Automated Planning and Acting Standard Decision Making

Institute of Information Systems

Dr. Mattis Hartwig

1. Planning and Acting with Deterministic Models
Conventional AI planning
2. Planning and Acting with Refinement Methods
Abstract activities \rightarrow collections of less-abstract activities
3. Planning and Acting with Temporal Models Reasoning about time constraints
4. Planning and Acting with Nondeterministic Models
Actions with multiple possible outcomes
5. Standard Decision Making

Utility theory
Markov decision process (MDP)
6. Planning and Acting with Probabilistic Models
Actions with multiple possible outcomes, with probabilities
7. Advanced Decision Making

Hidden goals
Partially observable MDP (POMDP)
Decentralized POMDP
8. Human-aware Planning Planning with a human in the loop
9. Causal Planning

Causality \& Intervention
Implications for Causal Planning

Literature

- We now switch from
- Automated Planning and Acting
- Malik Ghallab, Dana Nau, Paolo Traverso
- Main source

http://aima.cs.berkelev.edu

Acknowledgements

- Material from Lise Getoor, Jean-Claude Latombe, Daphne Koller, and Stuart Russell
- Compiled by Ralf Möller and adapted from Tanya Braun

Decision Making under Uncertainty

- Many environments have multiple possible outcomes
- Some of these outcomes may be good; others may be bad
- Some may be very likely; others unlikely

[^0]Nondeterministic vs. Probabilistic Uncertainty

Nondeterministic model

- $\{a, b, c\}$
- Decision that is
- best for worst case

Probabilistic model

- $\left\{a\left(p_{a}\right), b\left(p_{b}\right), c\left(p_{c}\right)\right\}$
- Decision that
- maximises expected utility value

Expected Utility

- Random variable X with n range values x_{1}, \ldots, x_{n} and probability distribution $\left(p_{1}, \ldots, p_{n}\right)$
- E.g.: X is the state reached after doing an action $A=a$ under uncertainty with n possible outcomes
- Function U of X
- E.g., U is the utility of a state
- The expected utility of $A=a$ is

$$
E U[A=a]=\sum_{i=1}^{n} P\left(X=x_{i} \mid A=a\right) \cdot U\left(X=x_{i}\right)
$$

One State/One Action Example

One State/Two Actions Example

Introducing Action Costs

MEU Principle

- A rational agent should choose the action that maximizes agent's expected utility
- This is the basis of the field of decision theory
- The MEU principle provides a normative criterion for rational choice of action

Al solved?

Figure: AIMA, Russell/Norvig

Not quite...

- Must have complete model of:
- Actions
- Utilities
- States
- Even if you have a complete model, it might be computationally intractable
- In fact, a truly rational agent takes into account the utility of reasoning as well - bounded rationality
- Nevertheless, great progress has been made in this area, and we are able to solve much more complex decision-theoretic problems than ever before
- Agent can perform actions in an environment
- Environment
- Time: episodic or sequential
- Episodic: Next episode does not depend on the previous episode
- Sequential: Next episode depends on previous episodes
- Non-deterministic
- Outcomes of actions not unique
- Associated with probabilities (\rightarrow probabilistic model)
- Partially observable (treated formally as part of Topic 7 - Advanced Decision Making)
- Latent, i.e., not observable, random variables
- Agent has preferences over states/action outcomes
- Encoded in utility or utility function \rightarrow Utility theory
- "Decision theory = Utility theory + Probability theory"
- Model the world with a probabilistic model
- Model preferences with a utility (function)
- Find action that leads to the maximum expected utility, also called decision making

Outline

- Utility Theory - mainly Ch. 16.1-16.4
- Preferences
- Utilities
- Dominance
- Preference structure
- Markov Decision Process / Problem (MDP)
- Markov property
- Sequence of actions, history, policy
- Value iteration, policy iteration

Preferences

- An agent chooses among prizes (A, B, etc.) and lotteries, i.e., situations with uncertain prizes
- Outcome of a nondeterministic action is a lottery
- Lottery $L=[p, A ;(1-p), B]$
- A and B can be lotteries again
- Prizes are special lotteries: $[1, R ; 0, \operatorname{not} R]$
- More than two outcomes:
- $L=\left[p_{1}, S_{1} ; p_{2}, S_{2} ; \cdots ; p_{n}, S_{n}\right], \sum_{i=1}^{n} p_{i}=1$
- Notation
- $A>B \quad A$ preferred to B
- $A \sim B \quad$ indifference between A and B
- $A \gtrsim B \quad B$ not preferred to A

Rational Preferences

- Idea: preferences of a rational agent must obey constraints
- Rational preferences \Rightarrow behavior describable as maximization of expected utility

Rational Preferences (contd.)

- Violating constraints leads to self-evident irrationality
- Example
- Constraint: Preferences are transitive
- An agent with intransitive preferences can be induced to give away all its money
- If $B>C$, then an agent who has C would pay (say) 1 cent to get B
- If $A>B$, then an agent who has B would pay (say) 1 cent to get A
- If $C \succ A$, then an agent who has A would pay (say) 1 cent to get C

Axioms of Utility Theory

1. Orderability

- $(A>B) \vee(A<B) \vee(A \sim B)$
- $\{<\rangle,, \sim\}$ jointly exhaustive, pairwise disjoint

2. Transitivity

- $(A>B) \wedge(B>C) \Rightarrow(A>C)$

3. Continuity

- $A>B>C \Rightarrow \exists p[p, A ; 1-p, C] \sim B$

4. Substitutability

- $A \sim B \Rightarrow[p, A ; 1-p, C] \sim[p, B ; 1-p, C]$ Also holds if replacing \sim with $>$

5. Monotonicity

- $A>B \Rightarrow(p \geq q \Leftrightarrow[p, A ; 1-p, B] \gtrsim[q, A ; 1-q, B])$

6. Decomposability

- $[p, A ; 1-p,[q, B ; 1-q, C]] \sim[p, A ;(1-p) q, B ;(1-p)(1-q), C]$

Decomposability:
There is no fun in gambling.

And Then There Was Utility

- Theorem (Ramsey, 1931; von Neumann and Morgenstern, 1944):
- Given preferences satisfying the constraints, there exists a real-valued function U such that

$$
\begin{aligned}
& U(A) \geq U(B) \Leftrightarrow A \gtrsim B \\
& U\left(\left[p_{1}, S_{1} ; \ldots ; p_{n}, S_{n}\right]\right)=\sum_{i} p_{i} U\left(S_{i}\right)
\end{aligned}
$$

MEU principle

- Choose the action that maximises expected utility
- Note: an agent can be entirely rational (consistent with MEU) without ever representing or manipulating utilities and probabilities
- E.g., a lookup table for perfect tictactoe

Utilities

- Utility maps states to real numbers. Which numbers?
- Standard approach to the assessment of human utilities:
- Compare a given state A to a standard lottery $L_{-} p$ that has
- "best possible outcome" T with probability p
- "worst possible catastrophe" \perp with probability ($1-p$)
- Adjust lottery probability p until $A \sim L _p$

Utility Scales

- Normalised utilities: $u_{\top}=1.0, u_{\perp}=0.0$
- Utility of lottery $L \sim$ (pay- $\$ 30$-and-continue-as-before): $U(L)=u_{\top} \cdot 0.999999+u_{\perp} \cdot 0.000001=$ 0.999999
- Behaviour is invariant w.r.t. positive linear transformation
- $U^{\prime}(r)=k_{1} U(r)+k_{2}$
- No unique utility function; $U^{\prime}(r)$ and $U(r)$ yield same behaviour
- Micromorts: one-millionth chance of death
- Useful for Russian roulette, paying to reduce product risks, etc.
- QALYs: quality-adjusted life years
- Useful for medical decisions involving substantial risk

Ordinal Utility Functions

- With deterministic prizes only (no lottery choices), only ordinal utility can be determined, i.e., the total order on prizes
- The ordinal utility function also called the value function
- Provides a ranking of alternatives (states), but not a meaningful metric scale (numbers do not matter)

Suppose you win 1 million dollars in a quiz show. You get offered the possibility to flip a coin. Head you get 2.5 million dollars, tail you get nothing. Would a rational agent flip the coin? Would you?

Money

- Money does not behave as a utility function
- Given a lottery L with expected monetary value $E M V(L)$, usually $U(L)<U\left(S_{E M V(L)}\right)$, i.e., people are risk-averse
- S_{M} : state of possessing total wealth $\$ M$
- Utility curve
- For what probability p am I indifferent between a prize x and a lottery [$p, \$ M$; $(1-p), \$ 0]$ for large M ?
- Right: Typical empirical data, extrapolated with risk-prone behaviour for negative wealth

Figure: AIMA, Russell/Norvig

Money Versus Utility

- Money \neq Utility
- More money is better, but not always in a linear relationship to the amount of money
- Expected Monetary Value
- Risk-averse
- $U(L)<U\left(S_{E M V(L)}\right)$
- Risk-seeking
- $U(L)>U\left(S_{E M V(L)}\right)$
- Risk-neutral
- $U(L)=U\left(S_{E M V(L)}\right)$
- Linear curve
- For small changes in wealth relative to current wealth

Figure: AIMA, Russell/Norvig

Multi-attribute Utility Theory

- A given state may have multiple utilities
- ...because of multiple evaluation criteria
- ...because of multiple agents (interested parties) with different utility functions
- We will look at
- Cases in which decisions can be made without combining the attribute values into a single utility value
- Strict dominance
- Stochastic dominance
- Cases in which the utilities of attribute combinations can be specified very concisely
- Preference structure

Strict Dominance

- Typically define attributes such that U is monotonic in each dimension
- Strict dominance
- Choice B strictly dominates choice A iff

$$
\forall i: X_{i}(B) \geq X_{i}(A) \text { (and hence } U(B) \geq U(A) \text {) }
$$

Stochastic Dominance

- Cumulative distribution p_{1} first-order stochastically dominates distribution p_{2} iff

$$
\forall x: p_{2}(x) \leq p_{1}(x)
$$

- With a strict inequality for some interval
- Then, $E_{p_{1}}>E_{p_{2}}$ (E referring to expected value)
- The reverse is not necessarily true
- Does not imply that every possible return of the superior distribution is larger than every possible return of the inferior distribution
- Example:
- As we have negative costs, S2 dominates S1 with $\forall x: p_{S_{2}}(x) \leq p_{S_{1}}(x)$

[^1]| Profit (\$m) | Probability |
| :--- | :--- |
| 0 to under 5 | 0.2 |
| 5 to under 10 | 0.3 |
| 10 to under 15 | 0.4 |
| 15 to under 20 | 0.1 |

Product P

Profit (\$m)	Probability
0 to under 5	0.0
5 to under 10	0.1
10 to under 15	0.5
15 to under 20	0.3
20 to under 25	0.1

Product Q

P first-order stochastically dominates Q

Stochastic Dominance

- Cumulative distribution p_{1} second-order stochastically dominates distribution p_{2} iff

$$
\forall t: \int_{-\infty}^{t} p_{2}(x) d x \leq \int_{-\infty}^{t} p_{1}(x) d x
$$

- Or: $D(t)=\int_{-\infty}^{t} p_{1}(x)-p_{2}(x) d x \geq 0$
- With a strict inequality for some interval
- Then, $E_{p_{1}} \geq E_{p_{2}}$ (E referring to expected value)
- Example:
- A second-order stoch. dominates $B \quad$. No dominance of either A or B

https://people.duke.edu/~dgraham/ECO 463/Handouts/StochasticDominance.pdf

Preference Structure

- To specify the complete utility function $U\left(r_{1}, \ldots, r_{n}\right)$, we need d^{n} values in the worst case
- n attributes
- Each attribute with d distinct possible values
- Worst case meaning: Agent's preferences have no regularity at all
- Supposition in multi-attribute utility theory
- Preferences of typical agents have much more structure
- Approach
- Identify regularities in the preference behavior
- Use so-called representation theorems to show that an agent with a certain kind of preference structure has a utility function

$$
U\left(r_{1}, \ldots, r_{n}\right)=F\left[f_{1}\left(r_{1}\right), \ldots, f_{n}\left(r_{n}\right)\right]
$$

- where F is hopefully a simple function such as addition

Preference Structure: Deterministic

- R_{1} and R_{2} preferentially independent (PI) of R_{3} if
- Preference between $\left\langle r_{1}, r_{2}, r_{3}\right\rangle$ and $\left\langle r_{1}^{\prime}, r_{2}^{\prime}, r_{3}\right\rangle$ does not depend on r_{3}
- E.g., \langle Noise, Cost, Safety〉
- $\langle 20,000$ suffer, $\$ 4.6$ billion, 0.06 deaths/month \rangle
- 〈70,000 suffer, $\$ 4.2$ billion, 0.06 deaths/month \rangle
- Theorem (Leontief, 1947)
- If every pair of attributes is PI of its complement, then every subset of attributes is PI of its complement
- Called mutual PI (MPI)
- Theorem (Debreu, 1960):
- MPI $\Rightarrow \exists$ additive value function

$$
V\left(r_{1}, \ldots, r_{n}\right)=\sum_{i} V_{i}\left(r_{i}\right)
$$

- Hence assess n single-attribute functions
- Often a good approximation

Preference Structure: Stochastic

- Need to consider preferences over lotteries
- R is utility-independent (UI) of S iff
- Preferences over lotteries in R do not depend on S
- Mutual UI (Keeney, 1974):

Each subset is UI of its complement
$\Rightarrow \exists$ multiplicative utility function

- For $n=3$:

$$
\begin{aligned}
U= & k_{1} U_{1}+k_{2} U_{2}+k_{3} U_{3} \\
& +k_{1} k_{2} U_{1} U_{2}+k_{2} k_{3} U_{2} U_{3}+k_{3} k_{1} U_{3} U_{1} \\
& +k_{1} k_{2} k_{3} U_{1} U_{2} U_{3}
\end{aligned}
$$

- I.e., requires only n single-attribute utility functions and n constants

Intermediate Summary

- Preferences
- Preferences of a rational agent must obey constraints
- Utilities
- Rational preferences = describable as maximization of expected utility
- Utility axioms
- MEU principle
- Dominance
- Strict dominance
- First-order + second-order stochastic dominance
- Preference structure
- (Mutual) preferential independence
- (Mutual) utility independence

Outline

Utility Theory

- Preferences
- Utilities
- Dominance
- Preference structure

Markov Decision Process/Problem (MDP) - Ch. 17.1-17.3

- Markov property
- Sequence of actions, history, policy
- Value iteration, policy iteration

Simple Robot Navigation Problem

- In each state, the possible actions are U, D, R, and L
- The effect of action U is as follows (transition model):
- With probability 0.8 , move up one square
- If already in the top row or blocked, no move
- With probability 0.1 , move right one square
- If already in the rightmost row or blocked, no move
- With probability 0.1 , move left one square
- If already in the leftmost row or blocked, no move
- Same transition model holds for D, R, and L and their respective directions

Markov Property

The transition properties depend only on the current state, not on previous history (how that state was reached).

- Also known as Markov- k with $k=1$
- $k \leq t$

$$
P\left(x_{t+1} \mid x_{t}, \ldots, x_{0}\right)=P\left(x_{t+1} \mid x_{t}, \ldots, x_{t-k+1}\right)
$$

- $k=1$

$$
P\left(x_{t+1} \mid x_{t}, \ldots, x_{0}\right)=P\left(x_{t+1} \mid x_{t}\right)
$$

Sequence of Actions

- In each state, the possible actions are U, D, R, and L; the transition model for each action is (pictured):
- Current position: $[3,2]$
- A planned sequence of actions: (U, R)

Sequence of Actions

- In each state, the possible actions are U, D, R, and L; the transition model for each action is (pictured):
- Current position: $[3,2]$

- A planned sequence of actions: (U, R)
- U is executed

Sequence of Actions

- In each state, the possible actions are U, D, R, and L; the transition model for each action is (pictured):
- Current position: $[3,2]$

- A planned sequence of actions: (U, R)
- U has been executed
- R is executed

- In each state, the possible actions are U, D, R, and L; the transition model for each action is (pictured):
- Current position: $[3,2]$
- A planned sequence of actions: (U, R)
- U has been executed
- R is executed

9 possible sequences of states, called histories, and 6 possible final states

Probability of Reaching the Goal

- In each state: possible actions U, D, R, L; trans. model: $P([4,3] \mid(U, R) \cdot[3,2])=$

$$
P([4,3] \mid R \cdot[3,3]) \cdot P([3,3] \mid U \cdot[3,2])
$$

$$
+P([4,3] \mid R \cdot[4,2]) \cdot P([4,2] \mid U \cdot[3,2])
$$

$P([4,3] \mid R \cdot[3,3])=0.8$	$P([3,3] \mid U \cdot[3,2])=0.8$
$P([4,3] \mid R \cdot[4,2])=0.1$	$P([4,2] \mid U \cdot[3,2])=0.1$

$$
\begin{aligned}
& 9 \text { possible sequences of states, called } \\
& \text { histories, and } 6 \text { possible final states }
\end{aligned}
$$

$P([4,3] \mid(U, R) .[3,2])=0.8 \cdot 0.8+0.1 \cdot 0.1=0.65$

Utility Function

- $[4,3]$: power supply
- $[4,2]$: sand area the robot cannot escape (stops the run)
- Goal: robot needs to recharge its batteries
- $[4,3]$ and $[4,2]$ are terminal states
- In this example, we define the utility of a history by
- The utility of the last state (+1 or -1) minus $0.04 \cdot n$
- n is the number of moves
- I.e., each move costs 0.04 , which provides an incentive to reach the goal fast

Utility of an Action Sequence

- Consider the action sequence $\boldsymbol{a}=(\mathrm{U}, \mathrm{R})$ from $[3,2]$
- A run produces one of 7 possible histories, each with a probability
- Utility of the sequence is the expected utility of histories h :

$$
U(\boldsymbol{a})=\sum_{h} U_{h} P(h)
$$

- Optimal sequence $=$ the one with maximum utility

Reactive Agent Algorithm

[^2]
Policy (Reactive/Closed-loop Strategy)

- Policy π
- Complete mapping from states to actions
- Optimal policy π^{*}
- Always yields a history (ending at terminal state) with maximum expected utility
- Due to Markov property

```
Act()
    repeat
        S \leftarrow sensed state
        if s is terminal then
        exit
    a \leftarrow\pi(s)
    perform a
```


Note that $[3,2]$ is a "dangerous" state that the optimal policy tries to avoid

How to compute π^{*} ?
Solving a Markov Decision Processc

Markov Decision Process / Problem (MDP)

- Sequential decision problem for a fully observable, stochastic environment with a Markovian transition model and additive rewards (next slide)
- Model components
- a set of states S (with an initial state s_{0})
- a set $A(s)$ of actions in each state
- a transition model $P\left(s^{\prime} \mid s, a\right)$
- a reward function $R(s)$

U, D, L, R each move costs 0.04

Additive Utility

- History $H=\left(s_{0}, s_{1}, \ldots, s_{n}\right)$
- In each state s, agent receives reward $R(s)$
- Utility of H is additive iff

$$
\begin{aligned}
& =U\left(s_{0}, s_{1}, \ldots, s_{n}\right)=R\left(s_{0}\right)+U\left(s_{1}, \ldots, s_{n}\right) \\
& =\sum_{i=0}^{n} R\left(s_{i}\right)
\end{aligned}
$$

- Discount factor $\gamma \in] 0,1]$:

$$
U\left(s_{0}, s_{1}, \ldots, s_{n}\right)=\sum_{i=0}^{n} \gamma^{i} R\left(s_{i}\right)
$$

- Close to 0 : future rewards insignificant
- Corresponds to interest rate ${ }^{1-\gamma / \gamma}$

Principle of MEU

- History $h=\left(s_{0}, s_{1}, \ldots, s_{n}\right)$

Utility of h :

$$
U\left(s_{0}, s_{1}, \ldots, s_{n}\right)=\sum_{i=0}^{n} R\left(s_{i}\right)
$$

- Bellman equation:

$$
U\left(s_{i}\right)=R\left(s_{i}\right)+\gamma \max _{a} \sum_{s_{j}} P\left(s_{j} \mid a \cdot s_{i}\right) U\left(s_{j}\right)
$$

- Optimal policy:

$$
\pi^{*}\left(s_{i}\right)=\underset{a}{\operatorname{argmax}} \sum_{s_{j}} P\left(s_{j} \mid a . s_{i}\right) U\left(s_{j}\right)
$$

- Robot navigation example:

- Bellman equation for $[1,1]$ with $\gamma=1$ as discount factor $U(1,1)=-0.04+\gamma \max \top(U, L, D, R)$
$\{0.8 U(1,2)+0.1 U(2,1)+0.1 U(1,1), \quad(U)$ $0.8 U(1,1)+0.1 U(1,1)+0.1 U(1,2), \quad(\mathrm{L})$ $0.8 U(1,1)+0.1 U(2,1)+0.1 U(1,1), \quad(\mathrm{D})$ $0.8 U(2,1)+0.1 U(1,2)+0.1 U(1,1) \quad\}(\mathrm{R})$

Value Iteration

- Initialise the utility of each non-terminal
state s_{i} to $U_{0}\left(s_{i}\right)=0$
- For $t=0,1,2, \ldots$, do
- $U_{t+1}\left(s_{i}\right) \leftarrow R\left(s_{i}\right)+\gamma \max _{a} \sum_{s_{j}} P\left(s_{j} \mid a . s_{i}\right) U_{t}\left(s_{j}\right)$
- So called Bellman update
- Robot navigation example:

Value Iteration

Initialise the utility of each non-terminal state s_{i} to $U_{0}\left(s_{i}\right)=0$
For $t=0,1,2, \ldots$, do
$U_{t+1}\left(s_{i}\right) \leftarrow R\left(s_{i}\right)+\gamma \max _{a} \sum_{s_{j}} P\left(s_{j} \mid a . s_{i}\right) U_{t}\left(s_{j}\right)$
So called Bellman update

- Robot navigation example:

Note the importance of terminal states and connectivity of the state-transition graph

Value Iteration: Algorithm

- Returns a policy π that is optimal
- Inputs
- MDP:
- States S
- For all $s \in S$
- Actions $A(s)$
- Transitio model

```
function value-iteration(mdp, \epsilon)
```

 U'}\leftarrow0,\Pi\leftarrow〈
    ```
    U'}\leftarrow0,\Pi\leftarrow〈
    repeat
    repeat
        U\leftarrowU'
        U\leftarrowU'
        \delta\leftarrow0
        \delta\leftarrow0
        for each state s E S do
        for each state s E S do
                U'[s]\leftarrowR(s)+\gamma max 
                U'[s]\leftarrowR(s)+\gamma max 
                if |U'[s] - U[s]|>\delta then
                if |U'[s] - U[s]|>\delta then
                \delta\leftarrow|\mp@subsup{U}{}{\prime}[s]-U[s]|
                \delta\leftarrow|\mp@subsup{U}{}{\prime}[s]-U[s]|
    until }\delta<\epsilon(1-\gamma)/
    until }\delta<\epsilon(1-\gamma)/
    for each state s G S do
    for each state s G S do
        \Pi(s)}\leftarrow\mp@subsup{\operatorname{argmax}}{a\inA(s)}{}\mp@subsup{\Sigma}{\mp@subsup{s}{}{\prime}}{}P(\mp@subsup{s}{}{\prime}|a.s)U[\mp@subsup{s}{}{\prime}
        \Pi(s)}\leftarrow\mp@subsup{\operatorname{argmax}}{a\inA(s)}{}\mp@subsup{\Sigma}{\mp@subsup{s}{}{\prime}}{}P(\mp@subsup{s}{}{\prime}|a.s)U[\mp@subsup{s}{}{\prime}
    return \Pi
```

```
    return \Pi
```

```
- Rewards \(R(s)\)
- Discount \(\gamma\)
- Maximum error allowed \(\epsilon\)
- Local variables
- \(U, U^{\prime}\) vectors of utilities for states in \(S\), initially 0
- \(\delta\) maximum change in utility of any state in an iteration

\section*{Evolution of Utilities}
- For \(t=0,1,2, \ldots\), do
- \(U_{t+1}\left(s_{i}\right) \leftarrow R\left(s_{i}\right)+\gamma \max _{a} \sum_{s_{j}} P\left(s_{j} \mid\right.\) a. \(\left.s_{i}\right) U_{t}\left(s_{j}\right)\)
- Value iteration \(\approx\) information propagation


\footnotetext{
Figure right: AIMA, Russell/Norvig
}
- Robot navigation example:

- For \(t=0,1,2, \ldots\), do
- \(U_{t+1}\left(s_{i}\right) \leftarrow R\left(s_{i}\right)+\gamma \max _{a} \sum_{s_{j}} P\left(s_{j} \mid\right.\) a. \(\left.s_{i}\right) U_{t}\left(s_{j}\right)\)
- Argmax action may change over iterations


\footnotetext{
Figure right: AIMA, Russell/Norvig
}
- Robot navigation example:

- Bellman equation for \([1,1]\)
- with \(\gamma=1\) as discount factor
- \(U(1,1)=-0.04+\gamma \quad \max T(U, L, D, R)\)
\(\{0.8 U(1,2)+0.1 U(2,1)+0.1 U(1,1), \quad(U)\)
\(0.8 U(1,1)+0.1 U(1,1)+0.1 U(1,2), \quad\) (L)
\(0.8 U(1,1)+0.1 U(2,1)+0.1 U(1,1), \quad\) (D)
\(0.8 U(2,1)+0.1 U(1,2)+0.1 U(1,1) \quad\} \quad(\mathrm{R})\)

\section*{Effect of Rewards}
- For \(t=0,1,2, \ldots\), do
- \(U_{t+1}\left(s_{i}\right) \leftarrow R\left(s_{i}\right)+\gamma \max _{a} \sum_{s_{j}} P\left(s_{j} \mid a . s_{i}\right) U_{t}\left(s_{j}\right)\)
- Optimal policies for different rewards:
- For \(R(s)=-0.04\), see right \(\rightarrow\)

\(R(s)<-1.6284\)

\(-0.4278<R(s)<-0.0850\)
- Robot navigation example:


\(-0.0221<R(s)<0\)

\(R(s)>0\)

\section*{Effect of Allowed Error \& Discount}
- For \(t=0,1,2, \ldots\), do
- \(U_{t+1}\left(s_{i}\right) \leftarrow R\left(s_{i}\right)+\gamma \max _{a} \sum_{s_{j}} P\left(s_{j} \mid\right.\) a. \(\left.s_{i}\right) U_{t}\left(s_{j}\right)\)
- Iterations required to ensure a maximum error of \(\varepsilon=c \cdot R_{\text {max }}\)
- \(R_{\text {max }}\) maximum reward


Figure: AIMA, Russell/Norvig \(\begin{aligned} & \text { Discount factor } \gamma\end{aligned}\)
- Robot navigation example:


\section*{Policy Iteration}
- Pick a policy \(\pi_{0}\) at random
- Repeat:
- Policy evaluation: Compute the utility of each state for \(\pi_{t}\)
- \(U_{t}\left(s_{i}\right)=R\left(s_{i}\right)+\gamma \sum_{s_{j}} P\left(s_{j} \mid \pi_{t}\left(s_{i}\right) . s_{i}\right) U_{t}\left(s_{j}\right)\)

No longer invoives amax operation as action is determined by \(\pi_{t}\)
- Policy improvement: Compute the policy \(\pi_{t+1}\) given \(U_{t}\)
- \(\pi_{t+1}\left(s_{i}\right)=\underset{a}{\operatorname{argmax}} \sum_{s_{j}} P\left(s_{j} \mid \pi_{t}\left(s_{i}\right) \cdot s_{i}\right) U_{t}\left(s_{j}\right)\)
- If \(\pi_{t+1}=\pi_{t}\), then return \(\pi_{t}\)

Solve the set of linear equations:
\(U\left(s_{i}\right)=R\left(s_{i}\right)+\gamma \sum_{s_{j}} P\left(s_{j} \mid \pi\left(s_{i}\right) \cdot s_{i}\right) U\left(s_{j}\right)\)
(often a sparse system)

\section*{Policy Iteration: Algorithm}
```

function policy-iteration(mdp)
repeat
U policy-evaluation(}\pi,U,mdp
unchanged \leftarrow true
for each state s G S do
if max }\mp@subsup{m}{a\inA(s)}{}\mp@subsup{\Sigma}{\mp@subsup{s}{}{\prime}}{}P(\mp@subsup{s}{}{\prime}|a.s)U[\mp@subsup{s}{}{\prime}]>\mp@subsup{\Sigma}{\mp@subsup{s}{}{\prime}}{}P(\mp@subsup{s}{}{\prime}|\pi[s].s)U[\mp@subsup{s}{}{\prime}] the
\pi[s]}\leftarrow\mp@subsup{\operatorname{argmax }}{a\inA(s)}{}\mp@subsup{\Sigma}{\mp@subsup{s}{}{\prime}}{}P(\mp@subsup{s}{}{\prime}|a.s)U[\mp@subsup{s}{}{\prime}
unchanged \leftarrowfalse
until unchanged
return }

```
- Returns a policy \(\pi\) that is optimal
- Inputs: MDP
- States \(S\)
- For all \(s \in S\), actions \(A(s)\), transition model \(P\left(s^{\prime} \mid a . s\right)\), rewards \(R(s)\)
- Local variables
- \(U\) vectors of utilities for states in \(S\), initially 0
- \(\pi\) a policy vector indexed by state, initially random

\section*{Policy Evaluation}
- Compute the utility of each state for \(\pi\)
- \(U_{t}\left(s_{i}\right)=R\left(s_{i}\right)+\gamma \sum_{s_{j}} P\left(s_{j} \mid \pi_{t}\left(s_{i}\right) \cdot s_{i}\right) U_{t}\left(s_{j}\right)\)
- Complexity of policy evaluation: \(O\left(n^{3}\right)\)
- For \(n\) states, \(n\) linear equations with \(n\) unknowns
- Prohibitive for large \(n\)
- Approximation of utilities
- Perform \(k\) value iteration steps with fixed policy \(\pi_{t}\), return utilities
- Simplified Bellman update: \(U_{t+1}\left(s_{i}\right)=R\left(s_{i}\right)+\gamma \sum_{s_{j}} P\left(s_{j} \mid \pi\left(s_{i}\right) . s_{i}\right) U_{t}\left(s_{j}\right)\)
- Asynchronous policy iteration (next slide)
- Pick any subset of states

\section*{Asynchronous Policy Iteration}
- Further approximation of policy iteration
- Pick any subset of states and do one of the following
- Update utilities
- Using simplified value iteration as described on previous slide
- Update the policy
- Policy improvement as before
- Is not guaranteed to converge to an optimal policy
- Possible if each state is still visited infinitely often, knowledge about unimportant states, etc.
- Freedom to work on any states allows for design of domain-specific heuristics
- Update states that are likely to be reached by a good policy

\section*{Intermediate Summary}
- MDP
- Markov property
- Current state depends only on previous state
- Sequence of actions, history, policy
- Sequence of actions may yield multiple histories, i.e., sequences of states, with a utility
- Policy: complete mapping of states to actions
- Optimal policy: policy with maximum expected utility
- Value iteration, policy iteration
- Algorithms for calculating an optimal policy for an MDP

\section*{Online Decision Making}
- Decision making based on probabilistic graphical models (PGMs)
- Do not precompute a policy beforehand but decide on an action (sequence) online given current observations
- Static case (episodic, without effects on next state)
- PGMs extended with action and utility nodes
- MEU query (problem): Calculate expected utility for each action, decide to execute action with highest expected utility
- Dynamic case (temporal, with effects on next state)
- Dynamic PGMs extended with action and utility nodes
- MEU query (problem): Calculate expected utility for sequence of actions, decide to execute action sequence with highest expected utility

\section*{Outline}
```

Utility Theory
Preferences
Utilities
Dominance
Preference structure
Markov Decision Process / Problem (MDP)
Markov property
Sequence of actions, history, policy
Value iteration, policy iteration

```
    \(\Rightarrow\) Next: Probabilistic Models```


[^0]:    Figure: AIMA, Russell/Norvig

[^1]:    https://people.duke.edu/~dgraham/ECO 463/Handouts/StochasticDominance.pdf

[^2]:    Figure: AIMA, Russell/Norvig

