
Adaptive Inference on Probabilistic Relational Models

Tanya Braun and Ralf Möller

Institute of Information Systems, University of Lübeck, Lübeck, Germany
{braun,moeller}@ifis.uni-luebeck.de

Abstract. Standard approaches for inference in probabilistic relational models
include lifted variable elimination (LVE) for single queries. To efficiently han-
dle multiple queries, the lifted junction tree algorithm (LJT) uses a first-order
cluster representation of a model, employing LVE as a subroutine in its steps.
Adaptive inference concerns efficient inference under changes in a model. If the
model changes, LJT restarts, possibly unnecessarily dumping information. The
purpose of this paper is twofold, (i) to adapt the cluster representation to in-
cremental changes, and (ii) to transform LJT into an adaptive version, enabling
LJT to preserve as much computations as possible. Adaptive LJT fast reaches the
point of answering queries again after changes, which is especially important for
time-critical applications or online query answering.

1 Introduction

A common task in many applications is repeated inference on variations of a model.
Variations range from conditioning on a new set of observed events to updating a prob-
ability distribution given observations or adapting a model structure while optimising a
model representation. Applications include risk analysis where most likely explanations
are of interest with changing sets of events coming in regularly [14]. When learning a
model structure given data, one approach, called structural expectation-maximisation,
alternates between minimally changing a model structure and updating distributions in a
model to optimise the representation of the given data. The approach involves changing
a model w.r.t. structure and distributions as well as repeated inference when computing
the probability of the observed data in the altered model [11].

In a naive way, one incorporates the changes in a model or evidence and performs
inference. Adaptive inference, however, aims at performing inference more efficiently
when changes in a model or evidence occur. Research exists for adaptive inference on
propositional models [10,1]. But, modelling realistic scenarios yields large probabilistic
relational models, requiring exact and efficient reasoning about sets of individuals.

Research in the field of lifted inference has lead to efficient algorithms for rela-
tional models. Lifted variable elimination (LVE), first introduced in [16] and expanded
in [17,13,20], saves computations by reusing intermediate results for isomorphic sub-
problems when answering a query. The lifted junction tree algorithm (LJT) sets up a
first-order junction tree (FO jtree) to handle multiple queries efficiently [4] using LVE
as a subroutine. Van den Broeck et al. apply lifting to weighted model counting and
knowledge compilation [8], with newer work on asymmetrical models [7]. To scale lift-
ing, Das et al. use graph databases storing compiled models to count faster [9]. Lifted

2 T. Braun and R. Möller

belief propagation (BP) provides approximate solutions to queries, often using lifted
representations, e.g. [2]. But, to the best of our knowledge, research for adaptive in-
ference on relational models is limited. In relational models, changes can also affect
the sets of individuals over which one reasons or on which one conditions on. How to
handle such incremental changes correctly and efficiently is not obvious.

Nath and Domingos as well as Ahmadi et al. provide approximate algorithms based
on BP for lifted, adaptive inference for changing evidence [15,3]. They reuse results
from previous algorithm runs and propagate messages only in affected regions or adapt
their lifted representations to the changed evidence. We focus on exact inference for
multiple queries and present an efficient algorithm for adaptive inference based on LJT,
called aLJT, handling changes in model and evidence. This paper includes two main
contributions, (i) procedures for adapting an FO jtree to incremental changes for its
underlying model and (ii) an algorithm, aLJT, preserving as much computations as
possible under changes in a model. aLJT handles changes ranging from new evidence
to extending a model with new factors. aLJT fast reaches the point of answering queries
again, which is especially important for time-critical or online query answering.

The remainder of this paper is structured as follows: First, we introduce basic nota-
tions and recap LJT. Then, we show how to adapt an FO jtree to changes and present
aLJT, followed by a discussion. We conclude with upcoming work.

2 Preliminaries

This section specifies notations and recaps LJT. Based on [17], a running example mod-
els the interplay of natural or man-made disasters, an epidemic, and people being sick,
travelling, and being treated. Parameters represent disasters, people, and treatments.

2.1 Parameterised Probabilistic Models

Parameterised models compactly represent models by using logical variables (logvars)
to parameterise randvars, abbreviated PRVs.

Definition 1. Let L, Φ, and R be sets of logvar, factor, and randvar names respectively.
A PRVR(L1, . . . , Ln), n ≥ 0, is a syntactical construct withR ∈ R and L1, . . . , Ln ∈
L to represent a set of randvars. For PRV A, the term range(A) denotes possible
values. A logvar L has a domainD(L). A constraint (X, CX) is a tuple with a sequence
of logvars X = (X1, . . . , Xn) and a set CX ⊆ ×n

i=1D(Xi) restricting logvars to
values. The symbol > marks that no restrictions apply and may be omitted. For some
P , the term lv(P) refers to its logvars, the term rv(P) to its PRVs with constraints, and
the term gr(P) to all instances of P , i.e. P grounded w.r.t. constraints.

For the epidemic scenario, we build the boolean PRVsEpid, Sick(X), and Travel(X)
from R = {Epid, Sick, Travel} and L = {X}, D(X) = {alice, eve, bob}. Epid
holds if an epidemic occurs. Sick(X) holds if a person X is sick, Travel(X) holds
if X travels. With C = (X, {eve, bob}), gr(Sick(X)|C) = {Sick(eve), Sick(bob)}.
gr(Sick(X)|>) also contains Sick(alice). Parametric factors (parfactors) combine PRVs.
A parfactor describes a function, identical for all argument groundings, mapping argu-
ment values to real values (potentials), of which at least one is non-zero.

Adaptive Inference on Probabilistic Relational Models 3

Nat(D)
g1

Man(W)

Epid g0

Sick(X)

Travel(X) Treat(X,T)
g2 g3

Fig. 1: Parfactor graph for Gex

Epid Nat(D)Man(W) {g0, g1}C1

Epid Sick(X) Travel(X) {g2}C2

Epid Sick(X) Treat(X,T) {g3}C3

{Epid}

{Epid, Sick(X)}

Fig. 2: FO jtree for Gex

Definition 2. Let X ⊆ L be a set of logvars, A = (A1, . . . , An) a sequence of PRVs,
built from R and X, C a constraint on X, and φ : ×n

i=1range(Ai) 7→ R+ a function
with name φ ∈ Φ, identical for all gr(A|C). We denote a parfactor g by ∀X : φ(A)|C .
We omit (∀X :) if X = lv(A) and |>. A set of parfactors forms a model G := {gi}ni=1.

We define a model Gex as our running example. Let L = {D,W,M,X}, Φ =
{φ0, φ1, φ2, φ3}, and R = {Epid,Nat,Man, Sick, Travel, T reat}. We build three
more boolean PRVs. Nat(D) holds if a natural disaster D occurs, Man(W) if a man-
made disaster W occurs. Treat(X,T) holds if a person X is treated with treatment
T . The other domains are D(D) = {earthquake, flood}, D(W) = {virus, war},
and D(T) = {vaccine, tablet}. The model reads Gex = {gi}3i=0, g0 = φ0(Epid),
g1 = φ1(Epid,Nat(D),Man(W))|>, g2 = φ2(Epid, Sick(X), T ravel(X))|>, and
g3 = φ3(Epid, Sick(X), T reat(X,T))|>. Parfactors g1 to g3 have eight input-output
pairs, g0 has two (omitted here). Figure 1 depictsGex as a graph with six variable nodes
for the PRVs and four factor nodes for the parfactors with edges to arguments.

Evidence displays symmetries if observing the same value for n instances of a
PRV [20]. In a parfactor gE = φE(P (X))|CE

, a potential function φE and constraint
CE encode the observed values and instances for PRV P (X). Assume we observe
the value true for ten randvars of the PRV Sick(X). The corresponding parfactor is
φE(Sick(X))|CE

. CE represents the domain of X restricted to the 10 instances and
φE(true) = 1 and φE(false) = 0. A technical remark: To absorb evidence, we split
all parfactors gi that cover P (X), called shattering [17], restricting Ci to those tuples
that contain gr(P (X)|CE

) and a duplicate of gi to the rest. gi absorbs gE (cf. [20]).
The semantics of a model G is given by grounding and building a full joint distribu-

tion PG. With Z as the normalisation constant, G represents PG = 1
Z

∏
f∈gr(G) f . The

query answering (QA) problem asks for a marginal distribution of a set of randvars or
a conditional distribution given events, which boils down to computing marginals w.r.t.
a model’s joint distribution, eliminating non-query terms. Formally, P (Q|E) denotes
a query with Q a set of grounded PRVs and E = {Ei = ei}ni=1 a set of events. An
example query for Gex is P (Epid|Sick(eve) = true). Next, we look at LJT, a lifted
QA algorithm, which seeks to avoid grounding and building a full joint distribution.

2.2 Lifted Junction Tree Algorithm

LJT answers queries for probability distributions. It uses an FO jtree to efficiently an-
swer a set of queries, with LVE as a subroutine. We briefly recap LJT.

4 T. Braun and R. Möller

LJT answers a set of queries {Qi}mi=1 given a model G and evidence E. The main
workflow is: (i) Construct an FO jtree J for G. (ii) Enter E into J . (iii) Pass messages
in J . (iv) Compute answers for {Qi}mi=1. LJT first constructs a minimal FO jtree with
parameterised clusters (parclusters) as nodes, which are sets of PRVs connected by
parfactors, both defined as follows.

Definition 3. Let X be a set of logvars, A a set of PRVs with lv(A) ⊆ X, and C a
constraint on X. Then, ∀X:A|C denotes a parcluster. We omit (∀X:) if X = lv(A)
and |>. An FO jtree for a model G is a cycle-free graph J = (V,E), where V is the
set of nodes, i.e., parclusters, and E the set of edges. J must satisfy three properties:
(i) ∀Ci ∈ V : Ci ⊆ rv(G). (ii) ∀g ∈ G: ∃Ci ∈ V s.t. rv(g) ⊆ Ci. (iii) If ∃A ∈ rv(G)
s.t. A ∈ Ci ∧ A ∈ Cj , then ∀Ck on the path between Ci and Cj: A ∈ Ck (running
intersection property). An FO jtree is minimal if by removing a PRV from any parcluster,
the FO jtree ceases to be an FO jtree, i.e., it no longer fulfils at least one of the three
properties. The parameterised set Sij , called separator of edge {i, j} ∈ E, is defined by
Ci∩Cj . The term nbs(i) refers to the neighbours of node i, defined as {j|{i, j} ∈ E}.
Each Ci ∈ V has a local model Gi and ∀g ∈ Gi: rv(g) ⊆ Ci. The Gi’s partition G.

In a minimal FO jtree, no parcluster is a subset of another parcluster. Figure 2
shows a minimal FO jtree for Gex with parclusters C1 = {Epid,Nat(D),Man(W)},
C2 = {Epid, Sick(X), T ravel(X)}, and C3 = {Epid, Sick(X), T reat(X,T)}.
S12 = {Epid} and S23 = {Epid, Sick(X)} are the separators. Parfactor g0 appears at
C1 but could be in any local model as rv(g0) = {Epid} ⊂ Ci ∀ i ∈ {1, 2, 3}.

During construction, LJT assigns the parfactors in G to local models (cf. [4]). LJT
enters E into each parcluster Ci where rv(E) ⊆ Ci. Local model Gi at Ci absorbs E
as described above. Message passing distributes local information within the FO jtree.
Two passes from the periphery to the center and back suffice [12]. If a node has received
messages from all neighbours but one, it sends a message to the remaining neighbour
(inward pass). In the outward pass, messages flow in the opposite direction. Formally, a
message mij from node i to node j is a set of parfactors, with arguments from Sij . LJT
computesmij by eliminating Ci\Sij fromGi and the messages of all other neighbours
with LVE. A minimal FO jtree enhances the efficiency of message passing. Otherwise,
messages unnecessarily copy information between parclusters. To answer a query Qi,
LJT finds a subtree J ′ covering Qi, compiles a submodel G′ of local models in J ′ and
messages from outside J ′, and sums out all non-query terms in G′ using LVE.

Currently, LJT partially handles adaptive inference. LJT assumes a constant G for
which it builds an FO jtree J , reusing J for varying E and Q. If G or E change, LJT
restarts with construction or evidence entering. However, changes do not necessarily
mean a completely new model or evidence set. LJT may preserve J , local models, or
messages in parts. Before presenting aLJT, we show how to adapt an FO jtree.

3 Adapting an FO Jtree to Model Changes

Changes may yield a structure change in a modelG, which may cause a structure change
in an FO jtree J . All actions towards adapting J need to ensure that J continues to be
a minimal FO jtree and that local models still partition G. This section looks at adding,
deleting, or replacing a parfactor and ends with an example.

Adaptive Inference on Probabilistic Relational Models 5

Algorithm 1 Adapting an FO jtree J = (V,E)

procedure ADD(FO jtree J , parfactor g′)
Let Aold known, Anew new PRVs in g′

ADJUST(J , Aold) to get Ci with Aold ⊆ Ci

if Anew = ∅ then
Gi ← Gi ∪ {g′}, mark Ci

else if Aold = Ci then
Ci←Ci∪rv(g′),Gi←Gi∪{g′},mark Ci

else
New Ck←rv(g′), Gk←{g′}, mark Ck

Add {i, k} to E

procedure DELETE(FO jtree J , parfactor g)
Get Ci ∈ V where g ∈ Gi

Gi ← Gi \ {g}
MIN(J , Ci, rv(g) \ rv(Gi)), mark Ci

procedure MIN(FO jtree J , node Ci, PRVs A)
for PRV A ∈ A do

if ∀j, k∈nbs(i) : A6∈Sij ∧A 6∈Sik then
Ci ← Ci \ {A}, mark Ci

if Ci marked ∧ ∃j∈nbs(i) : Ci⊆Cj then
MERGE(J , Ci,Cj)

procedure ADJUST(FO jtree J , PRVs A)
Extract set of nodes N s.t. A ⊆ rv(N)
while |N | > 1 do

Get Ci,Cj ∈ N
P ← path betw. i, j without i, j, mark P
C′ := Ci,C

′′ := Cj , lst← |P | − 1
MERGE(J , Ci,Cj), remove Cj from N
while lst > 0 do

if ∃k, l∈P : Skl⊆C′∧Skl⊆P [lst]
∨Skl⊆C′′∧Skl⊆P [0] then

Remove {k, l} from E
break

C′ := P [0],C′′ := P [lst]
MERGE(J , P [0], P [lst]), update N
P ← P [1 . . . lst− 1], lst← |P | − 1

procedure MERGE(FO jtree J , nodes Ci,Cj)
Ci ← Ci ∪Cj , Gi ← Gi ∪Gj

Remove Cj from V
for each k ∈ nbs(j) do

Remove {j, k}, add {i, k}, k 6= i, in E

Adding a parfactor g′ to G requires adding g′ to a local model to partition G∪{g′}.
Algorithm 1 includes pseudocode for adding g′ to J = (V,E). It contains marking
instructions relevant for aLJT. We assume that g′ contains at least one PRV from V to
yield one FO jtree. If the arguments in g′ appear in a parcluster Ci, we add g′ toGi. But,
if g′ contains new PRVs Anew or if the old, known PRVs in g′, Aold ← rv(g′)∩rv(V),
do not appear in a single parcluster, there is no parcluster Ci s.t. rv(g′) ⊆ Ci. Thus,
we adjust J until Aold ⊆ Ci for some i and handle Anew appropriately.

Procedure ADJUST in Alg. 1 arranges that Aold ⊆ Ci for some i in J . ADJUST finds
a set of parclustersN that cover the PRVs in Aold and mergesN into a single parcluster
to fulfil Aold ⊆ Ci by successively merging parclusters Ci,Cj ∈ N . Merging is a
union of parclusters, local models, and neighbours. Since J is acyclic, there exists a
unique path P from Ci to Cj without i and j, which forms a cycle if |P | > 1, which
ADJUST resolves: It searches for a separator Skl of two parclusters Ck,Cl on P s.t.

Skl ⊆ C′ ∧ Skl⊆P [lst] ∨ Skl ⊆ C′′ ∧ Skl⊆P [0] (1)

where C′ and C′′ are Ci and Cj in the beginning, i.e., information on Skl reaches Ck

from one end and Cl from the other end. If Skl exists, ADJUST deletes the edge {k, l} to
break the cycle, which keeps the parclusters on P small. Otherwise, it continues along
P , merging parclusters at the path ends if the search for a separator fulfilling Eq. (1)
fails. For details, see Alg. 1.

After adjusting J , there is a parcluster Ci s.t. Aold ⊆ Ci. If g′ contains only Aold,
procedure ADD adds g′ to local model Gi at Ci. If g′ contains new PRVs, it distin-
guishes between Aold ⊂ Ci and Aold = Ci. In the former case, PRVs in Ci do not

6 T. Braun and R. Möller

Epid Nat(D)Man(W)C1

Epid Sick(X) Travel(X)C2

Epid Sick(X) Treat(X,T)C3

Epid Sick(X)Work(X,T)C4

{Epid}

{Epid, Sick(X)}

{Epid, Sick(X)}

Epid A1 A2 C5

A1 A3 C6

A1 A4 C7

{Epid}

{A1}

{A1}

Fig. 3: Adapted and Extended FO jtree

Epid Nat(D)Man(W)C1

Epid Sick(X) Travel(X)C2

Epid Sick(X) Treat(X,T) A1 A3C3

Epid Sick(X)Work(X,T) A1 A4C4

{Epid}

{Epid, Sick(X)}

{Epid, Sick(X), A1}

Epid A1 A2 C5

{Epid,A1}

Fig. 4: Adjusted FO jtree

appear in rv(g) and vice versa. ADD adds a new node Ck ← rv(g′) with Gk ← {g′}
as a neighbour to i. In the latter case, Ci is a strict subset of the PRVs in g. ADD adds
the new PRVs to Ci and g′ to Gi. Now, the local models partition G′.

Deleting a parfactor g from G requires removing g from the local model Gi in
which g appears. Afterwards, the local models partition G \ {g}. Algorithm 1 contains
pseudocode for deleting g from J . After removing g from Gi, it minimises Ci w.r.t.
Adel ← rv(g) \ rv(Gi). The procedure deletes a PRV A ∈ Adel from Ci if no two
separators contain A, i.e., ∀j, k ∈ nbs(i) : A 6∈ Sij ∧ A 6∈ Sik. If now Ci ⊆ Cj for a
neighbour Cj , MIN merges Ci and Cj to keep J minimal.

Replacing a parfactor g with a parfactor g′ in G boils down to adding g′ and then
deleting g. If rv(g) = rv(g′), adding g′ and deleting g does not touch J . If rv(g) ⊆
rv(g′), adding g′ yields J ′, followed by deleting g from J ′, which does not change J ′.
First deleting g may lead to removing PRVs and superfluously merging parclusters. If
rv(g′) ⊆ rv(g), adding g′ before deleting g uses that there exists a parcluster Ci with
rv(g′) ⊆ Ci as rv(g) ⊆ Ci. If the arguments of g and g′ overlap otherwise, first adding
g′ and then deleting g avoids unnecessarily deleting PRVs and merging parclusters for
the overlap PRVs. If both parfactors do not share any PRVs, replacing g with g′ naturally
decomposes into adding g′ and deleting g.

To illustrate adaption, consider the FO jtree in Fig. 2. We add the parfactor g4 =
φ4(Epid, Sick(X),Work(X)) to Gex, where PRV Work(X) holds if a person X
works. For g4, the known PRVs are Epid and Sick(X) which appear in C2 and C3.
Assume Alg. 1 chooses C3, which contains a PRV not in g4, Treat(X,T), while g4
contains a new PRV,Work(X). Thus, Alg. 1 adds a parcluster C4 = {Epid, Sick(X),
Work(X)}, G4 = {g4}. The left column of parclusters in Fig. 3 shows the result .

Next, we replace g2 with a parfactor g′2 = φ′2(Travel(X), Sick(X)) inGex, which
means adding g′2 to C2 and deleting g2. After removing g2 fromG2,Epid no longer ap-
pears in G2. But, Epid appears in both its separators and as such, has to remain in C2

to connect the appearance of Epid from C1 to C3. If g′2 = φ′2(Epid, Travel(X)),
Alg. 1 would delete Sick(X) as Sick(X) appears only in one separator. If g′2 =
φ′2(Epid, Sick(X)), Alg. 1 would delete Travel(X) and merge C2 with C3.

To illustrate adjusting an FO jtree, let the adapted FO jtree have three more par-
clusters with PRVs A1, A2, A3, and A4, shown in Fig. 3. We add a parfactor g′ =
φ′(A4,Work(X)). ADJUST merges C4 and C7 into C′

4, causing a cycle. P [0] and
P [lst] are C3 and C6, i.e., the neighbours of 4 and 7 on the cycle/path. No separator

Adaptive Inference on Probabilistic Relational Models 7

appears in C4 and C6 or C7 and C3 (Eq. (1) not fulfilled). ADJUST merges C3 and C6

into C′
3. Separator S25 = {Epid} appears in C′

3 and C5. ADJUST deletes edge {2, 5},
forming an acyclic FO jtree as seen in Fig. 4. At C′

4, Alg. 1 adds g′ to the local model.

4 LJT for Adaptive Inference

The extended algorithm aLJT performs adaptive inference for more efficient QA than
by restarting from scratch. aLJT basically still consists of the steps construction, evi-
dence entering, and message passing before it answers queries. Each step proceeds in
an adaptive manner w.r.t. changes in input model G or in evidence E given an FO jtree
J . Without an FO jtree, the steps are identical to the LJT steps.

Algorithm 2 shows a description of aLJT for J , referring to the changes in G and
E by ∆G and ∆E. Line 1 contains the adaptive construction step, which adapts J to
∆G according to Alg. 1. To track changes, aLJT marks a parcluster Ci if a local model
changes s.t. the messages become invalid. Based on the marks and ∆E, aLJT performs
adaptive evidence entering and message passing, answering queries as before. Lines 2 to
4 show adaptive evidence entering and lines 5 to 9 adaptive message passing. Lines 10
to 12 contain the steps to answer a query Qi from a set of queries {Qi}mi=1, as in LJT.
Next, we look at the adaptive steps, followed by an example.

Construction: aLJT handles changes ∆G as in Alg. 1 with J as input and ∆G referring
to parfactors to add, delete, or replace. When adding a parfactor g, aLJT marks the
parcluster Ci that receives g. If adjusting J for known PRVs, aLJT marks all parclusters
on the cycle between two parclusters Ci,Cj that it merges. The merged parcluster C′

i

has two messages mxi,myj from its neighbours on the cycle with both information
about the parclusters on the cycle and with information from Gi (in myj) and Gj (in
mxi), which is already contained in G′

i ← Gi ∪ Gj . A similar situation occurs for
all cycle parclusters, requiring new messages. Merging adjacent parclusters does not
require a mark since messages between them are no longer considered and all other
messages remain valid. When deleting a parfactor from the local model of Ci, aLJT
marks Ci. aLJT replaces a parfactor by adding and deleting, which includes marks.

For changes in potentials, ranges, or constraints, aLJT replaces parfactors. For do-
main changes of a logvar X , aLJT marks a parcluster Ci if X ∈ lv(Ci) and its con-
straint w.r.t. X is >. After incorporating all changes, parclusters are properly marked.

Evidence Entering: Adaptive entering deals with evidence at marked parclusters and
changes∆E in evidence. In the first case, marked parcluster only need evidence entering
if new parfactors or domain changes affect it. If evidence does not change, only new
parfactors or parfactors affected by domain changes need to absorb evidence.

In the second case, aLJT enters evidence at all parclusters Ci affected by∆E, which
refers to changes in the form of additional or retracted evidence or new observed values.
For additional evidence, aLJT uses the current local model Gi and enters the additional
evidence. For retracted evidence, aLJT resets parfactors where the evidence no longer
appears, which may require reentering evidence if evidence for a PRV is partially re-
tracted. For new values, aLJT resets parfactors that have absorbed the original evidence.
These parfactors absorb the new values. If ∆E leads to changes in Gi, aLJT marks Ci.

8 T. Braun and R. Möller

Algorithm 2 LJT for adaptive inference answering queries {Qi}mi=1 given an FO jtree
J and changes ∆G for model G and ∆E for evidence E

1: Adapt J to ∆G according to Alg. 1 . marks parclusters
2: for each parcluster Ci in J do
3: if Ci marked or affected by ∆E then
4: Handle evidence at Ci, mark Ci

5: while ∃Ci ready to send message mij to Cj in J do
6: if Ci marked or has marked message then
7: Send newly computed mij , mark mij at Cj as changed
8: else
9: Send empty message, mark mij at Cj as unchanged

10: for each query Qi do
11: Extract submodel G′ from subtree J ′ that covers Qi

12: Answer Qi on G′ using LVE

Message Passing: aLJT maintains the same two-pass scheme starting at the periphery
going inward and returning to the periphery outward. Inward, if a parcluster has re-
ceived messages from all neighbours but one, it sends a message to the remaining neigh-
bour. Outward, after a parcluster has received a message from the remaining neighbour,
it sends messages to all other neighbours. The scheme preserves the ability for an auto-
matic execution. After message passing, aLJT starts answering queries.

The adaptive part occurs during message calculation. A parcluster Ci calculates a
new message if messages have become invalid during adjusting or if Ci has to distribute
changes in its local model or received messages, else, it sends an empty message. The
receiver replaces the old message with the new message and marks it changed (if not
empty) or marks the old message as unchanged. Formally, Ci calculates a message mij

for neighbour Cj if Ci itself is marked or if a message from a neighbour is marked as
changed. Then, Ci computes mij using LVE with G′ ← Gi ∪

⋃
k∈nbs(i),k 6=j mki as

model (messages irregardless of whether they are marked changed) and Sij as query.
As an example, consider the FO jtree in Fig. 4 with all its changes. All parclusters

are marked except C1. Thus, the only empty message is m12. After message passing,
aLJT can answer queries for any randvar in gr(rv(G)). Next, assume we add evidence
about Nat(D) at C1, which leads aLJT to mark C1. With no further changes, aLJT
only needs to distribute the updated information in G1. Thus, messages m53 and m43

from C5 and C4 to C3 are empty as well as the messages from C3 over C2 to C1 as no
change occurs in local models. Message m12 from C1 to C2 is new. The new message
received by C2 leads to new messages from C2 to C3 and from C3 back to the leaf
nodes C4 and C5. After sending all messages, aLJT can answer queries again.

Theoretical Discussion: aLJT and LJT have a runtime complexity linear in domain
sizes, which also holds for other lifted algorithms [6,19]. The speedup comes in form
of a factor as aLJT can avoid handling evidence for up to all parclusters and save calcu-
lating up to half of the messages after a change. Next, we argue why aLJT is sound.

Theorem 1. aLJT is sound, i.e., computes a correct result for a query Q on an FO jtree
J after adapting to changes in input model G and evidence E.

Adaptive Inference on Probabilistic Relational Models 9

Proof sketch. We assume that LJT is correct, yielding an FO jtree J , fulfilling the FO
jtree properties, which allows for local computations [18]. Further, we assume that LVE
is correct, ensuring correct local computations during evidence entering, message pass-
ing, and query answering. aLJT first adapts J , which consists of adding, deleting and
replacing parfactors. We briefly sketch how to prove that adapting J outputs an FO jtree
again: We follow the changes in J showing that J remains an FO jtree. For the changes
regarding adding, extending, or deleting a parcluster, it is straightforward to see that
J ′ still fulfils the properties. The main part concerns the ADJUST procedure, which re-
lies on J being acyclic and thus, causing at most one cycle between two parclusters.
Breaking the cycle then ensures the FO jtree properties. Thus, adaptive construction
outputs an FO jtree with marked parclusters. Adaptive evidence entering enters the new
evidence version at all parclusters covering evidence and re-enters evidence at parclus-
ters with changed local models, ensuring a correct evidence handling at all parclusters.
Adaptive message passing distributes updated information whenever changed informa-
tion arrives or local information has changed. With messages and local models updated,
aLJT uses local models and messages to correctly answer Q using LVE. ut

5 Empirical Evaluation

We have implemented prototypes of (a)LJT, named ljt and aljt here. Taghipour pro-
vides an LVE implementation (https://dtai.cs.kuleuven.be/software/lve), named lve.
We fixed some lines in lve for queries with more than one grounded logvar. We do not
include ground algorithms as we have already shown the speed-up by lifting (e.g., [5]).

The evaluation has two parts. First, we look at runtimes for Gex under changes,
focussing on how fast the programs provide answers again after consecutive changes.
Second, we look at runtimes for the individual steps of LJT and aLJT for varying models
G of sizes |G| ranging from 2 to 1024 under a model change (adding a parfactor) and
an evidence change (adding new evidence).

5.1 Consecutive Changes

This first part concerns three consecutive changes and two queries each. As input, we
useGex with random potentials. We set |D(X)| = 1,000 and |D(.)| = 100 for the other
logvars, yielding |gr(Gex)| = 111,001. Evidence occurs for 200 instances of Sick(X)
with the value true. There are two queries, Sick(x1000) and Treat(x1, t1). The con-
secutive changes for Gex, based on the adaption examples, are (i) adding parfactor
φ(Epid, Sick(X),Work(X)) (referred to as model G1

ex), (ii) replacing g2 with par-
factor φ(Sick(X), T ravel(X)) (referred to as modelG2

ex), and (iii) adding as evidence
Work(X) = true for 100 instances of X (referred to as model G3

ex). The X values
are a subset of the X values in the Sick(X) evidence. After each change, the programs
answer both queries again. We compare runtimes for inference averaged over five runs.
Runtimes for ljt and aljt include construction, evidence entering, message passing,
and query answering. Runtimes for lve consist of query answering.

Figure 5 shows runtimes in seconds [s] accumulated over all four models for lve
(square), ljt (triangle), and aljt (circle). The vertical lines indicate when the pro-
grams have answered both queries, after which lve and ljt proceed with the next

https://dtai.cs.kuleuven.be/software/lve

10 T. Braun and R. Möller

R
un

tim
es

 [s
]

0

1

2

3

4
LVE
LJT
aLJT

Gex Gex
1 Gex

2 Gex
3

Fig. 5: Runtimes [s] accumulated over
four models. Vertical lines mark the end
of QA for the current model. Points on
lines indicate the steps of (a)LJT.

R
un

tim
es

 [m
s]

10−4
10−3
10−2
10−1
100
101
102
103
104
105
106
107

21 22 23 24 25 26 27 28 29 210

LJT construction aLJT adaption
LJT evidence aLJT evidence
LJT messages aLJT messages

Fig. 6: Runtimes [ms] of the (a)LJT steps.
X-axis: increasing |G| from 2 to 1,024.
Both axes appear on log scale. Points are
connected for readability.

model, while aljt starts with adaption. For a model, the points on the ljt and aljt
lines mark when an individual step is finished. lve takes longer than both LJT versions,
showcasing the advantage of using an FO jtree. After only two queries, ljt and aljt
have already offset their overhead and provide answers faster than lve.

For Gex, ljt and aljt have the same runtimes since their runs are identical. As
Gex incrementally changes, aljt displays its advantage of adaptive steps in contrast to
ljt. Starting withG1

ex, aljt provides answers faster than ljt. Before ljt has com-
pleted message passing, aljt has already answered both queries. Especially message
passing is faster as aljt does not need to compute half of the messages ljt computes.
Construction is slightly faster. Evidence entering does not take long for both programs.
But, evidence usually leads to longer runtimes for query answering compared to no evi-
dence for LVE and LJT as the necessary splits lead to larger models. SinceG3

ex contains
more evidence, all runtimes increase compared to the previous models.

aljt fast reaches the point of answering queries again, providing answers more
timely than the other two programs. As each change provides the possibility for aljt
to save computations, leading to savings in runtime, the savings add up over a sequence
of changes. Thus, performing adaptive inference pays off.

5.2 Step-wise Performance

This second part looks at runtimes of the individual steps of LJT and aLJT given models
of varying size. The model sizes start at 2 and double until they reach 1,024. The first
model is G2 ∪ G3 from the FO jtree of Gex. The second model is Gex. For the other
models, we basically duplicated the currentG, starting withGex, renamed the PRVs and
logvars of the duplicate, and connected the original part with the copied part through a
parfactor. The largest model has 1,024 parfactors and logvars and 3, 072 PRVs, resulting
in an FO jtree with 770 parclusters. The largest parcluster contains 256 PRVs. Technical
remark: The maximum parcluster size is larger than need be due to the heuristic the
construction is based on. The largest parcluster contains all PRVs without parameters,
because the heuristic leads the (a)LJT implementations to handle all parfactors without
logvars separately at the beginning, resulting in one large parcluster as the parameterless
PRVs also appear in all other parts of the model.

Adaptive Inference on Probabilistic Relational Models 11

The domain sizes for all logvars are set to 1,000, leading to grounded model sizes,
ranging from 1,001,000 to 513,256,256. A part of the model receives evidence for 50%
of the instances of one PRV. We compare runtimes of the corresponding LJT and aLJT
step for the following settings: (i) Add a parfactor with a new PRV. (ii) Enter new
evidence to an unchanged model. (iii) Pass messages after changes in a model. Reen-
tering known evidence after changes in a model and passing messages after changes in
evidence have shown similar runtimes to settings (ii) and (iii).

Figure 6 shows runtimes in milliseconds [ms] of ljt and aljt averaged over five
runs for the three settings. The triangles and crosses mark ljt, while the circles and
stars mark aljt. The hollow marks refer to construction/adaption, the cross and star
marks to evidence entering, and the filled marks to message passing. In all three settings,
aljt is faster than ljt and both performing similar given larger models. The curves
have a similar shape but are on a different level if domain sizes are different to 1,000.

For construction (hollow marks), aljt is two to three orders of magnitude faster
than ljt (0.0024 in average). For evidence entering (cross/star marks), the savings are
even higher: aljt is faster than ljt by more than three orders of magnitude (0.0004
in average). Evidence handling appears to be constant in this setup. Since LVE has to
perform one split per evidence PRV independent of the domain sizes and the evidence
is restricted to one part of the model, evidence handling does not depend on the model
size. Message passing (filled marks) shows only a clear speedup for smaller models.
The first half of the models allows for aljt to be one order of magnitude faster than
ljt (0.0955 in average). For the larger models, the factor of the speedup lays between
0.25 and 0.79. Concerning providing an answer to a query after a change, runtimes are
basically a sum of the previous steps plus the time for answering a query, which takes
around 100 ms. Since message passing dominates in the overall performance of (a)LJT
with only one query, the overall runtimes resemble the runtimes of message passing.

Overall, aljt runtimes are faster by a factor ranging from 0.003 and 0.5 for such
models. In the first two steps, aLJT is two orders of magnitude faster with changes
in evidence and model restricted to certain parts of an FO jtree. Considering the first
part of the evaluation, savings add up given frequent changes. In summary, performing
adaptive inference pays off as aljt is able to provide a faster online QA than ljt.

6 Conclusion

We present aLJT, an adaptive version of LJT, which incorporates incremental changes
in its input model or evidence efficiently. We specify how to adapt an FO jtree when
deleting, adding, or replacing parts of a model. We formalise under which conditions
evidence entering and new messages are necessary. Given the adaptive steps, aLJT re-
duces its static overhead for construction, evidence entering, and message passing under
gradual changes compared to LJT. aLJT allows for fast online inference for answering
multiple queries, minimising the lag in query answering when inputs change.

We currently work on learning lifted models, where we use aLJT as a subroutine.
Other interesting algorithm extensions include parallelisation, construction using hy-
pergraph partitioning, and different message passing strategies. Additionally, we look
into areas of application to see its performance on real-life scenarios.

12 T. Braun and R. Möller

References
1. Acar, U.A., Ihler, A.T., Mettu, R.R., Sümer, Ö.: Adaptive Inference on General Graphical

Models. In: UAI-08 Proc. of the 24th Conference on Uncertainty in AI. pp. 1–8 (2008)
2. Ahmadi, B., Kersting, K., Mladenov, M., Natarajan, S.: Exploiting Symmetries for Scaling

Loopy Belief Propagation and Relational Training. Machine Learning 92(1), 91–132 (2013)
3. Ahmadi, B., Kersting, K., Sanner, S.: Multi-evidence Lifted Message Passing, with Appli-

cation to Pagerank and the Kalman Filter. In: IJCAI-11 Proc. of the 22nd International Joint
Conference on AI. pp. 1152–1158 (2011)

4. Braun, T., Möller, R.: Lifted Junction Tree Algorithm. In: Proc. of KI 2016: Advances in AI.
pp. 30–42. Springer (2016)

5. Braun, T., Möller, R.: Counting and Conjunctive Queries in the Lifted Junction Tree Algo-
rithm - Extended Version. In: Postproc. of the 5th Internat. GKR Workshop. Springer (2018)

6. van den Broeck, G.: On the Completeness of First-order Knowledge Compilation for Lifted
Probabilistic Inference. In: Advances in Neural Information Processing Systems 24. pp.
1386–1394 (2011)

7. van den Broeck, G., Niepert, M.: Lifted Probabilistic Inference for Asymmetric Graphical
Models. In: AAAI-15 Proc. of the 29th Conference on AI. pp. 3599–3605 (2015)

8. van den Broeck, G., Taghipour, N., Meert, W., Davis, J., Raedt, L.D.: Lifted Probabilistic In-
ference by First-order Knowledge Compilation. In: IJCAI-11 Proc. of the 22nd International
Joint Conference on AI (2011)

9. Das, M., Wu, Y., Khot, T., Kersting, K., Natarajan, S.: Scaling Lifted Probabilistic Inference
and Learning Via Graph Databases. In: Proc. of the SIAM International Conference on Data
Mining. pp. 738–746 (2016)

10. Delcher, A.L., Grove, A.J., Kasif, S., Pearl, J.: Logarithmic-time Updates and Queries in
Probabilistic Networks. In: UAI-95 Proc. of the 11th Conference on Uncertainty in AI. pp.
116–124 (1995)

11. Friedman, M.: The Bayesian Structural EM Algorithm. In: UAI-98 Proc. of the 14th Confer-
ence on Uncertainty in AI. pp. 129–138 (1998)

12. Lauritzen, S.L., Spiegelhalter, D.J.: Local Computations with Probabilities on Graphical
Structures and Their Application to Expert Systems. Journal of the Royal Statistical Soci-
ety. Series B: Methodological 50, 157–224 (1988)

13. Milch, B., Zettelmoyer, L.S., Kersting, K., Haimes, M., Kaelbling, L.P.: Lifted Probabilistic
Inference with Counting Formulas. In: AAAI-08 Proc. of the 23rd Conference on AI. pp.
1062–1068 (2008)

14. Muñoz-González, L., Sgandurra, D., Barrère, M., Lupu, E.C.: Exact Inference Techniques
for the Analysis of Bayesian Attack Graphs. IEEE Transactions on Dependable and Secure
Computing PP(99), 1–14 (2017)

15. Nath, A., Domingos, P.: Efficient Lifting for Online Probabilistic Inference. In: Proc. of the
24th AAAI Conference on AI (2010)

16. Poole, D.: First-order Probabilistic Inference. In: IJCAI-03 Proc. of the 18th International
Joint Conference on AI (2003)

17. de Salvo Braz, R., Amir, E., Roth, D.: Lifted First-order Probabilistic Inference. In: IJCAI-05
Proc. of the 19th International Joint Conference on AI (2005)

18. Shenoy, P.P., Shafer, G.R.: Axioms for Probability and Belief-Function Propagation. Uncer-
tainty in AI 4 9, 169–198 (1990)

19. Taghipour, N., Fierens, D., van den Broeck, G., Davis, J., Blockeel, H.: Completeness Results
for Lifted Variable Elimination. In: Proc. of the 16th International Conference on AI and
Statistics. pp. 572–580 (2013)

20. Taghipour, N., Fierens, D., Davis, J., Blockeel, H.: Lifted Variable Elimination: Decoupling
the Operators from the Constraint Language. Journal of AI Research 47(1), 393–439 (2013)

	Adaptive Inference on Probabilistic Relational Models

