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{kuhr,braun,m.bender,moeller}@ifis.uni-luebeck.de

http://www.ifis.uni-luebeck.de

Received (Day Month Year)
Revised (Day Month Year)

Accepted (Day Month Year)

An agent in pursuit of a task may work with a reference library containing documents

associated with additional data that provide location-specific explanations about the
content. Faced with a new document, an agent has to decide whether to include the new

document in its reference library. Basing the decision on words, topics, or entities has

shown not to lead to a balanced performance for varying documents. In this article, we
present an approach for automatically enriching new documents with data associated

to documents in a reference library. Additionally, we analyse these data to classify new

documents into categories to help an agent in deciding whether to include the new
document in its reference library.

Keywords: Subjective Content Descriptions; Corpus Enrichment; Text Mining.

1. Introduction

An agent in pursuit of a task, explicitly or implicitly defined, may work with an

individual set of documents (corpus) as a reference library. We assume that the

individual collection of documents represents a specific context in which an agent

performs its task. From an agent-theoretic perspective, an agent is a rational, au-

tonomous unit acting in a world, perceiving through sensors, and fulfilling a defined

task, e.g., providing document retrieval services given requests from users. We as-

sume that documents in a corpus are associated with additional location-specific

data making the content explicit by providing descriptions, references, or expla-

nations about the content in documents, and we denote these data as subjective

content descriptions (SCDs).

The documents in a corpus play an important role for an agent’s task, and

the associated SCDs are optimized for the task. An agent might be interested in

extending a corpus with a new document only if the content of the new document is

relevant for the task of the agent, e.g., the new document contains content related

to the content of other documents in the corpus. But, what should an agent do
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if presented with a new document, which typically has no associated SCDs? The

question for the agent is: Does the content of a new document provide anything of

value to add in the context of a given corpus? Generally, an agent can classify new

documents into categories, where each category represents the relationship between

the content of new documents and the content of documents in the corpus. We

use the following four document categories: (i) sim - new document is similar to

at least one document in the corpus, (ii) ext - new document is an extension of a

document in the corpus, (iii) rev - new document is a revision of a document in

the corpus, and (iv) unrel - new document is unrelated to all documents in the

corpus. Additionally, we can argue that a new document provides a value for the

task of an agent if the document is classified into category sim, ext, or rev, since

a document classified to one of those three categories contains content related to

content of documents in the corpus. We denote the process of extending a corpus

with documents adding value with the notion corpus enrichment.

Given a corpus containing documents associated with SCDs, we can correlate

SCDs and words in a window around the SCDs from documents in the corpus

resulting in SCD word frequency vectors, one vector for each SCD. We use a word

frequency vector to represent each SCD instead of a bit vector, since SCDs are not

unique and a SCD might occur more than once. Faced with a new document having

no SCDs, an agent can divide a new document into windows and generate a word

frequency vector from the words in each window to estimate the most probably

suited SCDs (MPSCDs) for the document by comparing the word frequency vector

of each window with the word frequency vector of each SCD of the corpus.

In this work, we use the cosine similarity to compare the word frequency vector

of a window with the word frequency vectors of all SCDs associated to documents

in the corpus by calculating the distance between the vectors. We add the SCD to

a window where the corresponding word frequency vector has the smallest distance

(highest cosine similarity) to the word frequency vector of the window and we

denote the SCD as the MPSCD. We argue to divide a new document into windows

and estimate for each window the corresponding MPSCD resulting in a sequence of

MPSCDs, where each MPSCD is associated with a location in the new document

and contains a similarity value. For a new, unrelated document even the vectors

associated to the MPSCDs have a large distance to the word frequency vector of

the new document resulting in a sequence of low similarity value.

We assume that the relatedness of a window’s content to the task of an agent

has an impact on the relatedness of the content in the next window. Different

approaches exist to model the sequential impact. In this article, we use hidden

Markov models (HMMs) modelling the sequential impact and use the relatedness

of the content (related/unrelated) as hidden states and MPSCD similarity values

as observations.

To estimate the category of a new document, we perform the following steps.

First, we learn for each of the four document categories a corpus-specific HMM

where each slice in an HMM concerns a window in a document and the hidden
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state in the HMMs concerns whether the SCD in the window is related or unrelated

to the agent’s task. Second, given a new document, we estimate for each window

an MPSCD and use the corresponding sequence of MPSCD similarity values as

observable input data for the Viterbi algorithm [1] to estimate the most likely se-

quence of related/unrelated content (hidden states) for each of the four previously

learned HMMs. This technique results in four probability values, one for each of the

estimated most likely sequences of related/unrelated content. We can use the prob-

ability values to rank the most likely sequences. The category of the new document

is given by the category corresponding to the HMM resulting in the sequence with

highest probability.

Additionally, an agent can use the most likely sequence of hidden states to

augment corpus enrichment with providing location-specific information about new

data within the context of the specific corpus. If the agent decides to extend its

corpus with new documents based on the documents’ category it can even choose

to retain the initially estimated MPSCDs, possibly adapting them with new SCDs,

and use them as a basis for enriching SCDs in the corpus, in an automatic way [2,3].

Specifically, the contributions of this article are:

(i) Solving the problem of classifying new documents in a context-specific way.

(ii) Providing a decision making procedure for corpus enrichment based on the

classification of new documents.

(iii) Presenting two approaches for optimizing the quality of initially estimated

SCDs for new documents by (a) adapting the size and position of MPSCD

windows in a new document, and (b) considering only a subset of documents

from the corpus having a high similarity with new documents, and

(iv) presenting a case study regarding the classification performance of new docu-

ments for three different corpora as well as the performance of the two opti-

mization techniques.

The remainder of this article is structured as follows: We start with a look at

related work. Then, we specify notations and recap the purpose of SCDs. Next,

we present HMM-based document classification and the decision making procedure

for corpus enrichment. We also discuss augmenting corpus enrichment by providing

location-specific information about new data, followed by optimization techniques

for SCDs. Afterwards, we present a case study and conclude.

2. Related Work

Over the past 20 years, a considerable number of automatic (semantic) annotation

systems have been developed. Generally, these annotation systems attach addi-

tional data to various concepts, e.g., people, organizations, or places in a given text

enriching the documents with machine-processable data. Some famous automatic

annotation systems are YEDDA [4], Slate [5], MINTE [6], YAGO [7], or KDTA [8].

For further annotation systems please refer to [9]. Some annotation systems like
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OpenCalais [10] even automatically attaches data from DBpedia [11] to extractable

named entity (NE) in the text. Generally, the extractable NEs are matched to data

in a knowledge bases (KBs) to add additional data from the KB to the document.

Some well-known KBs containing common-sense data are DBpedia [11], NELL [12],

and KnowledgeVault [13]. Link prediction may identify semantic annotations for

an entity, which can be described as the task of estimating the likelihood of a link

(relation) existing between nodes (entities), given the links, and attributes of nodes

in a graph [14]. Annotation systems aim at developing a graph augmented with

common-sense knowledge from external sources. The systems efficiently solve their

underlying problem.

However, in this article we investigate a different problem, namely add SCDs to

a new document, classify the document to a category, and decide if an agent should

extend a reference library with the new document, since automatic annotation sys-

tems ignore the context of a reference library.

Surveying methods of text mining, one can base a decision if a new document

provides a value for an agent on different aspects, e.g., (i) similarity of text in the

spirit of tf.idf [15], comparing a vector representation of a new document with vector

representations of the documents in the corpus, (ii) similarity of topics in the spirit

of latent Dirichlet allocation (LDA) [16], comparing an estimated topic distribution

of a new document with topic distributions of documents in a given corpus, or

(iii) entity matching [17] using named-entity recognition (NER), comparing entities

(and relations) retrieved from the new document with entities (and relations) from

SCDs in the corpus. All three approaches have drawbacks: The first two, based on

bag-of-words, ignore SCDs and the order of words. Additionally, the approaches

make it difficult to model that a document has to add value, i.e., not be a rephrased

copy of an existing document or contain only unrelated data. The last approach

has the problem that NER tools might not generate annotations in the context of

the task leading to very few matches with SCDs of the corpus. Additionally, the

decision in each case is a one-dimensional decision, based on only one feature of

the documents. Therefore, we aim at providing an approach to automatically make

a multi-dimensional decision that considers the documents’ content and context of

the task by looking at the individual collection of documents.

Another class of related work deals with HMM-based classification. Classifica-

tion and statistical learning using HMMs has achieved remarkable progress in the

past decades. Using an HMM is a well-investigated stochastic approach for modeling

sequential data, and the generation process of HMMs has been successfully applied

in a variety of fields, such as speech recognition [18], character recognition [19],

finance data prediction [20,21], credit card fraud detection [22], and workflow min-

ing [23]. Most systems learn an HMM by the Baum-Welch algorithm [24], which is

a special case of the EM algorithm [25]. The goal of an HMM is estimating the most

likely sequence of hidden states in a dynamic programming fashion by the Viterbi

algorithm [1].
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3. Preliminaries

This section specifies notations we use in the approach for augmenting and au-

tomating corpus enrichment of new documents and gives a brief overview of SCDs.

3.1. Notation

We define the following terms to formalize the setting of a corpus containing docu-

ments, where each document is associated with a set of additional data, i.e., SCDs.

• A word w is a basic unit of discrete data from a given vocabulary

V=(w1, . . . , wN ),N ∈ N, and can be represented a word w as a one-hot

vector of length N having a value of 1 where w = wi and 0’s otherwise.

• A document d is represented by a sequence of D words (wd1 , . . . , w
d
D), where

each word wdi ∈ d is a subset of vocabulary V. The function #words(d)

returns the total number of words occurring in document d.

• A corpus D represents a set of Z ∈ N documents {d1, . . . , dZ} and we

assume that the documents in a corpus represent a reference library for a

specific task. The function V (D) returns the corpus-specific vocabulary V
representing the set of all words occurring in the documents of corpus D.

• An SCD t is an RDF triple of the form subject-predicate-object and t can

be associated with a position ρ in a document d. We use the term located

SCDs interchangeably for associated SCDs and represent a located SCD t

by the tuple {(t, {ρi}li=1)}, where {ρi}li=1 represents the l ∈ N positions in

document d the SCD t is associated with.

• For each document d ∈ D there exists a set g denoted as SCD set containing

a set of m located SCDs {(tj , {ρi}
lj
i=1)}mj=1. Given a document d or a set

g, the terms g(d) and d(g) refer to the set of located SCDs in document

d and the corresponding document d, respectively. The set of all located

SCDs tuples in corpus D is then given by g(D) =
⋃
d∈D g(d).

• An agent can classify a new document d′ based on the documents in cor-

pus D using the classification function classifyD(d′) returning one of the

following four categories given document d′ and corpus D: (i) sim - new

document is similar to at least one document in D, (ii) ext - new document

is an extension of a document in D, (iii) rev - new document is a revision

of a document in D, and (iv) unrel - new document is unrelated to all

documents in the corpus. The set C contains all categories.

• For each located SCD tj in g(d) exists an corresponding SCD window wind,ρ
that refers to a sequence of words in document d surrounding the position ρ

in d, i.e., wind,ρ=(wd(ρ−i), ..., w
d
ρ, ..., w

d
(ρ+i)), i ∈ N and position ρ marks the

middle of the window. The window-specific position of a word wd ∈ wind,ρ
is given by pos(wd, wind,ρ) (0-based numbering) and the size of window

wind,ρ is given by s(wind,ρ) = 2i+ 1.

• Each word wd ∈ wind,ρ is associated with an influence value I(wd, wind,ρ)
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Algorithm 1 Forming SCD-word distribution matrix δ(D)

1: function buildMatrix(Corpus D)

2: Input: D
3: Output: δ(D)

4: Initialize an m× n matrix δ(D) with zeros

5: for each d ∈ D do

6: for each t, ρ ∈ g(d) do

7: for each w ∈ wind,ρ do . Iterates over ρ

8: δ(D)[t][w] += I(w,wind,ρ)

9: Normalize δ(D)[t] . See [26]

10: return δ(D)

representing the distance in the text between a word wd and position ρ.

The closer a word wd is positioned to the position ρ in wind,ρ, the higher

its corresponding influence value I(wd, wind,ρ). The influence value of a

word wd at pos(wd, wind,ρ) is distributed binomial, i.e., I(wd, wind,ρ) =(
n
k

)
· qk · (1− q)n−k, where n = s(wind′,ρ), k = pos(wd, wind,ρ), and q = ρ

n .

3.2. The Purpose of Subjective Content Descriptions

Subjective content descriptions are associated with positions in documents and

add value to the task of an agent, e.g. SCDs might optimize the performance of a

document retrieval service. We generate an additional representation for each SCD

by taking a vector of length n, where n = |V (D)| s.t. each vector entry refers to a

word in the vocabulary V of corpus D. The entry itself is a probability describing

how likely it is that a word occurs in an SCD window surrounding the position

associated with the SCD, yielding an SCD-word distribution for each SCD.

Algorithm 1 generates the SCD-word distribution for all m SCDs in g(D). The

distribution is represented by an m×n matrix δ(D), with the SCD-word distribution

vectors forming the rows of the matrix:

δ(D) =



w1 w2 w3 · · · wn

t1 v1,1 v1,2 v1,3 · · · v1,n

t2 v2,1 v2,2 v2,3 · · · v2,n
...

...
...

...
...

...

tm vm,1 vm,2 vm,3 · · · vm,n

 (1)

In Algorithm 1, we fill SCD-word distribution matrix δ(D) based on the SCDs

and words occurring in the documents of corpus D using a maximum-likelihood

strategy such that we count for each SCD t the number of occurrences of each word
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Algorithm 2 Estimating MPSCDs

1: function mpSCD(Document d′, Int M , Matrix δ(D))

2: Input: d′, M , δ(D)

3: Output: g(d′), W
4: σ ← #words(d′)

M , ρ← σ
2 , W ← ∅

5: for ρ← σ
2 ; ρ ≤ #words(d′); ρ+ = σ do

6: Set up wind′,ρ of size σ around ρ with t = ⊥
7: δ(wind′,ρ)← new zero-vector of length n

8: for w ∈ wind′,ρ do

9: δ(wind′,ρ)[w]+ = I(w,wind′,t,ρ)

10: t← arg maxti
δ(D)[i]·δ(wind′,ρ)
|δ(D)[i]|·|δ(wind′,ρ)|

in wind′,ρ

11: sim← maxti
δ(D)[i]·δ(wind′,ρ)
|δ(D)[i]|·|δ(wind′,ρ)|

12: W ←W ∪ {(sim,wind′,ρ)}
13: g(d′)← g(d′) ∪ {t}
14: return g(d′), W

w in the corresponding windows wind,ρ of all documents in D and all positions. The

occurrences are weighted by the influence value of each word in a window. The rows

in δ(D) are normalized to yield a distribution again, i.e., the values of each row sum

to 1. Generally, we can calculate the M most probable SCDs for a new document d′

given the SCD-word distribution matrix δ(D) and the sequence of words occurring

in d′ by partitioning d′ into M segments s.t. each segment represents one window.

We compute the M MPSCDs for d′ by building a vector representation δ(wind′,ρ)

for each of the M windows using the words in the M windows of d′ and estimate

the SCD from δ(D) that has a vector representation most similar to δ(wind′,ρ). The

SCD t most similar to δ(wind′,ρ) (w.r.t. the cosine similarity) is given by:

arg max
t

δ(D)[t] · δ(wind′,ρ)
|δ(D)[t]| · |δ(wind′,ρ)|

. (2)

Algorithm 2 describes the process of estimating MPSCDs for document d′ using

the corpus-specific SCD-word distribution δ(D) after specifying the number of SCDs

(M) an agent is interested in. The output of Algorithm 2 includes the set of MPSCDs

g(d′), one for each of the M windows, as well as a set of tuples of similarity value

and window for each MPSCD. For further details, we refer to [26].

4. Automatic Corpus Enrichment

This section presents a new approach for augmenting and automatically corpus

enrichment of a new document while considering the context given by the documents

in a corpus. We introduce the problem of classifying a new document d′ given

an individual composition of documents in corpus D, and we present an HMM-

based approach to identify the category of the new document d′ by estimating the
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probability of the most likely sequence of hidden states from the observable MPSCD

similarity values in document d′. We then provide a decision making procedure

and describe how an agent can use the most likely sequence to augment corpus

enrichment with providing location-specific information about new data within the

context of the specific corpus. Even though one might use any identified category

relevant to a specific task, we consider the four document categories sim, ext, rev,

and unrel. Before going into details about document classification techniques, we

first describe each document category in the next section and take a look at the

output of Algorithm 2, specifically at the similarity values to show how document

classification has a chance at success using the sequence of similarity values.

4.1. Document Categories and their Similarity Values

We assume that a document is labelled with a document category and we follow

the idea of [26] that the category of a document can be detected by considering the

MPSCD similarity values. Before presenting details about the document categories,

let us consider an example of all four categories.

Example 1. Assume that we have four documents of similar length and each

of them from one of the four categories sim, ext, rev, and unrel, respectively.

Figure 1 presents the similarity value characteristics of the MPSCDs for each of

the four documents and we use seven windows to segment the content within the

documents. The x-axis represents the SCD window number within each document,

and the values on the y-axis represent the similarity value of the MPSCD. Generally,

the similarity values change slightly between neighbouring windows for both similar

and unrelated documents and only few major shifts between neighbouring windows

are given. But, the MPSCD values of similar documents are considerably higher

compared to unrelated documents. Extending documents are characterized by high

similarity values in the initiating SCD windows and smaller similarity values in the

later windows. The similarity value for the windows’ MPSCD of revision documents

behave like similar documents. However, there exists windows having a significant

change in the similarity value of the neighbouring windows, namely, those windows

having new content which is unrelated in the context of the corpus.

Based on the observations shown in the last example, we describe the document

categories more detailed.

Similar documents (sim). The content of a new document d′ is classified as sim

if the document’s content is related to the content of a subset of documents in corpus

D, i.e., the new document tells about the same event, same persons, or same topics.

Thus, values in the MPSCD similarity sequence are mostly high and contain only

few entries with slightly lower values, i.e., the range of MPSCD similarity values is

small. A new document d′ is a similar document w.r.t. the documents in a corpus
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(a) Similar document.
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(b) Unrelated document.
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(d) Extending document.

Fig. 1: Representation of MPSCD similarity value characteristics for a similar (a),

unrelated (b), revision (c), and extending (d) document in an exemplary way.

D if

∀wind′,ρ ∈ d′ : max
ti

δ(D)[i] · δ(wind′,ρ)
|δ(D)[i]| · |δ(wind′,ρ)|

> th1. (3)

Threshold th1 describes the minimum required relatedness for each window. The

threshold is subjective and depends on the individual composition of documents in

D. We use th1 = 0.7.

Unrelated documents (unrel). The content of a new document d′ is classified

as unrel if the document’s content is unrelated to the content of all documents in

D. The values in the MPSCD similarity sequence of d′ are mostly low and only a

small number of windows contain higher similarity values. Thus, we define a new
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document d′ as an unrelated document w.r.t. the documents in a corpus D if

∀wind′,ρ ∈ d′ : max
ti

δ(D)[i] · δ(wind′,ρ)
|δ(D)[i]| · |δ(wind′,ρ)|

< th2. (4)

Threshold th2 describes the maximum relatedness for each window in document d′.

The threshold is subjective and depends on the individual composition of documents

in D. We use th2 = 0.3.

Extensions (ext). The content of a new document d′, representing an extension

of another document d ∈ D is mostly related to the content of at least one document

in D but additionally contains content which is not available in documents of D,

i.e., the new document is an extended version of another document in corpus D.

Thus, new document d′ can be represented by d′ = [a, b], where a represents the first

windows of d′ containing MPSCD similarity values greater than th1 and b represents

the second part of windows having MPSCD similarity values smaller than th2. We

can represent window property using the following regular expression: a+b+.

Revisions (rev). The content of a new document d′, representing an revision

of another document d ∈ D is generated by appending, replacing, or removing

some sentences of document d. The MPSCD similarity value of most windows is

greater than th1 and the MPSCD similarity value of few windows is less than

th2. We can represent the described behaviour as the following regular expression:

(a+b | b+a)(a | b)∗. Again, a and b represent values greater than th1 and smaller

than th2, respectively.

Next, we define the problem of classifying a new document and present an

approach to solve the problem using an ensemble of four HMMs.

4.2. Document Classification Problem

After estimating the MPSCDs for a new document d′ using Algorithm 2, we can

extract a sequence of MPSCD similarity values over the SCD-windows in d′. The

document classification problem asks for the most probable category of document

d′ given the observable sequence of MPSCD similarity values and documents in D.

More technically, we can represent the classification problem

arg max
c∈C

P (c|W). (5)

As described in the previous section, we follow the idea that if the content in

a window of a new document d′ is (un)related to the agent’s task, then (low) high

similarity values occur, which may vary over the course of a new document, with

known and unknown parts mixing. Generally, we can only look at the observable

MPSCD similarity values, but cannot directly observe if the content in a window is

(un)related to the task of an agent. The consequence of this consideration is that

we have a sequence of hidden states, encoding the relatedness of the document’s
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a12

yl ym yh

b2(y3)

Fig. 2: HMM – hidden states {s1, s2} emitting observation symbols {yl, ym, yh}.

content, and a sequence of observations given by the similarity values of MPSCDs.

Together, we can model the described setup as an hidden Markov model. We are

interested in solving the document classification problem by learning four HMMs,

one for each category of documents, determining the most likely sequence of hidden

states in the new document d′. Finally, we return the category associated with

the HMM having the highest probability of hidden state sequence. Calculating

the most likely sequence of hidden states allows us to analyze documents over

“time”, i.e., sentence by sentence. Additionally, we can consider the sequence of the

MPSCD similarity values, instead of simply using statistic values like the maximum

or minimum in a set of MPSCD similarity values proposed in [26]. Generally, the

problem of estimating the most likely sequence of hidden states is often associated

with hidden Markov models.

4.3. An Ensemble of HMMs

We form an ensemble of HMMs to detect category of a new document.

Definition 1 (Hidden Markov model). An HMM λ = (aij , bj , π) for classifying

documents of some category consists of

• a set of hidden states given by Ω = {s1, ..., sn}, where n = 2, with state s1
representing related content and s2 representing unrelated content,

• an observation alphabet ∆ = {y1, . . . , ym}, where each observation symbol

represents a range of MPSCD similarity values,

• a transition probability matrix A representing the probability between all

possible state transitions ai,j of the two hidden states s1, s2 ∈ Ω,

• an emission probability matrix B representing the probability to emit a

symbol from observation alphabet ∆ for each hidden state in Ω, and

• an initial state distribution vector π = π0.

Figure 2 contains a graphical representation HMM λ = (aij , bj , π) containing

observation symbols {yl, ym, yh} ∈ ∆, and the two hidden states {s1, s2} ∈ Ω.

Definition 2 (Transition Probability). With
∑n
j=1 ai,j = 1, the entries of tran-
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sition probability matrix A between states si, sj ∈ Ω, are given by

ai,j = P (sj |si), (6)

and represented by the following state transition matrix A:

A =


s1 s2 · · · sn

s1 a1,1 a1,2 · · · a1,n
s2 a2,1 a2,2 · · · a2,n
...

...
...

...
...

sn an,1 an,2 · · · an,n


Definition 3 (Emission Probability). The entries of emission probability ma-

trix B represent the probability to emit symbol yk ∈ ∆ in hidden state sj ∈ Ω and,

with
∑m
j=1 bj(yk) = 1, are given by

bj(yk) = P (yk|sj). (7)

The semantics of λ is given by unrolling λ for a given number of slices and building

a full joint distribution. For a set of document categories C, an ensemble of HMMs

H contains an HMM for each document category in C. All λ ∈ H have the same

Ω and ∆ but different A and B. We represent the emission probability between

observations and hidden states using the following observation matrix B:

B =


y1 y2 · · · ym

s1 b1(y1) b1(y2) · · · b1(ym)

s2 b2(y1) b2(y2) · · · b2(ym)
...

...
...

...
...

sn bn(y1) bn(y2) · · · bn(ym)


Generally, for a corpusD, both, the transition probability matrix A and the emis-

sion probability matrix B for each document category specific HMM is unknown.

One famous technique for learning both matrices of an HMM is the Baum-Welch

algorithm [24], which is a special case of the well-known EM algorithm [25]. Using

a set of documents where each document is from a specific category c ∈ C, one

can calculate for a hold-out set the MPSCDs and the corresponding MPSCD sim-

ilarity values s.t. we can train one HMM for each category on this data using the

Baum-Welch algorithm.

The observation alphabet ∆ requires discretizing similarity values. As a function

f : [0, 1] 7→ ∆, it maps a similarity value x to one of the m symbols in ∆:

f(x) =


y1 0 ≤ x < th1

y2 th1 ≤ y < th2
...

ym thm−1 ≤ y < 1

(8)



May 15, 2020 9:0 WSPC/INSTRUCTION FILE ws-ijsc

Augmenting and Automating Corpus Enrichment 13

Algorithm 3 MPSCD Similarity Discretization

1: function discretize(W, f)

2: Input: W, f

3: Output: O

4: O ← () . observation sequence

5: for each sim ∈ W do

6: yk ← f(sim) . yk ∈ ∆

7: O ← O ◦ yk
8: return O

Algorithm 3 shows pseudocode, mapping the similarity values in W for a new

document d′ to the observation symbols in alphabet ∆ based on function f , re-

turning a sequence of observable symbols O. Generally, the discretization and its

thresholds depend on the task of an agent and can be adapted to each problem in-

dividually. We follow the idea of Kuhr et al. [26], using m = 3, and select th1 = 0.3

and th2 = 0.7 such that f(x) maps MPSCD values to yl, ym, and yh, referring to

low, medium, and high values.

Next, we present an approach for estimating the most probable category of a

new document by providing the sequence of observable MPSCD similarity values

to an ensemble of corpus- and category-specific HMMs.

4.4. Detecting the Category of a New Document

To solve the document classification problem, we have to identify the most likely

sequence of hidden states from alphabet Ω, given a sequence of observation symbols

from alphabet ∆, in each HMM of the ensemble of category-specific HMMs. Each of

the most likely sequences is associated with a probability. The document category

is then given by the category for which the HMM with the highest probability for

its sequence has been learned.

The task of determining which sequence of variables is the underlying source

of some sequence of observations is called a decoding task. We calculate for each

HMM the most likely sequence of hidden states using the Viterbi algorithm [1]

which makes use of the dynamic programming trellis for computing the most likely

hidden state sequence S for an observation sequence O. Before presenting a complete

specification of the document classification approach, let us consider an example of

a most likely sequence given a set of MPSCD similarity values.

Example 2. Assume that we have calculated a set of MPSCDs for a new document

d′ by using Algorithm 2 and the corresponding MPSCD similarity values are as

follows:

(0.29, 0.41, 0.59, 0.48)
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Algorithm 4 Document Classification

1: function docCategoryDetection(W, H, f)

2: Input: W, H, f

3: Output: s

4: p← 0 . current highest probability

5: s← initialize . output tuple

6: O ← discretize(W, f) . observation sequence, see Alg.3

7: for each λ ∈ H do

8: S ← Viterbi(λ,O)

9: y ← prob(S) . probability of S

10: if y > p then

11: p← y

12: s← (S, λ)

13: return s

Using Algorithm 3 leads to the following observation sequence:

O = (yl, ym, ym, ym)

Assume that the hidden state sequence for a specific configuration of the transition

and emission probability matrices of an HMM is given by

S = (s2, s1, s1, s1).

Figure 3 represents the trellis of the observation sequence O1, where the thick arrows

indicate the most probable transitions between the hidden states and the dotted

lines represent all possible hidden state transitions.

Algorithm 4 describes how to estimate the most probable category of a new

document using an ensemble of HMMs. The input parameters are given by the MP-

SCD similarity values in W (output of Algorithm 2) and the ensemble H. In line 2

and line 3, Algorithm 4 initializes a temporary variable p and the output tuple s.

t = 1

s1

s2

yl

t = 2

s1

s2

ym

t = 3

s1

s2

ym

t = 4

s1

s2

ym

Fig. 3: Trellis of O = (yl,ym,ym,ym), leading to the following most likely sequence

of hidden states: (s2, s1, s1, s1).
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In line 4, Algorithm 4 calls Algorithm 3 to set the observation sequence O to the

sequence of the similarity values in W discretized based on function f as in Equa-

tion 8. Afterwards, Algorithm 4 iterates over the given ensemble of HMMs in H. In

each iteration, the algorithm calculates a most probable sequence S given observ-

ables O using the Viterbi algorithm (line 6). In line 8 to line 10, Algorithm 4 tests

if the probability prob(S) of the current most likely sequence S is higher than the

previously seen highest probability. If the probability is higher, Algorithm 4 saves

the current most likely sequence S and the HMM λ in variable s. After iterating

over all HMMs in H, Algorithm 4 terminates and returns the most likely sequence

s that has exhibited the highest probability among all most likely sequences as well

as the corresponding HMM. This output we then use as a basis for the decision

regarding corpus enrichment. Before moving on to decision making, let us consider

an example for how document categories and sequences may interact.

Example 3. Assume that we have an unrelated document with similarity val-

ues that have led to the following observation sequence as well as the most likely

sequence as an output of Algorithm 4, meaning the HMM learned on unrelated

documents has produced the most likely sequence with the highest probability:

Ounrel = (yl, ym, yl, yl) (9)

Sunrel = (s2, s2, s2, s2) (10)

With observations of yl mainly, the most likely sequences of the other HMMs have

a much lower probability as the evidence for unrelated content is very high, which is

associated with low probabilities in them. Given, e.g., an extension of a document,

the observation sequence may look as follows with the HMM learned on extensions

yielding the most likely sequence with highest probability also given:

Oext = (yh, ym, yl, yl) (11)

Sext = (s1, s1, s2, s2) (12)

Here, the HMM trained on unrelated documents can only explain the last part with

high probability whereas the HMM trained on extensions can explain both parts.

Estimating the category of a new document d′ can help an agent making a

decision on extending a corpus with the new document d′ or not, e.g., if an agent is

interested in new documents containing similar content to documents in the corpus

the agent can simply add new documents classified as similar document.

4.5. Automatic Decision Making: Corpus Enrichment

Given corpus D and the corresponding set of SCDs g(D), an agent has to perform

following steps offline:

(i) Build an SCD-word matrix δ(D) based on g(D).

(ii) Train an ensemble of HMMs H using D and δ(D).
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(iii) Specify function f for discretizing similarity values.

(iv) Specify which document category are relevant for the task and the current

condition of corpus D.

The steps highly depend on the task at hand and differ from one setting to the

next. Relevant document category may be extensions of documents for an agent to

extend its own knowledge base. If a corpus is already very large, an agent may be

interested in updating its documents with newest revisions. If a task changes and

documents not longer appear to help in solving its task, unrelated documents may

provide the most added value (without any further information about the agent’s

information need). As just indicated, specifications may even change over time when

a corpus grows and a need for specific documents becomes apparent. Repeating the

steps after many changes in a corpus to update δ(D) or H may become prudent.

Faced with a new document d′, an agent performs the following steps online:

(i) Use Algorithm 2 to estimate the MPSCDs for document d′.

(ii) Use Algorithm 4 to estimate the category of d′.

(iii) Based on document’s category and its own specification, add/forgo d′.

Basing the decision on most likely sequences enables an agent to further process

the most likely sequence with the highest probability and analyze documents over

“time”, i.e., sentence by sentence. As such, this sequence allows for augmenting

corpus enrichment by being able to pinpoint interesting positions in a document,

which we consider next.

4.6. Augmenting Enrichment: Positions of Interest

Let us assume that an agent is interested in extending a corpus D with new doc-

uments and that the documents are classified as unrelated documents but share

at least one section of related content with one other document. The output of

document classification Algorithm 4 includes the most likely sequence of hidden

states, representing for each SCD window if the content is related or unrelated to

the content of documents in corpus D. We can use the sequence of hidden states to

extract information about the content similarity in an SCD window instead of only

having information about the similarity values of the most probable SCD relating

to a specific window. If a new document d′ is unrelated to other documents in cor-

pus D but parts of the document contain related content, then the agent might be

interested in the parts containing related content to identify if document d′ might

contain new content relating to an already-known topic. We describe these parts in

a new document d′ as positions of interests.

Identifying positions of interests (PoIs) in a new document d′ requires detecting

the category of d′ using Algorithm 4. Depending on the category of the document

d′, an agent might be interested in different positions within document d′. Thus, we

specify the following positions of interest depending on the document’s category.

(i) For documents in category sim, sections containing unrelated content represent
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PoIs, (ii) documents of in category dext contain related content in the beginning of

the document, which changes to unrelated content when the document extension

starts. The position where the similarity values changes represents the PoI in ext,

(iii) for document of in category rev, the PoI is given by those positions containing

modified (unrelated) content, and (iv) for documents in category unrel, the sections

containing related content represent PoIs.

5. Optimizing Subjective Content Descriptions

In the last section, we have introduced an approach for classifying a new document

into one of four categories. The document classification approach is based on an

initial set of SCDs occurring in documents of corpus D as well as the estimated

MPSCD and the corresponding similarity value for each window of the new doc-

ument. In this section, we present two additional approaches for optimizing the

quality of initially estimated MPSCDs. The first approach contains an adaptation

technique adapting the size and position of SCD windows. Second approach adapts

the initial SCD-word distribution specifically for documents we are interested in

extending the corpus with.

5.1. Adapting Subjective Content Description Windows

Kuhr et al.[26] have introduced Algorithm 2. The algorithm returns an initial set

of located MPSCDs g(d′) for a corpus-extending document d′ as well as a set of

tuples W containing the similarity values sim of the MPSCDs in g(d′) and the

corresponding windows wind′,ρ. Both, the initial located MPSCDs g(d′) and the set

of tuples W are based on SCD-word distribution δ(D) and a uniformly distributed

set of equally sized windows. We argue that the MPSCDs in g(d′) represent only

a first estimate for d′ because the position and size of the corresponding SCD

windows might be non-optimal. If an agent is interested in extending its corpus

with a document, than the agent benefits from optimized content descriptions.

We aim to optimize the MPSCDs in g(d′) by iteratively adjusting the size and

position of all windows in a way that the overall similarity values of the M MPSCDs

is at maximum by solving the following problem,

max
∑

(sim,wind′,ρ)∈W

sim. (13)

Thus, we describe an iterative MPSCD optimization approach in Algorithm 5

improving the initial MPSCDs similarity values for document d′, such that the

overall MPSCD-similarity value increases. Algorithm 5 requires the following input

parameters: (i) new document d′, (ii) number M of MPSCD, (iii) initial set of win-

dows and corresponding cosine similarity (W), (iv) SCD-word distribution δ(Cd′),
and (v) initial set of MPSCD g(d′). Finally, Algorithm 5 returns g(d′) containing

an optimized set of located SCDs for document d′.
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Algorithm 5 MPSCD Optimization

1: Input: d′, M , δ(Cd′), W, g(d′)

2: Define: t∗, sim′, sim∗, ρ, winTd′,ρ′ , sum, sum
′

3: Output: g(d′)

4: sum←
∑

(sim,wind′,ρ)∈W
sim

5: sum′ ← sum

6: while sum′ ≥ sum do

7: sum← sum′

8: for each (sim,wind′,ρ) ∈ W do

9: sim∗ ← sim

10: for each window adjustment a ∈ {l+, r+, l−, r−} do

11: winTd′,ρ′ ← wind′,ρ
12: Update winTd′,ρ′ based on a

13: sim′ ← maxti
δ(Cd′ )[i]·δ(winTd′,ρ′ )
|δ(Cd′ )[i]|·|δ(winTd′,ρ′ )|

14: if sim′ > sim∗ then

15: t∗ ← arg maxti
δ(Cd′ )[i]·δ(winTd′,ρ′ )
|δ(Cd′ )[i]|·|δ(winTd′,ρ′ )|

16: Update wind′,ρ with t∗ and ρ′

17: sim∗ ← sim′, sim← sim′

18: g(d′)← g(d′) \ {t} ∪ {t∗}
19: sum′ ←

∑
(sim,wind′,ρ)∈W

sim

20: return g(d′)

In line 4 of Algorithm 5, we calculate the overall cosine similarity of the initial

MPSCDs in g(d′) using the similarities stored inW. Afterwards, in line 5 to line 18,

we iteratively adjust the SCD windows trying to obtain a higher cosine similarity

between the adjusted influence vector and the SCD vector in δ(Cd′). We perform

the window adjustments until we are reaching a local optimum for the optimiza-

tion problem stated in 13. We can adjust each window in W in the following four

different directions: (i) extend left boundary of the SCD-window to the left side

(l+), (ii) extend right boundary of SCD-window to the right side (r+), (iii) shift

left boundary of SCD-window to the right side (l−), and (iv) shift right boundary

of SCD-window to the left side (r−). The first two window adjustments extend the

size of wind′,ρ, while the last two window adjustments reduce the size of wind′,ρ.

We calculate for each possible window adjustment the MPSCDs and choose the

adjustment, for which the overall similarity is maximized.

Theorem 1. Algorithm 5 estimates for a corpus-extending document d′ the M

(locally) most probable SCDs and finally terminates.

Proof. Algorithm 5 optimizes the initial M SCDs in W by iteratively adjusting

the M windows in a fashion s.t. the overall similarity between the influence vectors
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of all SCD windows and the MPSCD is maximized for the new document d′. The

resulting MPSCDs in g(d′) depend on the initial position of SCD windows, since

we consider in the iterative optimization only window adjustments of size one and

do not change the number of initially defined SCD windows (M). Thus, the final

MPSCDs represent a (local) optimum for the M SCD windows. Finally, Algorithm 5

terminates, since the number of possible window adjustments in the algorithm are

finite.

5.2. Augmenting Enrichment: Document Clusters

If an agent is interested in extending its corpus D with a document d′ containing

similar content to documents in D, we can adjust the process for generating SCD

for d′ leading to good SCD. Then, the first step in estimating most probable SCDs

for a corpus-extending document d′ consists of identifying only documents in cor-

pus D having a high topic similarity with d′. We form a cluster Cd′ of d′-related

documents such that all documents d ∈ Cd′ have a Hellinger distance H of their

topic distributions θd, θd′ being smaller than a threshold τ , i.e.,

Cd′ = {d ∈ D | H(θd′ , θd) < τ}. (14)

The threshold τ decides on the minimum required similarity between two docu-

ments d′ and d, such that document d ∈ Cd′ . The best value for τ depends on the

performance of external applications working with the located SCDs in g(d′). The

topic distribution of documents in D changes with respect to α, β, and K in the

LDA. The smaller τ is, the higher the topic similarity between the documents in Cd′
is. Equation 14 requires a topic distribution θd′ for the corpus-extending document

d′ as well as the documents in D. There exist three basic strategies to arrive at the

topic distributions, (i) extend corpus D with new document d′ and generate a new

topic model from D ∪ {d′}, which contains topic distributions θ for each document

in D ∪ {d′}, (ii) generate a topic model from D, which contains topic distributions

θ for each document in D, and approximate the topic distribution θd′ using folding

in Gibbs sampling [27], or (iii) generate a topic model from D, which contains topic

distributions θ for each document in D, and approximate the topic distribution

θd′ using folding in Gibbs sampling as in (ii), while also updating the overall topic

model, known as the online variational Bayes algorithm for LDA [28]. Each strategy

has its advantages and disadvantages. We refer to [29] for further details about the

different techniques and their advantages and disadvantages. However, whichever

strategy we use for learning topic distributions, afterwards we can use the Hellinger

distance between d′ and all documents in D to assemble Cd′ .
Now, we can perform Algorithm 1 with Cd′ as input. This leads to a new SCD-

word distribution δ(Cd) which we use as input for Algorithm 2 calculating a new set

of SCDs for document d′. We evaluate the performance using document clusters in

the second part of the next section.
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6. Case Study

After introducing the document classification approach as well as some optimiza-

tion techniques, we present a case study illustrating the potential of document

classification using the sequence of observable MPSCD similarity values as evi-

dence in HMMs. We use the following three corpora within the case study, each

containing articles from the free Wikipedia encyclopedia: (i) Cities in Europe: 36

documents about the largest cities in Europe (https://bit.ly/2kOvmwD). (ii) US

presidents: 45 documents about presidents of the U.S. between 1789 and 2017

(https://bit.ly/2Z1v1G9), and (iii) US universities: subset of documents 50 about

the state and territorial universities in the U.S. (https://bit.ly/2mOzXAW).

6.1. Preprocessing

We work with a Java-based implementation of Algorithm 2 and Algorithm 5 and

use their results as input parameters in our Python-based implementation of Al-

gorithm 3 and Algorithm 4. Initially, we download all necessary articles from

Wikipedia for the three corpora. We preprocess the articles to generate a topic

model by: (i) lowercasing all characters, (ii) stemming the words, (iii) tokenizing

the result, and (iv) eliminating tokens from a stop-word list of 337 words. For Al-

gorithm 2 and Algorithm 5 we only remove stop-words from the documents. Then,

we generate for each category of a document in each of the three corpora a training

set and test set in the following way: (i) Similar Documents (sim): We choose 90%

of the corresponding Wikipedia articles as training data, i.e., 90% of the articles

represent documents in the corpus. The remaining 10% of articles from the same

corpus are used as a held-out set acting as the test data. (ii) Extending documents

(ext): For each corpus, we choose the training set by selecting the corresponding

Wikipedia articles and extend them with text from articles of the other two corpora,

such that the document extending content is unrelated to the content in the current

corpus. We proceed the same way to generate documents for the test set. (iii) Re-

vision documents (rev): We use the view history function in Wikipedia generating

a revised version of a document. The latest version of an article contains modified

sentences and additional content, since the latest article represents a revision of an

older version of the same article. Again, we proceed the same way for generating the

document in the test set. (iv) Unrelated documents (unrel): We randomly choose

the training set by selecting 90% of articles from one corpus and randomly selecting

articles from the two other corpora to generate a test set.

For each category of document, we take its training set and learn the transi-

tion and emission function for the category-specific HMMs using the Baum-Welch

algorithm. This process results in four HMMs each of them representing the con-

figuration for one category of document for each corpus. We use Algorithm 4 to

perform the document classification of documents in the test set. Precision and

recall represent the performance of Algorithm 4, where true positives (tp) refer to

the number of documents whose document category have been correctly estimated,

https://bit.ly/2kOvmwD
https://bit.ly/2Z1v1G9
https://bit.ly/2mOzXAW
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Table 1: Document classification performance considering the four document cate-

gories sim, unrel, ext, rev, and the three corpora city, university, president.

Corpus Method Document category
sim unrel ext rev

Precision 0.72 1.0 0.93 0.70
City Recall 0.65 1.0 0.86 0.41

F1-Score 0.68 1.0 0.89 0.52

Precision 0.77 1.0 0.91 0.72
University Recall 0.71 0.96 0.84 0.58

F1-Score 0.72 0.98 0.87 0.64

Precision 0.70 1.0 0.86 0.68
President Recall 0.71 1.0 0.92 0.51

F1-Score 0.70 1.0 0.89 0.58

false positives (fp) refer to the number of documents whose document category have

been falsely estimated, and false negative (fn) to the number of documents classified

with a category of a document that was not found.

6.2. Document Classification

We conduct experiments to test the performance of the document classification

approach based on the earlier described technique to generate corpora and the eval-

uation approach. Table 1 represents the performance of Algorithm 4 using both,

precision and recall for all three corpora. Generally, document classification per-

forms best on unrelated and extending documents. The transition probability and

emission probability are similar for categories sim and rev for documents in the

corresponding HMMs. We have never classified revisions and similar documents as

unrelated documents or document extensions, respectively, but sometimes we have

classified documents from category sim as documents from category rev, and vice

versa. We assume an agent interested in similar documents might accept document

revisions because they are similar to the documents in a corpus. If an agent is only

interested in similar documents or revisions, it must analyse documents of both

categories in detail, e.g., by using positions of interest. Kuhr et al. [26] have had

the same problem in distinguishing a new document from category sim and rev.

Their introduced indicators were the same for similar and revised documents in the

president corpus, and only one of the five indicators is different for both categories

in the city corpus. Next, we look at the performance of the optimization techniques.

6.3. Window Adaptation

Estimating the MPSCDs for new documents requires a predefined number (M) of

MPSCDs we are interested in as well as the size of the corresponding MPSCD-

windows. In Section 3, we have described Algorithm 2 dividing document d′ into M
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Fig. 4: Left: Classification performance using Alg. 2 and Alg. 5. Right: Average

MPSCD increase for each document after optimizing the window size using Alg. 5.

equally sized windows (line 4). Afterwards, it estimates for each of the M windows

the MPSCD using SCD-word distribution δ(D). Obviously, the initial segmentation

of document d′ ignores the content within documents. Thus, we have introduced

Algorithm 5 adapting the windows’ size to increase the quality of SCDs causing

an optimization of the document classification performance. Left plot in Figure 4

represents the performance of Algorithm 5 by comparing the document classifica-

tion performance based on Algorithm 2 and Algorithm 5 for documents in the city

corpus. The overall classification performance of Algorithm 5 is better than Algo-

rithm 2 and the HMM generated from output of Algorithm 5 lead to markable

increase in detecting documents of category sim and rev. Right plot in Figure 4

represents the average MPSCD similarity value increase for a document after opti-

mizing the window size using Algorithm 5. Adapting one window will automatically

adapt the neighbouring windows and might result in a decreasing MPSCD similar-

ity value for the neighbouring windows. Generally, Algorithm 5 adapts the windows

in a way that the sum of all MPSCD similarity values increases and the document

category classification performance increases, too. The false discovery rate (FDR)

slightly increase using Algorithm 5, since the algorithm focus on the optimization

of overall MPSCD similarity value increase instead of optimizing the FDR.

6.4. Document Clusters

We use the similarity values of MPSCDs to identify the category of new documents.

Let us assume that an agent is interested in enriching its initial corpus only with

similar documents. Than, the agent can use similarity values of MPSCDs to identify

the category of a new document on the documents in its corpus. Classifying new

documents based on the MPSCDs similarity values is great, since an agent can reuse

the MPSCD corresponding to the estimated similarity value. This means an agent
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Fig. 5: Left: FDR of MPSCDs for new documents of category sim contemplating

only documents from the corpus having a topically Hellinger distance of τ . Right:

FDR of MPSCDs for similar new documents contemplating the top-k MPSCDs.

has directly corpus-specific content description for a corpus-extending document.

However, generally a new document is only eminently related to a subset of docu-

ments within a large corpus. Therefore, we are interested in analysing the content

description performance for a new document d′ using only a subset of documents

Cd′ from corpus D containing documents having a similar topic-distribution. We

use the FDR analysing the performance of calculated MPSCDs which is defined as

FDR = FP/(FP + TP ). In Figure 5, we present the FDR of the MPSCDs cor-

responding to the MPSCD similarity values used to classify documents. Left plot

shows FDR of estimated MPSCDs for documents of category sim using the Hellinger

distance to estimate the documents in Cd′ , having a distance less than τ . The FDR

is best contemplating only documents having a Hellinger distance between 0.3 and

0.6. Obviously, ignoring a subset of documents from D changes the SCD-word dis-

tribution δ(D). However, contemplating only documents having a very low distance

ignore the fact that we are approximating the topic distribution for new documents

and documents containing relevant SCDs might not in Cd′ , since their Hellinger

distance is higher than the specified value for τ . The right plot shows the FDR of

MPSCDs for documents of category sim, too. We use the average FDR with values

0.3, 0.4, and 0.5 for τ to analyse the impact of different top− k MPSCD setting.

7. Conclusion

If an agent is presented with a new document this article enables to decide whether

to extend its corpus with the new document or not by classifying the document in

a context-specific way. We present how to model a window sequence with hidden

Markov models estimating the most probable sequence of (un)related content in a

document to estimate the category of a new document based on the documents in a
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corpus. The HMMs form an ensemble that can be easily extended with HMMs for

other document categories or weighted to prioritise documents of a certain category.

As classifying documents is carried out using the most likely sequence in the HMMs,

we can use this sequence to pinpoint locations in documents that may contain new

content. Additionally, we have introduced two optimization techniques, namely,

window adaptation and document clusters. Using document clusters an agent can

generate an MPSCD-word distribution matrix δ resulting in high-quality MPSCDs

for new documents extending to the corpus. Furthermore, an agent can adapt the

MPSCD-similarity values using an window optimization algorithm to increase the

document classification performance for new documents. However, the parameters in

each of the category specific HMMs change for each corpus and it is difficult to reuse

category specific HMMs from one corpus for document in another corpus. Therefore,

our future work includes domain adaptation for document category specific HMMs

such that we can adapt a trained model from one corpus to another corpus.
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