
Institute of Information Systems

Automated Planning and Acting –
Refinement Methods

Mattis Hartwig

Content

Seite 2

1. Planning and Acting with Deterministic
Models

Conventional AI planning

2. Planning and Acting with Refinement
Methods

Abstract activities ➝ collections of less-abstract
activities

3. Planning and Acting with Temporal Models
Reasoning about time constraints

4. Planning and Acting with Nondeterministic
Models

Actions with multiple possible outcomes

5. Standard Decision Making
Utility theory
Markov decision process (MDP)

6. Planning and Acting with Probabilistic
Models

Actions with multiple possible outcomes, with
probabilities

7. Advanced Decision Making
Hidden goals
Partially observable MDP (POMDP)
Decentralised POMDP

8. Human-aware Planning
Planning with a human in the loop

9. Causal Planning
Causality & Intervention
Implications for Causal Planning

Motivation

Seite 3

• Hierarchically organized
deliberation
• At high levels,

abstract actions

• At lower levels,
more detail

• Refine abstract actions into
ways of carrying out those
actions
• How?

Opening a Door

Seite 4

• Many different methods,
depending on what kind
of door
• Sliding or hinged?
• Hinge on left or right?
• Open toward or away?
• Knob, lever, push bar
• Pull handle, push plate
• Something else?

move to door open door close doorget out

identify
type

of
door

move
close

to
knob

grasp
knob

turn
knob

maintain

pull
pull

monitor
monitor

ungraspmove
back

…

…

…

Assumptions

Seite 5

• Removes/weakens assumptions from classical planning

• Characteristics
• Dynamic environment
• Imperfect information
• Overlapping actions
• Nondeterminism
• Hierarchy
• Discrete and continuous variables

State-variable Representation (Recap)

Seite 6

• Objects:
• 𝑅𝑜𝑏𝑜𝑡𝑠 = 𝑟𝑏𝑡
• 𝐶𝑜𝑛𝑡𝑎𝑖𝑛𝑒𝑟𝑠 = 𝑐1, 𝑐2, 𝑐3, …
• 𝐿𝑜𝑐𝑎𝑡𝑖𝑜𝑛𝑠 = {𝑙𝑜𝑐0, 𝑙𝑜𝑐1, 𝑙𝑜𝑐2, … }

• State variables: syntactic terms to which we can assign values
• 𝑙𝑜𝑐(𝑟) ∈ 𝐿𝑜𝑐𝑎𝑡𝑖𝑜𝑛𝑠
• 𝑙𝑜𝑎𝑑(𝑟) ∈ 𝐶𝑜𝑛𝑡𝑎𝑖𝑛𝑒𝑟𝑠 ∪ {𝑛𝑖𝑙}
• 𝑝𝑜𝑠(𝑐) ∈ 𝐿𝑜𝑐𝑎𝑡𝑖𝑜𝑛𝑠 ∪ 𝑅𝑜𝑏𝑜𝑡𝑠 ∪ {𝑢𝑛𝑘𝑛𝑜𝑤𝑛}
• 𝑣𝑖𝑒𝑤(𝑟, 𝑙) ∈ 𝑇, 𝐹
• whether robot 𝑟 has looked at location 𝑙
• 𝑟 can only see what is at its current location

• State: assign a value to each state variable
• 𝑙𝑜𝑐 𝑟𝑏𝑡 = 𝑙𝑜𝑐0, 𝑝𝑜𝑠 𝑐1 = 𝑙𝑜𝑐2, 𝑝𝑜𝑠 𝑐3 = 𝑙𝑜𝑐4, 𝑝𝑜𝑠 𝑐2 = 𝑢𝑛𝑘𝑛𝑜𝑤𝑛,…

State-variable Representation: Extensions

Seite 7

• Range ℛ(𝑥)
• Can be finite, infinite, continuous, discontinuous, vectors,

matrices, other data structures

• Assignment statement 𝑥 ← 𝑒𝑥𝑝𝑟
• Expression that returns a ground value in ℛ(𝑥) and

has no side-effects on the current state

• Tests (e.g., preconditions)
• Simple: 𝑥 = 𝑣, 𝑥 ≠ 𝑣, 𝑥 > 𝑣, 𝑥 < 𝑣
• Compound: conjunction, disjunction,

or negation of simple tests

Commands

• Command: primitive function that the execution

platform can perform
• 𝑡𝑎𝑘𝑒 𝑟, 𝑜, 𝑙 :

robot 𝑟 takes object 𝑜
at location 𝑙

• 𝑝𝑢𝑡 𝑟, 𝑜, 𝑙 :
𝑟 puts 𝑜 at location 𝑙

• 𝑝𝑒𝑟𝑐𝑒𝑖𝑣𝑒 𝑟, 𝑙 :
robot 𝑟 perceives what objects are at 𝑙
• 𝑟 can only perceive what is at its current location

• Event: occurrence detected by execution platform
• 𝑒𝑣𝑒𝑛𝑡−𝑛𝑎𝑚𝑒(𝑎𝑟𝑔𝑠)
• Exogenous changes in the environment to which the actor may

have to react
• E.g., emergency signal, arrival of transportation vehicle

Seite 8

• For later
• ℳ: library of methods
• 𝜉: current state (abstraction)

Tasks and Methods

Seite 9

• Task: an activity for the

actor to perform
• Could be an abstract action of a plan

• For each task, a set of

refinement methods
• Operational models:
• Tell how to perform the task
• Do not predict what it will do

• assignment statements

• control constructs: if-then-else, while, …

• tasks (can extend to include events, goals)

• commands to the execution platform

Example: “open door” task

Seite 10

• What kind:
• Hinged on left
• Opens toward us
• Lever handle

⇾ Refinement

method

m-opendoor(r,d,l,h)
task: opendoor(r,d)
pre: loc(r) = l ∧ adj(l,d)

∧ handle(d,h)
body:

while ¬reachable(r,h) do
move-close(r,h)

monitor-status(r,d)
if door-status(d)=closed then

unlatch(r,d)
throw-wide(r,d)
end-monitor-status(r,d)

m1-unlatch(r,d,l,o)
task: unlatch(r,d)
pre: loc(r,l)∧toward-side(l,d)∧

side(d,left)∧type(d,rotate)∧handle(d,o)
body: grasp(r,o)

turn(r,o,alpha1)
pull(r,val1)
if door-status(d)=cracked then ungrasp(r,o)
else fail

m1-throw-wide(r,d,l,o)
task: throw-wide(r,d)
pre: loc(r,l)∧toward-side(l,d)∧

side(d,left) ∧ type(d,rotate) ∧
handle(d,o)∧door-status(d)=cracked

body: grasp(r,o)
pull(r,val1)
move-by(r,val2)

move to door open door close doorget out

identify
type

of
door

move
close

to
knob

grasp
knob

turn
knob

maintain

pull
pull

monitor
monitor

ungraspmove
back

…

…

…

Rae (Refinement Acting Engine)

Seite 11

• Based on OpenPRS
• Programming language,

open-source robotics software
• Deployed in many applications

• Input
• External tasks, events, current state 𝜉, library of methods ℳ

• Output
• Commands to execution platform

• Perform multiple tasks / events in parallel
• Purely reactive, no lookahead

• For each task/event,
a refinement stack
• current path in Rae’s search tree for the task / event

• Agenda
= {all current refinement stacks}

RAE

Seite 12

• Basic idea

loop:
• if new external tasks/events then
• Add them to Agenda

• for each stack in Agenda
• Progress it
• Remove it if it’s finished

Progress (subroutine) – Just a Decision Tree

Seite 13

Example

• Objects:
• 𝑅𝑜𝑏𝑜𝑡𝑠 = 𝑟𝑏𝑡
• 𝐶𝑜𝑛𝑡𝑎𝑖𝑛𝑒𝑟𝑠 = 𝑐1, 𝑐2, 𝑐3, …
• 𝐿𝑜𝑐𝑎𝑡𝑖𝑜𝑛𝑠 = {𝑙𝑜𝑐0, 𝑙𝑜𝑐1, 𝑙𝑜𝑐2, … }

• State variables: syntactic terms to which we can assign values
• 𝑙𝑜𝑐(𝑟) ∈ 𝐿𝑜𝑐𝑎𝑡𝑖𝑜𝑛𝑠
• 𝑙𝑜𝑎𝑑(𝑟) ∈ 𝐶𝑜𝑛𝑡𝑎𝑖𝑛𝑒𝑟𝑠 ∪ {𝑛𝑖𝑙}
• 𝑝𝑜𝑠(𝑐) ∈ 𝐿𝑜𝑐𝑎𝑡𝑖𝑜𝑛𝑠 ∪ 𝑅𝑜𝑏𝑜𝑡𝑠 ∪ {𝑢𝑛𝑘𝑛𝑜𝑤𝑛}
• 𝑣𝑖𝑒𝑤(𝑟, 𝑙) ∈ 𝑇, 𝐹
• whether robot 𝑟 has looked at location 𝑙
• 𝑟 can only see what is at its current location

• Commands to the execution platform:
• 𝑡𝑎𝑘𝑒 𝑟, 𝑜, 𝑙 : robot 𝑟 takes object 𝑜 at location 𝑙
• 𝑝𝑢𝑡 𝑟, 𝑜, 𝑙 : 𝑟 puts 𝑜 at location 𝑙
• 𝑝𝑒𝑟𝑐𝑒𝑖𝑣𝑒 𝑟, 𝑙 : robot 𝑟 perceives what objects are at loc. 𝑙
• 𝑚𝑜𝑣𝑒−𝑡𝑜 𝑟, 𝑙 : robot 𝑟 moves to location 𝑙

Seite 14

Example

Seite 15

m-search(r,c)
task: search(r,c)
pre: pos(c) = unknown
body:

if ∃l (view(r,l) = F) then
move-to(r,l)
perceive(l)
if pos(c) = l then

take(r,c,l)
else search(r,c)

else fail

m-fetch(r,c)
task: fetch(r,c)
pre:
body:

if pos(c) = unknown then
search(r,c)

else if loc(r) = pos(c) then
take(r,c,pos(c))

else do
move-to(r,pos(c))
take(r,c,pos(c))

take(r1,c2,loc2)

search(r1,c2)

m-fetch(r1,c2)

m-search(r1,c2)

move-to(r1,loc1)

m-search(r1,c2)

perceive(loc1)

move-to(r1,loc2) perceive(loc2)

…

search(r1,c2)

fetch(r1,c2)

…

…

?

Example

Seite 16

m-search(r,c)
task: search(r,c)
pre: pos(c) = unknown
body:

if ∃l (view(r,l) = F) then
move-to(r,l)
perceive(l)
if pos(c) = l then

take(r,c,l)
else search(r,c)

else fail

m-fetch(r,c)
task: fetch(r,c)
pre:
body:

if pos(c) = unknown then
search(r,c)

else if loc(r) = pos(c) then
take(r,c,pos(c))

else do
move-to(r,pos(c))
take(r,c,pos(c))

take(r1,c2,loc2)

search(r1,c2)

m-fetch(r1,c2)

m-search(r1,c2)

move-to(r1,loc1)

m-search(r1,c2)

perceive(loc1)

move-to(r1,loc2) perceive(loc2)

…

search(r1,c2)

fetch(r1,c2)

…

…

Example

Seite 17

m-search(r,c)
task: search(r,c)
pre: pos(c) = unknown
body:

if ∃l (view(r,l) = F) then
move-to(r,l)
perceive(l)
if pos(c) = l then

take(r,c,l)
else search(r,c)

else fail

m-fetch(r,c)
task: fetch(r,c)
pre:
body:

if pos(c) = unknown then
search(r,c)

else if loc(r) = pos(c) then
take(r,c,pos(c))

else do
move-to(r,pos(c))
take(r,c,pos(c))

take(r1,c2,loc2)

search(r1,c2)

m-fetch(r1,c2)

m-search(r1,c2)

move-to(r1,loc1)

m-search(r1,c2)

perceive(loc1)

move-to(r1,loc2) perceive(loc2)

…

search(r1,c2)

fetch(r1,c2)

…

…

Example

Seite 18

m-search(r,c)
task: search(r,c)
pre: pos(c) = unknown
body:

if ∃l (view(r,l) = F) then
move-to(r,l)
perceive(l)
if pos(c) = l then

take(r,c,l)
else search(r,c)

else fail

m-fetch(r,c)
task: fetch(r,c)
pre:
body:

if pos(c) = unknown then
search(r,c)

else if loc(r) = pos(c) then
take(r,c,pos(c))

else do
move-to(r,pos(c))
take(r,c,pos(c))

take(r1,c2,loc2)

search(r1,c2)

m-fetch(r1,c2)

m-search(r1,c2)

move-to(r1,loc1)

m-search(r1,c2)

perceive(loc1)

move-to(r1,loc2) perceive(loc2)

…

search(r1,c2)

fetch(r1,c2)

…

…

Example

Seite 19

m-search(r,c)
task: search(r,c)
pre: pos(c) = unknown
body:

if ∃l (view(r,l) = F) then
move-to(r,l)
perceive(l)
if pos(c) = l then

take(r,c,l)
else search(r,c)

else fail

m-fetch(r,c)
task: fetch(r,c)
pre:
body:

if pos(c) = unknown then
search(r,c)

else if loc(r) = pos(c) then
take(r,c,pos(c))

else do
move-to(r,pos(c))
take(r,c,pos(c))

take(r1,c2,loc2)

search(r1,c2)

m-fetch(r1,c2)

m-search(r1,c2)

move-to(r1,loc1)

m-search(r1,c2)

perceive(loc1)

move-to(r1,loc2) perceive(loc2)

…

search(r1,c2)

fetch(r1,c2)

…

…

Example

Seite 20

m-search(r,c)
task: search(r,c)
pre: pos(c) = unknown
body:

if ∃l (view(r,l) = F) then
move-to(r,l)
perceive(l)
if pos(c) = l then

take(r,c,l)
else search(r,c)

else fail

m-fetch(r,c)
task: fetch(r,c)
pre:
body:

if pos(c) = unknown then
search(r,c)

else if loc(r) = pos(c) then
take(r,c,pos(c))

else do
move-to(r,pos(c))
take(r,c,pos(c))

take(r1,c2,loc2)

search(r1,c2)

m-fetch(r1,c2)

m-search(r1,c2)

move-to(r1,loc1)

m-search(r1,c2)

perceive(loc1)

move-to(r1,loc2) perceive(loc2)

…

search(r1,c2)

fetch(r1,c2)

…

…

Example

Seite 21

m-search(r,c)
task: search(r,c)
pre: pos(c) = unknown
body:

if ∃l (view(r,l) = F) then
move-to(r,l)
perceive(l)
if pos(c) = l then

take(r,c,l)
else search(r,c)

else fail

m-fetch(r,c)
task: fetch(r,c)
pre:
body:

if pos(c) = unknown then
search(r,c)

else if loc(r) = pos(c) then
take(r,c,pos(c))

else do
move-to(r,pos(c))
take(r,c,pos(c))

take(r1,c2,loc2)

search(r1,c2)

m-fetch(r1,c2)

m-search(r1,c2)

move-to(r1,loc1)

m-search(r1,c2)

perceive(loc1)

move-to(r1,loc2) perceive(loc2)

…

search(r1,c2)

fetch(r1,c2)

…

…

sensor failure

Example

Seite 22

m-search(r,c)
task: search(r,c)
pre: pos(c) = unknown
body:

if ∃l (view(r,l) = F) then
move-to(r,l)
perceive(l)
if pos(c) = l then

take(r,c,l)
else search(r,c)

else fail

m-fetch(r,c)
task: fetch(r,c)
pre:
body:

if pos(c) = unknown then
search(r,c)

else if loc(r) = pos(c) then
take(r,c,pos(c))

else do
move-to(r,pos(c))
take(r,c,pos(c))

take(r1,c2,loc2)

search(r1,c2)

m-fetch(r1,c2)

m-search(r1,c2)

move-to(r1,loc1)

m-search(r1,c2)

perceive(loc1)

move-to(r1,loc2) perceive(loc2)

…

search(r1,c2)

fetch(r1,c2)

…

…

If other candidates for search(r1,c2), try them.

Retry (subroutine)

Seite 23

Another decision tree

Quiz

When an agent has the task “going shopping to buy ingredients for a meal” what is probably

no a refinement of that task?

a) Finding the way for the shopping mall

b) Doing movements

c) Perceiving items

d) Preparing the meal

Seite 24

Extensions to RAE

• Events
• External inputs that are handled together with task (e.g. an emergency)
• Are handled on the outer RAE loop and can also result in methods handling the event

• Goals
• Special kind of tasks where the progress to achieve a specific goal condition is monitored

• Concurrent subtasks
• Refinement stack for each one

• Controlling the progress of tasks
• E.g. Pausing tasks under specific conditions

• For a task 𝜏, which candidate to try first?
• Refinement planning

Seite 25

Refinement Planning

Seite 26

Motivation

• When dealing with an event or task, Rae may need to make either/or choices
• Agenda: tasks 𝜏1, 𝜏2, … , 𝜏𝑛
• Several tasks/events, how to prioritize?

• Candidates for 𝜏1: 𝑚1, 𝑚2, …
• Several candidate methods or commands, which one to try first?

• Rae immediately executes commands
• Bad choices may be costly or irreversible

Seite 27

Refinement Planning

• Basic idea:
• Go step by step through Rae, but do not send commands to execution platform
• For each command, use a descriptive action model to predict the next state
• Tells what, not how

• Whenever we need to choose a method
• Try various possible choices, explore consequences, choose best

• Generalization of HTN (Hierarchical Task Network) planning
• HTN planning: body of a method is a list of tasks
• Here: body of method is the same program Rae uses
• Use it to generate a list of tasks

Seite 28

Refinement Planning: Example

• Suppose we learn in advance that the sensor isn’t

available
• Planner infers that m-search(r1,c2) will fail
• If another method is available, use it
• Otherwise, planner will infer that the actor can’t do

search(r1,c2)

Seite 29

take(r1,c2,loc2)

search(r1,c2)

m-fetch(r1,c2)

m-search(r1,c2)

move-to(r1,loc1)

m-search(r1,c2)

perceive(loc1)

move-to(r1,loc2) perceive(loc2)

…

search(r1,c2)

fetch(r1,c2)

…

…

sensor failure

Descriptive Action Models

Seite 30

• Predict the outcome of performing a command
• Preconditions-and-effects representation

• Command
• 𝑡𝑎𝑘𝑒 𝑟, 𝑜, 𝑙 :

robot 𝑟 takes object 𝑜 at location 𝑙
• 𝑝𝑢𝑡 𝑟, 𝑜, 𝑙 :

𝑟 puts 𝑜 at location 𝑙
• 𝑝𝑒𝑟𝑐𝑒𝑖𝑣𝑒 𝑟, 𝑙 :

robot 𝑟 perceives what objects are
at location 𝑙
• Can only perceive what is at its current location
• If we knew this in advance, perception would not be necessary

• Action model

take(r,o,l)

pre: cargo(r) = nil, loc(r) = l, loc(o) = l

eff: cargo(r) ← o, loc(o) ← r

put(r,o,l)

pre: loc(r) = l, loc(o) = r

eff: cargo(r) ← nil, loc(o) ← l

perceive(r,l)

?

Limitation

• Most environments are inherently nondeterministic
• Deterministic action models will not always make the right prediction

• Why use them?
• Deterministic models ⇒ much simpler planning algorithms
• Use when errors are infrequent and do not have severe consequences
• Actor can fix the errors online

Seite 31

SeRPE (Sequential Refinement Planning Engine)

Seite 32

• SeRPE inputs

• Which candidate method for 𝜏?
• SeRPE:
• Nondeterministic choice
• Backtracking point

• How to implement?
• Hierarchical adaptation of backtracking, A*, GBFS, ...

• RAE
• Arbitrary choice
• No search, purely reactive

Rae(ℳ)

Agenda ← ∅
loop

until the input of external tasks and

events is empty do

read 𝜏 in the input stream

Candidates ← Instances(ℳ,𝜏,𝜉)
if Candidates = ∅ then

output(“failed to address” 𝜏)
else do

arbitrarily choose m ∈ Candidates

Agenda ← Agenda ∪ {⟨(𝜏,m,nil,∅)⟩}
for each stack ∈ Agenda do

Progress(stack)

if stack = ∅ then

Agenda ← Agenda \ {stack}

SeRPE(ℳ,𝒜,s,𝜏)
Candidates ← Instances(ℳ,𝜏,s)
if Candidates = ∅ then

return failure

nondeterministically choose m ∈ Candidates

return Progress-to-finish(ℳ,𝒜,s,𝜏,m)

SeRPE (Sequential Refinement Planning Engine)

Seite 33

• SeRPE
• One external task
• Simulate progressing it all the way to the end

• Rae
• Several external tasks
• Each time through loop, progress each one by one step

Rae(ℳ)

Agenda ← ∅
loop

until the input of external tasks and

events is empty do

read 𝜏 in the input stream

Candidates ← Instances(ℳ,𝜏,𝜉)
if Candidates = ∅ then

output(“failed to address” 𝜏)
else do

arbitrarily choose m ∈ Candidates

Agenda ← Agenda ∪ {⟨(𝜏,m,nil,∅)⟩}
for each stack ∈ Agenda do

Progress(stack)

if stack = ∅ then

Agenda ← Agenda \ {stack}

SeRPE(ℳ,𝒜,s,𝜏)
Candidates ← Instances(ℳ,𝜏,s)
if Candidates = ∅ then

return failure

nondeterministically choose m ∈ Candidates

return Progress-to-finish(ℳ,𝒜,s,𝜏,m)

Progress-to-finish

• Like Rae progress with a loop around it
• Simulates the commands

Seite 34

Progress-to-finish(ℳ,𝒜,s,𝜏,m)
i ← nil; 𝜋 ← ⟨⟩
loop

if 𝜏 is a goal and s ⊨ 𝜏 then

return 𝜋
if i is the last step of m then

if 𝜏 is a goal and s ⊭ 𝜏 then

return failure

return 𝜋
i ← nextstep(m,i)

case type(m[i])

assignment:

update s according to m[i]

command:

a ← descriptive model of m[i] in 𝒜
if s ⊨ pre(a) then

s ← 𝛾(s,a); 𝜋 ← 𝜋.a
else

return failure

task or goal:

𝜋’ ← SeRPE(ℳ,𝒜,s,m[i])
if 𝜋’ = failure then

return failure

s ← 𝛾(s,𝜋’); 𝜋 ← 𝜋. 𝜋’

Progress-to-finish

Seite 35

Progress-to-finish(ℳ,𝒜,s,𝜏,m)
i ← nil; 𝜋 ← ⟨⟩
loop

if 𝜏 is a goal and s ⊨ 𝜏 then

return 𝜋
if i is the last step of m then

if 𝜏 is a goal and s ⊭ 𝜏 then

return failure

return 𝜋
i ← nextstep(m,i)

case type(m[i])

assignment:

update s according to m[i]

command:

a ← descriptive model of m[i] in 𝒜
if s ⊨ pre(a) then

s ← 𝛾(s,a); 𝜋 ← 𝜋.a
else

return failure

task or goal:

𝜋’ ← SeRPE(ℳ,𝒜,s,m[i])
if 𝜋’ = failure then

return failure

s ← 𝛾(s,𝜋’); 𝜋 ← 𝜋. 𝜋’

• Inputs
• ℳ = {methods} , 𝒜 = {action models}

, 𝑠 = initial state, 𝜏 = task or goal, 𝑚 =
chosen method

• Simulate Rae’s goal monitoring
• If 𝑚[𝑖] is a command
• Use action model to predict outcome

• If current step is a task
• Call SeRPE recursively
• Recursion stack ≈ Rae’s refinement

stack
• For failures, no Retry (Rae)
• A failure means SeRPE could not find a

solution
• Implementation: hierarchical

adaptations of backtracking, A*, GBFS,
...

Heuristics For SeRPE

• Ad hoc approaches:
• Domain-specific estimates
• Statistical data on how well each method works
• Try methods (or actions) in the order that they appear in ℳ (or 𝒜)

• Ideally, would want to implement using heuristic search

(e.g., GBFS)
• What heuristic function? Open problem

Seite 36

SeRPE(ℳ,𝒜,s,𝜏)
Candidates ← Instances(ℳ,𝜏,s)
if Candidates = ∅ then

return failure

nondeterministically choose m ∈ Candidates

return Progress-to-finish(ℳ,𝒜,s,𝜏,m)

Interleaving

Seite 37

• Want to move 𝑐1 to 𝑝2, using this plan
• ⟨𝑙𝑜𝑎𝑑 𝑟1, 𝑐1, 𝑐2, 𝑝1, 𝑑1 ,

𝑚𝑜𝑣𝑒 𝑟1, 𝑑1, 𝑑2 ,
𝑢𝑛𝑙𝑜𝑎𝑑 𝑟1, 𝑐1, 𝑝3, 𝑛𝑖𝑙, 𝑑2 ⟩

• … and move 𝑐3 to 𝑝1 using this plan:
• ⟨𝑙𝑜𝑎𝑑 𝑟2, 𝑐3, 𝑛𝑖𝑙, 𝑝2, 𝑑2 ,

𝑚𝑜𝑣𝑒 𝑟2, 𝑑2, 𝑑3 ,
𝑚𝑜𝑣𝑒 𝑟2, 𝑑3, 𝑑1 ,
𝑢𝑛𝑙𝑜𝑎𝑑 𝑟2, 𝑐3, 𝑐2, 𝑝1, 𝑑1 ⟩

• For it to work, must interleave the plans
• ⟨ 𝑙𝑜𝑎𝑑 𝑟2, 𝑐3, 𝑛𝑖𝑙, 𝑝2, 𝑑2 ,

𝑚𝑜𝑣𝑒 𝑟2, 𝑑2, 𝑑3 ,
𝑙𝑜𝑎𝑑 𝑟1, 𝑐1, 𝑐2, 𝑝1, 𝑑1 ,
𝑚𝑜𝑣𝑒 𝑟1, 𝑑1, 𝑑2 ,
𝑢𝑛𝑙𝑜𝑎𝑑 𝑟1, 𝑐1, 𝑝3, 𝑛𝑖𝑙, 𝑑2 ,
𝑚𝑜𝑣𝑒 𝑟2, 𝑑3, 𝑑1 ,
𝑢𝑛𝑙𝑜𝑎𝑑 𝑟2, 𝑐3, 𝑐2, 𝑝1, 𝑑1 ⟩

• 𝑙𝑜𝑎𝑑 𝑟, 𝑐, 𝑐′, 𝑝, 𝑑
• pre: 𝑎𝑡 𝑝, 𝑑 , 𝑐𝑎𝑟𝑔𝑜 𝑟 = 𝑛𝑖𝑙, 𝑙𝑜𝑐 𝑟 = 𝑑,

𝑝𝑜𝑠 𝑐 = 𝑐′, 𝑡𝑜𝑝 𝑝 = 𝑐
• eff: 𝑐𝑎𝑟𝑔𝑜 𝑟 ← 𝑐, 𝑝𝑖𝑙𝑒 𝑐 ← 𝑛𝑖𝑙, 𝑝𝑜𝑠 𝑐 ←

𝑟, 𝑡𝑜𝑝 𝑝 ← 𝑐′

• 𝑢𝑛𝑙𝑜𝑎𝑑 𝑟, 𝑐, 𝑐′, 𝑝, 𝑑
• pre: 𝑎𝑡 𝑝, 𝑑 , 𝑝𝑜𝑠 𝑐 = 𝑟, 𝑙𝑜𝑐 𝑟 = 𝑑, 𝑡𝑜𝑝 𝑝 =

𝑐′

• eff: 𝑐𝑎𝑟𝑔𝑜 𝑟 ← 𝑛𝑖𝑙, 𝑝𝑖𝑙𝑒 𝑐 ← 𝑝, 𝑝𝑜𝑠 𝑐 ←
𝑐′, 𝑡𝑜𝑝 𝑝 ← 𝑐

• 𝑚𝑜𝑣𝑒 𝑟, 𝑑, 𝑑′

• pre: 𝑎𝑑𝑗 𝑑, 𝑑′ , 𝑙𝑜𝑐 𝑟 = 𝑑, 𝑜𝑐𝑐𝑢𝑝𝑖𝑒𝑑 𝑑′ = 𝐹
• eff: 𝑙𝑜𝑐 𝑟 = 𝑑′, 𝑜𝑐𝑐𝑢𝑝𝑖𝑒𝑑 𝑑 = 𝐹,

𝑜𝑐𝑐𝑢𝑝𝑖𝑒𝑑 𝑑′ = 𝑇

Interleaved Refinement Tree (IRT) Procedure

• SeRPE doesn’t allow the ‘concurrent’

programming construct
• Partial fix: extend SeRPE to interleave plans

for different tasks

• Details: Section 3.3.2

Seite 38

Acting and Refinement Planning

• Hierarchical acting with refinement planning
• REAP: a RAE-like actor uses SeRPE-like planning at all levels

• Non-hierarchical actor with refinement planning
• Refine-Lookahead
• Refine-Lazy-Lookahead
• Refine-Concurrent-Lookahead

• Essentially the same as
• Run-Lookahead
• Run-Lazy-Lookahead
• Run-Concurrent-Lookahead

• But they call SeRPE instead of a classical planner
• Lookahead same as before
• Receding horizon, sampling, subgoaling

Seite 39

Using Planning in Acting

• Lookahead: modified version of SeRPE
• Searches part of the search space, returns a partial plan

• Useful when unpredictable things are likely to happen
• Always re-plans immediately

• Potential problem:
• May pause repeatedly

while waiting for
Lookahead to return

• What if 𝑠 changes
during the wait?

Seite 40

Refine-Lookahead(ℳ,𝒜,𝜏)
while (s ← abstraction of

observed state 𝜉) ⊭ 𝜏 do

𝜋 ← SeRPE-Lookahead(ℳ,𝒜,s,𝜏)
if 𝜋 = failure then

return failure

a ← pop-first-action(𝜋)
perform a

Planning stage
Acting stage

Using Planning in Acting

• Call Lookahead, execute the plan as far as possible,

do not call Lookahead again unless necessary

• Simulate does a simulation of the plan
• Can be more detailed than SeRPE’s action models
• e.g., physics-based simulation

• Potential problem: may wait too long to re-plan
• Might not notice problems until it’s too late
• Might miss opportunities to replace 𝜋 with a better plan

Seite 41

Planning stage
Acting stage

Refine-Lazy-Lookahead(ℳ,𝒜,𝜏)
s ← abstraction of

observed state 𝜉
while s ⊭ 𝜏 do

𝜋 ← SeRPE-Lookahead(ℳ,𝒜,s,𝜏)
if 𝜋 = failure then

return failure

while 𝜋 ≠ ⟨⟩ and s ⊭ 𝜏 and

Simulate(Σ,s,𝜏,𝜋)
≠ failure do

a ← pop-first-action(𝜋)
perform a

s ← abstraction of

observed state 𝜉

Using Planning in Acting

• Objective:
• Balance trade-offs between Refine-Lookahead and

Refine-Lazy-Lookahead
• More up-to-date plans than Refine-Lazy-

Lookahead, but without waiting for Lookahead to
return

Seite 42

Planning stage
Acting stage

Refine-Concurrent-Lookahead(ℳ,𝒜,𝜏)
𝜋 ← ⟨⟩
s ← abstraction of observed state 𝜉
// threads 1 and 2 run concurrently

thread 1:

loop

𝜋 ← SeRPE-Lookahead(ℳ,𝒜,s,𝜏)
thread 2:

loop

if s ⊭ 𝜏 then

return success

else if 𝜋 = failure then

return failure

else if 𝜋 ≠ ⟨⟩ and s ⊭ 𝜏 and

Simulate(Σ,s,𝜏,𝜋) ≠ failure then
a ← pop-first-action(𝜋)
perform a

s ← abstraction of observed state 𝜉

Caveats

• Start in state 𝑠0,

want to accomplish task 𝜏
• Refinement method m:
• task: 𝜏
• pre: 𝑠0
• body: 𝑎1, 𝑎2, 𝑎3

• Actor uses Run-Lookahead
• Lookahead = SeRPE, returns ⟨𝑎1, 𝑎2, 𝑎3⟩
• Actor performs 𝑎1, calls Lookahead again
• No applicable method for 𝜏 in 𝑠1, SeRPE returns failure

• Fixes
• When writing refinement methods, make them general enough to work in different states
• In some cases, Lookahead might be able to fall back on classical planning until it finds something that

matches a method
• Keep snapshot of SeRPE’s search tree at 𝑠1, resume there next time

Seite 43

𝑎1𝑠0 𝑎2 𝑎3𝑠1 𝑠2

𝑚

Caveats

• Start in state 𝑠0,

want to accomplish task 𝜏
• Refinement method m:
• task: 𝜏
• pre: 𝑠0
• body: 𝑎1, 𝑎2, 𝑎3

• Actor uses Run-Lazy-Lookahead
• Lookahead = SeRPE with receding horizon, returns ⟨𝑎1, 𝑎2⟩
• Actor performs them, calls Lookahead again
• No applicable method for 𝜏 in 𝑠2, SeRPE returns failure

• Can use the same fixes on previous slide, with one modification
• Keep snapshot of SeRPE’s search tree at the horizon, resume next time it is called

Seite 44

𝑎1𝑠0 𝑎2 𝑎3𝑠1 𝑠2

𝑚
horizon

Caveats

• Start in state 𝑠0,

want to accomplish task 𝜏
• Refinement method m:
• task: 𝜏
• pre: 𝑠0
• body: 𝑎1, 𝑎2, 𝑎3

• Actor uses Run-Lazy-Lookahead
• Lookahead = SeRPE, returns ⟨𝑎1, 𝑎2, 𝑎3⟩
• While acting, unexpected event
• Actor calls Lookahead again
• No applicable method for 𝜏 in 𝑠4, SeRPE returns failure

• Can use most of the fixes on last two slides, with this modification
• Keep snapshot of SeRPE’s search tree after each action
• Restart it immediately after 𝑎1, using 𝑠4 as current state

• Also: make recovery methods for unexpected states
• E.g., fix flat tire, get back on the road

Seite 45

𝑎1𝑠0 𝑎2 𝑎3𝑠1 𝑠2

𝑚

𝑎1𝑠0 𝑠4

Summary

• Acting and planning
• Lookahead: search part of the search space, return a partial solution
• Refine-Lookahead, Refine-Lazy-Lookahead, Refine-Concurrent-Lookahead
• Like Run-Lookahead, Run-Lazy-Lookahead, Run-Concurrent-Lookahead, but call SeRPE

• Caveats
• Current state may not be what we expect
• Possible ways to handle that

Seite 46

Content

Seite 47

1. Planning and Acting with Deterministic
Models

Conventional AI planning

2. Planning and Acting with Refinement
Methods

Abstract activities ➝ collections of less-abstract
activities

3. Planning and Acting with Temporal Models
Reasoning about time constraints

4. Planning and Acting with Nondeterministic
Models

Actions with multiple possible outcomes

5. Standard Decision Making
Utility theory
Markov decision process (MDP)

6. Planning and Acting with Probabilistic
Models

Actions with multiple possible outcomes, with
probabilities

7. Advanced Decision Making
Hidden goals
Partially observable MDP (POMDP)
Decentralised POMDP

8. Human-aware Planning
Planning with a human in the loop

9. Causal Planning
Causality & Intervention
Implications for Causal Planning

