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N Kat Maddox
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Is it a coincidence? | don't think
so. Stop testing your software

Bugs
found

Time spent testing software

14:06 - 20 Sep 20 - Twitter Web App

1,717 Retweets 141 Quote Tweets

Posted in r/ProgrammerHumor @ reddit
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Typically, we are not only interested in observing data but we also
want to intervene

* Important aim for given data: Where to
intervene in order to achieve desired effects. Barometer

« Example interventions
e Should we stop smoking?
* What are the best methods to decrease wild-fires? /

—Unterdruck

Luftdruck
 Difference in measuring the atmospheric

pressure with a barometer vs. forcing the

-
-4

needle to a specific measurement

-

-

s
o
o
i
s
o
o
o
7
7
7
7

I, O OO e

CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=295900
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Randomized Controlled Experiment

« Randomized controlled experiment gold standard

* Aim: Answer question whether a change in RV X
has indeed an effect on some target RVY

* |If outcome of experiment is yes,
X'is a RV to intervene upon

* Test condition: all variables different from X are static (fixed) or vary fully randomly.

* Problem: Cannot always set up such an experiment

cannot control weather in order to test variables influencing wildfire

 Instead: use observational data & causal model



U7 & UNIVERSITAT ZU LUBECK

Intervention vs. Conditioning

* Intervention denoted by do(Y =)
e P(Z=z]|do(Y=Yy))=

* probability of event Z = z on intervening upon Y by setting Y =y
Intervention changes the data generation mechanism

 |n contrast observation
* P(Z=z|Y=y)=

e probability of event Z = z when knowing that Y =y
Conditioning only filters on the data



Intervention changes the graph structure

« Observing high ice cream sales tells us
something about the crime rate

* |Intervention on ice cream sales does not
change the crime rate

e The edge from X to its parents when using
do(X) needs to be removed

WYY © UNIVERSITAT ZU LUBECK

Z (Temperature)

X (Ice cream sales) Y (Crime rate)

Z (Temperature)

o
X (Ice cream sales) Y (Crime rate)
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Recap: Simpsons Paradox

« Record recovery rates of 700 patients given access to a drug

Recovery rate Recovery rate

with drug without drug
Men 81/87 (93%) 234/270 (87%)
Women 192/263 (73%) 55/80 (69%)
Combined 273/350 (78%) 289/350 (83%)

« Paradox:
« For men, taking drugs has benefit

« For women, taking drugs has benefit, too.
« But: for all persons taking drugs has no benefit
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Recap: Resolving the Paradox Formally

« We have to understand the causal mechanisms that lead to the data in order to resolve the
paradox
Gender

Drug usage Recovery

« Drug usage and recovery have common cause
« Gender is a confounder
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Average Causal Effect (ACE)

« We would like to find out how effective the drug is in the population

« A hypothetical intervention would uniformly distribute the drug to the entire population
and compare the recovery rate under complementary intervention

 First intervention denoted by do(X=1) second intervention denoted as do(X=0)

« Task is to compute: P(Y = 1|do(X =1)) —P(Y =1|X =0)

* P(Y =yl|ldo(X =x)) = Bp(Y = y|X =x)

Z (Gender) Z (Gender)

e
X (Drug usage) Y (Recovery) X (Drug usage) Y (Recovery)

Original Model P Manipulated Model B,
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Adjustment formula

 P(Z = z) is invariant under the intervention
« P(Y =y|Z =2z X = x) is invariant, because the process by which Y responds to X and Z
remains the same regardless of whether X changes spontaneously or by manipulation
* Therefore
e P,(Y=y|lZ=2X=x)=PY=y|Z=2zX=x)andP,(Z =2z) =P(Z = 2)
Also, we know that Z and X are d-separated in the modified model and therefore
e P,(Z=zIX=x)=P,(Z=2)=P(Z =2)
Putting it together
P(Y = yldo(X =x)) =Pp(Y =ylX =x)
=2 Pn(Y =y|Z =2X=x)P,(Z = z|X = x)
=2 Pn(Y =y|Z =2,X =x) By(Z = 2)
=Y. PY =y|lZ=2X=x)P(Z=2)
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Adjustment Formula

Definition
The adjustment formula (for single parent Z of X) for the
calculation of the GCE is given by

P(Y=y | do(X=x)) = 3,P(Y=y | X=X, Z=2) P(Z = 2)

« Wording: ,Adjusting for Z" or ,controlling Z*
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Example of Drug and Recovery

P(Y =1 | do(X =1))
= P(Y=1|X=1, Z=1)P(Z=1) + P(Y=1| X=1, Z=0)P(Z=0)

= 0.93(87 +270)/700 + 0.73(263 + 80)/700 Gender
= 0.832
P(Y =1 | do(X =0))
= 0.7818
ACE = 0.832-0.7818 = 0.0502 > 0
Drug usage Recovery
One has to segregate the data w.r.t. Z (adjust for Z)
Recovery rate Recovery rate
with drug without drug
Men 81/87 (93%) 234/270 (87%)
Women 192/263 (73%) 55/80 (69%)

Combined  273/350 (78%) 289/350 (83%)
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Causal Effect Rule

Pa(X) = parents of X
z = instantiation of all parent variables of X

Rule (Calculation of causal effect)
P(Y=y | do(X=x)) =
>, P(Y=y | X=x, Pa(X)=z)P(Pa(X) =z)

Rule (Calculation of causal effect (alternative))
P(Y=y | do(X=x)) =
>, P(Y=y, X=x,Pa(X)=z)/P(X=x]|Pa(X)=z)
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Backdoor Criterion (Motivation)

 Intervention on X requires adjusting parents of X
« But sometimes those variables are not measurable (though perhaps represented in graph)

* Need more general criterion

to identify adjustment variables
1. Block all spurious paths between X and Y
2. Leave all directed paths from X to Y unperturbed
3. Do not create new spurious paths
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Backdoor Criterion (Formulation)

« Can adjust for Z satisfying backdoor criterion
. PY=y|doX=x))=>,P(Y =y |X=xZ=2P(Z=2)

Definition

Set of variables 7 satisfies backdoor criterion relative to a pair
(X,Y) of variables iff

1. NonodeinZis adescendant of X and

2. 7 blocks every path between X and Y that contains an
arrow into X
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Quiz

« Sometimes also need to condition on colliders

« There are four backdoor paths from X to Y E R A

c X&E-S>R-2Y

* X<CE2RECA-DY

* X&R-2Y X Y

c X&R&ECASY 18
« What are potential blocking sets:

Seite 18
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Front-door Criterion Motivation

« The do-Operator can be applied to scenarios that do not satisfy the backdoor criterion

« Consider the following example

«  We would like to know P(Y=y|do(X=Xx))

It is not possible to know which portion of the observed correlation between X and Y is
spurious

« An intermediate variable can help us together with the front-door criterion

U = Genotype U = Genotype

= Y = X = >@ Y =
Smoking Lung cancer Smoking Z = Tar deposit  Lung cancer

Seite 19




) & UNIVERSITAT ZU LUBECK

Example: Smoking Lobby

Tar (400) No tar (400) All subjects (800)
Smokers Nonsmokers  Smokers  Nonsmokers  Smokers Nonsmokers (400)
(380) (20) (20) (380) (400)
No 323 1 18 38 341 39
cancer (85%) (5%) (90%) (10%) (85%) (9.75%)
Cancer 57 19 2 342 59 361
(15%) (95%) (10%) (90%) (15%) (92.25%)
Tobacco industry argues: Antismoking lobby argues:
*  15% of smoker w/ cancer < 92.25% « Choosing to smoke increases chances of tar
nonsmoker w/ cancer deposit (95% = 380/400)
« Tar: 15% smoker w/ cancer < 95% « Effect of tar deposit: look separately at smokers
nonsmoker w/ cancer vs. Non-smokers
. Non tar: 10% smoker w/ cancer < 90% * Smokers: 10 % cancer 15 % cancer
nonsmoker w/ cancer *  Nonsmokers: 90 % cancer 95 % cancer

Who is right?
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Front-door criterion

|dea: Separate the effects XonYintoXonZandZonY
Both individual effects can be assed

X on Z: Easy, since there is not backdoor path from X to Z (adjustment on empty set)
* P(Z=z|do(X=x))=P(Z=z|X=x)

Z on Y: backdoor path Z&X<U->Y can be blocked by conditioning on X
* P(Y=yldo(Z=2)) =2 P(Y =Y|Z =2 X =x)

Now we chain the effects.
* PY=yldoX=x))=X,P(Y =yldo(Z =z))P(Z = z|do(X = x))
* PY =yldoX=x)) =2, 2P =ylZ=2X=x")P(X =x")P(Z =z|X = x)
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Front-door Criterion (Formulation & Theorem)

Definition

Set of variables Z satisfies front-door criterion w.r.t. pair of
variables (X,Y) iff

1. Zintercepts all directed paths from Xto Y

2. Every backdoor path from X to Z is blocked (by collider)

3. All Z-Y backdoor paths are blocked by X

Theorem (Front-door adjustment)
|f Z fulfills front-door criterion w.r.t. (X,Y) and P(x,z) >0
then P(y|do(x)) =3, P(z|x) 3,P(y|z, x")P(x’)
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Pearl’s Causal Hierarchy

The Ladder of Causality

poooo Ui

qogooboo

(3. COUNTERFACTUALS ]

ACTIVITY: Toynmangs, Retrospection, Understusuding

“Actual” Causality

QUESTIONS: W i T bad dome ... 7 Wiky?
(Was it X rhar cansed Y7 Whar if X had nor
occurred? Whar if 1 had acred differenty?)

EXAMPLES: Was ur the aspirin thar siopped my headacher
Wisuld Kenmedy be alive if Owsamald had oo
killed him? What if T had not smoked for the

L lasr 2 vears?

2. INTERVENTION
ACTIVITY: Daing, Intervenmeg
QUESTIONS: 17w if o ...8 How?

(What would Y be il 1do X#
How can I make ¥ happen?®)

“Causality-in-mean”

EXAMPLES: 1f 1 take aspirin, will my headache be cured?
Whar if we ban cigarerres®

(1. ASSOCIATION
ACTIVITY:  Seceing, Observing

Statistics

QUESTIONS:  Whar if d ree .. ¥
(How are the vanables velaredr
Heow would seemng X change my belel in Y?)

EXAMPLES:  Whar does a symprom rell me abour a diseasep
Whar does a survey rell us abour rthe
election results?

https://causalai.net/r60.pdf
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Causality — an agent perspective

* Models play an important role within an e

agent "\\\ Seniors -
b Y
* We have encountered cases where the T —
agent is given a model of the environment (_How the world evolves is like now
or where the agent learns a model T~ *.“b — g
1 1 i (What my actions do e Wi e <.
(Adaptive Dynamic Programming) if I do action A z
o
«  When agent can freely act without 2
limitations (e.g., trying out computer S
games) we are in a situation of unlimited (Goals ) » Whatactionl
random control group experiments (gold J
standard
) . i \Agent Actuators >
« When agent acts in the real world trying

out things has consequences

Seite 24
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Formalizing a maximum utility action selection in a BN

 We have X; € X variables in the BN
« D(X;) is the domain of the variables

 Statespace S = ® D(X;) is the set of all Rl W = Warm Sprinkler
XieX
possible combinations of values that the
variables in the network can take G = Grass Wet -

« Action space A consisting of applicable do

. Temperature
operations

« Reward function R(s) that can contain individual
rewards for all possible s € S but an also only
focus on individual variables (e.g., R(y))

Y = Yield

« The agent is selecting an action that is
maximizing the expected utility

* argmax P(S]|a)R(s)
a

Seite 25
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Setting up an example

* D(R) = {yes, no}, D(W) = {yes, no}, D(T) = {low,
med, high}, D(G) = {yes, no}, D(Y) = {low, med,

high, exceptional} X = Rain W = Warm Sprinkler
G = Grass Wet T =
Temperature

Y = Yield

Seite 26
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Quiz

* D(R) = {yes,no}, D(W) = {yes,no}, D(T) = {low,
med, high}, D(G) = {yes,no}, D(Y) =
{low,med,high,exceptional} X = Rain W = Warm Sprinkler

How many possible states has G = Grass Wet T =
the state space? Temperature

Y = Yield

Seite 27
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Setting up an example

* D(R) = {yes, no}, D(W) = {yes, no}, D(T) = {low,

med, high}, D(G) = {yes, no}, D(Y) = {low, med,

high, exceptional} X = Rain W = Warm Sprinkler
« State space has 96 states
* R(S)=>R(Y) only dependent on Y

G = Grass Wet T =

« Agent has two actions do(W=yes), do(G=yes) Temperature

and can only perform one
« What is the best action to get maximum utility
Y = Yield

Seite 28
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Setting up an example

 Utility of action do(G=yes)
2>P(Y|do(G=yes))R(Y)

« Adjustment formula needed to block path to X = Rain W = Warm Sprinkler
warm sprinkler

* P(Y|do(G=yes)) =

YwP(Y =y|W =w,G = yes) P(W =w) G = Grass Wet T -

Temperature
 Utility of action do(W=yes)
> P(Y|do(W=yes))R(Y) Y = Yield
* No adjustment needed

Seite 29
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Of course, the example can be converted to a dynamic planning
and acting cycle

* Actions over time = Plan/Conditional Plan

« Temporal combination of rewards (additive vs. discounted) as we know from previous
lectures

« Planning/Acting Horizon
« Optionally also observable evidence over time

X1 Wi1 X2 W2
e I

GT T1 G2 T2
\\

Y1 Y2

Seite 30
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Now we are back to the beginning

Agent Planning and Acting

ﬁ ,’_—-h‘..
"'--...,\ Sensors =
N
State N

What the world
CHOW the world evolves is like now
* Planning stage

Acting stage
What it will be like

if I do action A % Q |

CWhat my actions do

JUSWIUOIIAUF

What action [
< Goals > ® chould do now

KA gent Actuators

Seite 31
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Further interesting topics

« Causal reinforcement learning
Lu, C., Scholkopf, B., & Hernandez-Lobato, J. M. (2018). Deconfounding reinforcement
learning in observational settings. arXiv preprint arXiv:1812.10576.

Gasse, M., Grasset, D., Gaudron, G., & Oudeyer, P. Y. (2021). Causal reinforcement
learning using observational and interventional data. arXiv preprint arXiv:2106.14421.

« Causal inverse reinforcement learning
Ruan, K., Zhang, J., Di, S., & Bareinboim, E. (2022). Causal Imitation Learning Via Inverse

Reinforcement Learning.

Zhang, J., Kumor, D., & Bareinboim, E. (2020). Causal imitation learning with unobserved
confounders. Advances in neural information processing systems, 33, 12263-12274.
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