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Temporal Models

• Durations of actions

• Delayed effects and preconditions
• E.g., resources borrowed or consumed during an action

• Time constraints on goals
• Relative or absolute

• Exogenous events expected to occur in the future
• When?

• Maintenance actions: 
• Maintain a property (≠ changing a value)
• E.g., track a moving target, keep a spring latch in position

• Concurrent actions
• Interacting effects, joint effects

• Delayed commitment 
• Instantiation at acting time
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Timelines

• Up to now, “state-oriented view”
• Time is a sequence of states 𝑠0, 𝑠1, 𝑠2

• Instantaneous actions transform each state into the next one
• No overlapping actions

• Switch to a “time-oriented view”
• Sequence of 

integer time points
• 𝑡 = 1, 2, 3, …

• For each state variable 𝑥, 
a timeline
• Values during different 

time intervals
• State at time 𝑡 = {state−variable values at time 𝑡}
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Timelines

• Sets of constraints on state variables and events
• Reflect predicted actions and events

• Planning is constraint-based
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Representation

• Quantitative model of time
• Discrete: time points are integers

• Expressions:
• time-point variables
• 𝑡, 𝑡′, 𝑡2 , 𝑡𝑗 , …

• simple constraints
• t < t’ 
• 𝑑 ≤ 𝑡′– 𝑡 ≤ 𝑑′ , 

• x(t) refers to the value of variable x at time t

• Temporal assertion:
• Value of a state variable during a time interval
• Persistence: 𝑡1, 𝑡2 𝑥 = 𝑣 entails 𝑡1 < 𝑡2

• Change: 𝑡1, 𝑡2 𝑥 ∶ 𝑣1, 𝑣2 entails 𝑣1 ≠ 𝑣2
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Quiz

What is the right assertion that says robot r1 changes the location from loc2 to loc3 in the

interval [t5, t6]?
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Timeline

• Timeline: pair 𝒯, 𝒞 , partially predicted evolution of one state variable
• 𝒯 : temporal assertions
• 𝑡1, 𝑡2 𝑙𝑜𝑐 𝑟1 ∶ 𝑙𝑜𝑐1, 𝑙

• 𝑡2, 𝑡3 𝑙𝑜𝑐 𝑟1 = 𝑙
• 𝑡3, 𝑡4 𝑙𝑜𝑐 𝑟1 ∶ 𝑙, 𝑙𝑜𝑐2

• 𝒞 : constraints
• 𝑡1 < 𝑡2 < 𝑡3 < 𝑡4

• 𝑙 ≠ 𝑙𝑜𝑐1
• 𝑙 ≠ 𝑙𝑜𝑐2
• If we want to restrict 𝑙𝑜𝑐 𝑟1 during 𝑡1, 𝑡2

• 𝑡1, 𝑡1 + 1 𝑙𝑜𝑐 𝑟1 ∶ 𝑙𝑜𝑐1, 𝑟𝑜𝑢𝑡𝑒
• 𝑡2– 1, 𝑡2 𝑙𝑜𝑐 𝑟1 ∶ 𝑟𝑜𝑢𝑡𝑒, 𝑙
• 𝑡1 + 1, 𝑡2– 1 𝑙𝑜𝑐 𝑟1 = 𝑟𝑜𝑢𝑡𝑒

• Instance of 𝒯, 𝒞 = temporal and object variables instantiated

• An instance is consistent if it satisfies all constraints in 𝒞 and does not specify two different 

values for a state variable at the same time

• A timeline 𝒯, 𝒞 is consistent if its set of consistent instances is not empty
• A timeline 𝒯, 𝒞 is secure if and only if it is consistent and every instance that meets the 

constraints in C is consistent
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Quiz

The timeline ({[t1, t2]loc(r)=loc1, [t3, t4]loc(r1)=l}, {t1 < t2; t3 < t4}) is consistent but not secure. What is a 
potential conflict?

What needs to change so it becomes secure?
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Actions

• Preliminaries:
• Timelines 𝒯1, 𝒞1 , … , 𝒯𝑘 , 𝒞𝑘 for 𝑘 different state variables
• Their union:
• 𝒯1, 𝒞1 ∪ ⋯ ∪ 𝒯𝑘 , 𝒞𝑘 = 𝒯1 ∪ ⋯ ∪ 𝒯𝑘 , 𝒞1 ∪ ⋯ ∪ 𝒞𝑘

• If 
• every 𝒯𝑖 , 𝒞𝑖 is secure, and 

• no pair of timelines 𝒯𝑖 , 𝒞𝑖 and 𝒯𝑗 , 𝒞𝑗 has any unground variables in common

• then 
• 𝒯1 ∪ ⋯ ∪ 𝒯𝑘 , 𝒞1 ∪ ⋯ ∪ 𝒞𝑘 is also secure

• Action or primitive task (or just primitive): 
• a triple ℎ𝑒𝑎𝑑, 𝒯, 𝒞
• ℎ𝑒𝑎𝑑 is the name and arguments
• 𝒯, 𝒞 is the union of a set of timelines
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Actions

• Two additional parameters  
• Starting time 𝑡𝑠

• Ending time 𝑡𝑒

• No separate preconditions and effects
• Preconditions ⇔ need for causal support
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leave(r,d,w)
assertions:

[ts,te] loc(r): (d,w)
[ts,te] occupant(d): (r,empty) 

constraints:
te ≤ ts + δ1

adj(d,w) 

• 𝑙𝑒𝑎𝑣𝑒 𝑟, 𝑑, 𝑤
• Robot 𝑟 leaves dock 𝑑,

goes to adjacent waypoint 𝑤

• 𝑙𝑜𝑐(𝑟) changes to 𝑤 with delay ≤ 𝛿1

• Dock 𝑑 becomes empty d
• w r



Quiz

Specify the enter action template.
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Actions

• 𝑡𝑎𝑘𝑒 𝑘, 𝑐, 𝑟, 𝑑
• Action: crane 𝑘 takes 

container 𝑐 from 𝑟
on dock 𝑑
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• Two additional parameters  
• Starting time 𝑡𝑠

• Ending time 𝑡𝑒

• No separate preconditions and 

effects
• Preconditions ⇔ need for causal 

support



Tasks and Methods
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• Task: move robot r to dock d
• 𝑡𝑠, 𝑡𝑒 𝑚𝑜𝑣𝑒 𝑟, 𝑑

• Method:

• 𝑑′ becomes empty during [𝑡𝑠, 𝑡1]
• another robot may enter it after 𝑡1

• 𝑑 doesn’t need to be empty 

until 𝑡4
• when 𝑟 starts entering it



Tasks and Methods
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• Task: remove everything above container 𝑐 in pile 𝑝
• 𝑡𝑠, 𝑡𝑒 𝑢𝑛𝑐𝑜𝑣𝑒𝑟 𝑐, 𝑝

• Method:



Tasks and Methods
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• Task: robot 𝑟 brings 

container 𝑐 to pile 𝑝
• 𝑡𝑠, 𝑡𝑒 𝑏𝑟𝑖𝑛𝑔 𝑟, 𝑐, 𝑝

• Method:

Refine into 𝑢𝑛𝑠𝑡𝑎𝑐𝑘
and 𝑝𝑢𝑡 primitives

Refine into 𝑡𝑎𝑘𝑒 and 
𝑠𝑡𝑎𝑐𝑘 primitives

d1

d2

• w1

k2

p3k1

r1

p1

c1

• w2

p2



Chronicles: Unions of Timelines

• Chronicle 𝜙 = 𝒜, 𝒮, 𝒯, 𝒞
• 𝒜 : temporally qualified actions and tasks
• 𝒮 : a priori supported assertions
• 𝒯 : temporally qualified assertions
• 𝒞 : constraints

• 𝜙 can include
• Current state, future predicted events
• Tasks to perform
• Assertions and constraints to satisfy

• Can represent
• Planning problem
• Plan or partial plan
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ϕ0:

tasks: [t,t’] bring(r,c1,d4)

supported: [ts] loc(r1)=d1
[ts] loc(r2)=d2
[ts+10,ts+δ] docked(ship1)=d3
[ts] top(pile-ship1)=c1
[ts] pos(c1)=pallet

assertions: [te] loc(r1)=d1
[te] loc(r2)=d2

constraints: ts = 0 < t < t' < te , 20 ≤ δ ≤ 30

ts t ts+10 ts+𝛿 t’ te

docked(ship1) = d3

loc(r1) = d1

𝑡𝑠, 𝑡𝑒 𝑏𝑟𝑖𝑛𝑔 𝑟, 𝑐1, 𝑑4

loc(r1) = d1
top(pile-ship1) = c1



Intermediate Summary

• Timelines
• Temporal assertions (change, persistence), constraints
• Conflicts, consistency, security 

• Chronicle: union of several timelines
• Consistency, security

• Actions represented by chronicles
• No separate preconditions and effects
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Planning

• Planning problem:
• Chronicle 𝜙0 that has some flaws 
• Analogous to flaws in PSP
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• Add new assertions, 

constraints, actions to resolve 

the flaws

ϕ0: tasks: (none)

supported: (none)

assertions: [t1,t2] loc(r1) = l

[t3,t4] loc(r1) : (loc3,loc4)

constraints: adj(loc3,w1)

adj(w1,loc3)

adj(loc4,w2)

adj(w2,loc4)

connected(w1,w2)

ϕ0: tasks: [t2,t3] move(r1,loc3)

supported: (none)

assertions: [t1,t2] loc(r1) = l

[t3,t4] loc(r1) : (loc3,loc4)

constraints: adj(loc3,w1)

adj(w1,loc3)

adj(loc4,w2)

adj(w2,loc4)

connected(w1,w2)

𝑙𝑜
𝑐

𝑟1

𝑡1 𝑡2 𝑡3 𝑡4

𝑙𝑜𝑐4

𝑙𝑜𝑐3

𝑙

𝑙𝑜
𝑐

𝑟1

𝑡1 𝑡2 𝑡3 𝑡4

𝑙𝑜𝑐4

𝑙𝑜𝑐3

𝑙



Solution to Temporal Planning Problems

• Temporal Planning Problem
• 𝛴 : Planning Domain with objects, rigid relations, state variables, actions (primitives) and methods
• 𝜙0 (A,S,T,C): Initial chronicle

• Planning is a refinement of tasks and generative search for goals

• A chronicle 𝜙 is a valid solution plan for the temporal planning problem if:
• 𝜙 does not contain nonrefined tasks
• All assertions in 𝜙 are causally supported, either by S in 𝜙0 or by assertions from methods and primitives in 

the plan
• The chronicle 𝜙 is secure
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Flaws (1)

1.  Temporal assertion 𝛼 that is not causally supported
• What causes 𝑟1 to be at 𝑙𝑜𝑐3 at time 𝑡3?

• Resolvers:
• Add constraints to support 𝛼 from an assertion in 𝜙
• 𝑙 = 𝑙𝑜𝑐3, 𝑡2 = 𝑡3

• Add a new persistence assertion to support 𝛼
• 𝑙 = 𝑙𝑜𝑐3, 𝑡2, 𝑡3 𝑙𝑜𝑐 𝑟1 = 𝑙𝑜𝑐3

• Add a new task or action to support 𝛼
• 𝑡2, 𝑡3 𝑚𝑜𝑣𝑒 𝑟1, 𝑙𝑜𝑐3
• Refining it will produce support for 𝛼
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Like an open goal in PSP

𝑙𝑜
𝑐

𝑟1

𝑡1 𝑡2 = 𝑡3 𝑡4

𝑙𝑜𝑐4

𝑙 = 𝑙𝑜𝑐3

𝑙𝑜
𝑐

𝑟1

𝑡1 𝑡2 𝑡3 𝑡4

𝑙𝑜𝑐4

𝑙 = 𝑙𝑜𝑐3

𝑙𝑜
𝑐

𝑟1

𝑡1 𝑡2 𝑡3 𝑡4

𝑙𝑜𝑐4

𝑙𝑜𝑐3

𝑙

𝑙𝑜
𝑐

𝑟1

𝑡1 𝑡2 𝑡3 𝑡4

𝑙𝑜𝑐4

𝑙𝑜𝑐3

𝑙



Flaws (2)

2.  Non-refined task

• Resolver: refinement method 𝑚
• Applicable if it matches the task and 

its constraints are consistent with 𝜙’s

• Applying the resolver:
• Modify 𝜙 by replacing the task with 𝑚

• Example: 𝑡2, 𝑡3 𝑚𝑜𝑣𝑒 𝑟1, 𝑙𝑜𝑐3
• Refinement will replace 

it with something like
• 𝑡2, 𝑡5 𝑙𝑒𝑎𝑣𝑒 𝑟1, 𝑙, 𝑤
• 𝑡5, 𝑡6 𝑛𝑎𝑣𝑖𝑔𝑎𝑡𝑒 𝑟1, 𝑤, 𝑤′

• 𝑡6, 𝑡3 𝑒𝑛𝑡𝑒𝑟 𝑟1, 𝑙𝑜𝑐3, 𝑤′

• plus constraints
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Like a task in SeRPE

𝑙𝑜
𝑐

𝑟1

𝑡1 𝑡2 𝑡3 𝑡4

𝑙𝑜𝑐4

𝑙𝑜𝑐3

𝑙



Flaws (3)

3.  A pair of possibly-conflicting temporal assertions
• Temporal assertions 𝛼 and 𝛽 possibly conflict 

if they can have inconsistent instances
• Example
• 𝑡1, 𝑡2 𝑙𝑜𝑐 𝑟1 = 𝑙𝑜𝑐1, 𝑡3, 𝑡4 𝑙𝑜𝑐 𝑟 ∶ 𝑙, 𝑙′

• ↓ ↓                                  ↓ ↓         ↓      ↓   ↘
• 1, 5 𝑙𝑜𝑐 𝑟1 = 𝑙𝑜𝑐1, 3, 8 𝑙𝑜𝑐 𝑟1 ∶ 𝑙𝑜𝑐2, 𝑙𝑜𝑐3

• Resolvers: separation constraints
• 𝑟 ≠ 𝑟1
• 𝑡2 < 𝑡3

• 𝑡4 < 𝑡1

• 𝑡2 = 𝑡3, 𝑟 = 𝑟1, 𝑙 = 𝑙𝑜𝑐1
• Also provides causal support for 𝑡3, 𝑡4 𝑙𝑜𝑐(𝑟) ∶ 𝑙, 𝑙′

• 𝑡4 = 𝑡1, 𝑟 = 𝑟1, 𝑙′ = 𝑙𝑜𝑐1
• Also provides causal support for 𝑡1, 𝑡2 𝑙𝑜𝑐 𝑟1 = 𝑙𝑜𝑐1
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𝑙𝑜
𝑐

𝑟1

𝑡1 𝑡2 𝑡3 𝑡4

𝑙′

𝑙

𝑙𝑜𝑐1

𝑙𝑜
𝑐

𝑟1

𝑡1 = 1 𝑡2 = 5
𝑡3 = 3

𝑡4 = 8

𝑙𝑜𝑐3

𝑙𝑜𝑐2

𝑙𝑜𝑐1

𝑙𝑜𝑐 𝑟



Planning Algorithm

• Like PSP
• Repeatedly selects flaws and chooses 

resolvers

• If resolving all flaws possible, at 

least one nondeterministic 

execution trace will do so

• In a deterministic implementation
• Selecting a resolver 𝜌 is a backtracking 

point
• Selecting a flaw is not
• (As in PSP)
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TemPlan(𝜙) // recursive version (book)

Flaws ← set of flaws of 𝜙
if Flaws = ∅ then

return 𝜙
arbitrarily select f ∈ Flaws

Resolvers ← set of resolvers of f

if Resolvers = ∅ then

return failure

nondeterministically choose 𝜌 ∈ Resolvers

𝜙 ← Transform(𝜙, 𝜌)
TemPlan(𝜙,Σ)

TemPlan(𝜙) // iterative version

loop

Flaws ← set of flaws of 𝜙
if Flaws = ∅ then

return 𝜙
arbitrarily select f ∈ Flaws

Resolvers ← set of resolvers of f

if Resolvers = ∅ then

return failure

nondeterministically choose 𝜌 ∈ Resolvers

𝜙 ← Transform(𝜙, 𝜌)



Example

• 𝜙 = 𝒜, 𝒮, 𝒯, 𝒞
• Establishes state-variable values at time 𝑡 = 0
• Flaws: two unrefined tasks
• bring(r,c1,p3), bring(r′,c2,p4)
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ϕ0: tasks: bring(r,c1,p3)
bring(r′,c2,p4)

supported:[0] loc(r1)=d3

[0] freight(r1)=empty

[0] pile(c1)=p′1

[0] pile(c′1)=p′1

[0] pos(c1)=pallet

[0] pos(c′1)=c1

. . .

assertions: (none)

constraints:

adj(d1,w12)

adj(d1,w13)

. . .



Example

• Flaws: two unrefined tasks
• bring(r,c1,p3), bring(r′,c2,p4)

• Refinement for both:
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ϕ0: tasks: bring(r,c1,p3)
bring(r′,c2,p4)

supported:[0] loc(r1)=d3

[0] freight(r1)=empty

[0] pile(c1)=p′1

[0] pile(c′1)=p′1

[0] pos(c1)=pallet

[0] pos(c′1)=c1

. . .

assertions: (none)

constraints:

adj(d1,w12)

adj(d1,w13)

. . .

m-bring(r,c,p,p′,d,d′,k,k′)

task: bring(r,c,p)

refinement: [ts,t1] move(r,d′)
[ts,t2] uncover(c,p′)
[t3,t4] load(k′,r,c,p′)
[t5,t6] move(r,d)
[t7,te] unload(k,r,c,p)

assertions: [ts,t3] pile(c) = p′
[ts,t3] freight(r) = empty 

constraints: attached(p′,d′), 
attached(p,d), d ≠ d′
attached(k′,d′), 
attached(k,d), k ≠ k′
t1 ≤ t3, t2 ≤ t3, t4 ≤ t5, t6 ≤ t7



ϕ0: tasks: bring(r,c1,p3)
bring(r′,c2,p4)

supported:[0] loc(r1)=d3

[0] freight(r1)=empty

[0] pile(c1)=p′1

[0] pile(c′1)=p′1

[0] pos(c1)=pallet

[0] pos(c′1)=c1

. . .

assertions: (none)

constraints:

adj(d1,w12)

adj(d1,w13)

. . .

Method Instance

• Instantiate 𝑐 = 𝑐1 and 𝑝 = 𝑝3 to 

match 𝑏𝑟𝑖𝑛𝑔 𝑟, 𝑐1, 𝑝3
• 𝑝′, 𝑑, 𝑑′, 𝑘, 𝑘′

instantiated to 
match book 

• Needed later to 
satisfy action 
preconditions

Seite 27

m-bring(r,c1,p3,p′1,d3,d1,k3,k1)

task: bring(r,c1,p3)

refinement: [ts,t1] move(r,d1)
[ts,t2] uncover(c1,p′1)
[t3,t4] load(k1,r,c1,p′1)
[t5,t6] move(r, d3)
[t7,te] unload(k3,r,c1,p3)

assertions: [ts,t3] pile(c1) = p′1
[ts,t3] freight(r) = empty 

constraints: attached(p′1,d1), 
attached(p3,d3), d3 ≠ d1
attached(k1,d1), 
attached(k3,d3), k3 ≠ k1
t1 ≤ t3, t2 ≤ t3, t4 ≤ t5, t6 ≤ t7



Modified Chronicle

• Changes to 𝜙0
• Removed 𝑏𝑟𝑖𝑛𝑔 𝑟, 𝑐1, 𝑝3
• Added 5 tasks, 2 assertions, 10 constraints

• Flaws
• 6 unrefined tasks, 2 unsupported assertions
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ϕ1: tasks: [ts,t1] move(r,d1)
[ts,t2] uncover(c1,p′1)
[t3,t4] load(k1,r,c1,p′1)
[t5,t6] move(r,d3)
[t7,te] unload(k3,r,c1,p3)
bring(r′,c2,p4)

supported:[0] loc(r1)=d3

[0] freight(r1)=empty

[0] pile(c1)=p′1

[0] pile(c′1)=p′1

[0] pos(c1)=pallet

[0] pos(c′1)=c1

. . .

assertions: [ts,t3] pile(c1) = p′1
[ts,t3] freight(r) = empty 

constraints: ts<t1≤t3, ts<t2≤t3, t4≤t5, t6≤t7,
adj(d1,w12), adj(d1,w13),

. . .



Method Instance

• Instantiate 𝑟 = 𝑟′, 𝑐 = 𝑐2, 𝑝 = 𝑝4 to 

match 𝑏𝑟𝑖𝑛𝑔 𝑟′, 𝑐2, 𝑝4
• 𝑝′, 𝑑, 𝑑′, 𝑘, 𝑘′

instantiated to 
match book again
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m-bring(r’,c2,p4,p′2,d4,d2,k4,k2)

task: bring(r’,c2,p4)

refinement: [ts,t1] move(r’,d2)
[ts,t2] uncover(c2,p′2)
[t3,t4] load(k2,r’,c2,p′2)
[t5,t6] move(r’, d4)
[t7,te] unload(k4,r’,c2,p4)

assertions: [ts,t3] pile(c2) = p′2
[ts,t3] freight(r’) = empty 

constraints: attached(p′2,d2), 
attached(p4,d4), d4 ≠ d2
attached(k2,d2), 
attached(k4,d4), k4 ≠ k2
t1 ≤ t3, t2 ≤ t3, t4 ≤ t5, t6 ≤ t7

ϕ1: tasks: [ts,t1] move(r,d1)
[ts,t2] uncover(c1,p′1)
[t3,t4] load(k1,r,c1,p′1)
[t5,t6] move(r,d3)
[t7,te] unload(k3,r,c1,p3)
bring(r′,c2,p4)

supported:[0] loc(r1)=d3

[0] freight(r1)=empty

[0] pile(c1)=p′1

[0] pile(c′1)=p′1

[0] pos(c1)=pallet

[0] pos(c′1)=c1

. . .

assertions: [ts,t3] pile(c1) = p′1
[ts,t3] freight(r) = empty 

constraints: ts<t1≤t3, ts<t2≤t3, t4≤t5, t6≤t7,
adj(d1,w12), adj(d1,w13),

. . .



Modified chronicle

• Changes

• Removed 𝑏𝑟𝑖𝑛𝑔 𝑟′, 𝑐2, 𝑝4

• Added 5 tasks, 2 assertions, 10 constraints

• Flaws

• 10 unrefined tasks, 4 unsupported assertions

• Next, work on these two assertions
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ϕ2:   tasks: [ts,t1] move(r,d1)
[ts,t2] uncover(c1,p′1)
[t3,t4] load(k1,r,c1,p′1)
[t5,t6] move(r,d3)
[t7,te] unload(k3,r,c1,p3)

[t′s,t′1] move(r′,d2)
[t′s,t′2] uncover(c2,p′2)
[t′3,t′4] load(k4,r′,c2,p′2)
[t′5,t′6] move(r′,d4)
[t′7,t′e] unload(k2,r′,c2,p′2)

supported:[0] loc(r1)=d3

[0] freight(r1)=empty

[0] pile(c1)=p′1

. . .

assertions: [ts,t3] pile(c1) = p′1
[ts,t3] freight(r) = empty
[t′s,t′3] pile(c2) = p′2
[t′s,t′1] freight(r′) = empty 

constraints: ts<t1≤t3, ts<t2≤t3, t4≤t5, t6≤t7,
t′s<t′1≤t′3, t′s<t′2≤t′3, t′4≤t′5, t′6≤t′7,

adj(d1,w12), adj(d1,w13), . . 
.



Supporting the Assertions

• 3 ways to support 

• 𝑡𝑠, 𝑡3 𝑝𝑖𝑙𝑒 𝑐1 = 𝑝′1

• Constrain 𝑡𝑠 = 0, 
use 0 𝑝𝑖𝑙𝑒 𝑐1 = 𝑝′1

• Add persistence 0, 𝑡𝑠 𝑝𝑖𝑙𝑒 𝑐1 = 𝑝′1

• Add new action 𝑡8, 𝑡𝑠 𝑠𝑡𝑎𝑐𝑘 𝑘1, 𝑐1, 𝑝′1
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Will any of them also 
provide support for

[ts,t3] freight(r) = empty
?

ϕ2:   tasks: [ts,t1] move(r,d1)
[ts,t2] uncover(c1,p′1)
[t3,t4] load(k1,r,c1,p′1)
[t5,t6] move(r,d3)
[t7,te] unload(k3,r,c1,p3)

[t′s,t′1] move(r′,d2)
[t′s,t′2] uncover(c2,p′2)
[t′3,t′4] load(k4,r′,c2,p′2)
[t′5,t′6] move(r′,d4)
[t′7,t′e] unload(k2,r′,c2,p′2)

supported:[0] loc(r1)=d3

[0] freight(r1)=empty

[0] pile(c1)=p′1

. . .

assertions: [ts,t3] pile(c1) = p′1
[ts,t3] freight(r) = empty
[t′s,t′3] pile(c2) = p′2
[t′s,t′1] freight(r′) = empty 

constraints: ts<t1≤t3, ts<t2≤t3, t4≤t5, t6≤t7,
t′s<t′1≤t′3, t′s<t′2≤t′3, t′4≤t′5, t′6≤t′7,

adj(d1,w12), adj(d1,w13), . . 
.



Supporting the Assertions

• 3 ways to support 

• 𝑡𝑠, 𝑡3 𝑝𝑖𝑙𝑒 𝑐1 = 𝑝′1

• Constrain 𝑡𝑠 = 0, 
use 0 𝑝𝑖𝑙𝑒 𝑐1 = 𝑝′1

• To support 

• 0, 𝑡3 𝑓𝑟𝑒𝑖𝑔ℎ𝑡 𝑟 = 𝑒𝑚𝑝𝑡𝑦
• Constrain 𝑟 = 𝑟1,

use 0 𝑓𝑟𝑒𝑖𝑔ℎ𝑡 𝑟1 = 𝑒𝑚𝑝𝑡𝑦
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ϕ2:   tasks: [0,t1] move(r,d1)
[0,t2] uncover(c1,p′1)
[t3,t4] load(k1,r,c1,p′1)
[t5,t6] move(r,d3)
[t7,te] unload(k3,r,c1,p3)

[t′s,t′1] move(r′,d2)
[t′s,t′2] uncover(c2,p′2)
[t′3,t′4] load(k4,r′,c2,p′2)
[t′5,t′6] move(r′,d4)
[t′7,t′e] unload(k2,r′,c2,p′2)

supported:[0] loc(r1)=d3

[0] freight(r1)=empty

[0] pile(c1)=p′1
. . .
[0,t3] pile(c1) = p′1

assertions: [0,t3] freight(r) = empty

[t′s,t′3] pile(c2) = p′2
[t′s,t′1] freight(r′) = empty 

constraints: 0<t1≤t3, 0<t2≤t3, t4≤t5, t6≤t7,
t′s<t′1≤t′3, t′s<t′2≤t′3, t′4≤t′5, t′6≤t′7,

adj(d1,w12), adj(d1,w13), . . 
.



Supporting the Assertions

• 3 ways to support 

• 𝑡𝑠, 𝑡3 𝑝𝑖𝑙𝑒 𝑐1 = 𝑝′1

• Constrain 𝑡𝑠 = 0, 
use 0 𝑝𝑖𝑙𝑒 𝑐1 = 𝑝′1

• To support 

• 0, 𝑡3 𝑓𝑟𝑒𝑖𝑔ℎ𝑡 𝑟 = 𝑒𝑚𝑝𝑡𝑦
• Constrain 𝑟 = 𝑟1,

use 0 𝑓𝑟𝑒𝑖𝑔ℎ𝑡 𝑟1 = 𝑒𝑚𝑝𝑡𝑦
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ϕ2:   tasks: [0,t1] move(r1,d1)
[0,t2] uncover(c1,p′1)
[t3,t4] load(k1,r1,c1,p′1)
[t5,t6] move(r1,d3)
[t7,te] unload(k3,r1,c1,p3)

[t′s,t′1] move(r′,d2)
[t′s,t′2] uncover(c2,p′2)
[t′3,t′4] load(k4,r′,c2,p′2)
[t′5,t′6] move(r′,d4)
[t′7,t′e] unload(k2,r′,c2,p′2)

supported:[0] loc(r1)=d3

[0] freight(r1)=empty

[0] pile(c1)=p′1
. . .
[0,t3] pile(c1) = p′1
[0,t3] freight(r1) = empty

assertions: [t′s,t′3] pile(c2) = p′2
[t′s,t′1] freight(r′) = empty 

constraints: 0<t1≤t3, 0<t2≤t3, t4≤t5, t6≤t7,
t′s<t′1≤t′3, t′s<t′2≤t′3, t′4≤t′5, t′6≤t′7,

adj(d1,w12), adj(d1,w13), . . 
.



Supporting the Assertions

• To support 

• 𝑡𝑠
′ , 𝑡3

′ 𝑝𝑖𝑙𝑒 𝑐2 = 𝑝′2
• Add persistence condition 

0, 𝑡𝑠
′ 𝑝𝑖𝑙𝑒 𝑐2 = 𝑝′2

• Constrain 𝑡𝑠
′ = 0

• Add new action 𝑠𝑡𝑎𝑐𝑘 𝑘2, 𝑐2, 𝑝′2
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ϕ2:   tasks: [0,t1] move(r1,d1)
[0,t2] uncover(c1,p′1)
[t3,t4] load(k1,r1,c1,p′1)
[t5,t6] move(r1,d3)
[t7,te] unload(k3,r1,c1,p3)

[t′s,t′1] move(r′,d2)
[t′s,t′2] uncover(c2,p′2)
[t′3,t′4] load(k4,r′,c2,p′2)
[t′5,t′6] move(r′,d4)
[t′7,t′e] unload(k2,r′,c2,p′2)

supported:[0] loc(r1)=d3

[0] freight(r1)=empty

[0] pile(c1)=p′1
. . .
[0,t3] pile(c1) = p′1
[0,t3] freight(r1) = empty

assertions: [t′s,t′3] pile(c2) = p′2
[t′s,t′1] freight(r′) = empty 

constraints: 0<t1≤t3, 0<t2≤t3, t4≤t5, t6≤t7,
t′s<t′1≤t′3, t′s<t′2≤t′3, t′4≤t′5, t′6≤t′7,

adj(d1,w12), adj(d1,w13), . . 
.



Supporting the Assertions

• To support 

• 𝑡𝑠
′ , 𝑡3

′ 𝑝𝑖𝑙𝑒 𝑐2 = 𝑝′2
• Add persistence condition 

0, 𝑡𝑠
′ 𝑝𝑖𝑙𝑒 𝑐2 = 𝑝′2

• To support 

• 𝑡𝑠
′ , 𝑡1

′ 𝑓𝑟𝑒𝑖𝑔ℎ𝑡 𝑟′ = 𝑒𝑚𝑝𝑡𝑦
• Constrain 𝑟′ = 𝑟2, 

add persistence condition 
0, 𝑡𝑠

′ 𝑓𝑟𝑒𝑖𝑔ℎ𝑡 𝑟2 = 𝑒𝑚𝑝𝑡𝑦
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ϕ2:   tasks: [0,t1] move(r1,d1)
[0,t2] uncover(c1,p′1)
[t3,t4] load(k1,r1,c1,p′1)
[t5,t6] move(r1,d3)
[t7,te] unload(k3,r1,c1,p3)

[t′s,t′1] move(r′,d2)
[t′s,t′2] uncover(c2,p′2)
[t′3,t′4] load(k4,r′,c2,p′2)
[t′5,t′6] move(r′,d4)
[t′7,t′e] unload(k2,r′,c2,p′2)

supported:[0] loc(r1)=d3

[0] freight(r1)=empty

[0] pile(c1)=p′1         . . .
[0,t3] pile(c1) = p′1
[0,t3] freight(r1) = empty

[0,t′s] pile(c2)=p′2

[t′s,t′3] pile(c2) = p′2

assertions: [t′s,t′1] freight(r′) = empty 

constraints: 0<t1≤t3, 0<t2≤t3, t4≤t5, t6≤t7,
t′s<t′1≤t′3, t′s<t′2≤t′3, t′4≤t′5, t′6≤t′7,

adj(d1,w12), adj(d1,w13), . . 
.



Supporting the Assertions

• To support 

• 𝑡𝑠
′ , 𝑡3

′ 𝑝𝑖𝑙𝑒 𝑐2 = 𝑝′2
• Add persistence condition 

0, 𝑡𝑠
′ 𝑝𝑖𝑙𝑒 𝑐2 = 𝑝′2

• To support 

• 𝑡𝑠
′ , 𝑡1

′ 𝑓𝑟𝑒𝑖𝑔ℎ𝑡 𝑟′ = 𝑒𝑚𝑝𝑡𝑦
• Constrain 𝑟′ = 𝑟2, 

add persistence condition 
0, 𝑡𝑠

′ 𝑓𝑟𝑒𝑖𝑔ℎ𝑡 𝑟2 = 𝑒𝑚𝑝𝑡𝑦

• All assertions currently supported

• Remaining flaws: unrefined tasks
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ϕ2:   tasks: [0,t1] move(r1,d1)
[0,t2] uncover(c1,p′1)
[t3,t4] load(k1,r1,c1,p′1)
[t5,t6] move(r1,d3)
[t7,te] unload(k3,r1,c1,p3)

[t′s,t′1] move(r2,d2)
[t′s,t′2] uncover(c2,p′2)
[t′3,t′4] load(k4,r2,c2,p′2)
[t′5,t′6] move(r2,d4)
[t′7,t′e] unload(k2,r2,c2,p′2)

supported:[0] loc(r1)=d3

[0] freight(r1)=empty

[0] pile(c1)=p′1 . . .
[0,t3] pile(c1) = p′1
[0,t3] freight(r1) = empty

[0,t′s] pile(c2)=p′2
[t′s,t′3] pile(c2) = p′2
[0,t′s] freight(r2)=empty
[t′s,t′1] freight(r2) = empty 

assertions: (none)

constraints: 0<t1≤t3, 0<t2≤t3, t4≤t5, t6≤t7,
t′s<t′1≤t′3, t′s<t′2≤t′3, t′4≤t′5, t′6≤t′7,

adj(d1,w12),adj(d1,w13), . . .



Example of Conflicts

• Refining tasks into actions will 

produce possibly-conflicting 

assertions

• move(r2,d4) must go from d2 through d3

• Conflict: occupant(d3)=r1, 
occupant(d3)=r2

• Resolvers: 

• Separation constraints to ensure r2 only 
goes through d3 while r1 away from d3

• E.g., by ensuring move(r1,d3) has 
happened
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ϕ2:   tasks: [0,t1] move(r1,d1)
[0,t2] uncover(c1,p′1)
[t3,t4] load(k1,r1,c1,p′1)
[t5,t6] move(r1,d3)
[t7,te] unload(k3,r1,c1,p3)

[t′s,t′1] move(r2,d2)
[t′s,t′2] uncover(c2,p′2)
[t′3,t′4] load(k4,r2,c2,p′2)
[t′5,t′6] move(r2,d4)
[t′7,t′e] unload(k2,r2,c2,p′2)

supported:[0] loc(r1)=d3

[0] freight(r1)=empty

[0] pile(c1)=p′1 . . .
[0,t3] pile(c1) = p′1
[0,t3] freight(r1) = empty

[0,t′s] pile(c2)=p′2
[t′s,t′3] pile(c2) = p′2
[0,t′s] freight(r2)=empty
[t′s,t′1] freight(r2) = empty 

assertions: (none)

constraints: 0<t1≤t3, 0<t2≤t3, t4≤t5, t6≤t7,
t′s<t′1≤t′3, t′s<t′2≤t′3, t′4≤t′5, t′6≤t′7,

adj(d1,w12),adj(d1,w13), . . .



Heuristics for Guiding TemPlan

• Flaw selection, resolver selection heuristics 

similar to those in PSP
• Select the flaw with the 

smallest number of resolvers
• Choose the resolver that rules out the fewest 

resolvers for the other flaws 

• There is also a problem with constraint 

management
• We ignored it when discussing PSP
• We discuss it next
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TemPlan(𝜙)
Flaws ← set of flaws of 𝜙
if Flaws = ∅ then

return 𝜙
arbitrarily select f ∈ Flaws

Resolvers ← set of resolvers of f

if Resolvers = ∅ then

return failure

nondeterministically choose 𝜌 ∈ Resolvers

𝜙 ← Transform(𝜙, 𝜌)
TemPlan(𝜙)

PSP(Σ,𝜋)
loop

if Flaws(𝜋) = ∅ then

return 𝜋
arbitrarily select f ∈ Flaws(𝜋)
R ←{all feasible resolvers for f} 

if R = ∅ then

return failure

nondeterministically choose ρ ∈ R

𝜋 ← ρ(𝜋)
return 𝜋



Intermediate Summary

• Planning problems
• Three kinds of flaws and their resolvers:
• tasks (that need to be refined), 
• causal support (for assertions), 
• security (of instantiations)

• Partial plans, solution plans

• Planning: TemPlan
• Like PSP but with tasks, temporal assertions, temporal constraints
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Constraint Management

• Each time TemPlan applies a resolver, it modifies (𝒯, 𝒞)
• Some resolvers will make (𝒯, 𝒞) inconsistent
• No solution in this part of the search space
• Detect inconsistency ➝ prune this part of the search space
• Do not detect it ➝ waste time looking for a solution

• Analogy: PSP checks simple cases of inconsistency
• E.g., cannot create a constraint 𝑎 ≺ 𝑏

if there is already a constraint 𝑏 ≺ 𝑎
• Ignores more complicated cases
• Example: 
• 𝑐1, 𝑐2, 𝑐3 ∈ 𝐶𝑜𝑛𝑡𝑎𝑖𝑛𝑒𝑟𝑠 = 𝑐1, 𝑐2
• Threats involving 𝑐1, 𝑐2, 𝑐3

• For resolvers, suppose PSP chooses
• 𝑐1 ≠ 𝑐2, 𝑐2 ≠ 𝑐3, 𝑐1 ≠ 𝑐3

• No solutions in this part of the search space, 
but PSP searches it anyway
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Constraint Management in TemPlan

• At various points, check consistency of 𝒞
• If 𝒞 is inconsistent, then (𝒯, 𝒞) is inconsistent
• Can prune this part of the search space

• If 𝒞 is consistent, then (𝒯, 𝒞) may or may not be consistent
• Example:
• 𝒯 = { 𝑡1, 𝑡2 𝑙𝑜𝑐 𝑟1 = 𝑙𝑜𝑐1, 𝑡3, 𝑡4 𝑙𝑜𝑐 𝑟1 = 𝑙𝑜𝑐2}
• 𝒞 = 𝑡1 < 𝑡3 < 𝑡4 < 𝑡2

• Gives 𝑙𝑜𝑐 𝑟1 two values during [𝑡3, 𝑡4]
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An instance is consistent if 
• it satisfies all constraints in 𝒞 and 
• does not specify two different values 

for a state variable at the same time



Consistency of 𝒞

• 𝒞 contains two kinds of constraints
• Object constraints 
• 𝑙𝑜𝑐 𝑟 ≠ 𝑙2, 𝑙 ∈ 𝑙𝑜𝑐3, 𝑙𝑜𝑐4 , 𝑟 = 𝑟1, 𝑜 ≠ 𝑜′

• Temporal constraints
• 𝑡1 < 𝑡3, 𝑎 < 𝑡, 𝑡 < 𝑡′, 𝑎 ≤ 𝑡′ − 𝑡 ≤ 𝑏

• Assume object constraints are independent of temporal constraints and vice versa
• Exclude things like 𝑡 < 𝑓 𝑙, 𝑟 with some function 𝑓

• Then two separate subproblems:
• Check consistency of object constraints
• Check consistency of temporal constraints

• 𝒞 is consistent iff both are consistent
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Object Constraints

• Constraint-satisfaction problem – NP-complete

• Can write an algorithm that is complete but runs in exponential time
• If there is an inconsistency, always finds it
• Might prune a lot, but spends lots of time at each node

• Instead, use a technique that is 

incomplete but takes polynomial time
• Detects some inconsistencies 

but not others
• Runs much faster, 

but prunes fewer nodes
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Time Constraints: Representation

• Simple Temporal Networks (STNs)
• Networks of constraints on time points

• Synthesise an STN incrementally

starting from 𝜙0
• TemPlan can check time 

constraints in time 𝑂 𝑛3

• Incrementally instantiated at acting time

• Kept consistent throughout planning and acting
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Simple Temporal Networks

• STN: a pair (𝒱, ℰ), where
• 𝒱 = a set of temporal variables 𝑡1, … , 𝑡𝑛

• ℰ ⊆ 𝒱 × 𝒱 is a set of edges

• Each edge 𝑡𝑖 , 𝑡𝑗 is labelled with an interval 𝑎, 𝑏
• Shorthand: represents constraint 𝑎 ≤ 𝑡𝑗 − 𝑡𝑖 ≤ 𝑏

• Equivalently, −𝑏 ≤ 𝑡𝑖 − 𝑡𝑗 ≤ −𝑎

• Representing unary constraints
• Dummy variable 𝑡0 = 0
• Edge (𝑡0, 𝑡𝑖) labelled with 𝑎, 𝑏 represents

𝑎 ≤ 𝑡𝑖 − 0 ≤ 𝑏

• Solution to an STN
• Integer value for each 𝑡𝑖

• All constraints satisfied

• Consistent STN
• Has a solution
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Book says:
• Solution

• Integer value for each 𝑡𝑖

• Consistent: 
• Has a solution
• All constraints satisfied

!

t1

t2

t3

[1,2] [3,4]

[2,3]

t1

t2

t3

[1,2] [3,4]

[–3,–2]

Is this network 
consistent?



Time Constraints

• Minimal STN: 
• For every edge (𝑡𝑖 , 𝑡𝑗) with label 𝑎, 𝑏

• For every 𝑡 ∈ [𝑎, 𝑏]
• There is at least one solution such that 𝑡𝑗 − 𝑡𝑖 = 𝑡

• Cannot make any of the time intervals shorter without excluding some solutions
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t3

[1,2] [3,4]

[3,7]

Is this network 
minimal?



Operations on STNs

• Intersection,   ∩
• 𝑡𝑗 – 𝑡𝑖 ∈ 𝑟𝑖𝑗 = 𝑎𝑖𝑗 , 𝑏𝑖𝑗

• 𝑡𝑗 – 𝑡𝑖 ∈ 𝑟𝑖𝑗
′ = 𝑎𝑖𝑗

′ , 𝑏𝑖𝑗
′

• Infer

𝑡𝑗– 𝑡𝑖 ∈ 𝑟𝑖𝑗 ∩ 𝑟𝑖𝑗
′ = max 𝑎𝑖𝑗 , 𝑎𝑖𝑗

′ , min 𝑏𝑖𝑗 , 𝑏𝑖𝑗
′

• Composition,   ∘
• 𝑡𝑘– 𝑡𝑖 ∈ 𝑟𝑖𝑘 = 𝑎𝑖𝑘 , 𝑏𝑖𝑘

• 𝑡𝑗– 𝑡𝑘 ∈ 𝑟𝑘𝑗 = 𝑎𝑘𝑗, 𝑏𝑘𝑗

• Infer

𝑡𝑗– 𝑡𝑖 ∈ 𝑟𝑖𝑘 ∘ 𝑟𝑘𝑗 = 𝑎𝑖𝑘 + 𝑎𝑘𝑗 , 𝑏𝑖𝑘 + 𝑏𝑘𝑗

• Reasoning: add up shortest and longest times

• Consistency checking
• Three constraints 𝑟𝑖𝑘 , 𝑟𝑘𝑗 , 𝑟𝑖𝑗 are consistent 

only if  𝑟𝑖𝑗 ∩ (𝑟𝑖𝑘 ∘ 𝑟𝑘𝑗) ≠ ∅ (empty interval)
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ti
tj

rij

𝑟𝑖𝑗 ∩ 𝑟𝑖𝑗
′

r′ij

ti

tk

tj

rik
rkj

𝑟𝑖𝑘 ∘ 𝑟𝑘𝑗

ti

tk

tj

rik rkj

rij

𝑟𝑖𝑗 ∩ 𝑟𝑖𝑘 ∘ 𝑟𝑘𝑗

𝑟𝑖𝑘 ∘ 𝑟𝑘𝑗



Two Examples
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t1
t3

[1,2] [3,4]

[2,3]

t2

t1

t2

t3

[1,2] [3,4]

[2,5]

• STN (𝒱, ℰ), where
• 𝒱 = 𝑡1, 𝑡2, 𝑡3
• ℰ = {

}
𝑟12 = 1,2 , 𝑟23 = 3,4 , 𝑟13 =

2,3
• Composition
• 𝑟13

′ = 𝑟12 ∘ 𝑟23 = 1,2 ∘ 3,4 =
4,6

• Cannot satisfy both 𝑟13 and 𝑟13
′

• 𝑟13 ∩ 𝑟13
′ = 2,3 ∩ 4,6 = ∅

• (𝒱, ℰ) is inconsistent

• STN (𝒱, ℰ), where
• 𝒱 = 𝑡1, 𝑡2, 𝑡3
• ℰ = {

}
𝑟12 = 1,2 , 𝑟23 = 3,4 , 𝑟13 =

2,5
• Composition (as before)
• 𝑟13

′ = 𝑟12 ∘ 𝑟23 = 4,6
• (𝒱, ℰ) is consistent
• 𝑟13 ∩ 𝑟13

′ = 2,5 ∩ 4,6 = 4,5
• Minimal network
• 𝑟13 = 4,5

t1

t2

t3

[1,2] [3,4]

[4,5]



Operations on STNs

• PC (Path Consistency) 

algorithm: 
• Consistency checking on all triples
• If an edge has no constraint, 

use −∞, +∞
• 𝑛 constraints ➝ 𝑛3 triples ➝ time 𝑂 𝑛3

• Example: 
• 𝑘 = 2, 𝑖 = 1, 𝑗 = 4
• 𝑟12 = 1,2
• 𝑟24 = 3,4
• 𝑟14 = – ∞, ∞
• 𝑟12 ∘ 𝑟24 = [1 + 3, 2 + 4] = [4,6]
• 𝑟14 ← max – ∞, 4 , min ∞, 6 = 4,6

Seite 49

PC(𝒱,ℰ)
for 1 ≤ k ≤ n do

for 1 ≤ i < j ≤ n, i ≠ j, j ≠ k do

rij ← rij ∩ [rik ∘ rkj]

if rij = ∅ then

return inconsistent

return consistent

𝑡1

𝑡2

𝑡3

𝑡4

𝑡5

𝑖

𝑘

𝑗



Operations on STNs

• PC makes network minimal
• Shrinks each 𝑟𝑖𝑗 to exclude values 

that are not in any solution
• Doing so, it detects 

inconsistent networks
• 𝑟𝑖𝑗 = [𝑎𝑖𝑗 , 𝑏𝑖𝑗] empty ➝ inconsistent

• Graph: dashed lines
• Constraints that were shrunk

• Can modify PC to make it incremental
• Input
• A consistent, minimal STN
• A new constraint 𝑟𝑖𝑗

′

• Incorporate 𝑟𝑖𝑗
′ in time 𝑂 𝑛2
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PC(𝒱,ℰ)
for 1 ≤ k ≤ n do

for 1 ≤ i < j ≤ n, i ≠ j, j ≠ k do

rij ← rij ∩ [rik ∘ rkj]

if rij = ∅ then

return inconsistent

return consistent

𝑡1 𝑡2

𝑡3 𝑡4

30,50

5,10

bring&move

uncover



Pruning TemPlan’s search space

• Take the time constraints in 𝒞
• Write them as an STN
• Use PC to check whether STN is consistent
• If it is inconsistent, TemPlan can backtrack
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Controllability

• Suppose TemPlan gives you a chronicle and you want to execute it
• Constraints on time points
• Need to reason about these to decide when to start each action
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𝑡1 𝑡2

𝑡3 𝑡4

30,50

5,10

bring&move

uncover



Controllability

• Solid lines: duration constraints
• Robot will do bring&move, will take 30 to 50 time units
• Crane will do uncover, will take 5 to 10 time units

• Dashed line: synchronization constraint
• Do not want either the crane or robot to wait long
• At most 5 seconds between the two ending times

• Objective
• Choose time points that will

satisfy all the constraints
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𝑡1 𝑡2

𝑡3 𝑡4

30,50

5,10

bring&move

uncover



Controllability

• Suppose we run PC

• PC returns a minimal and consistent network
• There exist time points that satisfy all the constraints

• Would work if we could choose all four time points
• But we cannot choose 𝑡2 and 𝑡4

• 𝑡1 and 𝑡3 are controllable
• Actor can control when each action starts

• 𝑡2 and 𝑡4 are contingent
• Cannot control how long the actions take
• Random variables that are known 

to satisfy the duration constraints
• 𝑡2 ∈ 𝑡1 + 30, 𝑡1 + 50
• 𝑡4 ∈ 𝑡3 + 5, 𝑡3 + 10
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𝑡1 𝑡2

𝑡3 𝑡4

30,50
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STNUs

• STNU (Simple Temporal Network with Uncertainty):
• A 4-tuple 𝒱, ෨𝒱, ℰ, ሚℰ

• 𝒱 ={controllable time points}
• E.g., starting times of actions

• ෨𝒱 ={contingent time points}
• E.g., ending times of actions

• Controllable and contingent constraints: 
• Synchronization between two starting times: controllable
• Duration of an action: contingent
• Synchronization between ending points of two actions: contingent
• Synchronization between end of one action, start of another:
• Controllable if the new action starts after the old one ends
• Contingent if the new action starts before the old one ends

• Want a way for the actor to choose time points in 𝒱 (starting times) that guarantee that 

constraints are satisfied
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• ℰ ={controllable constraints}

• ሚℰ ={contingent constraints}



Three kinds of controllability

• 𝒱, ෨𝒱, ℰ, ሚℰ is strongly controllable if the actor can choose values for 𝒱 such that success 

will occur for all values of ෨𝒱 that satisfy ሚℰ
• Actor can choose the values for 𝒱 offline
• The right choice will work regardless of ෨𝒱

• 𝒱, ෨𝒱, ℰ, ሚℰ is weakly controllable if the actor can choose values for 𝒱 such that success will 

occur for at least one combination of values for ෨𝒱
• Actor can choose the values for 𝒱 only if the actor knows in advance what the values of ෨𝒱 will be

• Dynamic controllability: 
• Game-theoretic model: actor vs. environment
• A player’s strategy: a function 𝜎 telling what to do in every situation
• Choices may differ depending on what has happened so far

• 𝒱, ෨𝒱, ℰ, ሚℰ is dynamically controllable if ∃ strategy for an actor that will guarantee success regardless of 

the environment’s strategy
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Dynamic Execution

• For 𝑡 = 0, 1, 2, …
• Actor chooses an unassigned set of variables 𝒱𝑡 ⊆ 𝒱 that all can be assigned the value 𝑡 without 

violating any constraints in ℰ
• ≈ actions the actor chooses to start at time 𝑡
• Simultaneously, environment chooses an unassigned set of variables ෨𝒱𝑡⊆ ෨𝒱 that all can be assigned the 

value 𝑡 without violating any constraints in ሚℰ
• ≈ actions that finish at time 𝑡
• Each chosen time point 𝑣 is assigned 𝑣 ← 𝑡
• Failure if any of the constraints in ℰ ∪ ሚℰ are violated
• There might be violations that neither 𝒱𝑡 nor ෨𝒱𝑡 caused individually
• Success if all variables in 𝒱 ∪ ෨𝒱 have values and no constraints are violated

• Dynamic execution strategies 𝜎𝐴 for actor, 𝜎𝐸 for environment
• 𝜎𝐴(ℎ𝑡−1) = {what events in 𝒱 to trigger at time 𝑡, given ℎ𝑡−1}
• 𝜎𝐸(ℎ𝑡−1) = {what events in ෨𝒱 to trigger at time 𝑡, given ℎ𝑡−1}

• ℎ𝑡 = ℎ𝑡−1 ⋅ 𝜎𝐴 ℎ𝑡−1 ∪ 𝜎𝐸 ℎ𝑡−1

• 𝒱, ෨𝒱, ℰ, ሚℰ is dynamically controllable if ∃ 𝜎𝐴 that will guarantee success ∀ 𝜎𝐸
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𝑟𝑖𝑗 = 𝑙, 𝑢 is violated

if 𝑡𝑖 and 𝑡𝑗 have values 

and 𝑡𝑗 − 𝑡𝑖 ∉ 𝑙, 𝑢



Example

• Instead of a single bring&move task, two separate bring and move tasks

• Actor’s dynamic execution strategy
• Trigger 𝑡1 at whatever time you want
• Wait and observe 𝑡
• Trigger 𝑡′ at any time from 𝑡 to 𝑡 + 5
• Trigger 𝑡3 = 𝑡′ + 10
• For every 𝑡2 ∈ 𝑡′ + 15, 𝑡′ + 20 and 𝑡4 ∈ [𝑡3 + 5, 𝑡3 + 10]
• 𝑡4 ∈ 𝑡′ + 15, 𝑡′ + 20
• So, 𝑡4– 𝑡2 ∈ – 5, 5

• Thus, all constraints are satisfied
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𝑡3 𝑡4
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Dynamic Controllability Checking

• For a chronicle 𝜙 = 𝒜, 𝒮, 𝒯, 𝒞
• Temporal constraints in 𝒞 correspond to an STNU
• Adapt TemPlan to test not only consistency but also dynamic controllability (*) of the STNU
• If we detect cases where it is not dynamically controllable, then backtrack 

*Use PC as well
• If PC(𝒱 ∪ ෨𝒱, ℰ ∪ ሚℰ) reduces a contingent constraint, then 𝒱, ෨𝒱, ℰ, ሚℰ is not dynamically controllable

⇒ Can prune this branch

• If it does not reduce any contingent constraints, we do not know whether 𝒱, ෨𝒱, ℰ, ሚℰ is dynamically 

controllable
• Only necessary, not sufficient condition

• Two options
• Either continue down this branch and backtrack later if necessary, or

• Extend PC to detect more cases where 𝒱, ෨𝒱, ℰ, ሚℰ is not dynamically controllable

• Additional constraint propagation rules
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Additional Constraint Propagation Rules

• Case 1: 𝑢 ≥ 0
• 𝑡 must come before 𝑡𝑒

• Add a composition constraint 𝑎′, 𝑏′

• Find 𝑎′, 𝑏′ such that 𝑎′, 𝑏′ ∘ 𝑢, 𝑣 = 𝑎, 𝑏
• 𝑎′ + 𝑢, 𝑏′ + 𝑣 = 𝑎, 𝑏
• 𝑎′ = 𝑎– 𝑢, 𝑏′ = 𝑏– 𝑣
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⟹ contingent ⟶ controllable 𝑎′ = 𝑎– 𝑢, 𝑏′ = 𝑏– 𝑣

t

[a, b]

[u, v]

ts te



Additional Constraint Propagation Rules

• Case 2: 𝑢 < 0 and 𝑣 ≥ 0
• 𝑡 may be before or after 𝑡𝑒

• Add a wait constraint 𝑡𝑒, 𝛼
• 𝛼 defined w.r.t. 

some controllable time point 𝑡𝑠

• Wait until either 𝑡𝑒 occurs or current time is 𝑡𝑠 + 𝛼, whichever comes first
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⟹ contingent ⟶ controllable 𝑎′ = 𝑎– 𝑢, 𝑏′ = 𝑏– 𝑣



Extended Version of PC

• We want a fast algorithm that TemPlan can run at each node, to decide whether to 

backtrack
• There is an extended version of PC that runs in polynomial time, but it has high overhead

• Possible compromise: use ordinary PC most of the time
• Run extended version occasionally, or at end of search before returning plan
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⟹ contingent ⟶ controllable 𝑎′ = 𝑎– 𝑢, 𝑏′ = 𝑏– 𝑣



Intermediate Summary

• Constraint management
• Consistency of object constraints 
• Constraint-satisfaction problem

• Consistency of time constraints
• STN, solution, minimality, consistency
• PC

• Controllability
• STNU, controllable, contingent
• Dynamic controllability
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Acting with Temporal Models
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Atemporal Refinement of Primitive Actions

• TemPlan’s action templates may correspond to compound tasks
• In RAE, refine into commands with refinement methods

• TemPlan’s
action template 
(descriptive model)

• RAE’s 
refinement method
(operational model)
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leave(r,d,w)
assertions: [ts,te] loc(r): (d,w)

[ts,te] occupant(d): (r,empty) 
constraints: te ≤ ts + δ1

adj(d,w) 

m-leave(r,d,w,e)
task: leave(r,d,w)
pre: loc(r)=d, adj(d,w), exit(e,d,w)
body: until empty(e) 

wait(1)
goto(r,e)



Discussion

• Pros
• Simple online refinement with RAE
• Avoids breaking down uncertainty of contingent duration
• Can be augmented with temporal monitoring functions in RAE
• E.g., watchdogs, methods with duration preferences

• Cons
• Does not handle temporal requirements at the command level, 
• E.g., synchronise two robots that must act concurrently

• Can augment RAE to include temporal reasoning
• Call it eRAE
• One essential component: a dispatching function
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Acting With Temporal Models

• Dispatching procedure: a dynamic execution strategy
• Controls when to start each action
• Given a dynamically controllable plan with executable primitives, 

it triggers corresponding commands from online observations

• Example
• robot 𝑟2 needs to leave dock 𝑑2

before robot 𝑟1 can enter 𝑑2
• crane 𝑘 needs to uncover 𝑐

then put 𝑐 onto 𝑟1

Seite 67

d1

d2
r2

w1

k

p
c

r1

c′
w2

q

navigate(r1)leave(r1,d1)

stack(k,c′,q)unstack(k,c′,p)

putdown(k,c,r1)unstack(k,c,p)

leave(r2,d2)

enter(r1,d2)

leave(r1,d2)

𝑡1 𝑡2

𝑡3

𝑡4

𝑡5

𝑡6

𝑡8𝑡7 𝑡9



Example

• Trigger 𝑡1, observe leave finish

• Enable and trigger 𝑡2, enables 𝑡3, 𝑡4

• Trigger 𝑡3 soon enough to allow 𝑒𝑛𝑡𝑒𝑟 𝑟1, 𝑑2 at time 𝑡5

• Trigger 𝑡4 soon enough to allow 𝑠𝑡𝑎𝑐𝑘 𝑘, 𝑐′ at time 𝑡6

• Rest of plan is linear: 

• Choose each 𝑡𝑖 after the previous action ends
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Dispatch(𝒱,Ṽ,ℰ,Ẽ)
initialise the network

while there are time points in 𝒱 that

have not been triggered do

update now

update the time points in Ṽ that have 

been newly observed

update enabled

trigger every t ∈ enabled s.t. now=ut
arbitrarily choose other time points 

in enabled and trigger them

propagate values of triggered 

timepoints (change [lt,ut] for 

each future timepoint t)

navigate(r1)leave(r1,d1)

stack(k,c′,q)unstack(k,c′,p)

putdown(k,c,r1)unstack(k,c,p)

leave(r2,d2)

enter(r1,d2)

leave(r1,d2)

𝑡1 𝑡2

𝑡3

𝑡4

𝑡5

𝑡6

𝑡8𝑡7 𝑡9



Previous Example

• Trigger 𝑡1 at time 0
• Wait and observe 𝑡; this enables 𝑡′

• Trigger 𝑡′ at any time from 𝑡 to 𝑡 + 5
• Trigger 𝑡3 at time 𝑡′ + 10
• 𝑡2 ∈ 𝑡′ + 15, 𝑡′ + 20
• 𝑡4 ∈ [𝑡3 + 5, 𝑡3 + 10] = [𝑡′ + 15, 𝑡′ + 20]
• so 𝑡4– 𝑡2 ∈ – 5, 5

Seite 69

Dispatch(𝒱,Ṽ,ℰ,Ẽ)
initialise the network

while there are time points in 𝒱 that

have not been triggered do

update now

update the time points in Ṽ that have 

been newly observed

update enabled

trigger every t ∈ enabled s.t. now=ut
arbitrarily choose other time points 

in enabled and trigger them

propagate values of triggered 

timepoints (change [lt,ut] for 

each future timepoint t)

𝑡′ 𝑡2

𝑡3 𝑡4

15,2015,25 0,5

5,10

move

uncover

𝑡1 𝑡bring



Dispatching

• Let 𝒱, ෨𝒱, ℰ, ሚℰ be a controllable STNU 

that is grounded
• Different from a grounded 

expression in logic
• At least one time point 𝑡∗ is 

instantiated
• Bounds each time point 𝑡

within an interval 𝑙𝑡, 𝑢𝑡

• Controllable time point 𝑡 in the future:
• 𝑡 is alive if current time 𝑛𝑜𝑤 ∈ 𝑙𝑡, 𝑢𝑡

• 𝑡 is enabled if
• It is alive
• For every precedence constraint 𝑡′ < 𝑡, 𝑡′ has occurred
• For every wait constraint ⟨𝑡𝑒 , 𝛼⟩, 𝑡𝑒 has occurred or 𝛼 has expired
• 𝛼 has expired if 𝑡𝑠 has occurred and 𝑡𝑠 + 𝛼 ≤ 𝑛𝑜𝑤
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Dispatch(𝒱,Ṽ,ℰ,Ẽ)
initialise the network

while there are time points in 𝒱 that

have not been triggered do

update now

update the time points in Ṽ that have 

been newly observed

update enabled

trigger every t ∈ enabled s.t. now=ut
arbitrarily choose other time points 

in enabled and trigger them

propagate values of triggered 

timepoints (change [lt,ut] for 

each future timepoint t)



Deadline Failures

• Suppose something makes it impossible to start an action on time

• Do one of the following:
• Stop the delayed action, and look for new plan
• Let the delayed action finish, try to repair the plan by resolving violated constraints at the STNU 

propagation level
• E.g., accommodate a delay in navigate by delaying the whole plan

• Let the delayed action finish, try to repair the plan some other way
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navigate(r1)leave(r1,d1)

stack(k,c′,q)unstack(k,c′,p)

putdown(k,c,r1)unstack(k,c,p)

leave(r2,d2)

enter(r1,d2)

leave(r1,d2)
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Partial Observability

• Tacit assumption: All occurrences of contingent events are observable
• Observation needed for dynamic controllability

• In general, not all events are observable 

• POSTNU (Partially Observable STNU)
• STNU where the 

contingent time points 
are given by a set of 
invisible and a set of 
observable timepoints
• POSTNU = STNU 

if Invisible = ∅
• Dynamically controllable?
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Controllable

Timepoints Invisible

Contingent

Observable

Arthur Bit-Monnot, Malik Ghallab, Félix Ingrand: “Which Contingent Events to Observe for the Dynamic Controllability of a Plan”, IJCAI-16



Observation Actions

Example
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Controllable

Contingent
Invisible

observable

𝑡′ 𝑡2

𝑡3 𝑡4

20,251,2

25,30

driving

cooking

𝑡1 𝑡

working

Arthur Bit-Monnot, Malik Ghallab, Félix Ingrand: “Which Contingent Events to Observe for the Dynamic Controllability of a Plan”, IJCAI-16



Dynamic Controllability

• A POSTNU is dynamically controllable if 
• there exists an execution strategy that chooses future controllable points to meet all the constraints, given 

the observation of past visible points

• Check dynamic controllability
• Map an POSTNU to an STNU by deleting invisible time points and adding corresponding constraints on 

controllable and observable time points
• Check dynamic controllability of the mapped STNU
• E.g., using the extended PC algorithm

• More details in the paper
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Dynamic Controllability

• A POSTNU is dynamically controllable if 
• there exists an execution strategy that chooses future controllable points to meet all the constraints, given 

the observation of past visible points

• Observable ≠ visible
• Observable means it will be known when observed
• It can be temporarily hidden

• Aim: Find out which time points need to be observed for the plan to be dynamically controllable (details in 
paper)
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Controllable

Timepoints Invisible

Contingent Visible

Observable

Hidden



Intermediate Summary

• Acting
• Atemporal refinement
• eRAE
• Dispatching
• Alive, enabled

• Deadline failures
• Partial observability
• Invisible, observable (hidden/visible)
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