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Typically, we are not only interested in observing data but we also 
want to intervene

• Important aim for given data:  Where to 
intervene in order to achieve desired effects.

• Example interventions
• Should we stop smoking?
• What are the best methods to decrease wild-fires?

• Difference in measuring the atmospheric 
pressure with a barometer vs. forcing the 
needle to a specific measurement
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Randomized Controlled Experiment

• Randomized controlled experiment gold standard
• Aim: Answer question whether a change in RV X 

has indeed an effect on some target RV Y
• If outcome of experiment is yes, 

X is a RV to intervene upon
• Test condition: all variables different from X are static (fixed) or vary fully randomly.

• Problem: Cannot always set up such an experiment
• Example: cannot control weather in order to test variables influencing wildfire

• Instead: use observational data & causal model
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Intervention vs. Conditioning

• Intervention denoted by do(Y = y)
• P(Z = z | do(Y = y)) = 
• probability of event Z = z on intervening upon Y by setting Y = y  

Intervention changes the data generation mechanism

• In contrast observation 
• P(Z = z | Y = y) = 
• probability of event Z = z when knowing that Y = y

Conditioning only filters on the data 
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Intervention changes the graph structure

• Observing high ice cream sales tells us 
something about the crime rate

• Intervention on ice cream sales does not 
change the crime rate

• The edge from X to its parents when using 
do(X) needs to be removed
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Recap: Simpsons Paradox
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• Record recovery rates of 700 patients given access to a drug

Recovery rate 
with drug

Recovery rate
without drug

Men 81/87 (93%) 234/270 (87%)

Women 192/263 (73%) 55/80 (69%)

Combined 273/350 (78%) 289/350 (83%)

• Paradox: 
• For men, taking drugs has benefit
• For women, taking drugs has benefit, too.
• But: for all persons taking drugs has no benefit



Recap: Resolving the Paradox Formally 

• We have to understand the causal mechanisms that lead to the data in order to resolve the 
paradox

• Drug usage and recovery have common cause
• Gender is a confounder
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Drug usage Recovery



Average Causal Effect (ACE)

• We would like to find out how effective the drug is in the population
• A hypothetical intervention would uniformly distribute the drug to the entire population 

and compare the recovery rate under complementary intervention
• First intervention denoted by do(X=1) second intervention denoted as do(X=0)
• Task is to compute: 𝑃𝑃 𝑌𝑌 = 1 𝑑𝑑𝑑𝑑 𝑋𝑋 = 1 − 𝑃𝑃(𝑌𝑌 = 1|𝑋𝑋 = 0)
• 𝑃𝑃 𝑌𝑌 = 𝑦𝑦 𝑑𝑑𝑑𝑑 𝑋𝑋 = 𝑥𝑥 = 𝑃𝑃𝑚𝑚(𝑌𝑌 = 𝑦𝑦|𝑋𝑋 = 𝑥𝑥)
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Adjustment formula

• 𝑃𝑃(𝑍𝑍 = 𝑧𝑧) is invariant under the intervention
• 𝑃𝑃 𝑌𝑌 = 𝑦𝑦 𝑍𝑍 = 𝑧𝑧,𝑋𝑋 = 𝑥𝑥 is invariant, because the process by which Y responds to X and Z 

remains the same regardless of whether X changes spontaneously or by manipulation
• Therefore

• 𝑃𝑃𝑚𝑚 𝑌𝑌 = 𝑦𝑦 𝑍𝑍 = 𝑧𝑧,𝑋𝑋 = 𝑥𝑥 = 𝑃𝑃 𝑌𝑌 = 𝑦𝑦 𝑍𝑍 = 𝑧𝑧,𝑋𝑋 = 𝑥𝑥 and 𝑃𝑃𝑚𝑚 𝑍𝑍 = 𝑧𝑧 = 𝑃𝑃(𝑍𝑍 = 𝑧𝑧)
• Also, we know that Z and X are d-separated in the modified model and therefore

• 𝑃𝑃𝑚𝑚 𝑍𝑍 = 𝑧𝑧 𝑋𝑋 = 𝑥𝑥 = 𝑃𝑃𝑚𝑚 𝑍𝑍 = 𝑧𝑧 = 𝑃𝑃(𝑍𝑍 = 𝑧𝑧)
• Putting it together
• 𝑃𝑃 𝑌𝑌 = 𝑦𝑦 𝑑𝑑𝑑𝑑 𝑋𝑋 = 𝑥𝑥 = 𝑃𝑃𝑚𝑚 𝑌𝑌 = 𝑦𝑦 𝑋𝑋 = 𝑥𝑥

= ∑𝑧𝑧 𝑃𝑃𝑚𝑚 𝑌𝑌 = 𝑦𝑦 𝑍𝑍 = 𝑧𝑧,𝑋𝑋 = 𝑥𝑥 𝑃𝑃𝑚𝑚 𝑍𝑍 = 𝑧𝑧 𝑋𝑋 = 𝑥𝑥
= ∑𝑧𝑧 𝑃𝑃𝑚𝑚 𝑌𝑌 = 𝑦𝑦 𝑍𝑍 = 𝑧𝑧,𝑋𝑋 = 𝑥𝑥 𝑃𝑃𝑚𝑚 𝑍𝑍 = 𝑧𝑧
= ∑𝑧𝑧 𝑃𝑃 𝑌𝑌 = 𝑦𝑦 𝑍𝑍 = 𝑧𝑧,𝑋𝑋 = 𝑥𝑥 𝑃𝑃(𝑍𝑍 = 𝑧𝑧)
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Adjustment Formula

• Wording:  „Adjusting for Z“ or „controlling Z“
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Definition
The adjustment formula (for single parent Z of X) for the 
calculation of the GCE is given by  
P(Y = y | do(X = x))  = ∑z P(Y = y | X = x, Z=z) P(Z = z)



Example of Drug and Recovery

P(Y =1 | do(X =1)) 
= P(Y=1 | X=1, Z=1)P(Z=1) + P(Y=1 | X=1, Z=0)P(Z=0)
= 0.93(87 +270)/700 + 0.73(263 + 80)/700 
= 0.832

P(Y =1 | do(X =0)) 
= 0.7818

ACE = 0.832 – 0.7818 = 0.0502 > 0

One has to segregate the data w.r.t. Z  (adjust for Z) 
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Recovery rate 
with drug

Recovery rate
without drug

Men 81/87 (93%) 234/270 (87%)

Women 192/263 (73%) 55/80 (69%)

Combined 273/350 (78%) 289/350 (83%)

Gender

Drug usage Recovery



Causal Effect Rule

• Pa(X) =  parents of X
• z = instantiation of all parent variables of X
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Rule (Calculation of causal effect)
P(Y = y | do(X = x))  = 

∑z P( Y = y | X = x, Pa(X) =z ) P( Pa(X) = z ) 

Rule (Calculation of causal effect (alternative))
P(Y = y | do(X = x))  = 

∑z P( Y = y ,  X = x, Pa(X) = z ) / P( X = x | Pa(X) = z ) 



Backdoor Criterion (Motivation)

• Intervention on X requires adjusting parents of X
• But sometimes those variables are not measurable (though perhaps represented in graph)

• Need more general criterion 
to identify adjustment variables

1. Block all spurious paths between X and Y
2. Leave all directed paths from X to Y unperturbed
3. Do not create new spurious paths
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Backdoor Criterion (Formulation)

• Can adjust for Z satisfying backdoor criterion
• P(Y = y | do(X = x)) = ∑z P(Y = y | X = x, Z = z)P(Z=z)
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Definition
Set of variables Z satisfies backdoor criterion relative to a pair 
(X,Y) of variables iff
1. No node in Z is a descendant of X and
2. Z blocks every path between X and Y that contains an 

arrow into X



Quiz

• Sometimes also need to condition on colliders
• There are four backdoor paths from X to Y

• X ← E → R → Y
• X ← E → R ← A → Y
• X ← R → Y
• X ← R ← A → Y

• What are potential blocking sets:
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Front-door Criterion Motivation

• The do-Operator can be applied to scenarios that do not satisfy the backdoor criterion
• Consider the following example
• We would like to know P(Y=y|do(X=x))
• It is not possible to know which portion of the observed correlation between X and Y is 

spurious
• An intermediate variable can help us together with the front-door criterion
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X =
Smoking

U = Genotype

Y = 
Lung cancer

X =
Smoking

U = Genotype

Y = 
Lung cancerZ = Tar deposit



Example: Smoking Lobby

Tobacco industry argues: 
• 15% of smoker w/ cancer < 92.25% 

nonsmoker w/ cancer
• Tar: 15% smoker w/ cancer < 95% 

nonsmoker w/ cancer   
• Non tar: 10% smoker w/ cancer < 90%

nonsmoker w/ cancer
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Tar (400) No tar (400) All subjects (800)

Smokers
(380)

Nonsmokers 
(20)

Smokers
(20)

Nonsmokers 
(380)

Smokers
(400)

Nonsmokers (400)

No 
cancer

323
(85%)

1 
(5%)

18
(90%)

38
(10%)

341
(85%)

39
(9.75%)

Cancer 57
(15%)

19
(95%)

2
(10%)

342
(90%)

59
(15%)

361
(92.25%)

Antismoking lobby argues: 
• Choosing to smoke increases chances of tar 

deposit (95% = 380/400)
• Effect of tar deposit: look separately at smokers 

vs. Non-smokers
• Smokers: 10 % cancer    15 % cancer
• Nonsmokers: 90 % cancer             95 % cancer 

Who is right?



Front-door criterion

• Idea: Separate the effects X on Y into X on Z and Z on Y
• Both individual effects can be assed
• X on Z: Easy, since there is not backdoor path from X to Z (adjustment on empty set)

• P(Z=z|do(X=x))=P(Z=z|X=x) 

• Z on Y: backdoor path ZXUY can be blocked by conditioning on X
• 𝑃𝑃 𝑌𝑌 = 𝑦𝑦 𝑑𝑑𝑑𝑑 𝑍𝑍 = 𝑧𝑧 = ∑𝑥𝑥𝑃𝑃(𝑌𝑌 = 𝑦𝑦|𝑍𝑍 = 𝑧𝑧,𝑋𝑋 = 𝑥𝑥)

• Now we chain the effects. 
• 𝑃𝑃 𝑌𝑌 = 𝑦𝑦 𝑑𝑑𝑑𝑑 𝑋𝑋 = 𝑥𝑥 = ∑𝑧𝑧 𝑃𝑃 𝑌𝑌 = 𝑦𝑦 𝑑𝑑𝑑𝑑 𝑍𝑍 = 𝑧𝑧 𝑃𝑃(𝑍𝑍 = 𝑧𝑧|𝑑𝑑𝑑𝑑 𝑋𝑋 = 𝑥𝑥 )
• 𝑃𝑃 𝑌𝑌 = 𝑦𝑦 𝑑𝑑𝑑𝑑 𝑋𝑋 = 𝑥𝑥 = ∑𝑧𝑧∑𝑥𝑥′ 𝑃𝑃 𝑌𝑌 = 𝑦𝑦 𝑍𝑍 = 𝑧𝑧,𝑋𝑋 = 𝑥𝑥′ 𝑃𝑃(𝑋𝑋 = 𝑥𝑥′)𝑃𝑃(𝑍𝑍 = 𝑧𝑧|𝑋𝑋 = 𝑥𝑥)

Seite 21



Front-door Criterion (Formulation & Theorem)
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Definition
Set of variables Z satisfies front-door criterion w.r.t. pair of 
variables (X,Y) iff
1. Z intercepts all directed paths from X to Y
2. Every backdoor path from X to Z is blocked (by collider)
3. All Z-Y backdoor paths are blocked by X

Theorem (Front-door adjustment)
If          Z fulfills front-door criterion w.r.t. (X,Y) and P(x,z) > 0
then   P(y|do(x)) = ∑z P(z|x) ∑x’P(y|z, x’)P(x’)



Pearl’s Causal Hierarchy
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Causality – an agent perspective

• Models play an important role within an 
agent

• We have encountered cases where the 
agent is given a model of the environment 
or where the agent learns a model 
(Adaptive Dynamic Programming)

• When agent can freely act without 
limitations (e.g., trying out computer 
games) we are in a situation of unlimited 
random control group experiments (gold 
standard)

• When agent acts in the real world trying 
out things has consequences
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Formalizing a maximum utility action selection in a BN

• We have 𝑋𝑋𝑖𝑖 ∈ 𝑿𝑿 variables in the BN
• 𝐷𝐷(𝑋𝑋𝑖𝑖) is the domain of the variables
• State space S = ⨂

𝑋𝑋𝑖𝑖∈𝑿𝑿
𝐷𝐷(𝑋𝑋𝑖𝑖) is the set of all 

possible combinations of values that the 
variables in the network can take

• Action space A consisting of applicable do 
operations

• Reward function R(s) that can contain individual 
rewards for all possible s ∈ S but an also only 
focus on individual variables (e.g., R(y))

• The agent is selecting an action that is 
maximizing the expected utility

• argmax
𝑎𝑎

𝑃𝑃(𝑆𝑆| a)R(s)
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T = 
Temperature

R = Rain

G = Grass Wet

W = Warm Sprinkler

Y = Yield



Setting up an example

• D(R) = {yes, no}, D(W) = {yes, no}, D(T) = {low, 
med, high}, D(G) = {yes, no}, D(Y) = {low, med, 
high, exceptional}
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T = 
Temperature

X = Rain

G = Grass Wet

W = Warm Sprinkler

Y = Yield



Quiz

• D(R) = {yes,no}, D(W) = {yes,no}, D(T) = {low, 
med, high}, D(G) = {yes,no}, D(Y) = 
{low,med,high,exceptional}
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T = 
Temperature

X = Rain

G = Grass Wet

W = Warm Sprinkler

Y = Yield

How many possible states has 
the state space?



Setting up an example

• D(R) = {yes, no}, D(W) = {yes, no}, D(T) = {low, 
med, high}, D(G) = {yes, no}, D(Y) = {low, med, 
high, exceptional}

• State space has 96 states
• R(S)R(Y) only dependent on Y

• Agent has two actions do(W=yes), do(G=yes) 
and can only perform one

• What is the best action to get maximum utility
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T = 
Temperature

X = Rain

G = Grass Wet

W = Warm Sprinkler

Y = Yield



Setting up an example

• Utility of action do(G=yes)
P(Y|do(G=yes))R(Y)

• Adjustment formula needed to block path to 
warm sprinkler

• P(Y|do(G=yes)) =
∑𝑤𝑤𝑃𝑃 𝑌𝑌 = 𝑦𝑦 𝑊𝑊 = 𝑤𝑤,𝐺𝐺 = 𝑦𝑦𝑦𝑦𝑦𝑦 𝑃𝑃(𝑊𝑊 = 𝑤𝑤)

• Utility of action do(W=yes)
 P(Y|do(W=yes))R(Y)

• No adjustment needed
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T = 
Temperature

X = Rain

G = Grass Wet

W = Warm Sprinkler

Y = Yield



Of course, the example can be converted to a dynamic planning 
and acting cycle

• Actions over time  Plan/Conditional Plan
• Temporal combination of rewards (additive vs. discounted) as we know from previous 

lectures
• Planning/Acting Horizon
• Optionally also observable evidence over time
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T1

X1

G1

W1

Y1

T2

X2

G2

W2

Y2



Now we are back to the beginning
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Planning stage
Acting stage

Agent Planning and Acting



Further interesting topics

• Causal reinforcement learning
Lu, C., Schölkopf, B., & Hernández-Lobato, J. M. (2018). Deconfounding reinforcement 
learning in observational settings. arXiv preprint arXiv:1812.10576.

Gasse, M., Grasset, D., Gaudron, G., & Oudeyer, P. Y. (2021). Causal reinforcement 
learning using observational and interventional data. arXiv preprint arXiv:2106.14421.

• Causal inverse reinforcement learning
Ruan, K., Zhang, J., Di, S., & Bareinboim, E. (2022). Causal Imitation Learning Via Inverse 
Reinforcement Learning.

Zhang, J., Kumor, D., & Bareinboim, E. (2020). Causal imitation learning with unobserved 
confounders. Advances in neural information processing systems, 33, 12263-12274.
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