Automated Planning and Acting – Temporal Models

Institute of Information Systems

Mattis Hartwig
Content

1. Planning and Acting with **Deterministic** Models
 Conventional AI planning
2. Planning and Acting with **Refinement** Methods
 Abstract activities ➔ collections of less-abstract activities
3. Planning and Acting with **Temporal** Models
 Reasoning about time constraints
4. Planning and Acting with **Nondeterministic** Models
 Actions with multiple possible outcomes
5. **Standard** Decision Making
 Utility theory
 Markov decision process (MDP)
6. Planning and Acting with **Probabilistic** Models
 Actions with multiple possible outcomes, with probabilities
7. **Advanced** Decision Making
 Hidden goals
 Partially observable MDP (POMDP)
 Decentralised POMDP
8. **Human-aware** Planning
 Planning with a human in the loop
9. **Causal** Planning
 Causality & Intervention
 Implications for Causal Planning
Temporal Models

- Durations of actions
- Delayed effects and preconditions
 - E.g., resources borrowed or consumed during an action
- Time constraints on goals
 - Relative or absolute
- Exogenous events expected to occur in the future
 - When?
- Maintenance actions:
 - Maintain a property (≠ changing a value)
 - E.g., track a moving target, keep a spring latch in position
- Concurrent actions
 - Interacting effects, joint effects
- Delayed commitment
 - Instantiation at acting time
Timelines

• Up to now, “state-oriented view”
 • Time is a sequence of states s_0, s_1, s_2
 • Instantaneous actions transform each state into the next one
 • No overlapping actions
• Switch to a “time-oriented view”
 • Sequence of integer time points
 • $t = 1, 2, 3, ...$
 • For each state variable x, a timeline
 • Values during different time intervals
• State at time $t = \{\text{state-variable values at time } t\}$
Timelines

- Sets of constraints on state variables and events
 - Reflect predicted actions and events
 - Planning is constraint-based
Representation

- Quantitative model of time
 - Discrete: time points are integers
- Expressions:
 - time-point variables
 - t, t', t_2, t_j, ...
 - simple constraints
 - $t < t'$
 - $d \leq t' - t \leq d'$
- $x(t)$ refers to the value of variable x at time t
- Temporal assertion:
 - Value of a state variable during a time interval
 - Persistence: $[t_1, t_2]x = v$ entails $t_1 < t_2$
 - Change: $[t_1, t_2]x : (v_1, v_2)$ entails $v_1 \neq v_2$
What is the right assertion that says robot r1 changes the location from loc2 to loc3 in the interval [t5, t6]?
Timeline

- **Timeline**: pair (T, C), partially predicted evolution of one state variable
 - T: temporal assertions
 - $[t_1, t_2] loc(r1) : (loc1, l)$
 - $[t_2, t_3] loc(r1) = l$
 - $[t_3, t_4] loc(r1) : (l, loc2)$
 - C: constraints
 - $t_1 < t_2 < t_3 < t_4$
 - $l \neq loc1$
 - $l \neq loc2$
 - If we want to restrict $loc(r1)$ during $[t_1, t_2]$
 - $[t_1, t_1 + 1] loc(r1) : (loc1, route)$
 - $[t_2 - 1, t_2] loc(r1) : (route, l)$
 - $[t_1 + 1, t_2 - 1] loc(r1) = route$
 - **Instance** of (T, C) = temporal and object variables instantiated
 - An instance is **consistent** if it satisfies all constraints in C and does not specify two different values for a state variable at the same time
 - A timeline (T, C) is **consistent** if its set of consistent instances is not empty
 - A timeline (T, C) is **secure** if and only if it is consistent and every instance that meets the constraints in C is consistent
The timeline ($[[t_1, t_2] \text{loc}(r) = \text{loc}1, [t_3, t_4] \text{loc}(r1) = l}, \{t_1 < t_2; t_3 < t_4\}$) is consistent but not secure. What is a potential conflict?

What needs to change so it becomes secure?
Actions

• Preliminaries:
 • Timelines \((\mathcal{T}_1, \mathcal{C}_1), \ldots, (\mathcal{T}_k, \mathcal{C}_k)\) for \(k\) different state variables
 • Their union:
 • \((\mathcal{T}_1, \mathcal{C}_1) \cup \ldots \cup (\mathcal{T}_k, \mathcal{C}_k) = (\mathcal{T}_1 \cup \ldots \cup \mathcal{T}_k, \mathcal{C}_1 \cup \ldots \cup \mathcal{C}_k)\)
 • If
 • every \((\mathcal{T}_i, \mathcal{C}_i)\) is secure, and
 • no pair of timelines \((\mathcal{T}_i, \mathcal{C}_i)\) and \((\mathcal{T}_j, \mathcal{C}_j)\) has any unground variables in common
 • then
 • \((\mathcal{T}_1 \cup \ldots \cup \mathcal{T}_k, \mathcal{C}_1 \cup \ldots \cup \mathcal{C}_k)\) is also secure

• Action or primitive task (or just primitive):
 • a triple \((\text{head}, \mathcal{T}, \mathcal{C})\)
 • head is the name and arguments
 • \((\mathcal{T}, \mathcal{C})\) is the union of a set of timelines
Actions

- **leave(r, d, w)**
 - Robot r leaves dock d, goes to adjacent waypoint w

```
leave(r,d,w)
assertions:
[t_s, t_e] loc(r): (d,w)
[t_s, t_e] occupant(d): (r,empty)
constraints:
t_e ≤ t_s + \delta_1
adj(d,w)
```

- **loc(r) changes to w with delay ≤ \delta_1**
- **Dock d becomes empty**

- **Two additional parameters**
 - Starting time \(t_s\)
 - Ending time \(t_e\)

- **No separate preconditions and effects**
 - Preconditions ⇔ need for causal support
Specify the enter action template.

\[
\begin{align*}
\text{lo}(r) &\in \text{Docks} \cup \text{Waypoints} & \text{for } r \in \text{Robots} \\
\text{freight}(r) &\in \text{Containers} \cup \{\text{empty}\} & \text{for } r \in \text{Robots} \\
\text{grip}(k) &\in \text{Containers} \cup \{\text{empty}\} & \text{for } k \in \text{Cranes} \\
\text{pos}(c) &\in \text{Robots} \cup \text{Cranes} \cup \text{Piles} & \text{for } c \in \text{Containers} \\
\text{stacked-on}(c) &\in \text{Containers} \cup \{\text{empty}\} & \text{for } c \in \text{Containers} \\
\text{top}(p) &\in \text{Containers} \cup \{\text{empty}\} & \text{for } p \in \text{Piles} \\
\text{occupant}(d) &\in \text{Robots} \cup \{\text{empty}\} & \text{for } d \in \text{Docks}.
\end{align*}
\]

\[
\begin{align*}
\text{attached} &\subseteq (\text{Cranes} \cup \text{Piles}) \times \text{Docks} \\
\text{adjacent} &\subseteq \text{Docks} \times \text{Waypoints} \\
\text{connected} &\subseteq \text{Waypoints} \times \text{Waypoints}
\end{align*}
\]

\[
\begin{align*}
\text{leave}(r, d, w) : \text{robot } r \text{ leaves dock } d \text{ to an adjacent waypoint } w, \\
\text{enter}(r, d, w) : r \text{ enters } d \text{ from an adjacent waypoint } w, \\
\text{navigate}(r, w, w') : r \text{ navigates from waypoint } w \text{ to a connected one } w', \\
\text{stack}(k, c, p) : \text{crane } k \text{ holding container } c \text{ stacks it on top of pile } p, \\
\text{unstack}(k, c, p) : \text{crane } k \text{ unstacks a container } c \text{ from the top of pile } p, \\
\text{put}(k, c, r) : \text{crane } k \text{ holding a container } c \text{ and puts it onto } r, \\
\text{take}(k, c, r) : \text{crane } k \text{ takes container } c \text{ from robot } r.
\end{align*}
\]
Actions

• $\text{take}(k, c, r, d)$
 • Action: crane k takes container c from r on dock d

• Two additional parameters
 • Starting time t_s
 • Ending time t_e

• No separate preconditions and effects
 • Preconditions \iff need for causal support

$\text{take}(k,c,r,d)$

assertions:

$[t_s,t_e] \text{pos}(c): (r, k)$ // where container c is
$[t_s,t_e] \text{grip}(k): (\text{empty}, c)$ // what crane k's gripper is holding
$[t_s,t_e] \text{freight}(r): (c,\text{empty})$ // what r is carrying
$[t_s,t_e] \text{loc}(r) = d$ // where r is

constraints:

$\text{attached}(k,d)$
Tasks and Methods

- Task: move robot r to dock d
 - $[t_s, t_e] \text{move}(r, d)$
- Method:

 m-move1(r, d, d', w, w')

 task: $\text{move}(r, d)$

 refinement:

 $[t_s, t_1] \text{leave}(r, d', w')$
 $[t_2, t_3] \text{navigate}(r, w', w)$
 $[t_4, t_e] \text{enter}(r, d, w)$

 assertions:

 $[t_s, t_s+1] \text{loc}(r) = d'$

 constraints:

 $\text{adj}(d, w)$,
 $\text{adj}(d', w'), d \neq d'$,
 $\text{connected}(w, w')$,
 $t_1 \leq t_2, t_3 \leq t_4$

- d' becomes empty during $[t_s, t_1]$
- another robot may enter it after t_1
- d doesn’t need to be empty until t_4
- when r starts entering it
Tasks and Methods

- Task: remove everything above container c in pile p
 - $[t_s, t_e] \text{uncover}(c, p)$
- Method:

\[
m\text{-uncover}(c, p, k, d, p')
\]

\begin{align*}
\text{task:} & \quad \text{uncover}(c, p) \\
\text{refinement:} & \quad [t_s, t_1] \text{unstack}(k, c', p) \quad \text{// action} \\
& \quad [t_2, t_3] \text{stack}(k, c', p') \quad \text{// action} \\
& \quad [t_4, t_e] \text{uncover}(c, p) \quad \text{// recursive uncover} \\
\text{assertions:} & \quad [t_s, t_s+1] \text{pile}(c) = p \\
& \quad [t_s, t_s+1] \text{top}(p) = c' \\
& \quad [t_s, t_s+1] \text{grip}(k) = \text{empty} \\
\text{constraints:} & \quad \text{attached}(k, d), \text{attached}(p, d), \\
& \quad \text{attached}(p', d), \\
& \quad p \neq p', c' \neq c, \\
& \quad t_1 \leq t_2, t_3 \leq t_4
\end{align*}
Tasks and Methods

- Task: robot r brings container c to pile p
 - $[t_s, t_e] \text{bring}(r, c, p)$
- Method:

 m-bring(r,c,p,p',d,d')
 \[\text{task: } \text{bring}(r,c,p) \]
 \[\text{refinement: } [t_s, t_1] \text{move}(r,d') \]
 \[[t_s, t_2] \text{uncover}(c,p') \]
 \[[t_3, t_4] \text{load}(k',r,c,p') \]
 \[[t_5, t_6] \text{move}(r,d) \]
 \[[t_7, t_e] \text{unload}(k,r,c,p) \]
 \[\text{assertions: } [t_s, t_3] \text{pile}(c) = p' \]
 \[[t_s, t_3] \text{freight}(r) = \text{empty} \]
 \[\text{constraints: } \text{attached}(p',d'), \text{attached}(p,d), d \neq d' \]
 \[\text{attached}(k',d'), \text{attached}(k,d), k \neq k' \]
 \[t_1 \leq t_3, t_2 \leq t_3, t_4 \leq t_5, t_6 \leq t_7 \]
Chronicles: Unions of Timelines

- Chronicle $\phi = (\mathcal{A}, \mathcal{S}, \mathcal{T}, \mathcal{C})$
 - \mathcal{A}: temporally qualified actions and tasks
 - \mathcal{S}: a priori supported assertions
 - \mathcal{T}: temporally qualified assertions
 - \mathcal{C}: constraints
- ϕ can include
 - Current state, future predicted events
 - Tasks to perform
 - Assertions and constraints to satisfy
- Can represent
 - Planning problem
 - Plan or partial plan

ϕ_0:
- tasks: $[t, t']$ bring(r, c_1, d_4)
- supported: $[t_s]$ loc(r_1) = d_1
 $[t_s]$ loc(r_2) = d_2
 $[t_s+10, t_s+\delta]$ docked(ship1) = d_3
 $[t_s]$ top(pile-ship1) = c_1
 $[t_s]$ pos(c1) = pallet
- assertions: $[t_e]$ loc(r_1) = d_1
 $[t_e]$ loc(r_2) = d_2
- constraints: $t_s < t < t' < t_e$, $20 \leq \delta \leq 30$
Intermediate Summary

• Timelines
 • Temporal assertions (change, persistence), constraints
 • Conflicts, consistency, security
• Chronicle: union of several timelines
 • Consistency, security
• Actions represented by chronicles
 • No separate preconditions and effects
Planning

- Planning problem:
 - Chronicle ϕ_0 that has some flaws
 - Analogous to flaws in PSP

Add new assertions, constraints, actions to resolve the flaws

ϕ_0: tasks: \([t_2, t_3] \) move(r1,loc3)
supported: \((none) \)
assertions: \([t_1, t_2] \) loc(r1) = l
\([t_3, t_4] \) loc(r1) : (loc3,loc4)
constraints: adj(loc3,w1)
adj(w1,loc3)
adj(loc4,w2)
adj(w2,loc4)
connected(w1,w2)
Solution to Temporal Planning Problems

- **Temporal Planning Problem**
 - Σ: Planning Domain with objects, rigid relations, state variables, actions (primitives) and methods
 - $\phi_0 (A,S,T,C)$: Initial chronicle

- Planning is a refinement of tasks and generative search for goals

- A chronicle ϕ is a valid solution plan for the temporal planning problem if:
 - ϕ does not contain nonrefined tasks
 - All assertions in ϕ are causally supported, either by S in ϕ_0 or by assertions from methods and primitives in the plan
 - The chronicle ϕ is secure
Flaws (1)

1. Temporal assertion α that is not *causally supported*
 - What causes $r1$ to be at $loc3$ at time $t3$?
 - **Resolvers:**
 - Add constraints to support α from an assertion in ϕ
 - $l = loc3, \ t_2 = t_3$
 - Add a new persistence assertion to support α
 - $l = loc3, [t_2, t_3] loc(r1) = loc3$
 - Add a new task or action to support α
 - $[t_2, t_3] move(r1, loc3)$
 - Refining it will produce support for α

Like an open goal in PSP
Flaws (2)

2. Non-refined task
 • **Resolver**: refinement method m
 • Applicable if it matches the task and its constraints are consistent with ϕ’s
 • Applying the resolver:
 • Modify ϕ by replacing the task with m
 • Example: $[t_2, t_3]move(r1, loc3)$
 • Refinement will replace it with something like
 • $[t_2, t_5]leave(r1, l, w)$
 • $[t_5, t_6]navigate(r1, w, w')$
 • $[t_6, t_3]enter(r1, loc3, w')$
 • plus constraints
3. A pair of possibly-conflicting temporal assertions
 • Temporal assertions α and β possibly conflict if they can have inconsistent instances
 • Example
 • $[t_1, t_2]loc(r1) = loc1$, $[t_3, t_4]loc(r) : (l, l')$
 • Resolvers: separation constraints
 • $r \neq r1$
 • $t_2 < t_3$
 • $t_4 < t_1$
 • $t_2 = t_3, r = r1, l = loc1$
 • Also provides causal support for $[t_3, t_4]loc(r) : (l, l')$
 • $t_4 = t_1, r = r1, l' = loc1$
 • Also provides causal support for $[t_1, t_2]loc(r1) = loc1$
Planning Algorithm

• Like PSP
 • Repeatedly selects flaws and chooses resolvers
• If resolving all flaws possible, at least one nondeterministic execution trace will do so
• In a deterministic implementation
 • Selecting a resolver ρ is a backtracking point
 • Selecting a flaw is not
 • (As in PSP)

```plaintext
TemPlan(\phi)  // recursive version (book)
    Flaws ← set of flaws of \phi
    if Flaws = \emptyset then
        return \phi
    arbitrarily select f ∈ Flaws
    Resolvers ← set of resolvers of f
    if Resolvers = \emptyset then
        return failure
    nondeterministically choose \rho ∈ Resolvers
    \phi ← Transform(\phi, \rho)
    TemPlan(\phi, \Sigma)
```

```plaintext
TemPlan(\phi)  // iterative version
    loop
        Flaws ← set of flaws of \phi
        if Flaws = \emptyset then
            return \phi
        arbitrarily select f ∈ Flaws
        Resolvers ← set of resolvers of f
        if Resolvers = \emptyset then
            return failure
        nondeterministically choose \rho ∈ Resolvers
        \phi ← Transform(\phi, \rho)
```
Example

- \(\phi = (A, S, T, C) \)
- Establishes state-variable values at time \(t = 0 \)
- Flaws: two unrefined tasks
 - \(\text{bring}(r,c1,p3), \text{bring}(r',c2,p4) \)

\[\phi_0: \text{tasks:} \]
\[\text{bring}(r,c1,p3) \]
\[\text{bring}(r',c2,p4) \]

\[\text{supported:} [0] \text{loc}(r1)=d3 \]
\[[0] \text{freight}(r1)=\text{empty} \]
\[[0] \text{pile}(c1)=p'1 \]
\[[0] \text{pile}(c'1)=p'1 \]
\[[0] \text{pos}(c1)=\text{pallet} \]
\[[0] \text{pos}(c'1)=c1 \]

\[\ldots \]

\[\text{assertions:} (\text{none}) \]

\[\text{constraints:} \]
\[\text{adj}(d1,w12) \]
\[\text{adj}(d1,w13) \]

\[\ldots \]
Example

- Flaws: two unrefined tasks
 - \texttt{\text{bring}(r,c1,p3)}, \texttt{\text{bring}(r',c2,p4)}
- Refinement for both:

\[
\phi_0: \text{tasks: } \text{bring}(r,c1,p3) \\
\text{bring}(r',c2,p4)
\]

supported:
- \([0] \text{loc}(r1)=d3\)
- \([0] \text{freight}(r1)=\text{empty}\)
- \([0] \text{pile}(c1)=p'1\)
- \([0] \text{pile}(c'1)=p'1\)
- \([0] \text{pos}(c1)=\text{pallet}\)
- \([0] \text{pos}(c'1)=c1\)

\[\ldots\]

assertions: \textit{(none)}

constraints:
- \texttt{\text{adj}(d1,w12)}
- \texttt{\text{adj}(d1,w13)}

\[\ldots\]
Method Instance

- Instantiate $c = c_1$ and $p = p_3$ to match $\text{bring}(r, c_1, p_3)$
- p', d, d', k, k' instantiated to match book
- Needed later to satisfy action preconditions

\[
\phi_0: \quad \text{tasks: } \text{bring}(r, c_1, p_3) \\
\quad \text{bring}(r', c_2, p_4) \\
\text{supported: } [0] \text{loc}(r_1) = d_3 \\
\quad [0] \text{freight}(r_1) = \text{empty} \\
\quad [0] \text{pile}(c_1) = p'_1 \\
\quad [0] \text{pile}(c'_1) = p'_{1'} \\
\quad [0] \text{pos}(c_1) = \text{pallet} \\
\quad [0] \text{pos}(c'_1) = c_1 \\
\ldots
\]

assertions: (none)

constraints:

\[
\text{adj}(d_1, w_{12}) \\
\text{adj}(d_1, w_{13}) \\
\ldots
\]
Modified Chronicle

- Changes to ϕ_0
- Removed $\text{bring}(r,c1,p3)$
- Added 5 tasks, 2 assertions, 10 constraints
- Flaws
 - 6 unrefined tasks, 2 unsupported assertions

ϕ_1: tasks:
- $[t_1,t_2]$ move(r,d_1)
- $[t_1,t_2]$ uncover($c_1,p’1$)
- $[t_3,t_4]$ load($k_1,r,c1,p’1$)
- $[t_5,t_6]$ move(r,d_3)
- $[t_7,t_e]$ unload($k_3,r,c1,p3$)
- $\text{bring}(r’,c2,p4)$

supported:
- $[0]$ loc(r_1) = d_3
- $[0]$ freight(r_1) = empty
- $[0]$ pile($c1$) = $p’1$
- $[0]$ pile($c’1$) = $p’1$
- $[0]$ pos($c1$) = pallet
- $[0]$ pos($c’1$) = $c1$
- ...

assertions:
- $[t_1,t_3]$ pile($c1$) = $p’1$
- $[t_1,t_3]$ freight(r) = empty

constraints:
- $t_5< t_1 \leq t_3$, $t_s< t_2 \leq t_3$, $t_4 \leq t_5$, $t_6 \leq t_7$, $t_5 \leq t_7$, $\text{adj}(d_1,w_{12})$, $\text{adj}(d_1,w_{13})$, ...

Method Instance

- Instantiate $r = r'$, $c = c2, p = p4$ to match $\text{bring}(r', c2, p4)$
 - p', d, d', k, k' instantiated to match book again

\[
\begin{align*}
\text{m-bring}(r', c2, p4, p2, d4, d2, k4, k2) \\
\text{task: } & \text{bring}(r', c2, p4) \\
\text{refinement: } & [t_1, t_2] \text{ move}(r', d2) \\
& [t_3, t_4] \text{ load}(k2, r', c2, p2) \\
& [t_5, t_6] \text{ move}(r', d4) \\
& [t_7, t_e] \text{ unload}(k4, r', c2, p4) \\
\text{assertions: } & [t_2, t_3] \text{ pile}(c2) = p2 \\
& [t_1, t_3] \text{ freight}(r') = \text{empty} \\
\text{constraints: } & \text{attached}(p2, d2), \\
& \text{attached}(p4, d4), d4 \neq d2 \\
& \text{attached}(k2, d2), \\
& \text{attached}(k4, d4), k4 \neq k2 \\
& t_1 \leq t_3, t_2 \leq t_3, t_4 \leq t_5, t_6 \leq t_7
\end{align*}
\]

ϕ_1:
- tasks: $[t_1, t_2] \text{ move}(r, d1)$
 $[t_3, t_4] \text{ load}(k1, r, c1, p'1)$
 $[t_5, t_6] \text{ move}(r, d3)$
 $[t_7, t_e] \text{ unload}(k3, r, c1, p3)$
 $\text{bring}(r', c2, p4)$

supported: $[0] \text{ loc}(r1) = d3$
 $[0] \text{ freight}(r1) = \text{empty}$
 $[0] \text{ pile}(c1) = p1$
 $[0] \text{ pile}(c'1) = p1$
 $[0] \text{ pos}(c1) = \text{pallet}$
 $[0] \text{ pos}(c'1) = c1$
 ...

assertions: $[t_2, t_3] \text{ pile}(c1) = p'1$
 $[t_1, t_3] \text{ freight}(r) = \text{empty}$

constraints: $t_5 < t_1 \leq t_3, t_5 < t_2 \leq t_3, t_4 \leq t_5, t_6 \leq t_7$
 $\text{adj}(d1, w12), \text{adj}(d1, w13), \ldots$
Modified chronicle

- Changes
 - Removed `bring(r', c2, p4)`
 - Added 5 tasks, 2 assertions, 10 constraints
- Flaws
 - 10 unrefined tasks, 4 unsupported assertions
- Next, work on these two assertions

\[
\phi_2: \text{tasks: } \begin{align*}
[t_s, t_1] & \text{ move}(r, d1) \\
[t_s, t_2] & \text{ uncover}(c1, p'1) \\
[t_3, t_4] & \text{ load}(k1, r, c1, p'1) \\
[t_5, t_6] & \text{ move}(r, d3) \\
[t_7, t_e] & \text{ unload}(k3, r, c1, p3) \\
[t_s', t_1'] & \text{ move}(r', d2) \\
[t_s', t_2'] & \text{ uncover}(c2, p'2) \\
[t_s', t_4'] & \text{ load}(k4, r', c2, p'2) \\
[t_s', t_6'] & \text{ move}(r', d4) \\
[t_s', t_e'] & \text{ unload}(k2, r', c2, p'2)
\end{align*}
\]

- supported:
 - \([0] \text{loc}(r1) = d3\)
 - \([0] \text{freight}(r1) = \text{empty}\)
 - \([0] \text{pile}(c1) = p'1\)

- assertions:
 - \([t_s, t_3] \text{ pile}(c1) = p'1\)
 - \([t_s, t_3] \text{ freight}(r) = \text{empty}\)
 - \([t_s', t_3'] \text{ pile}(c2) = p'2\)
 - \([t_s', t_1'] \text{ freight}(r') = \text{empty}\)

- constraints:
 - \(t_5 < t_1 \leq t_3, t_5 < t_2 \leq t_3, t_4 \leq t_5, t_6 \leq t_7,\)
 - \(t_5 < t_1' \leq t_3', t_5 < t_2' \leq t_3', t_4' \leq t_5', t_6' \leq t_7',\)
 - \(\text{adj}(d1, w12), \text{adj}(d1, w13), \ldots\)
Supporting the Assertions

- 3 ways to support
- \([t_s, t_3] pile(c1) = p'1\)
 - Constrain \(t_s = 0\), use \([0] pile(c1) = p'1\)
 - Add persistence \([0, t_s] pile(c1) = p'1\)
 - Add new action \([t_8, t_s] stack(k1, c1, p'1)\)

Will any of them also provide support for \([t_s, t_3] \) \(freight(r) = empty\)?
Supporting the Assertions

- 3 ways to support
- \([t_s, t_3]pile(c1) = p'1\)
 - **Constrain** \(t_s = 0\),
 use \([0]pile(c1) = p'1\)
- To support
- \([0, t_3]freight(r) = empty\)
 - **Constrain** \(r = r1\),
 use \([0]freight(r1) = empty\)

\[\begin{align*}
\phi_2: & \text{ tasks: } [0, t_1] \text{ move}(r,d1) \\
& [0, t_3] \text{ uncover}(c1,p'1) \\
& [t_3, t_4] \text{ load}(k1,r,c1,p'1) \\
& [t_5, t_6] \text{ move}(r,d3) \\
& [t_7, t_8] \text{ unload}(k3,r,c1,p3) \\
& [t', t_1] \text{ move}(r,d2) \\
& [t', t_2] \text{ uncover}(c2,p'2) \\
& [t', t_3] \text{ load}(k4,r,c2,p'2) \\
& [t', t_4] \text{ move}(r,d4) \\
& [t', t_5] \text{ unload}(k2,r,c2,p'2)
\end{align*}\]

- supported:
 - \([0] \text{ loc}(r1)=d3\)
 - \([0] \text{ freight}(r1)=empty\)
 - \([0] \text{ pile}(c1)=p'1\)
 - \([0] \text{ pile}(c1)=p'1\)
 - \([0] \text{ freight}(r)=empty\)
 - \([0] \text{ pile}(c1)=p'1\)
 - \([0] \text{ pile}(c1)=p'1\)

- assertions:
 - \([t', t_3] \text{ pile}(c2) = p'2\)
 - \([t', t_1] \text{ freight}(r) = empty\)

- constraints:
 - \(0 < t_1 \leq t_3, 0 < t_2 \leq t_3, t_4 \leq t_5, t_6 \leq t_7,\)
 - \(t_5 < t' \leq t'_3, t'_5 < t'_2 \leq t'_3, t'_4 \leq t'_5, t'_6 \leq t'_7,\)
 - \(\text{adj}(d1,w12), \text{adj}(d1,w13), \ldots\)
Supporting the Assertions

- 3 ways to support
 - $[t_s, t_3]pile(c1) = p'1$
 - Constrain $t_s = 0$,
 use $[0]pile(c1) = p'1$
 - To support
 - $[0, t_3]freight(r) = empty$
 - Constrain $r = r1$,
 use $[0]freight(r1) = empty$

ϕ_2: tasks:
- $[0, t_1] move(r1, d1)$
- $[0, t_3] uncover(c1, p'1)$
- $[t_3, t_4] load(k1, r1, c1, p'1)$
- $[t_5, t_6] move(r1, d3)$
- $[t_7, t_8] unload(k3, r1, c1, p3)$
- $[t'_s, t'_1] move(r', d2)$
- $[t'_s, t'_2] uncover(c2, p'2)$
- $[t'_3, t'_4] load(k4, r', c2, p'2)$
- $[t'_5, t'_6] move(r', d4)$
- $[t'_7, t'_e] unload(k2, r', c2, p'2)$

supported:
- $[0] loc(r1)=d3$
- $[0] freight(r1)=empty$
- $[0] pile(c1)=p'1$
- ...$[0, t_3] pile(c1) = p'1$
- $[0, t_3] freight(r1) = empty$

assertions:
- $[t'_s, t'_3] pile(c2) = p'2$
- $[t'_s, t'_1] freight(r') = empty$

constraints:
- $0 < t_1 \leq t_3$, $0 < t_2 \leq t_3$, $t_4 \leq t_5$, $t_6 \leq t_7$,
- $t_s < t'_1 \leq t'_s$, $t'_s < t'_2 \leq t'_3$, $t'_4 \leq t'_5$, $t'_6 \leq t'_7$,
- $adj(d1, w12)$, $adj(d1, w13)$, ...

\[\text{ Seite 33 } \]
Supporting the Assertions

• To support
 • \([t'_5, t'_3] \text{pile}(c2) = p'2\)
 • Add persistence condition \([0, t'_5] \text{pile}(c2) = p'2\)
• Constrain \(t'_5 = 0\)
• Add new action \(\text{stack}(k2, c2, p'2)\)
Supporting the Assertions

- To support
 - $[t'_s, t'_3]pile(c2) = p'^2$
 - Add persistence condition $[0, t'_s]pile(c2) = p'^2$
- To support
 - $[t'_s, t'_1]freight(r') = empty$
 - Constrain $r' = r2$
 - Add persistence condition $[0, t'_s]freight(r2) = empty$

ϕ_2: tasks:

- $[0, t_1] move(r1,d1)$
- $[0, t_2] uncover(c1,p'1)$
- $[t_3, t_4] load(k1,r1,c1,p'1)$
- $[t_5, t_6] move(r1,d3)$
- $[t_7, t_8] unload(k3,r1,c1,p3)$
- $[t'_s, t'_1] move(r',d2)$
- $[t'_s, t'_2] uncover(c2,p'2)$
- $[t'_3, t'_4] load(k4,r',c2,p'2)$
- $[t'_5, t'_6] move(r',d4)$
- $[t'_7, t'_8] unload(k2,r',c2,p'2)$

supported:

- $[0] loc(r1) = d3$
- $[0] freight(r1) = empty$
- $[0] pile(c1) = p'1$...
- $[0, t_3] pile(c1) = p'1$
- $[0, t_3] freight(r1) = empty$
- $[0, t'_s] pile(c2) = p'^2$
- $[t'_s, t'_3] pile(c2) = p'^2$

assertions:

- $[t'_s, t'_1] freight(r') = empty$

constraints:

- $0 < t_1 \leq t_3$, $0 < t_2 \leq t_3$, $t_4 \leq t_5$, $t_6 \leq t_7$,
- $t'_5 \leq t'_3$, $t'_5 \leq t'_2 \leq t'_3$, $t'_4 \leq t'_5$, $t'_6 \leq t'_7$,
- $adj(d1,w12)$, $adj(d1,w13)$, ...

\[\text{Adjasso}\]
Supporting the Assertions

- To support
 - $[t'_s, t'_3] \text{pile}(c2) = p'_2$
 - Add persistence condition $[0, t'_s] \text{pile}(c2) = p'_2$
 - $[t'_s, t'_3] \text{freight}(r') = \text{empty}$
 - Constrain $r' = r2$
 - Add persistence condition $[0, t'_s] \text{freight}(r2) = \text{empty}$

- All assertions currently supported
- Remaining flaws: unrefined tasks
Example of Conflicts

- Refining tasks into actions will produce possibly-conflicting assertions
 - `move(r2,d4)` must go from `d2` through `d3`
 - Conflict: `occupant(d3)=r1, occupant(d3)=r2`
- Resolvers:
 - Separation constraints to ensure `r2` only goes through `d3` while `r1` away from `d3`
 - E.g., by ensuring `move(r1,d3)` has happened

\[
\phi_2: \begin{align*}
\text{tasks: } & [0,t_1] \text{ move}(r1,d1) \\
& [0,t_2] \text{ uncover}(c1,p'1) \\
& [t_3,t_4] \text{ load}(k1,r1,c1,p'1) \\
& [t_5,t_6] \text{ move}(r1,d3) \\
& [t_7,t_8] \text{ unload}(k3,r1,c1,p3) \\
& [t'_s,t'_1] \text{ move}(r2,d2) \\
& [t'_s,t'_2] \text{ uncover}(c2,p'2) \\
& [t'_3,t'_4] \text{ load}(k4,r2,c2,p'2) \\
& [t'_5,t'_6] \text{ move}(r2,d4) \\
& [t'_7,t'_e] \text{ unload}(k2,r2,c2,p'2)
\end{align*}
\]

supported:
- `loc(r1)=d3`
- `freight(r1)=empty`
- `pile(c1)=p'1` ...
- `pile(c1)=p'1`
- `freight(r1)=empty`
- `pile(c2)=p'2`
- `pile(c2)=p'2`
- `freight(r2)=empty`
- `freight(r2)=empty`

assertions: `(none)`

constraints:
- \(0 < t_1 \leq t_3, 0 < t_2 \leq t_3, t_4 \leq t_5, t_6 \leq t_7, t'_s < t'_1 \leq t'_3, t'_s < t'_2 \leq t'_3, t'_4 \leq t'_5, t'_6 \leq t'_7,\)
- \(\text{adj}(d1,w12), \text{adj}(d1,w13), \ldots\)
Heuristics for Guiding TemPlan

- Flaw selection, resolver selection heuristics similar to those in PSP
 - Select the flaw with the smallest number of resolvers
 - Choose the resolver that rules out the fewest resolvers for the other flaws
- There is also a problem with constraint management
 - We ignored it when discussing PSP
 - We discuss it next

```
TemPlan(\phi)
Flaws ← set of flaws of \phi
if Flaws = ∅ then
  return \phi
arbitrarily select f ∈ Flaws
Resolvers ← set of resolvers of f
if Resolvers = ∅ then
  return failure
nondeterministically choose 𝜌 ∈ Resolvers
\phi ← Transform(\phi, 𝜌)
TemPlan(\phi)
```

```
PSP(Σ, 𝜋)
loop
  if Flaws(𝜋) = ∅ then
    return 𝜋
  arbitrarily select f ∈ Flaws(𝜋)
  R ←{all feasible resolvers for f}
  if R = ∅ then
    return failure
  nondeterministically choose 𝜌 ∈ R
  𝜋 ← 𝜌(𝜋)
  return 𝜋
```
Intermediate Summary

• Planning problems
 • Three kinds of flaws and their resolvers:
 • tasks (that need to be refined),
 • causal support (for assertions),
 • security (of instantiations)
 • Partial plans, solution plans
• Planning: TemPlan
 • Like PSP but with tasks, temporal assertions, temporal constraints
Constraint Management

• Each time TemPlan applies a resolver, it modifies \((T, C)\)
 • Some resolvers will make \((T, C)\) inconsistent
 • No solution in this part of the search space
 • Detect inconsistency \(\rightarrow\) prune this part of the search space
 • Do not detect it \(\rightarrow\) waste time looking for a solution

• Analogy: PSP checks simple cases of inconsistency
 • E.g., cannot create a constraint \(a < b\)
 if there is already a constraint \(b < a\)
 • Ignores more complicated cases
 • Example:
 • \(c_1, c_2, c_3 \in Containers = \{c1, c2\}\)
 • Threats involving \(c_1, c_2, c_3\)
 • For resolvers, suppose PSP chooses
 • \(c_1 \neq c_2, c_2 \neq c_3, c_1 \neq c_3\)
 • No solutions in this part of the search space,
 but PSP searches it anyway
Constraint Management in TemPlan

- At various points, check consistency of C
 - If C is inconsistent, then (T, C) is inconsistent
 - Can prune this part of the search space

- If C is consistent, then (T, C) may or may not be consistent
 - Example:
 - $T = \{ [t_1, t_2] loc(r1) = loc1, [t_3, t_4] loc(r1) = loc2 \}$
 - $C = (t_1 < t_3 < t_4 < t_2)$
 - Gives $loc(r1)$ two values during $[t_3, t_4]$

An instance is consistent if
- it satisfies all constraints in C and
- does not specify two different values for a state variable at the same time
Consistency of \mathcal{C}

- \mathcal{C} contains two kinds of constraints
 - **Object** constraints
 - $\text{loc}(r) \neq l_2, \ l \in \{\text{loc3, loc4}\}, \ r = r_1, \ o \neq o'$
 - **Temporal** constraints
 - $t_1 < t_3, \ a < t, \ t < t', \ a \leq t' - t \leq b$
 - Assume object constraints are independent of temporal constraints and vice versa
 - Exclude things like $t < f(l, r)$ with some function f

- Then two separate subproblems:
 - Check consistency of object constraints
 - Check consistency of temporal constraints
 - \mathcal{C} is consistent iff both are consistent
Object Constraints

- Constraint-satisfaction problem – NP-complete
- Can write an algorithm that is complete but runs in exponential time
 - If there is an inconsistency, always finds it
 - Might prune a lot, but spends lots of time at each node
- Instead, use a technique that is incomplete but takes polynomial time
 - Detects some inconsistencies but not others
 - Runs much faster, but prunes fewer nodes
Time Constraints: Representation

- Simple Temporal Networks (STNs)
 - Networks of constraints on time points

- Synthesise an STN incrementally starting from ϕ_0
 - TemPlan can check time constraints in time $O(n^3)$

- Incrementally instantiated at acting time
 - Kept consistent throughout planning and acting
Simple Temporal Networks

- **STN**: a pair \((\mathcal{V}, \mathcal{E})\), where
 - \(\mathcal{V} = \{a \text{ set of temporal variables } t_1, \ldots, t_n\}\)
 - \(\mathcal{E} \subseteq \mathcal{V} \times \mathcal{V}\) is a set of edges
- Each edge \((t_i, t_j)\) is labelled with an interval \([a, b]\)
 - Shorthand: represents constraint \(a \leq t_j - t_i \leq b\)
 - Equivalently, \(-b \leq t_i - t_j \leq -a\)
- Representing unary constraints
 - Dummy variable \(t_0 = 0\)
 - Edge \((t_0, t_i)\) labelled with \([a, b]\) represents \(a \leq t_i - 0 \leq b\)
- **Solution** to an STN
 - Integer value for each \(t_i\)
 - All constraints satisfied
- **Consistent** STN
 - Has a solution

Is this network consistent?

![Diagram of Simple Temporal Networks](image)
Time Constraints

• **Minimal STN:**
 • For every edge \((t_i, t_j)\) with label \([a, b]\)
 • For every \(t \in [a, b]\)
 • There is at least one solution such that \(t_j - t_i = t\)
 • Cannot make any of the time intervals shorter without excluding some solutions

Is this network minimal?
Operations on STNs

• Intersection, \(\cap \)
 • \(t_j - t_i \in r_{ij} = [a_{ij}, b_{ij}] \)
 • \(t_j - t_i \in r'_{ij} = [a'_{ij}, b'_{ij}] \)
 • Infer
 \[t_j - t_i \in r_{ij} \cap r'_{ij} = [\max(a_{ij}, a'_{ij}), \min(b_{ij}, b'_{ij})] \]

• Composition, \(\circ \)
 • \(t_k - t_i \in r_{ik} = [a_{ik}, b_{ik}] \)
 • \(t_j - t_k \in r_{kj} = [a_{kj}, b_{kj}] \)
 • Infer
 \[t_j - t_i \in r_{ik} \circ r_{kj} = [a_{ik} + a_{kj}, b_{ik} + b_{kj}] \]
 • Reasoning: add up shortest and longest times

• Consistency checking
 • Three constraints \(r_{ik}, r_{kj}, r_{ij} \) are consistent only if \(r_{ij} \cap (r_{ik} \circ r_{kj}) \neq \emptyset \) (empty interval)
Two Examples

- STN \((\mathcal{V}, \mathcal{E}) \), where
 - \(\mathcal{V} = \{t_1, t_2, t_3\} \)
 - \(\mathcal{E} = \{r_{12} = [1,2], r_{23} = [3,4], r_{13} = [2,3]\} \)
- Composition
 - \(r'_{13} = r_{12} \circ r_{23} = [1,2] \circ [3,4] = [4,6] \)
 - Cannot satisfy both \(r_{13} \) and \(r'_{13} \)
 - \(r_{13} \cap r'_{13} = [2,3] \cap [4,6] = \emptyset \)
 - \((\mathcal{V}, \mathcal{E}) \) is inconsistent

- STN \((\mathcal{V}, \mathcal{E}) \), where
 - \(\mathcal{V} = \{t_1, t_2, t_3\} \)
 - \(\mathcal{E} = \{r_{12} = [1,2], r_{23} = [3,4], r_{13} = [2,5]\} \)
- Composition (as before)
 - \(r'_{13} = r_{12} \circ r_{23} = [4,6] \)
 - \((\mathcal{V}, \mathcal{E}) \) is consistent
 - \(r_{13} \cap r'_{13} = [2,5] \cap [4,6] = [4,5] \)
 - Minimal network
 - \(r_{13} = [4,5] \)
Operations on STNs

- **PC (Path Consistency) algorithm:**
 - Consistency checking on all triples
 - If an edge has no constraint, use \([-\infty, +\infty]\)
 - \(n\) constraints \(\rightarrow n^3\) triples \(\rightarrow\) time \(O(n^3)\)

- **Example:**
 - \(k = 2, i = 1, j = 4\)
 - \(r_{12} = [1,2]\)
 - \(r_{24} = [3,4]\)
 - \(r_{14} = [-\infty, \infty]\)
 - \(r_{12} \circ r_{24} = [1 + 3, 2 + 4] = [4,6]\)
 - \(r_{14} \leftarrow [\max(-\infty, 4), \min(\infty, 6)] = [4,6]\)
Operations on STNs

- PC makes network minimal
 - Shrinks each r_{ij} to exclude values that are not in any solution
 - Doing so, it detects inconsistent networks
 - $r_{ij} = [a_{ij}, b_{ij}]$ empty \rightarrow inconsistent
- Graph: dashed lines
 - Constraints that were shrunk
- Can modify PC to make it incremental
 - Input
 - A consistent, minimal STN
 - A new constraint r'_{ij}
 - Incorporate r'_{ij} in time $O(n^2)$

\[
\text{PC}(\mathcal{V}, \mathcal{E}) \\
\quad \text{for } 1 \leq k \leq n \text{ do} \\
\quad \quad \text{for } 1 \leq i < j \leq n, i \neq j, j \neq k \text{ do} \\
\quad \quad \quad r_{ij} \leftarrow r_{ij} \cap [r_{ik} \circ r_{kj}] \\
\quad \quad \quad \text{if } r_{ij} = \emptyset \text{ then} \\
\quad \quad \quad \quad \text{return inconsistent} \\
\quad \quad \text{return consistent}
\]
Pruning TemPlan’s search space

• Take the time constraints in \(C \)
 • Write them as an STN
 • Use PC to check whether STN is consistent
 • If it is inconsistent, TemPlan can backtrack
Controllability

• Suppose TemPlan gives you a chronicle and you want to execute it
 • Constraints on time points
 • Need to reason about these to decide when to start each action
Controllability

- **Solid lines:** duration constraints
 - Robot will do bring&move, will take 30 to 50 time units
 - Crane will do uncover, will take 5 to 10 time units
- **Dashed line:** synchronization constraint
 - Do not want either the crane or robot to wait long
 - At most 5 seconds between the two ending times

- **Objective**
 - Choose time points that will satisfy all the constraints
Controllability

- Suppose we run PC
- PC returns a minimal and consistent network
 - There exist time points that satisfy all the constraints
- Would work if we could choose all four time points
 - But we cannot choose t_2 and t_4
- t_1 and t_3 are controllable
 - Actor can control when each action starts
- t_2 and t_4 are contingent
 - Cannot control how long the actions take
 - Random variables that are known to satisfy the duration constraints
 - $t_2 \in [t_1 + 30, t_1 + 50]$
 - $t_4 \in [t_3 + 5, t_3 + 10]$
STNUs

• STNU (Simple Temporal Network with Uncertainty):
 • A 4-tuple $(\mathcal{V}, \hat{\mathcal{V}}, \mathcal{E}, \hat{\mathcal{E}})$
 • $\mathcal{V} =$ {controllable time points}
 • E.g., starting times of actions
 • $\hat{\mathcal{V}} =$ {contingent time points}
 • E.g., ending times of actions
 • $\mathcal{E} =$ {controllable constraints}
 • $\hat{\mathcal{E}} =$ {contingent constraints}

• Controllable and contingent constraints:
 • Synchronization between two starting times: controllable
 • Duration of an action: contingent
 • Synchronization between ending points of two actions: contingent
 • Synchronization between end of one action, start of another:
 • Controllable if the new action starts after the old one ends
 • Contingent if the new action starts before the old one ends
 • Want a way for the actor to choose time points in \mathcal{V} (starting times) that guarantee that constraints are satisfied
Three kinds of controllability

1. \((\mathcal{V}, \tilde{\mathcal{V}}, \mathcal{E}, \tilde{\mathcal{E}})\) is strongly controllable if the actor can choose values for \(\mathcal{V}\) such that success will occur for all values of \(\tilde{\mathcal{V}}\) that satisfy \(\tilde{\mathcal{E}}\)
 - Actor can choose the values for \(\mathcal{V}\) offline
 - The right choice will work regardless of \(\tilde{\mathcal{V}}\)

2. \((\mathcal{V}, \tilde{\mathcal{V}}, \mathcal{E}, \tilde{\mathcal{E}})\) is weakly controllable if the actor can choose values for \(\mathcal{V}\) such that success will occur for at least one combination of values for \(\tilde{\mathcal{V}}\)
 - Actor can choose the values for \(\mathcal{V}\) only if the actor knows in advance what the values of \(\tilde{\mathcal{V}}\) will be

3. Dynamic controllability:
 - Game-theoretic model: actor vs. environment
 - A player’s strategy: a function \(\sigma\) telling what to do in every situation
 - Choices may differ depending on what has happened so far
 - \((\mathcal{V}, \tilde{\mathcal{V}}, \mathcal{E}, \tilde{\mathcal{E}})\) is dynamically controllable if \(\exists\) strategy for an actor that will guarantee success regardless of the environment’s strategy
Dynamic Execution

- For $t = 0, 1, 2, ...$
 - Actor chooses an unassigned set of variables $\mathcal{V}_t \subseteq \mathcal{V}$ that all can be assigned the value t without violating any constraints in \mathcal{E}
 - \approx actions the actor chooses to start at time t
 - Simultaneously, environment chooses an unassigned set of variables $\mathcal{V}_t \subseteq \tilde{\mathcal{V}}$ that all can be assigned the value t without violating any constraints in $\tilde{\mathcal{E}}$
 - \approx actions that finish at time t
 - Each chosen time point v is assigned $v \leftarrow t$
 - Failure if any of the constraints in $\mathcal{E} \cup \tilde{\mathcal{E}}$ are violated
 - There might be violations that neither \mathcal{V}_t nor \mathcal{V}_t caused individually
 - Success if all variables in $\mathcal{V} \cup \tilde{\mathcal{V}}$ have values and no constraints are violated

- Dynamic execution strategies σ_A for actor, σ_E for environment
 - $\sigma_A(h_{t-1}) = \{\text{what events in } \mathcal{V} \text{ to trigger at time } t, \text{ given } h_{t-1}\}$
 - $\sigma_E(h_{t-1}) = \{\text{what events in } \tilde{\mathcal{V}} \text{ to trigger at time } t, \text{ given } h_{t-1}\}$
 - $h_t = h_{t-1} \cdot (\sigma_A(h_{t-1}) \cup \sigma_E(h_{t-1}))$
 - $(\mathcal{V}, \tilde{\mathcal{V}}, \mathcal{E}, \tilde{\mathcal{E}})$ is dynamically controllable if $\exists \sigma_A$ that will guarantee success $\forall \sigma_E$
Example

• Instead of a single bring&move task, two separate bring and move tasks

• Actor’s dynamic execution strategy
 • Trigger t_1 at whatever time you want
 • Wait and observe t
 • Trigger t' at any time from t to $t + 5$
 • Trigger $t_3 = t' + 10$
 • For every $t_2 \in [t' + 15, t' + 20]$ and $t_4 \in [t_3 + 5, t_3 + 10]$
 • $t_4 \in [t' + 15, t' + 20]$
 • So, $t_4 - t_2 \in [-5, 5]$
 • Thus, all constraints are satisfied
Dynamic Controllability Checking

• For a chronicle $\phi = (\mathcal{A}, \mathcal{S}, \mathcal{T}, \mathcal{C})$
 • Temporal constraints in \mathcal{C} correspond to an STNU
 • Adapt TemPlan to test not only consistency but also dynamic controllability (*) of the STNU
 • If we detect cases where it is not dynamically controllable, then backtrack

*Use PC as well
 • If $\text{PC}(\mathcal{V} \cup \tilde{\mathcal{V}}, \mathcal{E} \cup \tilde{\mathcal{E}})$ reduces a contingent constraint, then $(\mathcal{V}, \tilde{\mathcal{V}}, \mathcal{E}, \tilde{\mathcal{E}})$ is not dynamically controllable
 \Rightarrow Can prune this branch
 • If it does not reduce any contingent constraints, we do not know whether $(\mathcal{V}, \tilde{\mathcal{V}}, \mathcal{E}, \tilde{\mathcal{E}})$ is dynamically controllable
 • Only necessary, not sufficient condition
 • Two options
 • Either continue down this branch and backtrack later if necessary, or
 • Extend PC to detect more cases where $(\mathcal{V}, \tilde{\mathcal{V}}, \mathcal{E}, \tilde{\mathcal{E}})$ is not dynamically controllable
Additional Constraint Propagation Rules

- Case 1: \(u \geq 0 \)
 - \(t \) must come before \(t_e \)
 - Add a composition constraint \([a', b']\)
 - Find \([a', b']\) such that \([a', b'] \circ [u, v] = [a, b]\)
 - \([a' + u, b' + v] = [a, b] \)
 - \(a' = a - u, b' = b - v \)

<table>
<thead>
<tr>
<th>Conditions</th>
<th>Propagated constraint</th>
</tr>
</thead>
<tbody>
<tr>
<td>(t_s \xrightarrow{[a,b]} t_e, t \xrightarrow{[u,v]} t_e, u \geq 0)</td>
<td>(t_s \xrightarrow{[b',a']} t)</td>
</tr>
<tr>
<td>(t_s \xrightarrow{[a,b]} t_e, t \xrightarrow{[u,v]} t_e, u < 0, v \geq 0)</td>
<td>(t_s \xrightarrow{\langle t_e, b' \rangle} t)</td>
</tr>
<tr>
<td>(t_s \xrightarrow{[a,b]} t_e, t_s \xrightarrow{\langle t_e, u \rangle} t)</td>
<td>(t_s \xrightarrow{\min{a, u}, \infty} t)</td>
</tr>
<tr>
<td>(t_s \xrightarrow{\langle t_e, b \rangle} t, t' \xrightarrow{[u,v]} t)</td>
<td>(t_s \xrightarrow{\langle t_e, b' \rangle} t')</td>
</tr>
<tr>
<td>(t_s \xrightarrow{\langle t_e, b \rangle} t, t' \xrightarrow{[u,v]} t, t_e \neq t)</td>
<td>(t_s \xrightarrow{\langle t_e, b - u \rangle} t')</td>
</tr>
</tbody>
</table>

\(\Rightarrow \) contingent \(\rightarrow \) controllable \quad a' = a - u, b' = b - v
Additional Constraint Propagation Rules

- Case 2: $u < 0$ and $v \geq 0$
 - t may be before or after t_e
 - Add a wait constraint $\langle t_e, \alpha \rangle$
 - α defined w.r.t. some controllable time point t_s
 - Wait until either t_e occurs or current time is $t_s + \alpha$, whichever comes first

<table>
<thead>
<tr>
<th>Conditions</th>
<th>Propagated constraint</th>
</tr>
</thead>
<tbody>
<tr>
<td>$t_s \xrightarrow{[a,b]} t_e$, $t \xrightarrow{[u,v]} t_e$, $u \geq 0$</td>
<td>$t_s \xrightarrow{[b',a']} t$</td>
</tr>
<tr>
<td>$t_s \xrightarrow{[a,b]} t_e$, $t \xrightarrow{[u,v]} t_e$, $u < 0$, $v \geq 0$</td>
<td>$t_s \xrightarrow{\langle t_e, b' \rangle} t$</td>
</tr>
<tr>
<td>$t_s \xrightarrow{[a,b]} t_e$, $t_s \xrightarrow{\langle t_e, u \rangle} t$</td>
<td>$t_s \xrightarrow{[\min{a,u}, \infty]} t$</td>
</tr>
<tr>
<td>$t_s \xrightarrow{\langle t_e, b \rangle} t$, $t' \xrightarrow{[u,v]} t$</td>
<td>$t_s \xrightarrow{\langle t_e, b' \rangle} t'$</td>
</tr>
<tr>
<td>$t_s \xrightarrow{\langle t_e, b \rangle} t$, $t' \xrightarrow{[u,v]} t$, $t_e \neq t$</td>
<td>$t_s \xrightarrow{\langle t_e, b' - u \rangle} t'$</td>
</tr>
</tbody>
</table>

\Rightarrow contingent \rightarrow controllable

$a' = a - u$, $b' = b - v$
Extended Version of PC

- We want a fast algorithm that TemPlan can run at each node, to decide whether to backtrack
- There is an extended version of PC that runs in polynomial time, but it has high overhead
- Possible compromise: use ordinary PC most of the time
 - Run extended version occasionally, or at end of search before returning plan

\[a' = a - u, \quad b' = b - v \]
Intermediate Summary

• Constraint management
 • Consistency of object constraints
 • Constraint-satisfaction problem
 • Consistency of time constraints
 • STN, solution, minimality, consistency
 • PC

• Controllability
 • STNU, controllable, contingent
 • Dynamic controllability
Acting with Temporal Models
Atemporal Refinement of Primitive Actions

- TemPlan’s action templates may correspond to compound tasks
 - In RAE, refine into commands with refinement methods

- TemPlan’s action template (descriptive model)

- RAE’s refinement method (operational model)

```
leave(r,d,w)
assertions: [t_s,t_e] loc(r): (d,w)
            [t_s,t_e] occupant(d): (r,empty)
constraints: t_e \leq t_s + \delta_1
            adj(d,w)
```

```
m-leave(r,d,w,e)
task: leave(r,d,w)
pre: loc(r)=d, adj(d,w), exit(e,d,w)
body: until empty(e)
      wait(1)
      goto(r,e)
```
Discussion

• Pros
 • Simple online refinement with RAE
 • Avoids breaking down uncertainty of contingent duration
 • Can be augmented with temporal monitoring functions in RAE
 • E.g., watchdogs, methods with duration preferences
• Cons
 • Does not handle temporal requirements at the command level,
 • E.g., synchronise two robots that must act concurrently

• Can augment RAE to include temporal reasoning
 • Call it eRAE
 • One essential component: a dispatching function
Acting With Temporal Models

- Dispatching procedure: a dynamic execution strategy
 - Controls when to start each action
 - Given a dynamically controllable plan with executable primitives, it triggers corresponding commands from online observations
- Example
 - robot r_2 needs to leave dock d_2 before robot r_1 can enter d_2
 - crane k needs to uncover c then put c onto r_1

![Diagram of robot and crane movements](image)

- t_1: leave(r_1,d_1)
- t_2: navigate(r_1)
- t_3: leave(r_2,d_2)
- t_4: unstack(k,c',p)
- t_5: enter(r_1,d_2)
- t_6: stack(k,c',q)
- t_7: unstack(k,c,p)
- t_8: putdown(k,c,r_1)
- t_9: leave(r_1,d_2)
Example

- Trigger t_1, observe leave finish
- Enable and trigger t_2, enables t_3, t_4
- Trigger t_3 soon enough to allow $\text{enter}(r1, d2)$ at time t_5
- Trigger t_4 soon enough to allow $\text{stack}(k, c')$ at time t_6
- Rest of plan is linear:
 - Choose each t_i after the previous action ends

```python
Dispatch(\mathcal{V}, \mathcal{V'}, \mathcal{E}, \mathcal{E'})
```

initialise the network

```python
while there are time points in \mathcal{V} that have not been triggered do
```

- update now
- update the time points in \mathcal{V'} that have been newly observed
- update enabled
- trigger every $t \in \text{enabled}$ s.t. $\text{now}=u_t$
- arbitrarily choose other time points in \text{enabled} and trigger them
- propagate values of triggered timepoints (change $[l_t, u_t]$ for each future timepoint t)

```python
navigate(r1)
leave(r1, d1)
```

```python
leave(r2, d2)
```

```python
t_3
```

```python
t_2
```

```python
t_1
```

```python
t_5
```

```python
enter(r1, d2)
```

```python
t_7
```

```python
t_6
```

```python
t_4
```

```python
stack(k, c', q)
```

```python
unstack(k, c', p)
```

```python
unstack(k, c', p)
```

```python
navigate(r1)
```

```python
leave(r2, d2)
```

```python
t_3
```

```python
t_2
```

```python
t_1
```

```python
t_5
```

```python
t_7
```

```python
t_6
```

```python
t_4
```

```python
t_8
```

```python
t_9
```

```python
putdown(k, c, r1)
```

```python
leave(r1, d2)
```

```python
t_8
```

```python
t_9
```
Previous Example

- Trigger t_1 at time 0
- Wait and observe t; this enables t'
- Trigger t' at any time from t to $t + 5$
- Trigger t_3 at time $t' + 10$
 - $t_2 \in [t' + 15, t' + 20]$
 - $t_4 \in [t_3 + 5, t_3 + 10] = [t' + 15, t' + 20]$
 - so $t_4 - t_2 \in [-5, 5]$

```
Dispatch(\mathcal{V}, \mathcal{V}^!, \mathcal{E}, \mathcal{E}^!)
initialise the network
while there are time points in $\mathcal{V}$ that have not been triggered do
  update now
  update the time points in $\mathcal{V}$ that have been newly observed
  update enabled
  trigger every $t \in enabled$ s.t. now = $u_t$
  arbitrarily choose other time points in enabled and trigger them
  propagate values of triggered timepoints (change $[l_t, u_t]$ for each future timepoint $t$)
```
Dispatching

- Let \((\mathcal{V}, \tilde{\mathcal{V}}, \mathcal{E}, \tilde{\mathcal{E}})\) be a controllable STNU that is **grounded**
 - Different from a grounded expression in logic
 - At least one time point \(t^*\) is instantiated
 - Bounds each time point \(t\) within an interval \([l_t, u_t]\)

- Controllable time point \(t\) in the future:
 - \(t\) is **alive** if current time \(\text{now} \in [l_t, u_t]\)
 - \(t\) is **enabled** if
 - It is alive
 - For every precedence constraint \(t' < t\), \(t'\) has occurred
 - For every wait constraint \((t_e, \alpha)\), \(t_e\) has occurred or \(\alpha\) has expired
 - \(\alpha\) has expired if \(t_s\) has occurred and \(t_s + \alpha \leq \text{now}\)

Dispatch\((\mathcal{V}, \tilde{\mathcal{V}}, \mathcal{E}, \tilde{\mathcal{E}})\)**

- initialise the network
- while there are time points in \(\mathcal{V}\) that have not been triggered do
 - update \(\text{now}\)
 - update the time points in \(\tilde{\mathcal{V}}\) that have been newly observed
 - update \(\text{enabled}\)
 - trigger every \(t \in \text{enabled}\) s.t. \(\text{now} = u_t\)
 - arbitrarily choose other time points in \(\text{enabled}\) and trigger them
 - propagate values of triggered timepoints (change \([l_t, u_t]\) for each future timepoint \(t\))
Deadline Failures

- Suppose something makes it impossible to start an action on time
- Do one of the following:
 - Stop the delayed action, and look for new plan
 - Let the delayed action finish, try to repair the plan by resolving violated constraints at the STNU propagation level
 - E.g., accommodate a delay in navigate by delaying the whole plan
 - Let the delayed action finish, try to repair the plan some other way
Partial Observability

• Tacit assumption: All occurrences of contingent events are observable
 • Observation needed for dynamic controllability
• In general, not all events are observable
• POSTNU (Partially Observable STNU)
 • STNU where the contingent time points are given by a set of invisible and a set of observable timepoints
 • POSTNU = STNU if Invisible = ∅
 • Dynamically controllable?
Observation Actions

Example

Controllable

Contingent

Invisible

observable
Dynamic Controllability

• A POSTNU is dynamically controllable if
 • there exists an execution strategy that chooses future controllable points to meet all the constraints, given
 the observation of past visible points
• Check dynamic controllability
 • Map an POSTNU to an STNU by deleting invisible time points and adding corresponding constraints on
 controllable and observable time points
 • Check dynamic controllability of the mapped STNU
 • E.g., using the extended PC algorithm
 • More details in the paper
Dynamic Controllability

• A POSTNU is dynamically controllable if
 • there exists an execution strategy that chooses future controllable points to meet all the constraints, given the observation of past *visible* points
• Observable ≠ visible
 • Observable means it will be known *when observed*
 • It can be temporarily *hidden*

• Aim: Find out which time points need to be observed for the plan to be dynamically controllable (details in paper)
Intermediate Summary

• Acting
 • Atemporal refinement
 • eRAE
 • Dispatching
 • Alive, enabled
• Deadline failures
• Partial observability
 • Invisible, observable (hidden/visible)
1. Planning and Acting with **Deterministic** Models
 Conventional AI planning
2. Planning and Acting with **Refinement** Methods
 Abstract activities → collections of less-abstract activities
3. Planning and Acting with **Temporal** Models
 Reasoning about time constraints
4. Planning and Acting with **Nondeterministic** Models
 Actions with multiple possible outcomes
5. **Standard** Decision Making
 Utility theory
 Markov decision process (MDP)
6. Planning and Acting with **Probabilistic** Models
 Actions with multiple possible outcomes, with probabilities
7. **Advanced** Decision Making
 Hidden goals
 Partially observable MDP (POMDP)
 Decentralised POMDP
8. **Human-aware** Planning
 Planning with a human in the loop
9. **Causal** Planning
 Causality & Intervention
 Implications for Causal Planning