(© 20XX by the authors; licensee RonPub, Liibeck, Germany. This article is an open access article distributed under the terms and conditions of
the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).

Open Journal of Databases (OJDB)
Volume X, Issue X, 20XX

http://www.ronpub.com/ojdb
ISSN 2199-3459

Rasearch
online
Publishing

www.ronpub.coim

Ontology-based Data Access to Big Data

Simon Schiff, Ralf Méller, Ozgiir L. Ozcep

Institute of Information Systems (IFIS), University of Liibeck, Germany
simon.schiff@student.uni-luebeck.de, {moeller,oezcep } @ifis.uni-luebeck.de

ABSTRACT

Recent approaches to ontology-based data access (OBDA) have extended the focus from relational database systems
to other types of backends such as cluster frameworks in order to cope with the four Vs associated with big data:
volume, veracity, variety and velocity (stream processing). The abstraction that an ontology provides is a benefit
from the enduser point of view, but it represents a challenge for developers because high-level queries must be
transformed into queries executable on the backend level. In this paper we discuss and evaluate an OBDA system
that uses STARQL (Streaming and Temporal ontology Access with a Reasoning-based Query Language), as a high-
level query language to access data stored in a SPARK cluster framework. The development of the STARQL-SPARK
engine show that there is a need to provide a homogeneous interface to access both, static, and temporal as well
as streaming data because, usually, cluster frameworks lack such an interface. The experimental evaluations show
that building a scalable OBDA system that runs with SPARK is more than plug-and-play as one needs to know quite

well the data formats and the data organisation in the cluster framework.

TYPE OF PAPER AND KEYWORDS

Regular research paper: streams, OBDA, big data, RDF, cluster framework, SPARK

1 INTRODUCTION

The information processing paradigm of ontology-based
data access (OBDA) [11] has gained much attention
in research groups working on description logics, the
semantic web, Datalog, and database systems. But it
has become of interest also for the industry [17], mainly
due to recent efforts of extending OBDA for handling
temporal data [6, 3] and stream data [13, 8, 28, 26, 17]
as well as efforts of addressing the needs for enabling
statistical analytics: aggregation on concrete domains,
temporal operators, and operators for time-series analy-
sis etc. [16].

In an OBDA system, different components have to
be set up, fined-tuned, and co-ordinated in order to
enable robust and scalable query answering: A query-
engine which allows formulating ontology-level queries;
a reformulation engine, which rewrites ontology-level

queries into queries covering the entailments of the tbox;
an unfolding mechanism that unfolds the queries into
queries of the backend data sources, and, finally, the
backend sources which contain the data.

Whereas in the early days of OBDA, the backend
sources were mainly simple relational database sys-
tems, recent theoretical and practical developments on
distributed storage systems and their extensive use in
industry, in particular for statistical analytics on big data,
have also raised interest in using cluster frameworks as
potential backends in an OBDA system. As of now, a
lot of cluster frameworks and data stream management
systems for processing streaming and static data have
been established. These provide APIs to programming
languages such as Java, Scala, Python but sometimes
also to declarative query languages such as SQL. How-
ever, not all cluster frameworks are appropriate backends

http://creativecommons.org/licenses/by/4.0/
http://www.ronpub.com/ojdb

Open Journal of Databases (OJDB), Volume X, Issue X, 20XX

for an OBDA system with analytics. Because of this
there are only few publications dealing with OBDA
for non-relational DBs, even fewer systems using non-
relational (cluster) frameworks, and actually no OBDA
system working with cluster frameworks supporting real-
time stream processing.

One of the current cluster frameworks that has at-
tracted much attention is the open source Apache frame-
work SPARK!. It is mainly intended for batch processing
big static data and comes with various extensions and
APIs (in particular an SQL API [2]) as well as useful
libraries such as a machine learning library. Recently
added extensions of SPARK (such as SPARKStream and
SPARKStructuredStreaming) are intended for designing
systems for processing real-time streams.

In this paper, we present our insights in designing and
experimentally evaluating an OBDA system that uses
SPARK as a backend system and the query language
STARQL [23, 26, 27, 22] as ontology-level query lan-
guage. We built a small prototype testing SPARK as a
potential backend for the STARQL query engine based
on the SPARK SQL API and evaluated it with sensor-
measurement data. The main scenarios were real-time
(continuous) querying and historical querying. In histor-
ical querying one accesses historical, aka temporal data,
in a sequential manner from the backend source (here
SPARK). Historical querying can be used for the purpose
of reactive diagnostics where real-time scenarios are re-
produced by simulating a stream of data read from the
historical DB in order to diagnose potential causes of
faulty or erroneous behavior of monitored systems. A
detailed description of the results can be found in the
project deliverable 5.4 [25]. The software as well as the
underlying data are publicly available?.

The main insights are the following: 1. It means only
moderate efforts to adapt an OBDA engine that works
with relational DBs or relational data stream manage-
ment systems to other backends if these provide a robust
SQL API. More concretely: the STARQL OBDA en-
gine developed in the OPTIQUE project®, which works
with ExaStream [29, 19] as backend, and the stand-
alone STARQL prototype working with PostGreSQL as
backend were easily adapted to work with SPARK as
backend. 2. The resulting STARQL-SPARK query en-
gine shows similar performance in processing historical
data as the STARQL-ExaStream engine developed in
the OPTIQUE project and the STARQL-PostGreSQL
prototype. Nonetheless, reaching this performance also
depends on finding the right configuration parameters
when setting up the cluster. Even then, SPARK showed

'http://spark.apache.org/
’https://github.com/SimonUzL/STARQL
3http://optique-project.eu/

memory leaks which we explain by the fact that inter-
mediate tables are materialized and not maintained as
views. 3. The stream processing capabilities of SPARK
2.0.0 and its extensions are either very basic, not fully
specified in their semantics or not fully developed yet.
In particular, we saw that a stream extension of SPARK,
called SPARKStream, offers only very basic means for
stream processing. It does not even provide declarative
means for specifying window parameters. As it does
not allow applying the SQL API, window parameters
have to be programmed by hand. The SPARKStruc-
turedStreaming extension on the other hand, offers a
new data structure on top of SPARKStream that can
be used together with the SPARK SQL API. Hence,
SPARKStructuredStreaming is an appropriate streaming
backend with a declarative interface. But in its current
stadium in SPARK 2.0.0, it lacks still most of the
functionality, so that we could not test it with the same
parameters as used for the STARQL-Ontop-ExaStream
system. All in all one has to deal separately with the
access to historical data and the access to real-time data.
So it is a real benefit to have an OBDA query language
(such as STARQL) with a semantics that works in the
same way for historical and streaming data.

2 OBDA WITH STARQL

STARQL (Streaming and Temporal ontology Access
with a Reasoning-based Query Language) is a stream-
temporal query framework that was implemented as a
submodule of the OPTIQUE software platform [14, 16,
17] and in various stand-alone prototypes described in
[20, 22]. It extends the paradigm of ontology-based data
access OBDA [11] to temporal and streaming data.

The main idea of OBDA query answering is to rep-
resent the knowledge of the domain of interest in a
declarative knowledge, aka ontology, and access the data
via a high-level query that refers to the ontology’s vo-
cabulary, aka signature. The non-terminological part of
the ontology, called the abox, is a virtual view of the data
produced by mapping rules. Formulated in a description
logic, the abox can have many different first-order logic
(FOL) models that represent the possible worlds for
the domain of interest. These can be constrained to
intended ones by the so-called tbox, which contains the
terminological part of the ontology.

In classical OBDA, query answering w.r.t. the on-
tology consists mainly of three steps. The ontology-
level query is rewritten into a new query in which the
consequences of the tbox are compiled into the query.
Then, the rewritten query, which is an FOL query, is
unfolded w.r.t. the mapping rules into a query of the
data source, e.g., a relational database. This query is

http://spark.apache.org/
https://github.com/SimonUzL/STARQL
http://optique-project.eu/

S o ®uU AW -

12
13
14
15
16

Simon Schiff, Ralf Moller, Ozgiir L. Ozcep

PREFIX :
CREATE PULSE pulseA WITH

START = "2015-11-21T00:00:00CET" "~ "XSD:DATETIME
FREQUENCY = "PTIM"""XSD:DURATION

CREATE STREAM Sout AS
CONSTRUCT GRAPH NOW {
FROM STREAM Meas [NOW -

?s a :RecentMonInc }
"PT6M" " "XSD:DURATION, NOW

<http://www.siemens.com/Optique/OptiquePattern#>

] -> "PTIM"""XSD:DURATION,

STATIC ABOX <http://www.siemens.com/Optique/OptiquePattern/Astatic>,
TBOX <http://www.siemens.com/Optique/OptiquePattern/tbox>

USING PULSE pulseA

WHERE {?s a :TemperatureSensor}

SEQUENCE BY StdSeqg AS SEQ1

HAVING FORALL i, j IN SEQl 2x,?y(
IF ((GRAPH i { ?s :hasVal ?x } AND GRAPH j { ?s
THEN ?2x <= ?y)

thasval ?y })

AND i < 7)

Figure 1: STARQL Query Monotonic Increasing

evaluated and the answers are returned as answers of the
original query.

In the following, we illustrate the different OBDA
aspects that are implemented in STARQL with a small
example query which was also used (in a slightly simpler
form) in our experimental evaluation in a measurement
scenario as query Monlinc. Thereby we will recapitulate
shortly the main bits of the syntax and semantics of
STARQL. Detailed descriptions of the syntax and its
denotational semantics can be found in [26, 23, 24].

The STARQL query in Figure 1 formalizes a typical
information need: Starting with the 21st of November
2015, output every minute those temperature sensors
in the measurement stream Meas whose value grew
monotonically in the last 6 minutes and declare them as
sensors with a recent monotonic increase.

Many keywords and operators in the STARQL query
language are borrowed—and hence should be known—
from the standard web language SPARQL®, but there
are some specific differences, in particular w.r.t. the
HAVING clause in conjuction with a sequencing strategy.

Prefix declarations (I. 1) work in the same way as
in SPARQL. Streams are created using the keyword
CREATE STREAM. The stream is given a specific name
(here Sout) that can be referenced in other STARQL
queries. The CONSTRUCT operator (l. 7) fixes the
required format of the output stream. STARQL uses
the named-graph notation of SPARQL for fixing a basic
graph pattern (BGP) and for attaching a time expres-
sion to it, either NOW for the running time as in the
CONSTRUCT operator, or a state index 4,j as in the
HAVING clause (1. 15).

The resources to which the query refers are specified
using the keyword FROM (1. 8). Following this keyword
one may specify one or more input streams (by names

4https://www.w3.org/TR/rdf-spargl-query/

or further stream expressions) and, optionally, URIs
references to a tbox and one or more static aboxes. In
this example, only one stream is referenced, the input
stream named Meas. The tbox contains terminological
knowledge, in particular, it contains axioms stating that
all temperature sensors are sensors and that all burner-
tip temperature sensors are temperature sensors. Fac-
tual knowledge on the sensors is stored in the (static)
aboxes. For example, the abox may contain assertions {
:tccl25 a BttSensor, :tccl25 :attached
:cl, cl :loc assemblyl } stating that there is
a burner tip temperature sensor named tccl25 that is
attached to some component cl located at assemblyl.
There is no explicit statement that tcc125 is a temper-
ature sensor, this can be derived only with the axioms of
the tbox—hence rewriting the query is needed in order
to capture all relevant answers.

The input streams consist of timestamped RDF tuples
(again represented by named-graphs). The measurement
stream Meas here consists of timestamped BGPs of
the form GRAPH t1 { ?s :hasVal 2y } stat-
ing that ?s has value ?y at time tl. The in-
put streams can either be materialized RDF streams
or, following the classical OBDA approach, virtual
RDF streams: They are defined as views via map-
ping rules on relational streams of the backend sys-
tem. For example, assuming a relational measurement
stream Measurement (time, sensor,value) a
mapping rule as shown in Figure 2 generates a (virtual)
stream of timestamped RDF triples of the mentioned
form.

The window operator [NOW — "PT6M", NOW]
-> "pPTIM" following the input stream gives snapshots
of the stream with the slide of 1 minute and range of 6
minutes (all stream elements within last 6 minutes).

The WHERE clause (line 12) specifies the sensors ?s
that the information need asks for, namely temperature

https://www.w3.org/TR/rdf-sparql-query/

Open Journal of Databases (OJDB), Volume X, Issue X, 20XX

GRAPH t { s :hasVal v }+«—
select sensor as s, time as t,
value as v from Measurement

Figure 2: Example mapping rule

sensors. It is evaluated against the static abox(es)
only. The stream-temporal conditions are specified in
the HAVING clause (lines 14—-16). In this example the
condition is the formalization of the monotonic increase
of the values. A sequencing method (here the built-in
standard sequencing St dSeq) maps an input stream to a
sequence of aboxes (annotated by states i, j) according
to a grouping criterion. In standard sequencing all stream
elements with the same timestamp are put into the same
state mini abox. Testing for conditions at a state is
done with the SPARQL sub-graph mechanism. So, e.g.,
GRAPH i {?s :hasval ?x } (. 15) asks whether
? s shows value ?y at state i.

The evolvement of the time NOW is specified in the
pulse declaration (1. 4). It is meant to describe the times
on which data are put into the output stream. The role
of the pulse is to synchronize the different input streams,
which may have different slides attached to them. In our
example, the information need is meant to be applied
on historical data, i.e., data stored in a static database
with a dedicated time column. Hence one can specify a
START date (. 3) from which on to start the streaming.
But sometimes the same information need is required
on real-time data. In this case, in essence, the same
STARQL query can be used by dropping the START
keyword. In particular STARQL offers the possibility to
integrate real-time data with historic data (as described
in [15]). Such a homogeneous interface is a real benefit
for engineers which aim at sophisticated predictions on
real-time data based on recorded streams.

3 APACHE SPARK CLUSTERS

Apache SPARK is a cluster computing framework which
has recently gained much interest because it shows
scalability and robustness performances in the range of
MapReduce [12] (or outperforms it according to [30])
and because it comes with a useful set of APIs, in par-
ticular two APIs used in our experimental evaluations:
SPARK SQL, which provides an API to relational data
with queries written in SQL, and SPARKStream which
allows accessing streams from Kafka, Flume, HDFS,
TCP ports or the local file system. In the following
we sketch the necessary bits of the SPARK architecture
and its extensions that are needed to understand our

experimental evaluations.

A SPARK cluster consists of one master and many
workers that communicate with the master via SSH.
Applications on a cluster are initiated by a script. The
so-called driver program, which is running on the mas-
ter node, coordinates and manages the process on the
workers. It starts the main method of the application
program. The driver program requests all available
executors via the cluster manager which runs on the
workers. Subsequently, the program code is transmitted
to the executor and tasks are started. Results of the
workers are received back to the driver program. In order
to process the data, the executor must have access to
a shared file system. In our experiments, we used the
Hadoop File System (HDFS) which provides a sophisti-
cated blockwise storage of data on the workers.

Unlike applications that were written for a Hadoop
cluster and that use MapReduce, within a SPARK cluster
interim results can be kept in main memory. This pre-
vents slow read/write operations from/to the hard disk.
Furthermore lost intermediate results can be calculated
again in parallel by other nodes in case a worker node
fails. SPARK provides an abstraction model called
Resilient Distributed Datasets (RDD) which hides from
the developer potential node failures. An RDD is a
very basic data structure divided into partitions. The
partitions are distributed to the worker nodes and can
be processed in parallel. RDDs can be generated from
data stored in a file system or can be the result of
applying operations to other RDDs. Those operations are
either transformations or actions. The main difference
is that SPARK only remembers transformations in a
lineage but does not compute them. Only if an action
has to be processed does the cluster become active and
starts calculating all transformations up to the action
(inclusively). Examples of transformations are map(f),
which maps every element e to f(e) in the new RDD, or
filter(f), which filters all elements according to a Boolean
condition f, and many more. Examples of actions are
collect(), which sends all elements of an RDD to the
driver program, or count(), which returns the number of
elements in an RDD.

The API SPARK SQL uses DataFrames as the ab-
straction model in the same way SPARK uses RDDs.
DataFrames can be regarded as RDDs of row objects.
Internally, however, these are stored column wise and
the row objects are calculated only if the user wants
to access them via the respective Java, Scala or Python
API. This storage type is much more compact than that
of using Java/Python objects, which is a big advantage
for in-memory processing. DataFrames can be obtained
from existing RDDs or from various sources. Unlike
the RDDs, they have a schema similar to a table in
a database. All common SQL data types are sup-

Simon Schiff, Ralf Moller, Ozgiir L. Ozcep

ported, such as Double, Decimal, String, Timestamp
and Boolean. Similar to RDDs, DataFrames are cal-
culated only when actions are applied. The resulting
optimizations are handled for DataFrames with a special
optimizer called Catalyst.

The main abstract data model of the API SPARK-
Stream is a DStream which is defined as a (potentially
infinite) sequence of RDDs. A DStream can be built
from various resources such as a TCP port, Kafka, Flume
or from HDFS. The grouping of elements into a RDD is
specified with a time interval. Moreover, SPARKStream
provides a window operator with a range (width of
window) and a slide (update frequency) parameter.

SPARKStream has several drawbacks. DStreams con-
sists of a sequence of RDDs which are low level data
structures. In particular, RDDs do not have schemes
associated with them so they are not directly available
for SQL processing. Hence, they would have to be
transformed to DStreams with a specified schema. An-
other drawback is that SPARKStream does not handle
asynchronous streams. Because of these reasons a
new streaming library called SPARKStructuredStream-
ing was developed. It is part of the SPARK 2.0.0 release
and was in alpha stadium when we experimented with it.
SPARKStructuredStreaming still relies on DataFrames.
But note that DataFrames can be generated not only
from static data but also from streaming data. Unfor-
tunately, the set of operations provided for DataFrames
that are produced from streams does not cover (yet)
all operations for DataFrames that are produced from
static data. So, e.g., it is still not possible to join two
DataFrames coming from streams. SPARKStructured-
Streaming provides a window operator with a range and
a slide parameter. But now the contents of the window
operator are determined by the timestamps of the data
elements and not by their arrival order.

4 STARQL-SPARK ENGINE: IMPLEMENTA-

TION & TESTS

We implemented a prototypical application for a stream-
temporal query answering system using STARQL as the
query language, Ontop [10] for rewriting (and partly for
unfolding) and SPARK 2.0.0 as the backend system. As
in the case of the sub-module of the OPTIQUE platform,
this software allows answering historical queries as well
as continuous queries over realtime streams.

All tests were conducted with 9 virtual machines
(VMs) where one was the master and all others were
workers. The master runs on a PowerEdge R530
server which has two Intel Xeon E5-2620 v3 processors
2,4GHz with 6 Core / 12 threads and 64 GB DDR4-
SDRAM. 8 worker VMs are run on a PowerEdge C6320
with four data nodes. The data nodes have 2 Intel Xeon

E5-2620 v3 processors 2,4GHz, 6 Core / 12 threads
and 32 GB DDR4-SDRAM, resp. On all data nodes
VMWare ESXi 6.0 is run. The ESXi is booted by SD
(R530), SSD (C6320), resp. Every data node may use
2TB (2x2TB as RAID 1) for virtual data file systems
(VMES). The RAID controller are Dell PERC H330.
Additionally, every VM may access 1 TB storage as
RAID 0. The data nodes are connected via an 10 Gbit
ethernet to the server. As switch a Netgear XS708E is
used. All VMs use VLAN with MTU 9000. The master
has 8 cores and 8 GB ram. Each worker VM has 4 cores
and 8 GB ram. On every data node two VMs are running.
For the tests we used the Hadoop File System. Though
replication is possible in Hadoop, for our tests we did not
replicate data on the nodes in order to save space. This
caused no problem as no node was down in the tests.

Within the tests we used four different STARQL
queries three of which are linear and one is quadratic.
The listings for the queries can be found on the website
of this engine®. Here we describe them shortly:

e Filter: The linear threshold query asks for all
sensors with name TC258 and temperature value
smaller than 999.

e Max: The maximum query asks for the current
maximum value and all maximum values within the
last 5 minutes for all sensors.

e TempPeaks: The linear peak query asks for all
temperature peaks in all sensors.

e Monlnc: The quadratic monotonic increase query
asks for all sensors showing a monotonic increase
of the temperature.

For testing historical processing we used a Post-
GreSQL DB with a simple schema given in Fig. 4.

The sensor data for the Measurement table were
generated randomly with a java method. We produced
four different sized CSV files in plain ASCII text with 17
sensors and temperature values between 4°C and 126°C
for every minute. As in other OBDA based systems one
has to specify next to the data source also mappings and
the ontology. These can be found on the accompanying
website to this paper. The ontology is in DL-lite and
covers a simple hierarchy of sensors and values. The
data are read in via a SPARK API from a PostGreSQL
DB and are stored in HDFS. For the latter, the so-
called Parquet data format with Snappy compression®
is used. The Snappy compression is tailored towards
time minimization and not towards space minimization.
Nonetheless, within the tests Snappy was able to com-
press the data to 25 % of the original size. All data such

Shttps://github.com/SimonUzL/STARQL
Shttps://google.github.io/snappy/

https://github.com/SimonUzL/STARQL
https://google.github.io/snappy/

Open Journal of Databases (OJDB), Volume X, Issue X, 20XX

spark00
1 sparkO1 | : spark(02 | : spark03 | 3 spark04 |
| spark05 i | spark06 i l spark07 i l spark08 i
1 data node ! 1 data node ! 1 data node ! 1 data node !

Hadoop File System (HDFS)

Figure 3: Spark cluster configuration for tests

Assembly (Id, Name)
Sensor (Id,Assemblypart, Name, Type)

Assemblypart (Id, Name, Part)
Measurement (Timestamp, Sensor,Value)

Figure 4: Schema for Sensor Data

as those from the PostGreSQL table Measurement
are registered via a name in a catalog such that they
can be referenced within SQL queries. Then, all SQL
queries resulting from a transformation of the STARQL
queries are executed in a loop. All interim results of
the SQL queries are calculated and stored with their
name in the catalog. Only for the measurement data a
non-sql construct was used: In order to group the data
w.r.t. the specified window intervals, we relied on the
SPARKStructuredStreaming window described before.

For an adequate comparison of SPARK SQL with
PostGreSQL w.r.t. query answering times we set up next
to the SPARK cluster configuration mentioned above
also a SPARK configuration using only one core of the
processor on the master VM because PostGreSQL can
use only one core per session. Moreover, PostGreSQL
was also installed on the master VM.

For the comparison we used two different files with
randomly generated measurements, a 2,7 MB file and a
1 GB file. As can be seen from Table 1, SPARK manages
to process the 1 GB data file faster than PostGreSQL
does—even if configured to use one core only. Only
in case of the Filter query, PostGreSQL is faster than
SPARK with one core. An explanation for this is that
there is an index over the data with which PostGreSQL
finds relevant data quite faster than SPARK—SPARK
does not provide means of indexing. This latter fact of
SPARK being slower than PostGreSQL in answering the
Filter query holds also for the smaller data file. Even
more it is also slower regarding the TempPeaks query.
If one uses the whole cluster then SPARK in general is
slower than PostGreSQL due to the overhead produced
by scheduling, starting the tasks, and moving the data
around within the cluster.

We tested the scalability of the SPARK cluster by
rising the number of worker VMs. For this, SPARK

1 GBRecord —@—
2GBRecord —@—

Processing time in minutes

Nodes

(a) Scalability w.r.t. STARQL query TempPeak

12
1l

10
9
8
7
6
S

Nodes

shuffle —@—

Processing time in seconds

(b) SQL query with a Group By

Figure 5: Scalability test results

was configured such that on every VM one worker with
4 executors was started. Every executor is assigned
one of the four available cores. In order to assign also
the operating system ram, only 6 GB of the 8 GB was
assigned to the worker. Only 1TB hard disk of SPARK
was used to store interim results from the ram. So, no
two VMs have written jointly on a disk.

As illustrated in Figure 5(a) the query answering times
decrease with increasing number of worker VMs up to
some limit number. In case of the GB data file this limit
is given by 4 nodes. Using more than 4 nodes makes the
query answering times even worse—which may be due

Simon Schiff, Ralf Moller, Ozgiir L. Ozcep

Query PostGreSQL | SPARK with 1 core | SPARK cluster | data size
Filter 12min 33sec 20min 41sec Smin 24sec
MonlInc 4h 17min 7sec 1h 31min 34sec 11min 29sec
Max > 40h 2h 5min 9sec 16min 56sec 1GB
TempPeaks | 4h 3min 58sec 1h 43m 23sec 10min 13sec
Filter 2sec 12sec 17sec
Monlnc 34sec 25sec 36sec
Max 3min 45s 26sec 34sec 2,7 MB
TempPeaks 10sec 20sec 27sec

Table 1: Using PostGreSQL vs. SPARK SQL as backend for 1 GB & 2,7 MB data

to the order in which the worker VMs were chosen. Pairs
of workers are running on a data node. During the test
the VMs were chosen such that no two of them access
the data on the data node at the same time. The pairs of
workers have a common hard disk controller and use the
same network adapter.

Figure 5(b) shows the results of running a simple SQL
query (Fig. 6) on the 1 GB file with Measurement
data: This query leads to heavy data load in the cluster

SELECT sensor, avg (value),

max (value), count (value)
FROM measurement
GROUP BY sensor

Figure 6: Test SQL query on measurement data

network. Here we used the same order of choosing the
workers as for the experiment from Figure 5(a). Indeed,
starting from 4 nodes the response times increase. For
larger data files (2 GB say) this is mitigated.

Whereas the tests for historical reasoning reported
above were conducted on randomly generated measure-
ment data, the results reported in the following concern
a fragment of the large data set which was provided by
SIEMENS on a hard disk in the OPTIQUE project. For
the tests with SPARK we took a 69 GB file containing
anonymized measurement data of 3900 sensors in a
range of 6 years. Next to the concrete query answering
times for the 69 GB data set, we give in Table 2 rough
estimations of the required query answering times inter-
polated to the 1.5TB data set, the full set of SIEMENS
data. We used the four STARQL queries mentioned
before.

Considering the query answering times, one can see
that there are still opportunities for optimizations of the
STARQL + Ontop + SPARK engine. In particular, for
the big data set we realized that we could not use the
configuration that was used in case of the PostGreSQL
backend. Successful query answering without crashes

over the 69 GB data set was possible only with a new
configuration. A look in the logs revealed that some
partitions could not be found. The reason was that some
of the nodes were overloaded with processing their jobs
so that they could not react to requests of other nodes
in time. Because of this fact we configured the SPARK
cluster such that every executor is allowed to use only
3 of 4 cores. Furthermore every VM was given 12 GB
RAM instead of 8 GB so that the operating system could
use 4 GB and rely on one core.

For the queries Filter, Monlnc, and TempPeaks
we made further configuration changes: The
spark.reducer.maxSizeInFlight specifies
the buffer size of each task. It was decreased from
48m to 4m. The spark.default.parallelism
parameter determines the possible number of partitions
of the results. It was set to 10000.

For the Max query even these adaptations could
not prevent memory out of bound exceptions. Hence
spark.default.parallelism was increased to
30000 and spark.shuffle.partitions was set
to 3000. With the latter, smaller partitions are kept within
the shuffle phase in the working memory.

SPARKStream provides an API to realtime data. As
mentioned before, a drawback of SPARKStream is the
fact that it supports only RDDs and not DataFrames,
which are required in order to apply SPARK SQL.
Hence, first, one has to transform RDDs to DataFrames,
second, query the DataFrames with SPARK SQL query-
ing and then retransform into RDDs. But as DataFrames
have schemes this means that one has to invent a schema
before the SPARK application can be run.

In order to test the streaming application, we wrote
a small temperature value software that generates every
minute some random temperature value where the num-
ber of sensors can be chosen by the user of the generator.
For all queries the window was specified with a one-
minute update. The query answering times for queries
Monlinc and TempPeaks are proportional to the number
of sensors.

Open Journal of Databases (OJDB), Volume X, Issue X, 20XX

Query ‘ SPARK with 69 GB | Estimation for SPARK with 1.5 TB
Filter 5h 27m 43s 5d
Monlnc 25h 25m 8s 23d
Max 19h 36m 9s 18d
TempPeaks 26h 51m 34s 25d

Table 2: Query answering times for SIEMENS measurement data

60

50

40

30

20

Processing time in seconds

10

Moninc —s—
TempPeaks ——

o
‘70000
]

% 4 <z < e @
G 7 Q s Q ;
9, %, 9, 0, 0, 0,

%,
G
0 % % % 127} 127} 127}

Num of Sensors per minute

Figure 7: Query answering times depending on num-
ber of sensors

5 RELATED WORK

With its unique features partly illustrated above, namely
its sequencing operation, its support of time-series
functions, and its specific (window) semantics, previ-
ous STARQL engines complemented the collection of
state-of-the-art RDF stream processing engines, among
them the engines for the languages C-SPARQL [4],
CQELS [28], SPARQLStream [8], EP-SPARQL [1],
TEF-SPARQL [18] and StreamQR [9]. An overview of
all features supported by the STARQL in comparison to
other RDF stream engines can be found in [17].

With the new OBDA system on the basis of STARQL
and SPARK we provide one of the few OBDA imple-
mentations that use a non-relational database system
as backend. [7] reports on a OBDA system using
the NoSQL MongoDB. [21] and [5] give theoretical
considerations on how to handle NoSQL DBs that are
based on key-value records. Our system is unique in
that it exploits the streaming capabilities of a cluster
framework used as backend system.

6 CONCLUSION

This paper described a proof-of-concept implementation
of an OBDA system that uses a cluster framework as
a backend. As we relied on the SQL API of the
SPARK framework, the adaptation of an already present
OBDA system is easy. But guaranteeing scalable query

answering requires tuning of various parameters of the
cluster. And even then, it is not guaranteed to have
achieved the possible optimum which would require
using native operators on the backend instead of the
SQL APIL In future work we plan to address a direct
compilation of STARQL to native SPARK functions on
RDDs. An additional item for future work is to use
SPARKStructuredStreaming instead of SPARKStream
as backend.

REFERENCES

[1] D. Anicic, P. Fodor, S. Rudolph, and N. Stojanovic,
“Ep-sparql: a unified language for event processing
and stream reasoning,” in WWW, 2011, pp. 635—
644.

M. Armbrust, R. S. Xin, C. Lian, Y. Huai, D. Liu,
J. K. Bradley, X. Meng, T. Kaftan, M. J. Franklin,
A. Ghodsi, and M. Zaharia, “Spark SQL: Rela-
tional data processing in spark,” in Proceedings of
the 2015 ACM SIGMOD International Conference
on Management of Data, ser. SIGMOD °15. New
York, NY, USA: ACM, 2015, pp. 1383-1394.

A. Artale, R. Kontchakov, F. Wolter, and M. Za-
kharyaschev, “Temporal description logic for
ontology-based data access,” in IJCAI 2013, 2013,
pp. 711-717.

D. F. Barbieri, D. Braga, S. Ceri, E. D. Valle, and
M. Grossniklaus, “C-sparql: a continuous query
language for rdf data streams,” Int. J. Semantic
Computing, vol. 4, no. 1, pp. 3-25, 2010.

(2]

(3]

(4]

[5] M. Bienvenu, P. Bourhis, M. Mugnier, S. Tison,
and F. Ulliana, “Ontology-mediated query
answering for key-value stores,” in Proceedings
of the Twenty-Sixth International Joint Conference
on Artificial Intelligence, IJCAI 2017, Melbourne,
Australia, August 19-25, 2017, C. Sierra, Ed.
ijcai.org, 2017, pp. 844-851. [Online]. Available:

https://doi.org/10.24963/ijcai.2017/117

[6] S. Borgwardt, M. Lippmann, and V. Thost, “Tem-
poral query answering in the description logic DL-
Lite,” in FroCos 2013, ser. LNCS, vol. 8152, 2013,

pp. 165-180.

https://doi.org/10.24963/ijcai.2017/117

Simon Schiff, Ralf Moller, Ozgiir L. Ozcep

(7]

(8]

(9]

[10]

[11]

[12]

[13]

[14]

[15]

E. Botoeva, D. Calvanese, B. Cogrel, M. Rezk, and
G. Xiao, “OBDA beyond relational DBs: A study
for MongoDB,” in Proceedings of the 29th Interna-
tional Workshop on Description Logics (DL 2016),
ser. CEUR Electronic Workshop Proceedings, vol.
1577. CEUR-WS.org, 2016.

J.-P. Calbimonte, O. Corcho, and A. J. G.
Gray, “Enabling ontology-based access to
streaming data sources,” in Proceedings of
the 9th international semantic web conference
on The semantic web - Volume Part I, ser.
ISWC’10. Berlin, Heidelberg: Springer-Verlag,
2010, pp. 96-111. [Online]. Available: http:
//dl.acm.org/citation.cfm?id=1940281.1940289

J.-P. Calbimonte, J. Mora, and O. Corcho, “Query
rewriting in rdf stream processing,” in Proceedings
of the 13th International Conference on The Se-
mantic Web. Latest Advances and New Domains
- Volume 9678. Berlin, Heidelberg: Springer-
Verlag, 2016, pp. 486-502.

D. Calvanese, B. Cogrel, S. Komla-Ebri,
R. Kontchakov, D. Lanti, M. Rezk, M. Rodriguez-
Muro, and G. Xiao, “Ontop: Answering SPARQL
queries over relational databases,” Semantic Web,
vol. 8, no. 3, pp. 471-487, 2017. [Online].
Auvailable: https://doi.org/10.3233/SW-160217

D. Calvanese, G. De Giacomo, D. Lembo,
M. Lenzerini, A. Poggi, M. Rodriguez-Muro, and
R. Rosati, “Ontologies and databases: The DL-
Lite approach,” in 5th Int. Reasoning Web Summer
School (RW 2009), ser. LNCS. Springer, 2009,
vol. 5689, pp. 255-356.

J. Dean and S. Ghemawat, “Mapreduce: Simplified
data processing on large clusters,” in OSDI, 2004,
pp. 137-150.

E. Della Valle, S. Ceri, D. Barbieri, D. Braga, and
A. Campi, “A first step towards stream reason-
ing,” in Future Internet — FIS 2008, ser. LNCS.
Springer, 2009, vol. 5468, pp. 72-81.

M. Giese, A. Soylu, G. Vega-Gorgojo, A. Waaler,
P. Haase, E. Jiménez-Ruiz, D. Lanti, M. Rezk,
G. Xiao, O. L. Ozcep, and R. Rosati, “Optique:
Zooming in on big data,” IEEE Computer, vol. 48,
no. 3, pp. 60-67, 2015. [Online]. Available:
http://dx.doi.org/10.1109/MC.2015.82

E. Kharlamov, S. Brandt, E. Jiménez-
Ruiz, Y. Kotidis, S. Lamparter, T. Mailis,
C. Neuenstadt, O. L. Ozgep, C. Pinkel,
C. Svingos, D. Zheleznyakov, 1. Horrocks,
Y. E. Ioannidis, and R. Mdller, “Ontology-based
integration of streaming and static relational

[16]

[17]

[18]

[19]

[20]

[21]

[22]

data with optique,” in Proceedings of the
2016 International Conference on Management
of Data, SIGMOD Conference 2016, San
Francisco, CA, USA, June 26 - July 01, 2016,
F. Ozcan, G. Koutrika, and S. Madden, Eds.
ACM, 2016, pp. 2109-2112. [Online]. Available:
http://doi.acm.org/10.1145/2882903.2899385

E. Kharlamov, Y. Kotidis, T. Mailis, C. Neuen-
stadt, C. Nikolaou, O. L. Ozgep, C. Svingos,
D. Zheleznyakov, S. Brandt, I. Horrocks, Y. E.
Ioannidis, S. Lamparter, and R. Moller, “Towards
analytics aware ontology based access to static and
streaming data,” in The Semantic Web - ISWC 2016
- I5th International Semantic Web Conference,
Kobe, Japan, October 17-21, 2016, Proceedings,
Part I, ser. Lecture Notes in Computer Science,
P. T. Groth, E. Simperl, A. J. G. Gray, M. Sabou,
M. Krotzsch, F. Lécué, F. Flock, and Y. Gil, Eds.,
vol. 9982, 2016, pp. 344-362.

E. Kharlamov, T. Mailis, G. Mehdi, C. Neuen-
stadt, O. L. Ozgep, M. Roshchin, N. Solomakhina,
A. Soylu, C. Svingos, S. Brandt, M. Giese, Y. loan-
nidis, S. Lamparter, R. Moller, Y. Kotidis, and
A. Waaler, “Semantic access to streaming and static
data at Siemens,” Web Semantics: Science, Services
and Agents on the World Wide Web, vol. 44, pp. 54—
74, 2017.

J.-U. Kietz, T. Scharrenbach, L. Fischer, M. K.
Nguyen, and A. Bernstein, “Tef-sparql: The ddis
query-language for time annotated event and fact
triple-streams,” University of Zurich, Department
of Informatics (IFI), Tech. Rep. IFI-2013.07, 2013.

H. Kllapi, P. Sakkos, A. Delis, D. Gunopulos,
and Y. Ioannidis, “Elastic processing of analytical
query workloads on iaas clouds,” arXiv preprint
arXiv:1501.01070, 2015.

R. Moller, C. Neuenstadt, and Ozgiir. L. Ozcep,
“Deliverable D5.2 — OBDA with temporal and
stream-oriented queries: Optimization techniques,”
EU, Deliverable FP7-318338, October 2014.

M. Mugnier, M. Rousset, and F Ul-
liana, “Ontology-mediated queries for NOSQL
databases,” in Proceedings of the 29th
International Workshop on Description Logics,
Cape Town, South Africa, April 22-25,
2016., ser. CEUR Workshop Proceedings,
M. Lenzerini and R. Penaloza, Eds., vol.
1577. CEUR-WS.org, 2016. [Online]. Available:
http://ceur-ws.org/Vol-1577/paper_27.pdf

C. Neuenstadt, R. Mdller, and Ozgiir. L. Ozcep,
“OBDA for temporal querying and streams with
STARQL,” in HiDeSt ’15—Proceedings of the

http://dl.acm.org/citation.cfm?id=1940281.1940289
http://dl.acm.org/citation.cfm?id=1940281.1940289
https://doi.org/10.3233/SW-160217
http://dx.doi.org/10.1109/MC.2015.82
http://doi.acm.org/10.1145/2882903.2899385
http://ceur-ws.org/Vol-1577/paper_27.pdf

Open Journal of Databases (OJDB), Volume X, Issue X, 20XX

[23]

[24]

[25]

[26]

[27]

(28]

[29]

[30]

First Workshop on High-Level Declarative Stream
Processing (co-located with KI 2015), ser. CEUR
Workshop Proceedings, D. Nicklas and Ozgiir. L.
Ozcep, Eds., vol. 1447. CEUR-WS.org, 2015, pp.
70-75.

0. L.. Ozcep and R. Moller, “Ontology based
data access on temporal and streaming data,” in
Reasoning Web. Reasoning and the Web in the Big
Data Era, ser. Lecture Notes in Computer Science,
M. Koubarakis, G. Stamou, G. Stoilos, I. Horrocks,
P. Kolaitis, G. Lausen, and G. Weikum, Eds., vol.
8714.,2014.

O. L. Ozcep, R. Moller, C. Neuenstadt,
D. Zheleznyakov, and E. Kharlamov, “Deliverable
D5.1 — a semantics for temporal and stream-based
query answering in an OBDA context,” EU,
Deliverable FP7-318338, October 2013.

O. L. Ozgep, C. Neuenstadt, and R. Moller,
“Deliverable d5.4—optimizations for temporal and
continuous query answering and their quantitative
evaluation,” EU, Deliverable FP7-318338, October
2016.

ngﬁr. L. Ozgep, R. Mboller, and C. Neuenstadt,
“A stream-temporal query language for ontology
based data access,” in KI 2014, ser. LNCS, vol.
8736. Springer International Publishing Switzer-
land, 2014, pp. 183-194.

Ozgiir. L. Ozgep, R. Moller, and C. Neuenstadt,
“Stream-query compilation with ontologies,” in
Poceedings of the 28th Australasian Joint Confer-
ence on Artificial Intelligence 2015 (Al 2015), ser.
LNALI B. Pfahringer and J. Renz, Eds., vol. 9457.
Springer International Publishing, 2015.

D. L. Phuoc, M. Dao-Tran, J. X. Parreira, and
M. Hauswirth, “A native and adaptive approach
for unified processing of linked streams and linked
data,” in The Semantic Web - ISWC 2011 - 10th In-
ternational Semantic Web Conference, Bonn, Ger-
many, October 23-27, 2011, Proceedings, Part I,
ser. Lecture Notes in Computer Science, L. Aroyo,
C. Welty, H. Alani, J. Taylor, A. Bernstein, L. Ka-
gal, N. F. Noy, and E. Blomqvist, Eds., vol. 7031.
Springer, 2011, pp. 370-388.

M. M. Tsangaris, G. Kakaletris, H. Kllapi, G. Pa-
panikos, F. Pentaris, P. Polydoras, E. Sitaridi,
V. Stoumpos, and Y. E. Ioannidis, “Dataflow pro-
cessing and optimization on grid and cloud infras-
tructures.” IEEE Data Eng. Bull., vol. 32, no. 1, pp.
67-74, 2009.

M. Zaharia, M. Chowdhury, T. Das, A. Dave,
J. Ma, M. McCauley, M. J. Franklin, S. Shenker,

10

and I. Stoica, “Resilient distributed datasets: A
fault-tolerant abstraction for in-memory cluster
computing,” in Proceedings of the 9th USENIX
Conference on Networked Systems Design and
Implementation, ser. NSDI'12. Berkeley, CA,
USA: USENIX Association, 2012, pp. 2-2.
[Online]. Available: http://dl.acm.org/citation.cfm?
1d=2228298.2228301

AUTHOR BIOGRAPHIES

Simon Schiff is a master student
in Computer Science at the In-
stitute of Information Systems
(University of Liibeck) men-
tored by Ralf Moller. The results
of his bachelor thesis are the
main contributions to this paper.
He is preparing his master thesis
for optimizing stream query pro-
cessing within the STARQL en-
gine using an incremental win-
dow update algorithm.

Ralf Moller is Full Professor for
Computer Science at University
of Liibeck and heads the In-
stitute of Information Systems.
He was Associate Professor for
Computer Science at Hamburg
University of Technology from
2003 to 2014. From 2001 to
2003 he was Professor at the
University of Applied Sciences in Wedel/Germany. In
1996 he received the degree Dr. rer. nat. from the
University of Hamburg and successfully submitted his
Habilitation thesis in 2001 also at the University of
Hamburg. Prof. Moller was a co-organizer of several
international workshops and is the author of numerous
workshop and conference papers as well as several book
and journal contributions (h-index 33). He served as
a reviewer for all major journals and conference in the
knowledge representation and reasoning area, and has
been PI in numerous EU projects. In the EU FP7 project
Optique (wWww.optique.org), in which abstraction for
data access involving ontologies and first-order mapping
rules have been investigated in the context of integrating
high-pace streaming and high-volume static data, he was
the leader of the work package on time and streams.

http://dl.acm.org/citation.cfm?id=2228298.2228301
http://dl.acm.org/citation.cfm?id=2228298.2228301

Simon Schiff, Ralf Moller, Ozgiir L. Ozcep

Ozgiir Liitfii Ozcep is a mem-
ber of the Information Systems
Institute at University of Liibeck
since 2014. He worked as a post-
doc researcher at Hamburg Uni-
versity of Technology (TUHH)
from 2010 to 2014. Before
joining TUHH he did his PhD
at University of Hamburg as a
researcher in the Institute for
Knowledge and Language Pro-
cessing and has taught different
course on logics, software pro-
gramming and knowledge based systems. His PhD
thesis dealt with aspects of belief revision, a highly
interdisciplinary research topic lying in the intersection
of logics, computer science, theory of sciences, and
philosophy. After his PhD thesis he contributed to
research on combining/extending description logics with
other knowledge representation formalisms such as spa-
tial logics—as done in the DFG funded project GeoDL—
and to research on ontology-based stream processing—
as done in the EU FP7 project Optique. Currently he
is habilitating on representation theorems in computer
science.

11

	Introduction
	Obda with Starql
	Apache Spark Clusters
	Starql-Spark Engine: Implementation & Tests
	Related Work
	Conclusion

