
Institute of Information Systems

Automated Planning and Acting –
Temporal Models

Mattis Hartwig

Content

Seite 2

1. Planning and Acting with Deterministic
Models

Conventional AI planning

2. Planning and Acting with Refinement
Methods

Abstract activities ➝ collections of less-abstract
activities

3. Planning and Acting with Temporal Models
Reasoning about time constraints

4. Planning and Acting with Nondeterministic
Models

Actions with multiple possible outcomes

5. Standard Decision Making
Utility theory
Markov decision process (MDP)

6. Planning and Acting with Probabilistic
Models

Actions with multiple possible outcomes, with
probabilities

7. Advanced Decision Making
Hidden goals
Partially observable MDP (POMDP)
Decentralised POMDP

8. Human-aware Planning
Planning with a human in the loop

9. Causal Planning
Causality & Intervention
Implications for Causal Planning

Temporal Models

• Durations of actions

• Delayed effects and preconditions
• E.g., resources borrowed or consumed during an action

• Time constraints on goals
• Relative or absolute

• Exogenous events expected to occur in the future
• When?

• Maintenance actions:
• Maintain a property (≠ changing a value)
• E.g., track a moving target, keep a spring latch in position

• Concurrent actions
• Interacting effects, joint effects

• Delayed commitment
• Instantiation at acting time

Seite 3

Timelines

• Up to now, “state-oriented view”
• Time is a sequence of states 𝑠0, 𝑠1, 𝑠2

• Instantaneous actions transform each state into the next one
• No overlapping actions

• Switch to a “time-oriented view”
• Sequence of

integer time points
• 𝑡 = 1, 2, 3, …

• For each state variable 𝑥,
a timeline
• Values during different

time intervals
• State at time 𝑡 = {state−variable values at time 𝑡}

Seite 4

t+1

time

st
at

e
va

ri
ab

le
s

x

y

t

Timelines

• Sets of constraints on state variables and events
• Reflect predicted actions and events

• Planning is constraint-based

Seite 5

Representation

• Quantitative model of time
• Discrete: time points are integers

• Expressions:
• time-point variables
• 𝑡, 𝑡′, 𝑡2 , 𝑡𝑗 , …

• simple constraints
• t < t’
• 𝑑 ≤ 𝑡′– 𝑡 ≤ 𝑑′ ,

• x(t) refers to the value of variable x at time t

• Temporal assertion:
• Value of a state variable during a time interval
• Persistence: 𝑡1, 𝑡2 𝑥 = 𝑣 entails 𝑡1 < 𝑡2

• Change: 𝑡1, 𝑡2 𝑥 ∶ 𝑣1, 𝑣2 entails 𝑣1 ≠ 𝑣2

Seite 6

Quiz

What is the right assertion that says robot r1 changes the location from loc2 to loc3 in the

interval [t5, t6]?

Seite 7

Timeline

• Timeline: pair 𝒯, 𝒞 , partially predicted evolution of one state variable
• 𝒯 : temporal assertions
• 𝑡1, 𝑡2 𝑙𝑜𝑐 𝑟1 ∶ 𝑙𝑜𝑐1, 𝑙

• 𝑡2, 𝑡3 𝑙𝑜𝑐 𝑟1 = 𝑙
• 𝑡3, 𝑡4 𝑙𝑜𝑐 𝑟1 ∶ 𝑙, 𝑙𝑜𝑐2

• 𝒞 : constraints
• 𝑡1 < 𝑡2 < 𝑡3 < 𝑡4

• 𝑙 ≠ 𝑙𝑜𝑐1
• 𝑙 ≠ 𝑙𝑜𝑐2
• If we want to restrict 𝑙𝑜𝑐 𝑟1 during 𝑡1, 𝑡2

• 𝑡1, 𝑡1 + 1 𝑙𝑜𝑐 𝑟1 ∶ 𝑙𝑜𝑐1, 𝑟𝑜𝑢𝑡𝑒
• 𝑡2– 1, 𝑡2 𝑙𝑜𝑐 𝑟1 ∶ 𝑟𝑜𝑢𝑡𝑒, 𝑙
• 𝑡1 + 1, 𝑡2– 1 𝑙𝑜𝑐 𝑟1 = 𝑟𝑜𝑢𝑡𝑒

• Instance of 𝒯, 𝒞 = temporal and object variables instantiated

• An instance is consistent if it satisfies all constraints in 𝒞 and does not specify two different

values for a state variable at the same time

• A timeline 𝒯, 𝒞 is consistent if its set of consistent instances is not empty
• A timeline 𝒯, 𝒞 is secure if and only if it is consistent and every instance that meets the

constraints in C is consistent

Seite 8
𝑙𝑜

𝑐
𝑟1

𝑡1 𝑡2 𝑡3 𝑡4

Persistence

Change

𝑙𝑜𝑐1

𝑙𝑜𝑐2

𝑙

Quiz

The timeline ({[t1, t2]loc(r)=loc1, [t3, t4]loc(r1)=l}, {t1 < t2; t3 < t4}) is consistent but not secure. What is a
potential conflict?

What needs to change so it becomes secure?

Seite 9

Actions

• Preliminaries:
• Timelines 𝒯1, 𝒞1 , … , 𝒯𝑘 , 𝒞𝑘 for 𝑘 different state variables
• Their union:
• 𝒯1, 𝒞1 ∪ ⋯ ∪ 𝒯𝑘 , 𝒞𝑘 = 𝒯1 ∪ ⋯ ∪ 𝒯𝑘 , 𝒞1 ∪ ⋯ ∪ 𝒞𝑘

• If
• every 𝒯𝑖 , 𝒞𝑖 is secure, and

• no pair of timelines 𝒯𝑖 , 𝒞𝑖 and 𝒯𝑗 , 𝒞𝑗 has any unground variables in common

• then
• 𝒯1 ∪ ⋯ ∪ 𝒯𝑘 , 𝒞1 ∪ ⋯ ∪ 𝒞𝑘 is also secure

• Action or primitive task (or just primitive):
• a triple ℎ𝑒𝑎𝑑, 𝒯, 𝒞
• ℎ𝑒𝑎𝑑 is the name and arguments
• 𝒯, 𝒞 is the union of a set of timelines

Seite 10

Actions

• Two additional parameters
• Starting time 𝑡𝑠

• Ending time 𝑡𝑒

• No separate preconditions and effects
• Preconditions ⇔ need for causal support

Seite 11

leave(r,d,w)
assertions:

[ts,te] loc(r): (d,w)
[ts,te] occupant(d): (r,empty)

constraints:
te ≤ ts + δ1

adj(d,w)

• 𝑙𝑒𝑎𝑣𝑒 𝑟, 𝑑, 𝑤
• Robot 𝑟 leaves dock 𝑑,

goes to adjacent waypoint 𝑤

• 𝑙𝑜𝑐(𝑟) changes to 𝑤 with delay ≤ 𝛿1

• Dock 𝑑 becomes empty d
• w r

Quiz

Specify the enter action template.

Seite 12

Actions

• 𝑡𝑎𝑘𝑒 𝑘, 𝑐, 𝑟, 𝑑
• Action: crane 𝑘 takes

container 𝑐 from 𝑟
on dock 𝑑

Seite 13

• Two additional parameters
• Starting time 𝑡𝑠

• Ending time 𝑡𝑒

• No separate preconditions and

effects
• Preconditions ⇔ need for causal

support

Tasks and Methods

Seite 14

• Task: move robot r to dock d
• 𝑡𝑠, 𝑡𝑒 𝑚𝑜𝑣𝑒 𝑟, 𝑑

• Method:

• 𝑑′ becomes empty during [𝑡𝑠, 𝑡1]
• another robot may enter it after 𝑡1

• 𝑑 doesn’t need to be empty

until 𝑡4
• when 𝑟 starts entering it

Tasks and Methods

Seite 15

• Task: remove everything above container 𝑐 in pile 𝑝
• 𝑡𝑠, 𝑡𝑒 𝑢𝑛𝑐𝑜𝑣𝑒𝑟 𝑐, 𝑝

• Method:

Tasks and Methods

Seite 16

• Task: robot 𝑟 brings

container 𝑐 to pile 𝑝
• 𝑡𝑠, 𝑡𝑒 𝑏𝑟𝑖𝑛𝑔 𝑟, 𝑐, 𝑝

• Method:

Refine into 𝑢𝑛𝑠𝑡𝑎𝑐𝑘
and 𝑝𝑢𝑡 primitives

Refine into 𝑡𝑎𝑘𝑒 and
𝑠𝑡𝑎𝑐𝑘 primitives

d1

d2

• w1

k2

p3k1

r1

p1

c1

• w2

p2

Chronicles: Unions of Timelines

• Chronicle 𝜙 = 𝒜, 𝒮, 𝒯, 𝒞
• 𝒜 : temporally qualified actions and tasks
• 𝒮 : a priori supported assertions
• 𝒯 : temporally qualified assertions
• 𝒞 : constraints

• 𝜙 can include
• Current state, future predicted events
• Tasks to perform
• Assertions and constraints to satisfy

• Can represent
• Planning problem
• Plan or partial plan

Seite 17

ϕ0:

tasks: [t,t’] bring(r,c1,d4)

supported: [ts] loc(r1)=d1
[ts] loc(r2)=d2
[ts+10,ts+δ] docked(ship1)=d3
[ts] top(pile-ship1)=c1
[ts] pos(c1)=pallet

assertions: [te] loc(r1)=d1
[te] loc(r2)=d2

constraints: ts = 0 < t < t' < te , 20 ≤ δ ≤ 30

ts t ts+10 ts+𝛿 t’ te

docked(ship1) = d3

loc(r1) = d1

𝑡𝑠, 𝑡𝑒 𝑏𝑟𝑖𝑛𝑔 𝑟, 𝑐1, 𝑑4

loc(r1) = d1
top(pile-ship1) = c1

Intermediate Summary

• Timelines
• Temporal assertions (change, persistence), constraints
• Conflicts, consistency, security

• Chronicle: union of several timelines
• Consistency, security

• Actions represented by chronicles
• No separate preconditions and effects

Seite 18

Planning

• Planning problem:
• Chronicle 𝜙0 that has some flaws
• Analogous to flaws in PSP

Seite 19

• Add new assertions,

constraints, actions to resolve

the flaws

ϕ0: tasks: (none)

supported: (none)

assertions: [t1,t2] loc(r1) = l

[t3,t4] loc(r1) : (loc3,loc4)

constraints: adj(loc3,w1)

adj(w1,loc3)

adj(loc4,w2)

adj(w2,loc4)

connected(w1,w2)

ϕ0: tasks: [t2,t3] move(r1,loc3)

supported: (none)

assertions: [t1,t2] loc(r1) = l

[t3,t4] loc(r1) : (loc3,loc4)

constraints: adj(loc3,w1)

adj(w1,loc3)

adj(loc4,w2)

adj(w2,loc4)

connected(w1,w2)

𝑙𝑜
𝑐

𝑟1

𝑡1 𝑡2 𝑡3 𝑡4

𝑙𝑜𝑐4

𝑙𝑜𝑐3

𝑙

𝑙𝑜
𝑐

𝑟1

𝑡1 𝑡2 𝑡3 𝑡4

𝑙𝑜𝑐4

𝑙𝑜𝑐3

𝑙

Solution to Temporal Planning Problems

• Temporal Planning Problem
• 𝛴 : Planning Domain with objects, rigid relations, state variables, actions (primitives) and methods
• 𝜙0 (A,S,T,C): Initial chronicle

• Planning is a refinement of tasks and generative search for goals

• A chronicle 𝜙 is a valid solution plan for the temporal planning problem if:
• 𝜙 does not contain nonrefined tasks
• All assertions in 𝜙 are causally supported, either by S in 𝜙0 or by assertions from methods and primitives in

the plan
• The chronicle 𝜙 is secure

Seite 20

Flaws (1)

1. Temporal assertion 𝛼 that is not causally supported
• What causes 𝑟1 to be at 𝑙𝑜𝑐3 at time 𝑡3?

• Resolvers:
• Add constraints to support 𝛼 from an assertion in 𝜙
• 𝑙 = 𝑙𝑜𝑐3, 𝑡2 = 𝑡3

• Add a new persistence assertion to support 𝛼
• 𝑙 = 𝑙𝑜𝑐3, 𝑡2, 𝑡3 𝑙𝑜𝑐 𝑟1 = 𝑙𝑜𝑐3

• Add a new task or action to support 𝛼
• 𝑡2, 𝑡3 𝑚𝑜𝑣𝑒 𝑟1, 𝑙𝑜𝑐3
• Refining it will produce support for 𝛼

Seite 21

Like an open goal in PSP

𝑙𝑜
𝑐

𝑟1

𝑡1 𝑡2 = 𝑡3 𝑡4

𝑙𝑜𝑐4

𝑙 = 𝑙𝑜𝑐3

𝑙𝑜
𝑐

𝑟1

𝑡1 𝑡2 𝑡3 𝑡4

𝑙𝑜𝑐4

𝑙 = 𝑙𝑜𝑐3

𝑙𝑜
𝑐

𝑟1

𝑡1 𝑡2 𝑡3 𝑡4

𝑙𝑜𝑐4

𝑙𝑜𝑐3

𝑙

𝑙𝑜
𝑐

𝑟1

𝑡1 𝑡2 𝑡3 𝑡4

𝑙𝑜𝑐4

𝑙𝑜𝑐3

𝑙

Flaws (2)

2. Non-refined task

• Resolver: refinement method 𝑚
• Applicable if it matches the task and

its constraints are consistent with 𝜙’s

• Applying the resolver:
• Modify 𝜙 by replacing the task with 𝑚

• Example: 𝑡2, 𝑡3 𝑚𝑜𝑣𝑒 𝑟1, 𝑙𝑜𝑐3
• Refinement will replace

it with something like
• 𝑡2, 𝑡5 𝑙𝑒𝑎𝑣𝑒 𝑟1, 𝑙, 𝑤
• 𝑡5, 𝑡6 𝑛𝑎𝑣𝑖𝑔𝑎𝑡𝑒 𝑟1, 𝑤, 𝑤′

• 𝑡6, 𝑡3 𝑒𝑛𝑡𝑒𝑟 𝑟1, 𝑙𝑜𝑐3, 𝑤′

• plus constraints

Seite 22

Like a task in SeRPE

𝑙𝑜
𝑐

𝑟1

𝑡1 𝑡2 𝑡3 𝑡4

𝑙𝑜𝑐4

𝑙𝑜𝑐3

𝑙

Flaws (3)

3. A pair of possibly-conflicting temporal assertions
• Temporal assertions 𝛼 and 𝛽 possibly conflict

if they can have inconsistent instances
• Example
• 𝑡1, 𝑡2 𝑙𝑜𝑐 𝑟1 = 𝑙𝑜𝑐1, 𝑡3, 𝑡4 𝑙𝑜𝑐 𝑟 ∶ 𝑙, 𝑙′

• ↓ ↓ ↓ ↓ ↓ ↓ ↘
• 1, 5 𝑙𝑜𝑐 𝑟1 = 𝑙𝑜𝑐1, 3, 8 𝑙𝑜𝑐 𝑟1 ∶ 𝑙𝑜𝑐2, 𝑙𝑜𝑐3

• Resolvers: separation constraints
• 𝑟 ≠ 𝑟1
• 𝑡2 < 𝑡3

• 𝑡4 < 𝑡1

• 𝑡2 = 𝑡3, 𝑟 = 𝑟1, 𝑙 = 𝑙𝑜𝑐1
• Also provides causal support for 𝑡3, 𝑡4 𝑙𝑜𝑐(𝑟) ∶ 𝑙, 𝑙′

• 𝑡4 = 𝑡1, 𝑟 = 𝑟1, 𝑙′ = 𝑙𝑜𝑐1
• Also provides causal support for 𝑡1, 𝑡2 𝑙𝑜𝑐 𝑟1 = 𝑙𝑜𝑐1

Seite 23

𝑙𝑜
𝑐

𝑟1

𝑡1 𝑡2 𝑡3 𝑡4

𝑙′

𝑙

𝑙𝑜𝑐1

𝑙𝑜
𝑐

𝑟1

𝑡1 = 1 𝑡2 = 5
𝑡3 = 3

𝑡4 = 8

𝑙𝑜𝑐3

𝑙𝑜𝑐2

𝑙𝑜𝑐1

𝑙𝑜𝑐 𝑟

Planning Algorithm

• Like PSP
• Repeatedly selects flaws and chooses

resolvers

• If resolving all flaws possible, at

least one nondeterministic

execution trace will do so

• In a deterministic implementation
• Selecting a resolver 𝜌 is a backtracking

point
• Selecting a flaw is not
• (As in PSP)

Seite 24

TemPlan(𝜙) // recursive version (book)

Flaws ← set of flaws of 𝜙
if Flaws = ∅ then

return 𝜙
arbitrarily select f ∈ Flaws

Resolvers ← set of resolvers of f

if Resolvers = ∅ then

return failure

nondeterministically choose 𝜌 ∈ Resolvers

𝜙 ← Transform(𝜙, 𝜌)
TemPlan(𝜙,Σ)

TemPlan(𝜙) // iterative version

loop

Flaws ← set of flaws of 𝜙
if Flaws = ∅ then

return 𝜙
arbitrarily select f ∈ Flaws

Resolvers ← set of resolvers of f

if Resolvers = ∅ then

return failure

nondeterministically choose 𝜌 ∈ Resolvers

𝜙 ← Transform(𝜙, 𝜌)

Example

• 𝜙 = 𝒜, 𝒮, 𝒯, 𝒞
• Establishes state-variable values at time 𝑡 = 0
• Flaws: two unrefined tasks
• bring(r,c1,p3), bring(r′,c2,p4)

Seite 25

ϕ0: tasks: bring(r,c1,p3)
bring(r′,c2,p4)

supported:[0] loc(r1)=d3

[0] freight(r1)=empty

[0] pile(c1)=p′1

[0] pile(c′1)=p′1

[0] pos(c1)=pallet

[0] pos(c′1)=c1

. . .

assertions: (none)

constraints:

adj(d1,w12)

adj(d1,w13)

. . .

Example

• Flaws: two unrefined tasks
• bring(r,c1,p3), bring(r′,c2,p4)

• Refinement for both:

Seite 26

ϕ0: tasks: bring(r,c1,p3)
bring(r′,c2,p4)

supported:[0] loc(r1)=d3

[0] freight(r1)=empty

[0] pile(c1)=p′1

[0] pile(c′1)=p′1

[0] pos(c1)=pallet

[0] pos(c′1)=c1

. . .

assertions: (none)

constraints:

adj(d1,w12)

adj(d1,w13)

. . .

m-bring(r,c,p,p′,d,d′,k,k′)

task: bring(r,c,p)

refinement: [ts,t1] move(r,d′)
[ts,t2] uncover(c,p′)
[t3,t4] load(k′,r,c,p′)
[t5,t6] move(r,d)
[t7,te] unload(k,r,c,p)

assertions: [ts,t3] pile(c) = p′
[ts,t3] freight(r) = empty

constraints: attached(p′,d′),
attached(p,d), d ≠ d′
attached(k′,d′),
attached(k,d), k ≠ k′
t1 ≤ t3, t2 ≤ t3, t4 ≤ t5, t6 ≤ t7

ϕ0: tasks: bring(r,c1,p3)
bring(r′,c2,p4)

supported:[0] loc(r1)=d3

[0] freight(r1)=empty

[0] pile(c1)=p′1

[0] pile(c′1)=p′1

[0] pos(c1)=pallet

[0] pos(c′1)=c1

. . .

assertions: (none)

constraints:

adj(d1,w12)

adj(d1,w13)

. . .

Method Instance

• Instantiate 𝑐 = 𝑐1 and 𝑝 = 𝑝3 to

match 𝑏𝑟𝑖𝑛𝑔 𝑟, 𝑐1, 𝑝3
• 𝑝′, 𝑑, 𝑑′, 𝑘, 𝑘′

instantiated to
match book

• Needed later to
satisfy action
preconditions

Seite 27

m-bring(r,c1,p3,p′1,d3,d1,k3,k1)

task: bring(r,c1,p3)

refinement: [ts,t1] move(r,d1)
[ts,t2] uncover(c1,p′1)
[t3,t4] load(k1,r,c1,p′1)
[t5,t6] move(r, d3)
[t7,te] unload(k3,r,c1,p3)

assertions: [ts,t3] pile(c1) = p′1
[ts,t3] freight(r) = empty

constraints: attached(p′1,d1),
attached(p3,d3), d3 ≠ d1
attached(k1,d1),
attached(k3,d3), k3 ≠ k1
t1 ≤ t3, t2 ≤ t3, t4 ≤ t5, t6 ≤ t7

Modified Chronicle

• Changes to 𝜙0
• Removed 𝑏𝑟𝑖𝑛𝑔 𝑟, 𝑐1, 𝑝3
• Added 5 tasks, 2 assertions, 10 constraints

• Flaws
• 6 unrefined tasks, 2 unsupported assertions

Seite 28

ϕ1: tasks: [ts,t1] move(r,d1)
[ts,t2] uncover(c1,p′1)
[t3,t4] load(k1,r,c1,p′1)
[t5,t6] move(r,d3)
[t7,te] unload(k3,r,c1,p3)
bring(r′,c2,p4)

supported:[0] loc(r1)=d3

[0] freight(r1)=empty

[0] pile(c1)=p′1

[0] pile(c′1)=p′1

[0] pos(c1)=pallet

[0] pos(c′1)=c1

. . .

assertions: [ts,t3] pile(c1) = p′1
[ts,t3] freight(r) = empty

constraints: ts<t1≤t3, ts<t2≤t3, t4≤t5, t6≤t7,
adj(d1,w12), adj(d1,w13),

. . .

Method Instance

• Instantiate 𝑟 = 𝑟′, 𝑐 = 𝑐2, 𝑝 = 𝑝4 to

match 𝑏𝑟𝑖𝑛𝑔 𝑟′, 𝑐2, 𝑝4
• 𝑝′, 𝑑, 𝑑′, 𝑘, 𝑘′

instantiated to
match book again

Seite 29

m-bring(r’,c2,p4,p′2,d4,d2,k4,k2)

task: bring(r’,c2,p4)

refinement: [ts,t1] move(r’,d2)
[ts,t2] uncover(c2,p′2)
[t3,t4] load(k2,r’,c2,p′2)
[t5,t6] move(r’, d4)
[t7,te] unload(k4,r’,c2,p4)

assertions: [ts,t3] pile(c2) = p′2
[ts,t3] freight(r’) = empty

constraints: attached(p′2,d2),
attached(p4,d4), d4 ≠ d2
attached(k2,d2),
attached(k4,d4), k4 ≠ k2
t1 ≤ t3, t2 ≤ t3, t4 ≤ t5, t6 ≤ t7

ϕ1: tasks: [ts,t1] move(r,d1)
[ts,t2] uncover(c1,p′1)
[t3,t4] load(k1,r,c1,p′1)
[t5,t6] move(r,d3)
[t7,te] unload(k3,r,c1,p3)
bring(r′,c2,p4)

supported:[0] loc(r1)=d3

[0] freight(r1)=empty

[0] pile(c1)=p′1

[0] pile(c′1)=p′1

[0] pos(c1)=pallet

[0] pos(c′1)=c1

. . .

assertions: [ts,t3] pile(c1) = p′1
[ts,t3] freight(r) = empty

constraints: ts<t1≤t3, ts<t2≤t3, t4≤t5, t6≤t7,
adj(d1,w12), adj(d1,w13),

. . .

Modified chronicle

• Changes

• Removed 𝑏𝑟𝑖𝑛𝑔 𝑟′, 𝑐2, 𝑝4

• Added 5 tasks, 2 assertions, 10 constraints

• Flaws

• 10 unrefined tasks, 4 unsupported assertions

• Next, work on these two assertions

Seite 30

ϕ2: tasks: [ts,t1] move(r,d1)
[ts,t2] uncover(c1,p′1)
[t3,t4] load(k1,r,c1,p′1)
[t5,t6] move(r,d3)
[t7,te] unload(k3,r,c1,p3)

[t′s,t′1] move(r′,d2)
[t′s,t′2] uncover(c2,p′2)
[t′3,t′4] load(k4,r′,c2,p′2)
[t′5,t′6] move(r′,d4)
[t′7,t′e] unload(k2,r′,c2,p′2)

supported:[0] loc(r1)=d3

[0] freight(r1)=empty

[0] pile(c1)=p′1

. . .

assertions: [ts,t3] pile(c1) = p′1
[ts,t3] freight(r) = empty
[t′s,t′3] pile(c2) = p′2
[t′s,t′1] freight(r′) = empty

constraints: ts<t1≤t3, ts<t2≤t3, t4≤t5, t6≤t7,
t′s<t′1≤t′3, t′s<t′2≤t′3, t′4≤t′5, t′6≤t′7,

adj(d1,w12), adj(d1,w13), . .
.

Supporting the Assertions

• 3 ways to support

• 𝑡𝑠, 𝑡3 𝑝𝑖𝑙𝑒 𝑐1 = 𝑝′1

• Constrain 𝑡𝑠 = 0,
use 0 𝑝𝑖𝑙𝑒 𝑐1 = 𝑝′1

• Add persistence 0, 𝑡𝑠 𝑝𝑖𝑙𝑒 𝑐1 = 𝑝′1

• Add new action 𝑡8, 𝑡𝑠 𝑠𝑡𝑎𝑐𝑘 𝑘1, 𝑐1, 𝑝′1

Seite 31

Will any of them also
provide support for

[ts,t3] freight(r) = empty
?

ϕ2: tasks: [ts,t1] move(r,d1)
[ts,t2] uncover(c1,p′1)
[t3,t4] load(k1,r,c1,p′1)
[t5,t6] move(r,d3)
[t7,te] unload(k3,r,c1,p3)

[t′s,t′1] move(r′,d2)
[t′s,t′2] uncover(c2,p′2)
[t′3,t′4] load(k4,r′,c2,p′2)
[t′5,t′6] move(r′,d4)
[t′7,t′e] unload(k2,r′,c2,p′2)

supported:[0] loc(r1)=d3

[0] freight(r1)=empty

[0] pile(c1)=p′1

. . .

assertions: [ts,t3] pile(c1) = p′1
[ts,t3] freight(r) = empty
[t′s,t′3] pile(c2) = p′2
[t′s,t′1] freight(r′) = empty

constraints: ts<t1≤t3, ts<t2≤t3, t4≤t5, t6≤t7,
t′s<t′1≤t′3, t′s<t′2≤t′3, t′4≤t′5, t′6≤t′7,

adj(d1,w12), adj(d1,w13), . .
.

Supporting the Assertions

• 3 ways to support

• 𝑡𝑠, 𝑡3 𝑝𝑖𝑙𝑒 𝑐1 = 𝑝′1

• Constrain 𝑡𝑠 = 0,
use 0 𝑝𝑖𝑙𝑒 𝑐1 = 𝑝′1

• To support

• 0, 𝑡3 𝑓𝑟𝑒𝑖𝑔ℎ𝑡 𝑟 = 𝑒𝑚𝑝𝑡𝑦
• Constrain 𝑟 = 𝑟1,

use 0 𝑓𝑟𝑒𝑖𝑔ℎ𝑡 𝑟1 = 𝑒𝑚𝑝𝑡𝑦

Seite 32

ϕ2: tasks: [0,t1] move(r,d1)
[0,t2] uncover(c1,p′1)
[t3,t4] load(k1,r,c1,p′1)
[t5,t6] move(r,d3)
[t7,te] unload(k3,r,c1,p3)

[t′s,t′1] move(r′,d2)
[t′s,t′2] uncover(c2,p′2)
[t′3,t′4] load(k4,r′,c2,p′2)
[t′5,t′6] move(r′,d4)
[t′7,t′e] unload(k2,r′,c2,p′2)

supported:[0] loc(r1)=d3

[0] freight(r1)=empty

[0] pile(c1)=p′1
. . .
[0,t3] pile(c1) = p′1

assertions: [0,t3] freight(r) = empty

[t′s,t′3] pile(c2) = p′2
[t′s,t′1] freight(r′) = empty

constraints: 0<t1≤t3, 0<t2≤t3, t4≤t5, t6≤t7,
t′s<t′1≤t′3, t′s<t′2≤t′3, t′4≤t′5, t′6≤t′7,

adj(d1,w12), adj(d1,w13), . .
.

Supporting the Assertions

• 3 ways to support

• 𝑡𝑠, 𝑡3 𝑝𝑖𝑙𝑒 𝑐1 = 𝑝′1

• Constrain 𝑡𝑠 = 0,
use 0 𝑝𝑖𝑙𝑒 𝑐1 = 𝑝′1

• To support

• 0, 𝑡3 𝑓𝑟𝑒𝑖𝑔ℎ𝑡 𝑟 = 𝑒𝑚𝑝𝑡𝑦
• Constrain 𝑟 = 𝑟1,

use 0 𝑓𝑟𝑒𝑖𝑔ℎ𝑡 𝑟1 = 𝑒𝑚𝑝𝑡𝑦

Seite 33

ϕ2: tasks: [0,t1] move(r1,d1)
[0,t2] uncover(c1,p′1)
[t3,t4] load(k1,r1,c1,p′1)
[t5,t6] move(r1,d3)
[t7,te] unload(k3,r1,c1,p3)

[t′s,t′1] move(r′,d2)
[t′s,t′2] uncover(c2,p′2)
[t′3,t′4] load(k4,r′,c2,p′2)
[t′5,t′6] move(r′,d4)
[t′7,t′e] unload(k2,r′,c2,p′2)

supported:[0] loc(r1)=d3

[0] freight(r1)=empty

[0] pile(c1)=p′1
. . .
[0,t3] pile(c1) = p′1
[0,t3] freight(r1) = empty

assertions: [t′s,t′3] pile(c2) = p′2
[t′s,t′1] freight(r′) = empty

constraints: 0<t1≤t3, 0<t2≤t3, t4≤t5, t6≤t7,
t′s<t′1≤t′3, t′s<t′2≤t′3, t′4≤t′5, t′6≤t′7,

adj(d1,w12), adj(d1,w13), . .
.

Supporting the Assertions

• To support

• 𝑡𝑠
′ , 𝑡3

′ 𝑝𝑖𝑙𝑒 𝑐2 = 𝑝′2
• Add persistence condition

0, 𝑡𝑠
′ 𝑝𝑖𝑙𝑒 𝑐2 = 𝑝′2

• Constrain 𝑡𝑠
′ = 0

• Add new action 𝑠𝑡𝑎𝑐𝑘 𝑘2, 𝑐2, 𝑝′2

Seite 34

ϕ2: tasks: [0,t1] move(r1,d1)
[0,t2] uncover(c1,p′1)
[t3,t4] load(k1,r1,c1,p′1)
[t5,t6] move(r1,d3)
[t7,te] unload(k3,r1,c1,p3)

[t′s,t′1] move(r′,d2)
[t′s,t′2] uncover(c2,p′2)
[t′3,t′4] load(k4,r′,c2,p′2)
[t′5,t′6] move(r′,d4)
[t′7,t′e] unload(k2,r′,c2,p′2)

supported:[0] loc(r1)=d3

[0] freight(r1)=empty

[0] pile(c1)=p′1
. . .
[0,t3] pile(c1) = p′1
[0,t3] freight(r1) = empty

assertions: [t′s,t′3] pile(c2) = p′2
[t′s,t′1] freight(r′) = empty

constraints: 0<t1≤t3, 0<t2≤t3, t4≤t5, t6≤t7,
t′s<t′1≤t′3, t′s<t′2≤t′3, t′4≤t′5, t′6≤t′7,

adj(d1,w12), adj(d1,w13), . .
.

Supporting the Assertions

• To support

• 𝑡𝑠
′ , 𝑡3

′ 𝑝𝑖𝑙𝑒 𝑐2 = 𝑝′2
• Add persistence condition

0, 𝑡𝑠
′ 𝑝𝑖𝑙𝑒 𝑐2 = 𝑝′2

• To support

• 𝑡𝑠
′ , 𝑡1

′ 𝑓𝑟𝑒𝑖𝑔ℎ𝑡 𝑟′ = 𝑒𝑚𝑝𝑡𝑦
• Constrain 𝑟′ = 𝑟2,

add persistence condition
0, 𝑡𝑠

′ 𝑓𝑟𝑒𝑖𝑔ℎ𝑡 𝑟2 = 𝑒𝑚𝑝𝑡𝑦

Seite 35

ϕ2: tasks: [0,t1] move(r1,d1)
[0,t2] uncover(c1,p′1)
[t3,t4] load(k1,r1,c1,p′1)
[t5,t6] move(r1,d3)
[t7,te] unload(k3,r1,c1,p3)

[t′s,t′1] move(r′,d2)
[t′s,t′2] uncover(c2,p′2)
[t′3,t′4] load(k4,r′,c2,p′2)
[t′5,t′6] move(r′,d4)
[t′7,t′e] unload(k2,r′,c2,p′2)

supported:[0] loc(r1)=d3

[0] freight(r1)=empty

[0] pile(c1)=p′1 . . .
[0,t3] pile(c1) = p′1
[0,t3] freight(r1) = empty

[0,t′s] pile(c2)=p′2

[t′s,t′3] pile(c2) = p′2

assertions: [t′s,t′1] freight(r′) = empty

constraints: 0<t1≤t3, 0<t2≤t3, t4≤t5, t6≤t7,
t′s<t′1≤t′3, t′s<t′2≤t′3, t′4≤t′5, t′6≤t′7,

adj(d1,w12), adj(d1,w13), . .
.

Supporting the Assertions

• To support

• 𝑡𝑠
′ , 𝑡3

′ 𝑝𝑖𝑙𝑒 𝑐2 = 𝑝′2
• Add persistence condition

0, 𝑡𝑠
′ 𝑝𝑖𝑙𝑒 𝑐2 = 𝑝′2

• To support

• 𝑡𝑠
′ , 𝑡1

′ 𝑓𝑟𝑒𝑖𝑔ℎ𝑡 𝑟′ = 𝑒𝑚𝑝𝑡𝑦
• Constrain 𝑟′ = 𝑟2,

add persistence condition
0, 𝑡𝑠

′ 𝑓𝑟𝑒𝑖𝑔ℎ𝑡 𝑟2 = 𝑒𝑚𝑝𝑡𝑦

• All assertions currently supported

• Remaining flaws: unrefined tasks

Seite 36

ϕ2: tasks: [0,t1] move(r1,d1)
[0,t2] uncover(c1,p′1)
[t3,t4] load(k1,r1,c1,p′1)
[t5,t6] move(r1,d3)
[t7,te] unload(k3,r1,c1,p3)

[t′s,t′1] move(r2,d2)
[t′s,t′2] uncover(c2,p′2)
[t′3,t′4] load(k4,r2,c2,p′2)
[t′5,t′6] move(r2,d4)
[t′7,t′e] unload(k2,r2,c2,p′2)

supported:[0] loc(r1)=d3

[0] freight(r1)=empty

[0] pile(c1)=p′1 . . .
[0,t3] pile(c1) = p′1
[0,t3] freight(r1) = empty

[0,t′s] pile(c2)=p′2
[t′s,t′3] pile(c2) = p′2
[0,t′s] freight(r2)=empty
[t′s,t′1] freight(r2) = empty

assertions: (none)

constraints: 0<t1≤t3, 0<t2≤t3, t4≤t5, t6≤t7,
t′s<t′1≤t′3, t′s<t′2≤t′3, t′4≤t′5, t′6≤t′7,

adj(d1,w12),adj(d1,w13), . . .

Example of Conflicts

• Refining tasks into actions will

produce possibly-conflicting

assertions

• move(r2,d4) must go from d2 through d3

• Conflict: occupant(d3)=r1,
occupant(d3)=r2

• Resolvers:

• Separation constraints to ensure r2 only
goes through d3 while r1 away from d3

• E.g., by ensuring move(r1,d3) has
happened

Seite 37

ϕ2: tasks: [0,t1] move(r1,d1)
[0,t2] uncover(c1,p′1)
[t3,t4] load(k1,r1,c1,p′1)
[t5,t6] move(r1,d3)
[t7,te] unload(k3,r1,c1,p3)

[t′s,t′1] move(r2,d2)
[t′s,t′2] uncover(c2,p′2)
[t′3,t′4] load(k4,r2,c2,p′2)
[t′5,t′6] move(r2,d4)
[t′7,t′e] unload(k2,r2,c2,p′2)

supported:[0] loc(r1)=d3

[0] freight(r1)=empty

[0] pile(c1)=p′1 . . .
[0,t3] pile(c1) = p′1
[0,t3] freight(r1) = empty

[0,t′s] pile(c2)=p′2
[t′s,t′3] pile(c2) = p′2
[0,t′s] freight(r2)=empty
[t′s,t′1] freight(r2) = empty

assertions: (none)

constraints: 0<t1≤t3, 0<t2≤t3, t4≤t5, t6≤t7,
t′s<t′1≤t′3, t′s<t′2≤t′3, t′4≤t′5, t′6≤t′7,

adj(d1,w12),adj(d1,w13), . . .

Heuristics for Guiding TemPlan

• Flaw selection, resolver selection heuristics

similar to those in PSP
• Select the flaw with the

smallest number of resolvers
• Choose the resolver that rules out the fewest

resolvers for the other flaws

• There is also a problem with constraint

management
• We ignored it when discussing PSP
• We discuss it next

Seite 38

TemPlan(𝜙)
Flaws ← set of flaws of 𝜙
if Flaws = ∅ then

return 𝜙
arbitrarily select f ∈ Flaws

Resolvers ← set of resolvers of f

if Resolvers = ∅ then

return failure

nondeterministically choose 𝜌 ∈ Resolvers

𝜙 ← Transform(𝜙, 𝜌)
TemPlan(𝜙)

PSP(Σ,𝜋)
loop

if Flaws(𝜋) = ∅ then

return 𝜋
arbitrarily select f ∈ Flaws(𝜋)
R ←{all feasible resolvers for f}

if R = ∅ then

return failure

nondeterministically choose ρ ∈ R

𝜋 ← ρ(𝜋)
return 𝜋

Intermediate Summary

• Planning problems
• Three kinds of flaws and their resolvers:
• tasks (that need to be refined),
• causal support (for assertions),
• security (of instantiations)

• Partial plans, solution plans

• Planning: TemPlan
• Like PSP but with tasks, temporal assertions, temporal constraints

Seite 39

Constraint Management

• Each time TemPlan applies a resolver, it modifies (𝒯, 𝒞)
• Some resolvers will make (𝒯, 𝒞) inconsistent
• No solution in this part of the search space
• Detect inconsistency ➝ prune this part of the search space
• Do not detect it ➝ waste time looking for a solution

• Analogy: PSP checks simple cases of inconsistency
• E.g., cannot create a constraint 𝑎 ≺ 𝑏

if there is already a constraint 𝑏 ≺ 𝑎
• Ignores more complicated cases
• Example:
• 𝑐1, 𝑐2, 𝑐3 ∈ 𝐶𝑜𝑛𝑡𝑎𝑖𝑛𝑒𝑟𝑠 = 𝑐1, 𝑐2
• Threats involving 𝑐1, 𝑐2, 𝑐3

• For resolvers, suppose PSP chooses
• 𝑐1 ≠ 𝑐2, 𝑐2 ≠ 𝑐3, 𝑐1 ≠ 𝑐3

• No solutions in this part of the search space,
but PSP searches it anyway

Seite 40

…

… …

…

…
…

…

…

…

…

…

… …

…

… …

……… …… … … … … … ……

Constraint Management in TemPlan

• At various points, check consistency of 𝒞
• If 𝒞 is inconsistent, then (𝒯, 𝒞) is inconsistent
• Can prune this part of the search space

• If 𝒞 is consistent, then (𝒯, 𝒞) may or may not be consistent
• Example:
• 𝒯 = { 𝑡1, 𝑡2 𝑙𝑜𝑐 𝑟1 = 𝑙𝑜𝑐1, 𝑡3, 𝑡4 𝑙𝑜𝑐 𝑟1 = 𝑙𝑜𝑐2}
• 𝒞 = 𝑡1 < 𝑡3 < 𝑡4 < 𝑡2

• Gives 𝑙𝑜𝑐 𝑟1 two values during [𝑡3, 𝑡4]

Seite 41

An instance is consistent if
• it satisfies all constraints in 𝒞 and
• does not specify two different values

for a state variable at the same time

Consistency of 𝒞

• 𝒞 contains two kinds of constraints
• Object constraints
• 𝑙𝑜𝑐 𝑟 ≠ 𝑙2, 𝑙 ∈ 𝑙𝑜𝑐3, 𝑙𝑜𝑐4 , 𝑟 = 𝑟1, 𝑜 ≠ 𝑜′

• Temporal constraints
• 𝑡1 < 𝑡3, 𝑎 < 𝑡, 𝑡 < 𝑡′, 𝑎 ≤ 𝑡′ − 𝑡 ≤ 𝑏

• Assume object constraints are independent of temporal constraints and vice versa
• Exclude things like 𝑡 < 𝑓 𝑙, 𝑟 with some function 𝑓

• Then two separate subproblems:
• Check consistency of object constraints
• Check consistency of temporal constraints

• 𝒞 is consistent iff both are consistent

Seite 42

Object Constraints

• Constraint-satisfaction problem – NP-complete

• Can write an algorithm that is complete but runs in exponential time
• If there is an inconsistency, always finds it
• Might prune a lot, but spends lots of time at each node

• Instead, use a technique that is

incomplete but takes polynomial time
• Detects some inconsistencies

but not others
• Runs much faster,

but prunes fewer nodes

Seite 43

…

… …

…

…
…

…

…

…

…

…

… …

…

… …

……… …… … … … … … ……

Time Constraints: Representation

• Simple Temporal Networks (STNs)
• Networks of constraints on time points

• Synthesise an STN incrementally

starting from 𝜙0
• TemPlan can check time

constraints in time 𝑂 𝑛3

• Incrementally instantiated at acting time

• Kept consistent throughout planning and acting

Seite 44

𝑡1

𝑡2

𝑡3

𝑡4

𝑡5

Simple Temporal Networks

• STN: a pair (𝒱, ℰ), where
• 𝒱 = a set of temporal variables 𝑡1, … , 𝑡𝑛

• ℰ ⊆ 𝒱 × 𝒱 is a set of edges

• Each edge 𝑡𝑖 , 𝑡𝑗 is labelled with an interval 𝑎, 𝑏
• Shorthand: represents constraint 𝑎 ≤ 𝑡𝑗 − 𝑡𝑖 ≤ 𝑏

• Equivalently, −𝑏 ≤ 𝑡𝑖 − 𝑡𝑗 ≤ −𝑎

• Representing unary constraints
• Dummy variable 𝑡0 = 0
• Edge (𝑡0, 𝑡𝑖) labelled with 𝑎, 𝑏 represents

𝑎 ≤ 𝑡𝑖 − 0 ≤ 𝑏

• Solution to an STN
• Integer value for each 𝑡𝑖

• All constraints satisfied

• Consistent STN
• Has a solution

Seite 45

Book says:
• Solution

• Integer value for each 𝑡𝑖

• Consistent:
• Has a solution
• All constraints satisfied

!

t1

t2

t3

[1,2] [3,4]

[2,3]

t1

t2

t3

[1,2] [3,4]

[–3,–2]

Is this network
consistent?

Time Constraints

• Minimal STN:
• For every edge (𝑡𝑖 , 𝑡𝑗) with label 𝑎, 𝑏

• For every 𝑡 ∈ [𝑎, 𝑏]
• There is at least one solution such that 𝑡𝑗 − 𝑡𝑖 = 𝑡

• Cannot make any of the time intervals shorter without excluding some solutions

Seite 46

t1

t2

t3

[1,2] [3,4]

[3,7]

Is this network
minimal?

Operations on STNs

• Intersection, ∩
• 𝑡𝑗 – 𝑡𝑖 ∈ 𝑟𝑖𝑗 = 𝑎𝑖𝑗 , 𝑏𝑖𝑗

• 𝑡𝑗 – 𝑡𝑖 ∈ 𝑟𝑖𝑗
′ = 𝑎𝑖𝑗

′ , 𝑏𝑖𝑗
′

• Infer

𝑡𝑗– 𝑡𝑖 ∈ 𝑟𝑖𝑗 ∩ 𝑟𝑖𝑗
′ = max 𝑎𝑖𝑗 , 𝑎𝑖𝑗

′ , min 𝑏𝑖𝑗 , 𝑏𝑖𝑗
′

• Composition, ∘
• 𝑡𝑘– 𝑡𝑖 ∈ 𝑟𝑖𝑘 = 𝑎𝑖𝑘 , 𝑏𝑖𝑘

• 𝑡𝑗– 𝑡𝑘 ∈ 𝑟𝑘𝑗 = 𝑎𝑘𝑗, 𝑏𝑘𝑗

• Infer

𝑡𝑗– 𝑡𝑖 ∈ 𝑟𝑖𝑘 ∘ 𝑟𝑘𝑗 = 𝑎𝑖𝑘 + 𝑎𝑘𝑗 , 𝑏𝑖𝑘 + 𝑏𝑘𝑗

• Reasoning: add up shortest and longest times

• Consistency checking
• Three constraints 𝑟𝑖𝑘 , 𝑟𝑘𝑗 , 𝑟𝑖𝑗 are consistent

only if 𝑟𝑖𝑗 ∩ (𝑟𝑖𝑘 ∘ 𝑟𝑘𝑗) ≠ ∅ (empty interval)

Seite 47

ti
tj

rij

𝑟𝑖𝑗 ∩ 𝑟𝑖𝑗
′

r′ij

ti

tk

tj

rik
rkj

𝑟𝑖𝑘 ∘ 𝑟𝑘𝑗

ti

tk

tj

rik rkj

rij

𝑟𝑖𝑗 ∩ 𝑟𝑖𝑘 ∘ 𝑟𝑘𝑗

𝑟𝑖𝑘 ∘ 𝑟𝑘𝑗

Two Examples

Seite 48

t1
t3

[1,2] [3,4]

[2,3]

t2

t1

t2

t3

[1,2] [3,4]

[2,5]

• STN (𝒱, ℰ), where
• 𝒱 = 𝑡1, 𝑡2, 𝑡3
• ℰ = {

}
𝑟12 = 1,2 , 𝑟23 = 3,4 , 𝑟13 =

2,3
• Composition
• 𝑟13

′ = 𝑟12 ∘ 𝑟23 = 1,2 ∘ 3,4 =
4,6

• Cannot satisfy both 𝑟13 and 𝑟13
′

• 𝑟13 ∩ 𝑟13
′ = 2,3 ∩ 4,6 = ∅

• (𝒱, ℰ) is inconsistent

• STN (𝒱, ℰ), where
• 𝒱 = 𝑡1, 𝑡2, 𝑡3
• ℰ = {

}
𝑟12 = 1,2 , 𝑟23 = 3,4 , 𝑟13 =

2,5
• Composition (as before)
• 𝑟13

′ = 𝑟12 ∘ 𝑟23 = 4,6
• (𝒱, ℰ) is consistent
• 𝑟13 ∩ 𝑟13

′ = 2,5 ∩ 4,6 = 4,5
• Minimal network
• 𝑟13 = 4,5

t1

t2

t3

[1,2] [3,4]

[4,5]

Operations on STNs

• PC (Path Consistency)

algorithm:
• Consistency checking on all triples
• If an edge has no constraint,

use −∞, +∞
• 𝑛 constraints ➝ 𝑛3 triples ➝ time 𝑂 𝑛3

• Example:
• 𝑘 = 2, 𝑖 = 1, 𝑗 = 4
• 𝑟12 = 1,2
• 𝑟24 = 3,4
• 𝑟14 = – ∞, ∞
• 𝑟12 ∘ 𝑟24 = [1 + 3, 2 + 4] = [4,6]
• 𝑟14 ← max – ∞, 4 , min ∞, 6 = 4,6

Seite 49

PC(𝒱,ℰ)
for 1 ≤ k ≤ n do

for 1 ≤ i < j ≤ n, i ≠ j, j ≠ k do

rij ← rij ∩ [rik ∘ rkj]

if rij = ∅ then

return inconsistent

return consistent

𝑡1

𝑡2

𝑡3

𝑡4

𝑡5

𝑖

𝑘

𝑗

Operations on STNs

• PC makes network minimal
• Shrinks each 𝑟𝑖𝑗 to exclude values

that are not in any solution
• Doing so, it detects

inconsistent networks
• 𝑟𝑖𝑗 = [𝑎𝑖𝑗 , 𝑏𝑖𝑗] empty ➝ inconsistent

• Graph: dashed lines
• Constraints that were shrunk

• Can modify PC to make it incremental
• Input
• A consistent, minimal STN
• A new constraint 𝑟𝑖𝑗

′

• Incorporate 𝑟𝑖𝑗
′ in time 𝑂 𝑛2

Seite 50

PC(𝒱,ℰ)
for 1 ≤ k ≤ n do

for 1 ≤ i < j ≤ n, i ≠ j, j ≠ k do

rij ← rij ∩ [rik ∘ rkj]

if rij = ∅ then

return inconsistent

return consistent

𝑡1 𝑡2

𝑡3 𝑡4

30,50

5,10

bring&move

uncover

Pruning TemPlan’s search space

• Take the time constraints in 𝒞
• Write them as an STN
• Use PC to check whether STN is consistent
• If it is inconsistent, TemPlan can backtrack

Seite 51

Controllability

• Suppose TemPlan gives you a chronicle and you want to execute it
• Constraints on time points
• Need to reason about these to decide when to start each action

Seite 52

𝑡1 𝑡2

𝑡3 𝑡4

30,50

5,10

bring&move

uncover

Controllability

• Solid lines: duration constraints
• Robot will do bring&move, will take 30 to 50 time units
• Crane will do uncover, will take 5 to 10 time units

• Dashed line: synchronization constraint
• Do not want either the crane or robot to wait long
• At most 5 seconds between the two ending times

• Objective
• Choose time points that will

satisfy all the constraints

Seite 53

𝑡1 𝑡2

𝑡3 𝑡4

30,50

5,10

bring&move

uncover

Controllability

• Suppose we run PC

• PC returns a minimal and consistent network
• There exist time points that satisfy all the constraints

• Would work if we could choose all four time points
• But we cannot choose 𝑡2 and 𝑡4

• 𝑡1 and 𝑡3 are controllable
• Actor can control when each action starts

• 𝑡2 and 𝑡4 are contingent
• Cannot control how long the actions take
• Random variables that are known

to satisfy the duration constraints
• 𝑡2 ∈ 𝑡1 + 30, 𝑡1 + 50
• 𝑡4 ∈ 𝑡3 + 5, 𝑡3 + 10

Seite 54

𝑡1 𝑡2

𝑡3 𝑡4

30,50

5,10

bring&move

uncover

𝑡1 𝑡2

𝑡3 𝑡4

30,50

5,10

bring&move

uncover

STNUs

• STNU (Simple Temporal Network with Uncertainty):
• A 4-tuple 𝒱, ෨𝒱, ℰ, ሚℰ

• 𝒱 ={controllable time points}
• E.g., starting times of actions

• ෨𝒱 ={contingent time points}
• E.g., ending times of actions

• Controllable and contingent constraints:
• Synchronization between two starting times: controllable
• Duration of an action: contingent
• Synchronization between ending points of two actions: contingent
• Synchronization between end of one action, start of another:
• Controllable if the new action starts after the old one ends
• Contingent if the new action starts before the old one ends

• Want a way for the actor to choose time points in 𝒱 (starting times) that guarantee that

constraints are satisfied

Seite 55

• ℰ ={controllable constraints}

• ሚℰ ={contingent constraints}

Three kinds of controllability

• 𝒱, ෨𝒱, ℰ, ሚℰ is strongly controllable if the actor can choose values for 𝒱 such that success

will occur for all values of ෨𝒱 that satisfy ሚℰ
• Actor can choose the values for 𝒱 offline
• The right choice will work regardless of ෨𝒱

• 𝒱, ෨𝒱, ℰ, ሚℰ is weakly controllable if the actor can choose values for 𝒱 such that success will

occur for at least one combination of values for ෨𝒱
• Actor can choose the values for 𝒱 only if the actor knows in advance what the values of ෨𝒱 will be

• Dynamic controllability:
• Game-theoretic model: actor vs. environment
• A player’s strategy: a function 𝜎 telling what to do in every situation
• Choices may differ depending on what has happened so far

• 𝒱, ෨𝒱, ℰ, ሚℰ is dynamically controllable if ∃ strategy for an actor that will guarantee success regardless of

the environment’s strategy

Seite 56

Dynamic Execution

• For 𝑡 = 0, 1, 2, …
• Actor chooses an unassigned set of variables 𝒱𝑡 ⊆ 𝒱 that all can be assigned the value 𝑡 without

violating any constraints in ℰ
• ≈ actions the actor chooses to start at time 𝑡
• Simultaneously, environment chooses an unassigned set of variables ෨𝒱𝑡⊆ ෨𝒱 that all can be assigned the

value 𝑡 without violating any constraints in ሚℰ
• ≈ actions that finish at time 𝑡
• Each chosen time point 𝑣 is assigned 𝑣 ← 𝑡
• Failure if any of the constraints in ℰ ∪ ሚℰ are violated
• There might be violations that neither 𝒱𝑡 nor ෨𝒱𝑡 caused individually
• Success if all variables in 𝒱 ∪ ෨𝒱 have values and no constraints are violated

• Dynamic execution strategies 𝜎𝐴 for actor, 𝜎𝐸 for environment
• 𝜎𝐴(ℎ𝑡−1) = {what events in 𝒱 to trigger at time 𝑡, given ℎ𝑡−1}
• 𝜎𝐸(ℎ𝑡−1) = {what events in ෨𝒱 to trigger at time 𝑡, given ℎ𝑡−1}

• ℎ𝑡 = ℎ𝑡−1 ⋅ 𝜎𝐴 ℎ𝑡−1 ∪ 𝜎𝐸 ℎ𝑡−1

• 𝒱, ෨𝒱, ℰ, ሚℰ is dynamically controllable if ∃ 𝜎𝐴 that will guarantee success ∀ 𝜎𝐸

Seite 57

𝑟𝑖𝑗 = 𝑙, 𝑢 is violated

if 𝑡𝑖 and 𝑡𝑗 have values

and 𝑡𝑗 − 𝑡𝑖 ∉ 𝑙, 𝑢

Example

• Instead of a single bring&move task, two separate bring and move tasks

• Actor’s dynamic execution strategy
• Trigger 𝑡1 at whatever time you want
• Wait and observe 𝑡
• Trigger 𝑡′ at any time from 𝑡 to 𝑡 + 5
• Trigger 𝑡3 = 𝑡′ + 10
• For every 𝑡2 ∈ 𝑡′ + 15, 𝑡′ + 20 and 𝑡4 ∈ [𝑡3 + 5, 𝑡3 + 10]
• 𝑡4 ∈ 𝑡′ + 15, 𝑡′ + 20
• So, 𝑡4– 𝑡2 ∈ – 5, 5

• Thus, all constraints are satisfied

Seite 58

𝑡′ 𝑡2

𝑡3 𝑡4

15,2015,25 0,5

5,10

move

uncover

𝑡1 𝑡bring

Dynamic Controllability Checking

• For a chronicle 𝜙 = 𝒜, 𝒮, 𝒯, 𝒞
• Temporal constraints in 𝒞 correspond to an STNU
• Adapt TemPlan to test not only consistency but also dynamic controllability (*) of the STNU
• If we detect cases where it is not dynamically controllable, then backtrack

*Use PC as well
• If PC(𝒱 ∪ ෨𝒱, ℰ ∪ ሚℰ) reduces a contingent constraint, then 𝒱, ෨𝒱, ℰ, ሚℰ is not dynamically controllable

⇒ Can prune this branch

• If it does not reduce any contingent constraints, we do not know whether 𝒱, ෨𝒱, ℰ, ሚℰ is dynamically

controllable
• Only necessary, not sufficient condition

• Two options
• Either continue down this branch and backtrack later if necessary, or

• Extend PC to detect more cases where 𝒱, ෨𝒱, ℰ, ሚℰ is not dynamically controllable

• Additional constraint propagation rules

Seite 59

Additional Constraint Propagation Rules

• Case 1: 𝑢 ≥ 0
• 𝑡 must come before 𝑡𝑒

• Add a composition constraint 𝑎′, 𝑏′

• Find 𝑎′, 𝑏′ such that 𝑎′, 𝑏′ ∘ 𝑢, 𝑣 = 𝑎, 𝑏
• 𝑎′ + 𝑢, 𝑏′ + 𝑣 = 𝑎, 𝑏
• 𝑎′ = 𝑎– 𝑢, 𝑏′ = 𝑏– 𝑣

Seite 60

⟹ contingent ⟶ controllable 𝑎′ = 𝑎– 𝑢, 𝑏′ = 𝑏– 𝑣

t

[a, b]

[u, v]

ts te

Additional Constraint Propagation Rules

• Case 2: 𝑢 < 0 and 𝑣 ≥ 0
• 𝑡 may be before or after 𝑡𝑒

• Add a wait constraint 𝑡𝑒, 𝛼
• 𝛼 defined w.r.t.

some controllable time point 𝑡𝑠

• Wait until either 𝑡𝑒 occurs or current time is 𝑡𝑠 + 𝛼, whichever comes first

Seite 61

t

[a, b]

[u, v]

ts te

⟹ contingent ⟶ controllable 𝑎′ = 𝑎– 𝑢, 𝑏′ = 𝑏– 𝑣

Extended Version of PC

• We want a fast algorithm that TemPlan can run at each node, to decide whether to

backtrack
• There is an extended version of PC that runs in polynomial time, but it has high overhead

• Possible compromise: use ordinary PC most of the time
• Run extended version occasionally, or at end of search before returning plan

Seite 62

⟹ contingent ⟶ controllable 𝑎′ = 𝑎– 𝑢, 𝑏′ = 𝑏– 𝑣

Intermediate Summary

• Constraint management
• Consistency of object constraints
• Constraint-satisfaction problem

• Consistency of time constraints
• STN, solution, minimality, consistency
• PC

• Controllability
• STNU, controllable, contingent
• Dynamic controllability

Seite 63

Acting with Temporal Models

Seite 64

Atemporal Refinement of Primitive Actions

• TemPlan’s action templates may correspond to compound tasks
• In RAE, refine into commands with refinement methods

• TemPlan’s
action template
(descriptive model)

• RAE’s
refinement method
(operational model)

Seite 65

leave(r,d,w)
assertions: [ts,te] loc(r): (d,w)

[ts,te] occupant(d): (r,empty)
constraints: te ≤ ts + δ1

adj(d,w)

m-leave(r,d,w,e)
task: leave(r,d,w)
pre: loc(r)=d, adj(d,w), exit(e,d,w)
body: until empty(e)

wait(1)
goto(r,e)

Discussion

• Pros
• Simple online refinement with RAE
• Avoids breaking down uncertainty of contingent duration
• Can be augmented with temporal monitoring functions in RAE
• E.g., watchdogs, methods with duration preferences

• Cons
• Does not handle temporal requirements at the command level,
• E.g., synchronise two robots that must act concurrently

• Can augment RAE to include temporal reasoning
• Call it eRAE
• One essential component: a dispatching function

Seite 66

Acting With Temporal Models

• Dispatching procedure: a dynamic execution strategy
• Controls when to start each action
• Given a dynamically controllable plan with executable primitives,

it triggers corresponding commands from online observations

• Example
• robot 𝑟2 needs to leave dock 𝑑2

before robot 𝑟1 can enter 𝑑2
• crane 𝑘 needs to uncover 𝑐

then put 𝑐 onto 𝑟1

Seite 67

d1

d2
r2

w1

k

p
c

r1

c′
w2

q

navigate(r1)leave(r1,d1)

stack(k,c′,q)unstack(k,c′,p)

putdown(k,c,r1)unstack(k,c,p)

leave(r2,d2)

enter(r1,d2)

leave(r1,d2)

𝑡1 𝑡2

𝑡3

𝑡4

𝑡5

𝑡6

𝑡8𝑡7 𝑡9

Example

• Trigger 𝑡1, observe leave finish

• Enable and trigger 𝑡2, enables 𝑡3, 𝑡4

• Trigger 𝑡3 soon enough to allow 𝑒𝑛𝑡𝑒𝑟 𝑟1, 𝑑2 at time 𝑡5

• Trigger 𝑡4 soon enough to allow 𝑠𝑡𝑎𝑐𝑘 𝑘, 𝑐′ at time 𝑡6

• Rest of plan is linear:

• Choose each 𝑡𝑖 after the previous action ends

Seite 68

Dispatch(𝒱,Ṽ,ℰ,Ẽ)
initialise the network

while there are time points in 𝒱 that

have not been triggered do

update now

update the time points in Ṽ that have

been newly observed

update enabled

trigger every t ∈ enabled s.t. now=ut
arbitrarily choose other time points

in enabled and trigger them

propagate values of triggered

timepoints (change [lt,ut] for

each future timepoint t)

navigate(r1)leave(r1,d1)

stack(k,c′,q)unstack(k,c′,p)

putdown(k,c,r1)unstack(k,c,p)

leave(r2,d2)

enter(r1,d2)

leave(r1,d2)

𝑡1 𝑡2

𝑡3

𝑡4

𝑡5

𝑡6

𝑡8𝑡7 𝑡9

Previous Example

• Trigger 𝑡1 at time 0
• Wait and observe 𝑡; this enables 𝑡′

• Trigger 𝑡′ at any time from 𝑡 to 𝑡 + 5
• Trigger 𝑡3 at time 𝑡′ + 10
• 𝑡2 ∈ 𝑡′ + 15, 𝑡′ + 20
• 𝑡4 ∈ [𝑡3 + 5, 𝑡3 + 10] = [𝑡′ + 15, 𝑡′ + 20]
• so 𝑡4– 𝑡2 ∈ – 5, 5

Seite 69

Dispatch(𝒱,Ṽ,ℰ,Ẽ)
initialise the network

while there are time points in 𝒱 that

have not been triggered do

update now

update the time points in Ṽ that have

been newly observed

update enabled

trigger every t ∈ enabled s.t. now=ut
arbitrarily choose other time points

in enabled and trigger them

propagate values of triggered

timepoints (change [lt,ut] for

each future timepoint t)

𝑡′ 𝑡2

𝑡3 𝑡4

15,2015,25 0,5

5,10

move

uncover

𝑡1 𝑡bring

Dispatching

• Let 𝒱, ෨𝒱, ℰ, ሚℰ be a controllable STNU

that is grounded
• Different from a grounded

expression in logic
• At least one time point 𝑡∗ is

instantiated
• Bounds each time point 𝑡

within an interval 𝑙𝑡, 𝑢𝑡

• Controllable time point 𝑡 in the future:
• 𝑡 is alive if current time 𝑛𝑜𝑤 ∈ 𝑙𝑡, 𝑢𝑡

• 𝑡 is enabled if
• It is alive
• For every precedence constraint 𝑡′ < 𝑡, 𝑡′ has occurred
• For every wait constraint ⟨𝑡𝑒 , 𝛼⟩, 𝑡𝑒 has occurred or 𝛼 has expired
• 𝛼 has expired if 𝑡𝑠 has occurred and 𝑡𝑠 + 𝛼 ≤ 𝑛𝑜𝑤

Seite 70

Dispatch(𝒱,Ṽ,ℰ,Ẽ)
initialise the network

while there are time points in 𝒱 that

have not been triggered do

update now

update the time points in Ṽ that have

been newly observed

update enabled

trigger every t ∈ enabled s.t. now=ut
arbitrarily choose other time points

in enabled and trigger them

propagate values of triggered

timepoints (change [lt,ut] for

each future timepoint t)

Deadline Failures

• Suppose something makes it impossible to start an action on time

• Do one of the following:
• Stop the delayed action, and look for new plan
• Let the delayed action finish, try to repair the plan by resolving violated constraints at the STNU

propagation level
• E.g., accommodate a delay in navigate by delaying the whole plan

• Let the delayed action finish, try to repair the plan some other way

Seite 71

navigate(r1)leave(r1,d1)

stack(k,c′,q)unstack(k,c′,p)

putdown(k,c,r1)unstack(k,c,p)

leave(r2,d2)

enter(r1,d2)

leave(r1,d2)

𝑡1 𝑡2

𝑡3

𝑡4

𝑡5

𝑡6

𝑡8𝑡7 𝑡9

Partial Observability

• Tacit assumption: All occurrences of contingent events are observable
• Observation needed for dynamic controllability

• In general, not all events are observable

• POSTNU (Partially Observable STNU)
• STNU where the

contingent time points
are given by a set of
invisible and a set of
observable timepoints
• POSTNU = STNU

if Invisible = ∅
• Dynamically controllable?

Seite 72

Controllable

Timepoints Invisible

Contingent

Observable

Arthur Bit-Monnot, Malik Ghallab, Félix Ingrand: “Which Contingent Events to Observe for the Dynamic Controllability of a Plan”, IJCAI-16

Observation Actions

Example

Seite 73

Controllable

Contingent
Invisible

observable

𝑡′ 𝑡2

𝑡3 𝑡4

20,251,2

25,30

driving

cooking

𝑡1 𝑡

working

Arthur Bit-Monnot, Malik Ghallab, Félix Ingrand: “Which Contingent Events to Observe for the Dynamic Controllability of a Plan”, IJCAI-16

Dynamic Controllability

• A POSTNU is dynamically controllable if
• there exists an execution strategy that chooses future controllable points to meet all the constraints, given

the observation of past visible points

• Check dynamic controllability
• Map an POSTNU to an STNU by deleting invisible time points and adding corresponding constraints on

controllable and observable time points
• Check dynamic controllability of the mapped STNU
• E.g., using the extended PC algorithm

• More details in the paper

Seite 74

Dynamic Controllability

• A POSTNU is dynamically controllable if
• there exists an execution strategy that chooses future controllable points to meet all the constraints, given

the observation of past visible points

• Observable ≠ visible
• Observable means it will be known when observed
• It can be temporarily hidden

• Aim: Find out which time points need to be observed for the plan to be dynamically controllable (details in
paper)

Seite 75

Controllable

Timepoints Invisible

Contingent Visible

Observable

Hidden

Intermediate Summary

• Acting
• Atemporal refinement
• eRAE
• Dispatching
• Alive, enabled

• Deadline failures
• Partial observability
• Invisible, observable (hidden/visible)

Seite 76

Content

Seite 77

1. Planning and Acting with Deterministic
Models

Conventional AI planning

2. Planning and Acting with Refinement
Methods

Abstract activities ➝ collections of less-abstract
activities

3. Planning and Acting with Temporal Models
Reasoning about time constraints

4. Planning and Acting with Nondeterministic
Models

Actions with multiple possible outcomes

5. Standard Decision Making
Utility theory
Markov decision process (MDP)

6. Planning and Acting with Probabilistic
Models

Actions with multiple possible outcomes, with
probabilities

7. Advanced Decision Making
Hidden goals
Partially observable MDP (POMDP)
Decentralised POMDP

8. Human-aware Planning
Planning with a human in the loop

9. Causal Planning
Causality & Intervention
Implications for Causal Planning

