(L) C D. A constraint is a tuple (X,Cx) of a
sequence of logvars X = (X1,...,X,) and a set Cx C xI D(X;). The sym-
bol T for C marks that no restrictions apply, i.e., Cx = x?_,D(X;). A PRV
R(Ly,...,Ly),n > 0 is a syntactical construct of a randvar R € R possibly
combined with logvars Ly,...,L, € L. If n = 0, the PRV 1is parameterless and
constitutes a propositional randvar. The term R(A) denotes the possible values
(range) of a PRV A. An event A = a denotes the occurrence of PRV A with range
value a € R(A). We denote a parfactor g by ¢(A)|c with A = (A1,...,A,) a
sequence of PRVs, ¢ : x' [ R(A;) — RT a function with name ¢ € &, and C a
constraint on the logvars of A. A set of parfactors forms a model G := {g;}}_;.

The term gr(P) denotes the set of all instances of P w.r.t. given constraints. An
instance is a grounding, substituting the logvars in P with constants from given
constraints. The semantics of a model G is given by grounding and building
a full joint distribution Pg. Query answering refers to computing probability
distributions, which boils down to computing marginals on Pg. Lifted algorithms
seek to avoid grounding and building Pg. A formal definition follows.

Definition 2. With Z as normalising constant, a model G represents the full
joint distribution Pg = % ergT(G) f. The term P(Q|E) denotes a query in G
with Q a grounded PRV and E a set of events. The query answering problem
refers to solving a query w.r.t. Pg.

2.2 Exact Lifted Inference Algorithms

The very first lifted algorithm is lifted variable elimination (LVE) [9], which
has been further refined [ITJ7JI32]. LVE takes a model G and answers a query
P(Q|E) by absorbing evidence E and eliminating all remaining PRVs except Q
from G (cf. [I3] for further details). With a new query, LVE restarts with the
original model. Therefore, further research concentrates on efficiently solving
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Fig. 1. Modules and workflow of ComPI.

multiple query answering problems on a given model, often by building a helper
structure based on a model, yielding algorithms such as (i) the lifted junction
tree algorithm (LJT) [I], (ii) first-order knowledge compilation (FOKC) [I8I17],
or (iii) probabilistic theorem proving (PTP) [3]. LIT solves the above defined
query answering problem while FOKC and PTP actually solve a weighted first
order model counting (WFOMC) problem to answer a query P(Q|E).

For all algorithms mentioned, implementations are freely available (see Sec-
tion . LVE and LJT work with models as defined above. The other algo-
rithms usually use a different modelling formalism, namely Markov logic net-
works (MLNs) [I0]. One can transform parameterised models to MLNs and vice
versa [16]. Next, we present ComPI.

3 The Benchmarking Suite ComPI

ComPI allows for collecting runtimes and inference results from implementations
given automatically generated models. Figure [1| shows a schematic description
of ComPI consisting of three main parts, (i) a model generator BLOGBuilder
that allows the automatic creation of multiple models (in the BLOG grammar
[6]) following different generation strategies, (ii) a translator TranslateBLOG
for translation from the BLOG format to correct input format for individual
frameworks (if necessary), and (iii) a benchmarking tool PInBench for collection
of runtimes and inference results, summarized in multiple reports.

The modules can be accessed at https://github.com/tristndev/ComPI. Be-
low, we briefly highlight each module.

3.1 Model Generation

The goal is to generate models as given in Deﬁnition generating logvar /randvar
names and domain sizes, combining logvars and randvars as well as forming
parfactors with random potentials. The input to BLOGBuilder is a model creation
specification, which selects a model creation and augmentation strategy, which
describe how models are created possibly based on a previous model.

Running BLOGBuilder creates a number of models as well as a number of
reports and logs that describe specific characteristics of the created models. The
output format of the models is BLOG. Additionally, BLOGBuilder generates


https://github.com/tristndev/ComPI

4 T. Potten, T. Braun

reports describing the model creation process and highlighting possible devia-
tions from the model creation specification. The module can be extended with
additional model creation and augmentation strategies.

3.2 Model Translation

The task is to translate models from the baseline BLOG format into equivalent
models of those different formats required for the frameworks in PInBench. Ac-
cordingly, TranslateBLOG takes a number of model files in the BLOG format
as input. It subsequently translates the parsed models into different formats of
model specifications. As of now, the generation of the following output types
is possible: (i) Markov logic networks (MLNs) [10], (ii) dynamic MLNs [4], and
(iii) dynamic BLOG files. TranslateBLOG is easily extendable as new output
formats can be added by specifying and implementing corresponding translation
rules and syntactic grammar to create valid outputs.

3.3 Benchmarking

The final module in ComPI is PInBench (Probabilistic Inference Benchmarking),
which serves to batch process the previously created model files, run inferences,
and collect data on these runs. PInBench can be interpreted as a control unit that
coordinates the running of an external implementation which it continuously and
sequentially supplies with the available model files. The following implementa-
tions in conjunction with the corresponding input formats are supported:

— GC-FOVH'| with propositional variable elimination and LVE,

— WFOMU| with FOKC,

— Alchemy’| with PTP and sampling-based alternatives, and

— the junction tree algorithnﬁ in both its propositional and lifted form.

We also developed a dynamic version of PInBench, named DPInBench, for dy-
namic models, i.e., models with a sequence of state, which could refer to passage
of time. Currently, the implementations of UUMLN, short for University of Ulm
Markov Logic Networkﬂ and the Lifted Dynamic Junction Tree (LDJT)E[) as
well as their input formats are supported. The data collected by PInBench is
stored in multiple reports, e.g., giving an overview on the inference success per
file and query (queries on big, complex models might fail) or summarizing the
run times and resulting inference probabilities.

Implementations not yet supported can easily be added by wrapping each in
an executable file and specifying calls needed for execution. Additionally, parsing
logics for generated outputs need to be implemented to extract information.

! |dtai.cs.kuleuven.be/software/gcfove (accessed 16 Apr. 2020)

2 \dtai.cs kuleuven.be/software/wfomc| (accessed 16 Apr. 2020)

3 lalchemy.cs.washington.edu/ (accessed 16 Apr. 2020)

4 lifis.uni-luebeck.de/index.php?id=518#c1216| (accessed 16 Apr. 2020)

® luni-ulm.de/en /in/ki/inst /alumni/thomas-geier /| (accessed 16 Apr. 2020)
6 lifis.uni-luebeck.de/index.php?id=483| (accessed 16 Apr. 2020)
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4 Case Study

To demonstrate the process of benchmarking different implementations using
ComPI, we present an exemplary case study. Within the case study, the pro-
cess consists of model generation with BLOGBuilder, model translation with
TranslateBLOG, and benchmarking of inference runs with PInBench. All imple-
mentations currently supported by ComPI are included here. We do not consider
sampling-based algorithms implemented in Alchemy as performance highly de-
pends on the parameter setting for sampling, which requires an analysis of its
own and is therefore not part of this case study.

4.1 Model Generation

Model generation starts with creating base models given a set of specified pa-
rameters (number of logvars/randvars/parfactors, domain sizes). Subsequently,
these base models are augmented according to one of the following strategies:

— Strategy A - Parallel Factor Augmentation: The previous model is cloned
and each parfactor extended by one additionally created PRV with randomly
chosen existing logvars.

— Strategy B - Increment By Model: The base model is duplicated (renaming
names) and appended to the current. A random randvar from the duplicate
is connected with a random randvar of the current model via a new parfactor.

The strategies are set up to increase complexity based on LVE. Strategy A
increases the so-called tree width (see, e.g., [12] for details). Strategy B increases
the model size, while keeping the tree width close to constant.

It is non-trivial to generate series of models that increase in complexity with-
out failing executions. Overall, we intend the generation of “balanced” models
with not too strongly connected factors to allow all methods to demonstrate
their individual strengths and weaknesses while maintaining manageable run-
times. Creating multiple base models with random influences (e.g., regarding
relations between model objects) leads to multiple candidate model series, which
allows for selecting one series that leads to runs with the least amount of errors.
We tested multiple parameter settings for both strategies to generate candidate
series. The specific numbers for parameters are random but small to generate
models of limited size, ensuring that the tested programs successfully finish run-
ning them. We vary the domain sizes while keeping the number of logvars small
for the models to be liftable from a theoretical point of VieWE] More precisely,
the settings given by the Cartesian product of the following parameters have
been evaluated for generating base models for each strategy:

— Strategy A: domain size € {10,100,1000}, #logvar € {2}, #randvar €
{3,4,5}, #factor = #randvar — 1, max_randvar_args = 2. Augmentation
in 16 steps.

7 Models with a maximum of two logvars per parfactor are guaranteed to have infer-
ence runs without any groundings during its calculations [I5/I4].
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Fig. 2. Mean inference times per query (with logarithmic y-axis).

— Strategy B: domain_size € {10,100,1000}, #logvar € {1}, #randvar €
{2}, #factor € {1}. Further restrictions: max_randvar_occurrences = 4,
max_randvar_args = 2, max_factor_args = 2. Augmentation in 40 steps.

In each model file, one query is created per randvar. Model generation was
executed in three independent runs to obtain multiple candidate models due to
the included factors of randomness. The randomness may also lead to model
series of potentially varying complexity. Preliminary test runs have led to the
selection of the model series investigated below.

4.2 Evaluation Results

We analyse the given frameworks regarding two aspects: Firstly, runtimes of
inference and secondly, inference accuracy.

Runtimes Figure [2[shows runtimes, displaying the relation between augmenta-
tion steps, domain sizes, and mean query answering times for PTP, FOKC, LVE
and LJT. The two propositional algorithms supported are not shown in the plots
as both presented very steep increases along with failures on early augmentation
steps for bigger domain sizes (as expected without lifting).

Regarding Strategy A, the mean time per query increases for bigger domain
sizes for all frameworks. PTP and FOKC have a similar early increase and fail
on the models after augmentation steps 6 and 7, respectively. They are the
only implementations working with MLNs as input. As the original models have
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random potentials for each argument value combination in each parfactor, the
translated MLNs do not have any local symmetries, which these algorithms
would be able to exploit. Generating models with many local symmetries, e.g.,
only two different potentials per whole parfactor, may lead to better results for
FOKC and PTP, with the remaining algorithms taking longer. Another possible
explanation may (of course) also be that there are bugs in implementations or
employed heuristics may be improvable. One could actually use ComPI to test
an implementation with random inputs for bugs or better heuristics. The lifted
algorithms LJT and LVE have steeper increases for high augmentation steps and
the biggest domain size. The reason lies in so-called count-conversions that have
a higher complexity than normal elimination operations and become necessary
starting with augmentation step 11.

A technical note on count conversions: A count-conversion is a more involved
concept of lifted inference where a logical variable is counted to remove it from
the list of logical variables [13]. A count-conversion involves reformulating the
parfactor, which enlarges it. A PRV is replaced by a so called counted PRV
(CRV), which has histograms as range values. Consider a Boolean PRV R(X)
with three possible X values, then a CRV # x[R(X)] has the range values [0, 3],
[1,2], [2,1] and [3,0], which denote that given a histogram [n,ns], n; ground
instances of R(X) have the value true and ny instances the value false. Given
the range size r of the PRV and the domain size n of the logical variable that
gets counted, the new CRV has (":i;l) range values, which lies in O(r™) [12].
In the case study, we use boolean PRVs, so r = 2. If n is small, the blow up
by a count conversion is easily manageable. However, with large n, the blow up
leads to a noticeable increase in runtimes, which is the reason why the increase
in runtimes with step 11, at which point count conversion become necessary, is
more noticeable with larger domain sizes.

Given Strategy B, the collected times display less extreme increases over the
augmentation steps compared to Strategy A. PTP and FOKC exhibit similar
behaviour compared to Strategy A. Again, changing domain sizes has little effect
on FOKC. LVE only manages to finish models with small domain sizes as the
models become too large overall. LJT is able to finish the models even for larger
augmentation steps. The reason is that runtimes of LJT mainly depend on the
tree width, i.e., the models of Strategy B have roughly the same complexity
during query answering for LJT. The jump between augmentation step 23 and
24 again can be explained by more count conversions occurring.

Inference Accuracy Investigating the actual inference results presents an al-
ternative approach to analysing collected data. Since the tested implementations
all perform exact inference, we expect the implementations to obtain the same
results on equivalent files and queries. Looking at accuracy allows for identi-
fying bugs. If adding implementations of approximate inference algorithms to
ComPI, one could compare accuracy of approximate inference against exact re-
sults. Figure [3| shows a comparison of probabilities queried for one (smaller)
model generated for this case study. In this case, the implementations under in-
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Fig. 3. Comparison of inference results between different frameworks.

vestigation calculated identical results for all shown queries. However, examining
models created at later augmentation steps reveals that increased model com-
plexities lead to errors in the outputted probabilities or even to no interpretable
values at all. The latter case is caused by flaws in the numerical representations:
NaN values occur when potentials get so small that they become 0 if represented
as a float. When normalising a distribution, the normalising constant is a sum
over 0, leading to dividing 0 by 0, which results in a NaN.

5 Conclusion

We present ComPI, a benchmarking suite for comparing various probabilistic in-
ference implementations. ComPI consists of extendable tools for automatic model
generation, model translation, and inference benchmarking. A case study demon-
strates the simplicity of comparative analyses carried out with ComPI. Similar
analyses are needed in the evaluation of future novel algorithms in the field of
probabilistic inference. The extensibility of ComPI has the potential to reduce
the efforts for these evaluations.

For the tested implementations, it becomes evident that there is still a need to
provide bulletproof implementations. Occurring issues range from high memory
consumption to the lack of robustness regarding heuristics used by the algo-
rithms, exact numerical representations of probabilities, or reliable handling of
errors. Future work will need to address these points.
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