

UNIVERSITÄT ZU LÜBECK

Automated Planning and Acting – Standard Decision Making

Institute of Information Systems

Dr. Mattis Hartwig

Content

- Planning and Acting with Deterministic Models
 - Conventional AI planning
- 2. Planning and Acting with **Refinement** Methods

Abstract activities \rightarrow collections of less-abstract activities

- 3. Planning and Acting with **Temporal** Models Reasoning about time constraints
- 4. Planning and Acting with Nondeterministic Models

Actions with multiple possible outcomes

 Standard Decision Making Utility theory Markov decision process (MDP)

- Planning and Acting with Probabilistic Models Actions with multiple possible outcomes, with probabilities
- 7. Advanced Decision Making Hidden goals Partially observable MDP (POMDP) Decentralized POMDP
- 8. Human-aware Planning Planning with a human in the loop
- 9. Causal Planning Causality & Intervention Implications for Causal Planning

Literature

- We now switch from
 - Automated Planning and Acting
 - Malik Ghallab, Dana Nau, Paolo Traverso
 - Main source
- to
 - Artificial Intelligence: A Modern Approach (3rd ed.)
 - Stuart Russell, Peter Norvig
 - Decision theory
 - Ch. 16 + 17

Automated Planning and Acting

> Malik Ghallab, Dana Nau and Paolo Traverso

http://www.laas.fr/planning

http://aima.cs.berkeley.edu

Acknowledgements

- Material from Lise Getoor, Jean-Claude Latombe, Daphne Koller, and Stuart Russell
- Compiled by Ralf Möller and adapted from Tanya Braun

Decision Making under Uncertainty

- Many environments have multiple possible outcomes
- Some of these outcomes may be good; others may be bad
- Some may be very likely; others unlikely

Figure: AIMA, Russell/Norvig

Nondeterministic vs. Probabilistic Uncertainty

Nondeterministic model

- {*a*, *b*, *c*}
- Decision that is
 - best for worst case

Probabilistic model

- $\{a(p_a), b(p_b), c(p_c)\}$
- Decision that
 - maximises expected utility value

Expected Utility

- Random variable X with n range values x_1, \dots, x_n and probability distribution (p_1, \dots, p_n)
 - E.g.: X is the state reached after doing an action A = a under uncertainty with n possible outcomes
- Function *U* of *X*
 - E.g., *U* is the utility of a state
- The expected utility of A = a is

$$EU[A = a] = \sum_{i=1}^{n} P(X = x_i | A = a) \cdot U(X = x_i)$$

One State/One Action Example

One State/Two Actions Example

Introducing Action Costs

UNIVERSITÄT ZU LÜBECK

MEU Principle

- A rational agent should choose the action that maximizes agent's expected utility
- This is the basis of the field of decision theory
- The MEU principle provides a normative criterion for rational choice of action

Al solved?

Figure: AIMA, Russell/Norvig

Not quite...

- Must have complete model of:
 - Actions
 - Utilities
 - States
- Even if you have a complete model, it might be computationally intractable
- In fact, a truly rational agent takes into account the utility of reasoning as well bounded rationality
- Nevertheless, great progress has been made in this area, and we are able to solve much more complex decision-theoretic problems than ever before

Setting

- Agent can perform actions in an environment
 - Environment
 - Time: episodic or sequential
 - Episodic: Next episode does not depend on the previous episode
 - Sequential: Next episode depends on previous episodes
 - Non-deterministic
 - Outcomes of actions not unique
 - Associated with probabilities (→ probabilistic model)
 - Partially observable (treated formally as part of Topic 7 Advanced Decision Making)
 - Latent, i.e., not observable, random variables
 - Agent has preferences over states/action outcomes
 - Encoded in utility or utility function \rightarrow Utility theory
- "Decision theory = Utility theory + Probability theory"
 - Model the world with a probabilistic model
 - Model preferences with a utility (function)
 - Find action that leads to the maximum expected utility, also called decision making

Outline

- Utility Theory mainly Ch. 16.1-16.4
 - Preferences
 - Utilities
 - Dominance
 - Preference structure
- Markov Decision Process / Problem (MDP)
 - Markov property
 - Sequence of actions, history, policy
 - Value iteration, policy iteration

Preferences

- An agent chooses among prizes (A, B, etc.) and lotteries, i.e., situations with uncertain prizes
 - Outcome of a nondeterministic action is a lottery
- Lottery L = [p, A; (1 p), B]
 - A and B can be lotteries again
 - Prizes are special lotteries: [1, *R*; 0, not *R*]
 - More than two outcomes:
 - $L = [p_1, S_1; p_2, S_2; \dots; p_n, S_n], \sum_{i=1}^n p_i = 1$
- Notation
 - A > B A preferred to B
 - $A \sim B$ indifference between A and B
 - $A \gtrsim B$ B not preferred to A

Rational Preferences

- Idea: preferences of a rational agent must obey constraints
- Rational preferences ⇒ behavior describable as maximization of expected utility

Rational Preferences (contd.)

- Violating constraints leads to self-evident irrationality
- Example
 - Constraint: Preferences are transitive
 - An agent with intransitive preferences can be induced to give away all its money
 - If *B*≻*C*, then an agent who has *C* would pay (say) 1 cent to get *B*
 - If *A*≻*B*, then an agent who has *B* would pay (say) 1 cent to get *A*
 - If C>A, then an agent who has A would pay (say) 1 cent to get C

Axioms of Utility Theory

1. Orderability

- $(A \succ B) \lor (A \prec B) \lor (A \sim B)$
 - {<, ≻, ~} jointly exhaustive, pairwise disjoint
- 2. Transitivity
 - $(A \succ B) \land (B \succ C) \Rightarrow (A \succ C)$
- 3. Continuity
 - $A > B > C \Longrightarrow \exists p [p, A; 1 p, C] \sim B$
- 4. Substitutability
 - $A \sim B \Rightarrow [p, A; 1 p, C] \sim [p, B; 1 p, C]$ Also holds if replacing \sim with \succ
- 5. Monotonicity
 - $A > B \Rightarrow (p \ge q \Leftrightarrow [p, A; 1 p, B] \gtrsim [q, A; 1 q, B])$
- 6. Decomposability
 - $[p, A; 1-p, [q, B; 1-q, C]] \sim [p, A; (1-p)q, B; (1-p)(1-q), C]$

And Then There Was Utility

- Theorem (Ramsey, 1931; von Neumann and Morgenstern, 1944):
 - Given preferences satisfying the constraints, there exists a real-valued function U such that

$$U(A) \ge U(B) \Leftrightarrow A \gtrsim B$$
$$U([p_1, S_1; ...; p_n, S_n]) = \sum_i p_i U(S_i)$$

MEU principle

- Choose the action that maximises expected utility
- Note: an agent can be entirely rational (consistent with MEU) without ever representing or manipulating utilities and probabilities
 - E.g., a lookup table for perfect tictactoe

Utilities

- Utility maps states to real numbers. Which numbers?
- Standard approach to the assessment of human utilities:
- Compare a given state A to a standard lottery L_p that has
- "best possible outcome" T with probability p
- "worst possible catastrophe" \perp with probability (1-p)
- Adjust lottery probability *p* until *A*~*L*_*p*

Utility Scales

- Normalised utilities: $u_{T} = 1.0, u_{\perp} = 0.0$
- Behaviour is invariant w.r.t. positive linear transformation
- $U'(r) = k_1 U(r) + k_2$
 - No unique utility function; U'(r) and U(r) yield same behaviour
- Micromorts: one-millionth chance of death
 - Useful for Russian roulette, paying to reduce product risks, etc.
- QALYs: quality-adjusted life years
 - Useful for medical decisions involving substantial risk

Ordinal Utility Functions

- With deterministic prizes only (no lottery choices), only ordinal utility can be determined, i.e., the total order on prizes
 - The ordinal utility function also called the value function
 - Provides a ranking of alternatives (states), but not a meaningful metric scale (numbers do not matter)

Suppose you win 1 million dollars in a quiz show. You get offered the possibility to flip a coin. Head you get 2.5 million dollars, tail you get nothing. Would a rational agent flip the coin? Would you?

Money

- Money does not behave as a utility function
- Given a lottery *L* with expected monetary value EMV(L), usually $U(L) < U(S_{EMV(L)})$, i.e., people are risk-averse
 - S_M : state of possessing total wealth \$M
 - Utility curve
 - For what probability *p* am I indifferent between a prize *x* and a lottery [*p*, \$*M*; (1 − *p*), \$0] for large *M*?
 - Right: Typical empirical data, extrapolated with risk-prone behaviour for negative wealth

Figure: AIMA, Russell/Norvig

Money Versus Utility

- Money \neq Utility
 - More money is better, but not always in a linear relationship to the amount of money
- Expected Monetary Value
 - Risk-averse
 - $U(L) < U(S_{EMV(L)})$
 - Risk-seeking
 - $U(L) > U(S_{EMV(L)})$
 - Risk-neutral
 - $U(L) = U(S_{EMV(L)})$
 - Linear curve
 - For small changes in wealth relative to current wealth

Figure: AIMA, Russell/Norvig

Multi-attribute Utility Theory

- A given state may have multiple utilities
 - ...because of multiple evaluation criteria
 - ...because of multiple agents (interested parties) with different utility functions
- We will look at
 - Cases in which decisions can be made *without* combining the attribute values into a single utility value
 - Strict dominance
 - Stochastic dominance
 - Cases in which the utilities of attribute combinations can be specified very concisely
 - Preference structure

Strict Dominance

- Typically define attributes such that U is monotonic in each dimension
- Strict dominance
 - Choice *B* strictly dominates choice *A* iff

 $\forall i : X_i(B) \ge X_i(A)$ (and hence $U(B) \ge U(A)$)

Stochastic Dominance

- Cumulative distribution p_1 first-order stochastically dominates distribution p_2 iff $\forall x : p_2(x) \le p_1(x)$
 - With a strict inequality for some interval
 - Then, $E_{p_1} > E_{p_2}$ (*E* referring to expected value)
 - The reverse is not necessarily true
 - Does not imply that every possible return of the superior distribution is larger than every possible return of the inferior distribution
- Example:
 - As we have *negative costs*, S2 dominates S1 with $\forall x : p_{S_2}(x) \le p_{S_1}(x)$

Example

Profit (\$m)	Probability
0 to under 5	0.2
5 to under 10	0.3
10 to under 15	0.4
15 to under 20	0.1
Product P	
Profit (\$m)	Probability
Profit (\$m) 0 to under 5	Probability 0.0
0 to under 5	0.0
0 to under 5 5 to under 10	0.0 0.1
0 to under 5 5 to under 10 10 to under 15	0.0 0.1 0.5

P first-order stochastically dominates Q

Stochastic Dominance

• Cumulative distribution p_1 second-order stochastically dominates distribution p_2 iff

$$\forall t: \int_{-\infty}^{t} p_2(x) \, dx \leq \int_{-\infty}^{t} p_1(x) \, dx$$

- Or: $D(t) = \int_{-\infty}^{t} p_1(x) p_2(x) \, dx \ge 0$
- With a strict inequality for some interval
- Then, $E_{p_1} \ge E_{p_2}$ (*E* referring to expected value)
- Example:
 - A second-order stoch. dominates B

• No dominance of either A or B

10

Preference Structure

- To specify the complete utility function $U(r_1, ..., r_n)$, we need d^n values in the worst case
 - *n* attributes
 - Each attribute with *d* distinct possible values
 - Worst case meaning: Agent's preferences have no regularity at all
- Supposition in multi-attribute utility theory
 - Preferences of typical agents have much more structure
- Approach
 - Identify regularities in the preference behavior
 - Use so-called representation theorems to show that an agent with a certain kind of preference structure has a utility function

 $U(r_1, ..., r_n) = F[f_1(r_1), ..., f_n(r_n)]$

• where *F* is hopefully a simple function such as addition

Preference Structure: Deterministic

- R_1 and R_2 preferentially independent (PI) of R_3 if
 - Preference between $\langle r_1, r_2, r_3 \rangle$ and $\langle r_1', r_2', r_3 \rangle$ does not depend on r_3
 - E.g., (Noise, Cost, Safety)
 - <20,000 suffer, \$4.6 billion, 0.06 deaths/month>
 - <70,000 suffer, \$4.2 billion, 0.06 deaths/month>
- Theorem (Leontief, 1947)
 - If every pair of attributes is PI of its complement, then every subset of attributes is PI of its complement
 - Called mutual PI (MPI)
- Theorem (Debreu, 1960):
 - MPI $\Rightarrow \exists$ additive value function

$$V(r_1, \dots, r_n) = \sum_i V_i(r_i)$$

- Hence assess *n* single-attribute functions
- Often a good approximation

Preference Structure: Stochastic

- Need to consider preferences over lotteries
- *R* is utility-independent (UI) of *S* iff
 - Preferences over lotteries in *R* do not depend on *s*
- Mutual UI (Keeney, 1974):
 Each subset is UI of its complement
 ⇒ ∃ multiplicative utility function
 - For n = 3:

$$U = k_1 U_1 + k_2 U_2 + k_3 U_3 + k_1 k_2 U_1 U_2 + k_2 k_3 U_2 U_3 + k_3 k_1 U_3 U_1 + k_1 k_2 k_3 U_1 U_2 U_3$$

• I.e., requires only *n* single-attribute utility functions and *n* constants

Intermediate Summary

- Preferences
 - Preferences of a rational agent must obey constraints
- Utilities
 - Rational preferences = describable as maximization of expected utility
 - Utility axioms
 - MEU principle
- Dominance
 - Strict dominance
 - First-order + second-order stochastic dominance
- Preference structure
 - (Mutual) preferential independence
 - (Mutual) utility independence

Outline

Utility Theory

- Preferences
- Utilities
- Dominance
- Preference structure

Markov Decision Process/Problem (MDP) – Ch. 17.1-17.3

- Markov property
- Sequence of actions, history, policy
- Value iteration, policy iteration

Simple Robot Navigation Problem

- In each state, the possible actions are U, D, R, and L
- The effect of action U is as follows (transition model):
 - With probability 0.8, move up one square
 - If already in the top row or blocked, no move
 - With probability 0.1, move right one square
 - If already in the rightmost row or blocked, no move
 - With probability 0.1, move left one square
 - If already in the leftmost row or blocked, no move
- Same transition model holds for D, R, and L and their respective directions

Markov Property

The transition properties depend only on the current state, not on previous history (how that state was reached).

- Also known as Markov-k with k = 1
 - $k \leq t$

$$P(x_{t+1} \mid x_t, \dots, x_0) = P(x_{t+1} \mid x_t, \dots, x_{t-k+1})$$

• *k* = 1

$$P(x_{t+1} \mid x_t, \dots, x_0) = P(x_{t+1} \mid x_t)$$

Sequence of Actions

- In each state, the possible actions are U, D, R, and L; the transition model for each action is (pictured):
- Current position: [3,2]
- A planned sequence of actions: (U, R)

0.1

Sequence of Actions

- In each state, the possible actions are U, D, R, and L; the transition model for each action is (pictured):
- Current position: [3,2]
- A planned sequence of actions: (U, R)
 - U is executed

Sequence of Actions

- In each state, the possible actions are U, D, R, and L; the transition model for each action is (pictured):
- Current position: [3,2]
- A planned sequence of actions: (U, R)
 - U has been executed
 - R is executed

Histories

- In each state, the possible actions are U, D, R, and L; the transition model for each action is (pictured):
- Current position: [3,2]
- A planned sequence of actions: (U, R)
 - U has been executed
 - R is executed

Probability of Reaching the Goal

In each state: possible actions U, D, R, L; trans. model:
 P([4,3] | (U,R).[3,2]) =

 P([4,3] | R.[3,3])·P([3,3] | U.[3,2])
 +P([4,3] | R.[4,2])·P([4,2] | U.[3,2])

 $P([4,3] \mid R.[3,3]) = 0.8$ $P([3,3] \mid U.[3,2]) = 0.8$ $P([4,3] \mid R.[4,2]) = 0.1$ $P([4,2] \mid U.[3,2]) = 0.1$

$P([4,3] \mid (U,R).[3,2]) = 0.8 \cdot 0.8 + 0.1 \cdot 0.1 = 0.65$

9 possible sequences of states, called histories, and 6 possible final states

Utility Function

- [4,3] : power supply
- [4,2] : sand area the robot cannot escape (stops the run)
- Goal: robot needs to recharge its batteries
- [4,3] and [4,2] are terminal states
- In this example, we define the utility of a history by
 - The utility of the last state (+1 or –1) minus $0.04 \cdot n$
 - *n* is the number of moves
 - I.e., each move costs 0.04, which provides an incentive to reach the goal fast

Utility of an Action Sequence

- A run produces one of 7 possible histories, each with a probability
- Utility of the sequence is the expected utility of histories *h*:

$$U(\boldsymbol{a}) = \sum_{h} U_h P(h)$$

• Optimal sequence = the one with maximum utility

Reactive Agent Algorithm

Figure: AIMA, Russell/Norvig

Policy (Reactive/Closed-loop Strategy)

Complete mapping from states to actions

• Always yields a history (ending at terminal state) with maximum expected utility

Policy π

٠

Optimal policy π^*

Due to Markov property

٠

•

Act()	
repeat	
$s \leftarrow \text{sensed state}$	
if <i>s</i> is terminal	then
exit	
$a \leftarrow \pi(s)$	
perform a	

Note that [3,2] is a "dangerous" state that the optimal policy tries to avoid

How to compute π^* ? Solving a Markov Decision Processc

Markov Decision Process / Problem (MDP)

- Sequential decision problem for a fully observable, stochastic environment with a Markovian transition model and additive rewards (next slide)
- Model components
 - a set of states S (with an initial state s_0)
 - a set A(s) of actions in each state
 - a transition model P(s'|s, a)
 - a reward function *R*(*s*)

Additive Utility

- History $H = (s_0, s_1, ..., s_n)$
- In each state *s*, agent receives reward *R*(*s*)
- Utility of *H* is additive iff
- $= U(s_0, s_1, ..., s_n) = R(s_0) + U(s_1, ..., s_n)$ = $\sum_{i=0}^{n} R(s_i)$
 - Discount factor $\gamma \in]0,1]$:

$$U(s_0, s_1, \dots, s_n) = \sum_{i=0}^n \gamma^i R(s_i)$$

- Close to 0: future rewards insignificant
- Corresponds to interest rate $\frac{1-\gamma}{\gamma}$

Principle of MEU

• History $h = (s_0, s_1, ..., s_n)$ Utility of h:

$$U(s_0, s_1, \dots, s_n) = \sum_{i=0}^n R(s_i)$$

• Bellman equation:

$$U(s_i) = R(s_i) + \gamma \max_{a} \sum_{s_j} P(s_j | a. s_i) U(s_j)$$

• Optimal policy:

$$\pi^*(s_i) = \operatorname*{argmax}_a \sum_{s_j} P(s_j \mid a. s_i) U(s_j)$$

• Robot navigation example:

• Bellman equation for [1,1] with $\gamma = 1$ as discount factor $U(1,1) = -0.04 + \gamma \max_{T}(U,L,D,R)$

 $\{ 0.8U(1,2)+0.1U(2,1)+0.1U(1,1), (U) \\ 0.8U(1,1)+0.1U(1,1)+0.1U(1,2), (L) \\ 0.8U(1,1)+0.1U(2,1)+0.1U(1,1), (D) \\ 0.8U(2,1)+0.1U(1,2)+0.1U(1,1) \} (R)$

Value Iteration

- Initialise the utility of each non-terminal state s_i to $U_0(s_i) = 0$
- For t = 0, 1, 2, ..., do
 - $U_{t+1}(s_i) \leftarrow R(s_i) + \gamma \max_{a} \sum_{s_j} P(s_j \mid a. s_i) U_t(s_j)$
 - So called Bellman update

• Robot navigation example:

Value Iteration

Initialise the utility of each non-terminal state s_i to $U_0(s_i) = 0$ For t = 0, 1, 2, ..., do $U_{t+1}(s_i) \leftarrow R(s_i) + \gamma \max_a \sum_{s_j} P(s_j | a. s_i) U_t(s_j)$

So called Bellman update

• Robot navigation example:

Note the importance of terminal states and connectivity of the state-transition graph

Value Iteration: Algorithm

UNIVERSITÄT ZU LÜBECK

- Returns a policy π that is optimal
- Inputs
 - MDP:
 - States *S*
 - For all $s \in S$
 - Actions A(s)
 - Transitio model P(s' | a.s)
 - Rewards R(s)
 - Discount γ
 - Maximum error allowed ϵ
- Local variables
 - *U*, *U*' vectors of utilities for states in *S*, initially 0
 - δ maximum change in utility of any state in an iteration

```
function value-iteration (mdp, \epsilon)

U' \leftarrow 0, \pi \leftarrow \langle \rangle

repeat

U \leftarrow U'

\delta \leftarrow 0

for each state s \in S do

U'[s] \leftarrow R(s) + \gamma \max_{a \in A(s)} \Sigma_{s'} P(s' | a.s) U[s']

if |U'[s] - U[s]| > \delta then

\delta \leftarrow |U'[s] - U[s]|

until \delta < \epsilon(1-\gamma)/\gamma

for each state s \in S do

\pi(s) \leftarrow \arg\max_{a \in A(s)} \Sigma_{s'} P(s' | a.s) U[s']

return \pi
```

Evolution of Utilities

- For t = 0, 1, 2, ..., do
 - $U_{t+1}(s_i) \leftarrow R(s_i) + \gamma \max_{a} \sum_{s_j} P(s_j \mid a. s_i) U_t(s_j)$
- Value iteration \approx information propagation

• Robot navigation example:

Argmax Action

- For t = 0, 1, 2, ..., do
 - $U_{t+1}(s_i) \leftarrow R(s_i) + \gamma \max_{a} \sum_{s_j} P(s_j | a. s_i) U_t(s_j)$
- Argmax action may change over iterations

• Robot navigation example:

Effect of Rewards

- For t = 0, 1, 2, ..., do
 - $U_{t+1}(s_i) \leftarrow R(s_i) + \gamma \max_{a} \sum_{s_j} P(s_j \mid a. s_i) U_t(s_j)$
- Optimal policies for different rewards:
 - For R(s) = -0.04, see right \rightarrow

• Robot navigation example:

R(s) > 0

Data for figures: AIMA, Russell/Norvig

Effect of Allowed Error & Discount

- For t = 0, 1, 2, ..., do
 - $U_{t+1}(s_i) \leftarrow R(s_i) + \gamma \max_{a} \sum_{s_j} P(s_j \mid a. s_i) U_t(s_j)$
- Iterations required to ensure a maximum error of $\varepsilon = c \cdot R_{max}$
 - *R_{max}* maximum reward

• Robot navigation example:

Policy Iteration

- Pick a policy π_0 at random
- Repeat:
 - Policy evaluation: Compute the utility of each state for π_t
 - $U_t(s_i) = R(s_i) + \gamma \sum_{s_j} P(s_j | \pi_t(s_i) \cdot s_i) U_t(s_j)$
 - No longer involves a max operation as action is determined by π_t
 - Policy improvement: Compute the policy π_{t+1} given U_t
 - $\pi_{t+1}(s_i) = \operatorname{argmax} \sum_{s_j} P(s_j | \pi_t(s_i), s_i) U_t(s_j)$
 - If $\pi_{t+1} = \pi_t$, then return π_t

Solve the set of linear equations: $U(s_i) = R(s_i) + \gamma \sum_{s_j} P(s_j | \pi(s_i). s_i) U(s_j)$ (often a sparse system)

Policy Iteration: Algorithm

- Returns a policy π that is optimal
- Inputs: MDP
 - States *S*
 - For all $s \in S$, actions A(s), transition model P(s' | a. s), rewards R(s)
- Local variables
 - U vectors of utilities for states in S, initially 0
 - π a policy vector indexed by state, initially random

UNIVERSITÄT ZU LÜBECK

Policy Evaluation

- Compute the utility of each state for π
 - $U_t(s_i) = R(s_i) + \gamma \sum_{s_j} P(s_j | \pi_t(s_i) \cdot s_i) U_t(s_j)$
- Complexity of policy evaluation: $O(n^3)$
 - For *n* states, *n* linear equations with *n* unknowns
 - Prohibitive for large *n*
- Approximation of utilities
 - Perform k value iteration steps with fixed policy π_t , return utilities
 - Simplified Bellman update: $U_{t+1}(s_i) = R(s_i) + \gamma \sum_{s_j} P(s_j | \pi(s_i) \cdot s_j) U_t(s_j)$
 - Asynchronous policy iteration (next slide)
 - Pick any subset of states

Asynchronous Policy Iteration

- Further approximation of policy iteration
 - Pick any subset of states and do one of the following
 - Update utilities
 - Using simplified value iteration as described on previous slide
 - Update the policy
 - Policy improvement as before
- Is not guaranteed to converge to an optimal policy
 - Possible if each state is still visited infinitely often, knowledge about unimportant states, etc.
- Freedom to work on any states allows for design of domain-specific heuristics
 - Update states that are likely to be reached by a good policy

Intermediate Summary

- MDP
 - Markov property
 - Current state depends only on previous state
 - Sequence of actions, history, policy
 - Sequence of actions may yield multiple histories, i.e., sequences of states, with a utility
 - Policy: complete mapping of states to actions
 - Optimal policy: policy with maximum expected utility
 - Value iteration, policy iteration
 - Algorithms for calculating an optimal policy for an MDP

Online Decision Making

- Decision making based on probabilistic graphical models (PGMs)
 - Do not precompute a policy beforehand but decide on an action (sequence) online given current observations
- Static case (episodic, without effects on next state)
 - PGMs extended with action and utility nodes
 - MEU query (problem): Calculate expected utility for each action, decide to execute action with highest expected utility
- Dynamic case (temporal, with effects on next state)
 - Dynamic PGMs extended with action and utility nodes
 - MEU query (problem): Calculate expected utility for sequence of actions, decide to execute action sequence with highest expected utility

Lecture next winter term (WiSe 2022/23) on *Relational Inference and Online Decision Making*

Outline

Utility Theory Preferences Utilities Dominance Preference structure Markov Decision Process / Problem (MDP) Markov property Sequence of actions, history, policy Value iteration, policy iteration

 \Rightarrow Next: Probabilistic Models