Automated Planning and Acting – Standard Decision Making

Institute of Information Systems

Dr. Mattis Hartwig
Content

1. Planning and Acting with **Deterministic** Models
Conventional AI planning

2. Planning and Acting with **Refinement** Methods
Abstract activities \(\rightarrow\) collections of less-abstract activities

3. Planning and Acting with **Temporal** Models
Reasoning about time constraints

4. Planning and Acting with **Nondeterministic** Models
Actions with multiple possible outcomes

5. **Standard** Decision Making
Utility theory
Markov decision process (MDP)

6. Planning and Acting with **Probabilistic** Models
Actions with multiple possible outcomes, with probabilities

7. **Advanced** Decision Making
Hidden goals
Partially observable MDP (POMDP)
Decentralized POMDP

8. **Human-aware** Planning
Planning with a human in the loop

9. **Causal** Planning
Causality & Intervention
Implications for Causal Planning
Literature

• We now switch from
 • Automated Planning and Acting
 • Malik Ghallab, Dana Nau, Paolo Traverso
 • Main source

• to
 • Artificial Intelligence: A Modern Approach (3rd ed.)
 • Stuart Russell, Peter Norvig
 • Decision theory
 • Ch. 16 + 17

http://www.laas.fr/planning

http://aima.cs.berkeley.edu
Acknowledgements

- Material from Lise Getoor, Jean-Claude Latombe, Daphne Koller, and Stuart Russell
- Compiled by Ralf Möller and adapted from Tanya Braun
Decision Making under Uncertainty

- Many environments have multiple possible outcomes
- Some of these outcomes may be good; others may be bad
- Some may be very likely; others unlikely
Nondeterministic vs. Probabilistic Uncertainty

- Nondeterministic model
 - \{a, b, c\}
 - Decision that is
 - best for worst case

- Probabilistic model
 - \{a(p_a), b(p_b), c(p_c)\}
 - Decision that
 - maximises expected utility value
Expected Utility

• Random variable X with n range values x_1, \ldots, x_n and probability distribution (p_1, \ldots, p_n)
 • E.g.: X is the state reached after doing an action $A = a$ under uncertainty with n possible outcomes
• Function U of X
 • E.g., U is the utility of a state
• The expected utility of $A = a$ is

\[
EU[A = a] = \sum_{i=1}^{n} P(X = x_i | A = a) \cdot U(X = x_i)
\]
One State/One Action Example

\[U(s_0) = 100 \cdot 0.2 + 50 \cdot 0.7 + 70 \cdot 0.1 \]
\[= 20 + 35 + 7 \]
\[= 62 \]
One State/Two Actions Example

\[U_1(s_0) = 62 \]
\[U_2(s_0) = 74 \]
\[U(s_0) = \max\{U_1(s_0), U_2(s_0)\} = 74 \]
Introducing Action Costs

\[U_1(s_0) = 62 - 5 = 57 \]
\[U_2(s_0) = 74 - 25 = 49 \]
\[U(s_0) = \max\{U_1(s_0), U_2(s_0)\} = 57 \]
MEU Principle

• A rational agent should choose the action that maximizes agent’s expected utility
• This is the basis of the field of decision theory
• The MEU principle provides a normative criterion for rational choice of action

AI solved?
Not quite...

- Must have **complete** model of:
 - Actions
 - Utilities
 - States
- Even if you have a complete model, it might be computationally **intractable**
- In fact, a truly rational agent takes into account the utility of reasoning as well – **bounded rationality**
- Nevertheless, great progress has been made in this area, and we are able to solve much more complex decision-theoretic problems than ever before
Setting

- Agent can perform actions in an environment
 - Environment
 - Time: episodic or sequential
 - Episodic: Next episode does not depend on the previous episode
 - Sequential: Next episode depends on previous episodes
 - Non-deterministic
 - Outcomes of actions not unique
 - Associated with probabilities (→ probabilistic model)
 - Partially observable (treated formally as part of Topic 7 – Advanced Decision Making)
 - Latent, i.e., not observable, random variables
 - Agent has preferences over states/action outcomes
 - Encoded in utility or utility function (→ Utility theory)
- “Decision theory = Utility theory + Probability theory”
 - Model the world with a probabilistic model
 - Model preferences with a utility (function)
 - Find action that leads to the maximum expected utility, also called decision making
Outline

• Utility Theory – mainly Ch. 16.1-16.4
 • Preferences
 • Utilities
 • Dominance
 • Preference structure

• Markov Decision Process / Problem (MDP)
 • Markov property
 • Sequence of actions, history, policy
 • Value iteration, policy iteration
Preferences

• An agent chooses among **prizes** \((A, B, \text{etc.})\) and **lotteries**, i.e., situations with uncertain prizes
 • Outcome of a nondeterministic action is a lottery
• Lottery \(L = [p, A; (1 - p), B]\)
 • \(A\) and \(B\) can be lotteries again
 • Prizes are special lotteries: \([1, R; 0, \text{not } R]\)
• More than two outcomes:
 • \(L = [p_1, S_1; p_2, S_2; \ldots; p_n, S_n], \sum_{i=1}^{n} p_i = 1\)
• Notation
 • \(A > B\) \(A\) preferred to \(B\)
 • \(A \sim B\) indifference between \(A\) and \(B\)
 • \(A \succeq B\) \(B\) not preferred to \(A\)
Rational Preferences

- Idea: preferences of a rational agent must obey constraints
- Rational preferences \Rightarrow behavior describable as maximization of expected utility
Rational Preferences (contd.)

• Violating constraints leads to self-evident irrationality
• Example
 • Constraint: Preferences are transitive
 • An agent with intransitive preferences can be induced to give away all its money

• If $B > C$, then an agent who has C would pay (say) 1 cent to get B
• If $A > B$, then an agent who has B would pay (say) 1 cent to get A
• If $C > A$, then an agent who has A would pay (say) 1 cent to get C
Axioms of Utility Theory

1. Orderability
 • \((A > B) \lor (A < B) \lor (A \sim B)\)
 • \{<, >, \sim\} jointly exhaustive, pairwise disjoint

2. Transitivity
 • \((A > B) \land (B > C) \implies (A > C)\)

3. Continuity
 • \(A > B > C \implies \exists p [p, A; 1 - p, C] \sim B\)

4. Substitutability
 • \(A \sim B \implies [p, A; 1 - p, C] \sim [p, B; 1 - p, C]\)
 Also holds if replacing \(\sim\) with \(>\)

5. Monotonicity
 • \(A > B \implies (p \geq q \iff [p, A; 1 - p, B] \succeq [q, A; 1 - q, B])\)

6. Decomposability
 • \([p, A; 1 - p, [q, B; 1 - q, C]] \sim [p, A; (1 - p)q, B; (1 - p)(1 - q), C]\)
And Then There Was Utility

- Theorem (Ramsey, 1931; von Neumann and Morgenstern, 1944):
 - Given preferences satisfying the constraints, there exists a real-valued function U such that

 \[U(A) \geq U(B) \iff A \succeq B \]

 \[U([p_1, S_1; \ldots; p_n, S_n]) = \sum_i p_i U(S_i) \]

MEU principle

- Choose the action that maximises expected utility

- Note: an agent can be entirely rational (consistent with MEU) without ever representing or manipulating utilities and probabilities
 - E.g., a lookup table for perfect tictactoe
Utilities

- Utility maps states to real numbers. Which numbers?

- Standard approach to the assessment of human utilities:
 - Compare a given state A to a standard lottery L_p that has
 - “best possible outcome” \top with probability p
 - “worst possible catastrophe” \bot with probability $(1-p)$
 - Adjust lottery probability p until $A \sim L_p$

\[
\begin{array}{c}
\text{pay-30 and continue as before} \\
0.999999 \\
0.000001
\end{array}
\]

\[
L \sim
\begin{array}{c}
\text{continue as before} \\
\text{instant death}
\end{array}
\]
Utility Scales

- **Normalised utilities**: $u_T = 1.0, u_\perp = 0.0$
- Utility of lottery $L \sim$ (pay-30-and-continue-as-before): $U(L) = u_T \cdot 0.999999 + u_\perp \cdot 0.000001 = 0.999999$
- Behaviour is invariant w.r.t. positive linear transformation
 - $U'(r) = k_1 U(r) + k_2$
 - No unique utility function; $U'(r)$ and $U(r)$ yield same behaviour
- **Micromorts**: one-millionth chance of death
 - Useful for Russian roulette, paying to reduce product risks, etc.
- **QALYs**: quality-adjusted life years
 - Useful for medical decisions involving substantial risk
Ordinal Utility Functions

- With deterministic prizes only (no lottery choices), only ordinal utility can be determined, i.e., the total order on prizes
 - The ordinal utility function also called the value function
 - Provides a ranking of alternatives (states), but not a meaningful metric scale (numbers do not matter)
Suppose you win 1 million dollars in a quiz show. You get offered the possibility to flip a coin. Head you get 2.5 million dollars, tail you get nothing. Would a rational agent flip the coin? Would you?
Money

- Money does not behave as a utility function
- Given a lottery L with expected monetary value $EMV(L)$, usually $U(L) < U(EMV(L))$, i.e., people are risk-averse
 - S_M: state of possessing total wealth M
 - Utility curve
 - For what probability p am I indifferent between a prize x and a lottery $[p, M; (1 - p), 0]$ for large M?
 - Right: Typical empirical data, extrapolated with risk-prone behaviour for negative wealth

Figure: AIMA, Russell/Norvig
Money Versus Utility

- Money \neq Utility
 - More money is better, but not always in a linear relationship to the amount of money
- Expected Monetary Value
 - Risk-averse
 - $U(L) < U(S_{EMV(L)})$
 - Risk-seeking
 - $U(L) > U(S_{EMV(L)})$
 - Risk-neutral
 - $U(L) = U(S_{EMV(L)})$
 - Linear curve
 - For small changes in wealth relative to current wealth

Figure: AIMA, Russell/Norvig
Multi-attribute Utility Theory

• A given state may have multiple utilities
 • ...because of multiple evaluation criteria
 • ...because of multiple agents (interested parties) with different utility functions

• We will look at
 • Cases in which decisions can be made \textit{without} combining the attribute values into a single utility value
 • Strict dominance
 • Stochastic dominance
 • Cases in which the utilities of attribute combinations can be specified very concisely
 • Preference structure
Strict Dominance

- Typically define attributes such that U is monotonic in each dimension
- **Strict dominance**
 - Choice B strictly dominates choice A iff
 \[\forall i : X_i(B) \geq X_i(A) \] (and hence $U(B) \geq U(A)$)
Stochastic Dominance

- Cumulative distribution p_1 *first-order stochastically dominates* distribution p_2 iff
 \[\forall x : p_2(x) \leq p_1(x) \]
 - With a strict inequality for some interval
 - Then, $E_{p_1} > E_{p_2}$ (E referring to expected value)
 - The reverse is not necessarily true
 - Does not imply that every possible return of the superior distribution is larger than every possible return of the inferior distribution

- Example:
 - As we have *negative costs*, $S2$ dominates $S1$ with $\forall x : p_{S_2}(x) \leq p_{S_1}(x)$

[Graph showing cumulative distribution functions for $S1$ and $S2$]

https://people.duke.edu/~dgraham/ECO_463/Handouts/StochasticDominance.pdf
Example

<table>
<thead>
<tr>
<th>Profit ($m)</th>
<th>Probability</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 to under 5</td>
<td>0.2</td>
</tr>
<tr>
<td>5 to under 10</td>
<td>0.3</td>
</tr>
<tr>
<td>10 to under 15</td>
<td>0.4</td>
</tr>
<tr>
<td>15 to under 20</td>
<td>0.1</td>
</tr>
</tbody>
</table>

Product P

<table>
<thead>
<tr>
<th>Profit ($m)</th>
<th>Probability</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 to under 5</td>
<td>0.0</td>
</tr>
<tr>
<td>5 to under 10</td>
<td>0.1</td>
</tr>
<tr>
<td>10 to under 15</td>
<td>0.5</td>
</tr>
<tr>
<td>15 to under 20</td>
<td>0.3</td>
</tr>
<tr>
<td>20 to under 25</td>
<td>0.1</td>
</tr>
</tbody>
</table>

Product Q

P first-order stochastically dominates Q
Stochastic Dominance

- Cumulative distribution \(p_1 \) second-order stochastically dominates distribution \(p_2 \) iff
 \[
 \forall t : \int_{-\infty}^{t} p_2(x) \, dx \leq \int_{-\infty}^{t} p_1(x) \, dx
 \]
 - Or: \(D(t) = \int_{-\infty}^{t} p_1(x) - p_2(x) \, dx \geq 0 \)
 - With a strict inequality for some interval
 - Then, \(E_{p_1} \geq E_{p_2} \) (\(E \) referring to expected value)
- Example:
 - \(A \) second-order stoch. dominates \(B \)
 - No dominance of either \(A \) or \(B \)

https://people.duke.edu/~dgraham/ECO_463/Handouts/StochasticDominance.pdf
Figures: https://www.vosesoftware.com/riskwiki/Stochasticdominancetests.php (t=z)
Preference Structure

• To specify the complete utility function $U(r_1, \ldots, r_n)$, we need d^n values in the worst case
 • n attributes
 • Each attribute with d distinct possible values
 • Worst case meaning: Agent’s preferences have no regularity at all
• Supposition in multi-attribute utility theory
 • Preferences of typical agents have much more structure
• Approach
 • Identify regularities in the preference behavior
 • Use so-called representation theorems to show that an agent with a certain kind of preference structure has a utility function
 $$U(r_1, \ldots, r_n) = F[f_1(r_1), \ldots, f_n(r_n)]$$
 • where F is hopefully a simple function such as addition
Preference Structure: Deterministic

- R_1 and R_2 preferentially independent (PI) of R_3 if
 - Preference between $\langle r_1, r_2, r_3 \rangle$ and $\langle r_1', r_2', r_3 \rangle$ does not depend on r_3
 - E.g., $\langle \text{Noise, Cost, Safety} \rangle$
 - $\langle 20,000 \text{ suffer, } $4.6 \text{ billion, } 0.06 \text{ deaths/month} \rangle$
 - $\langle 70,000 \text{ suffer, } $4.2 \text{ billion, } 0.06 \text{ deaths/month} \rangle$

- Theorem (Leontief, 1947): If every pair of attributes is PI of its complement, then every subset of attributes is PI of its complement.
 - Called mutual PI (MPI)

- Theorem (Debreu, 1960): MPI $\Rightarrow \exists$ additive value function
 \[V(r_1, ..., r_n) = \sum_i V_i(r_i) \]
 - Hence assess n single-attribute functions
 - Often a good approximation
Preference Structure: Stochastic

• Need to consider preferences over lotteries
• R is utility-independent (UI) of S iff
 - Preferences over lotteries in R do not depend on s
• Mutual UI (Keeney, 1974):
 Each subset is UI of its complement
 $\Rightarrow \exists$ multiplicative utility function
 • For $n = 3$:
 \[
 U = k_1 U_1 + k_2 U_2 + k_3 U_3 \\
 + k_1 k_2 U_1 U_2 + k_2 k_3 U_2 U_3 + k_3 k_1 U_3 U_1 \\
 + k_1 k_2 k_3 U_1 U_2 U_3
 \]
 • I.e., requires only n single-attribute utility functions and n constants
Intermediate Summary

• Preferences
 • Preferences of a rational agent must obey constraints

• Utilities
 • Rational preferences = describable as maximization of expected utility
 • Utility axioms
 • MEU principle

• Dominance
 • Strict dominance
 • First-order + second-order stochastic dominance

• Preference structure
 • (Mutual) preferential independence
 • (Mutual) utility independence
Outline

Utility Theory
- Preferences
- Utilities
- Dominance
- Preference structure

Markov Decision Process/Problem (MDP) – Ch. 17.1-17.3
- Markov property
- Sequence of actions, history, policy
- Value iteration, policy iteration
Simple Robot Navigation Problem

• In each state, the possible actions are U, D, R, and L
• The effect of action U is as follows (transition model):
 • With probability 0.8, move up one square
 • If already in the top row or blocked, no move
 • With probability 0.1, move right one square
 • If already in the rightmost row or blocked, no move
 • With probability 0.1, move left one square
 • If already in the leftmost row or blocked, no move
• Same transition model holds for D, R, and L and their respective directions
Markov Property

The transition properties depend only on the current state, not on previous history (how that state was reached).

- Also known as Markov-k with $k = 1$
 - $k \leq t$
 \[
P(x_{t+1} | x_t, ..., x_0) = P(x_{t+1} | x_t, ..., x_{t-k+1})\]
 - $k = 1$
 \[
P(x_{t+1} | x_t, ..., x_0) = P(x_{t+1} | x_t)\]
Sequence of Actions

• In each state, the possible actions are U, D, R, and L; the transition model for each action is (pictured):
• Current position: [3,2]
• A planned sequence of actions: (U, R)
Sequence of Actions

• In each state, the possible actions are U, D, R, and L; the transition model for each action is (pictured):
• Current position: [3,2]
• A planned sequence of actions: (U, R)
 • U is executed
Sequence of Actions

- In each state, the possible actions are U, D, R, and L; the transition model for each action is (pictured):
- Current position: [3,2]
- A planned sequence of actions: (U, R)
 - U has been executed
 - R is executed
Histories

• In each state, the possible actions are U, D, R, and L; the transition model for each action is (pictured):
• Current position: [3,2]
• A planned sequence of actions: (U, R)
 • U has been executed
 • R is executed
Probability of Reaching the Goal

- In each state: possible actions U, D, R, L; trans. model:
 \[
P([4,3] \mid (U,R).[3,2]) = \]
 \[
P([4,3] \mid R.[3,3]) \cdot P([3,3] \mid U.[3,2]) + P([4,3] \mid R.[4,2]) \cdot P([4,2] \mid U.[3,2])
 \]
 \[
P([4,3] \mid R.[3,3]) = 0.8 \quad P([3,3] \mid U.[3,2]) = 0.8
 \]
 \[
P([4,3] \mid R.[4,2]) = 0.1 \quad P([4,2] \mid U.[3,2]) = 0.1
 \]
 \[
P([4,3] \mid (U,R).[3,2]) = 0.8 \cdot 0.8 + 0.1 \cdot 0.1 = 0.65
 \]

9 possible sequences of states, called histories, and 6 possible final states
Utility Function

- \([4,3]\) : power supply
- \([4,2]\) : sand area the robot cannot escape (stops the run)
- **Goal**: robot needs to recharge its batteries
- \([4,3]\) and \([4,2]\) are terminal states
- In this example, we define the **utility of a history** by
 - The utility of the last state (+1 or −1) minus 0.04 \(\cdot n\)
 - \(n\) is the number of moves
 - I.e., each move costs 0.04, which provides an incentive to reach the goal fast
Utility of an Action Sequence

- Consider the action sequence \(\alpha = (U,R) \) from [3,2]
- A run produces one of 7 possible histories, each with a probability
- Utility of the sequence is the expected utility of histories \(h \):
 \[
 U(\alpha) = \sum_h U_h P(h)
 \]
- Optimal sequence = the one with maximum utility

Is the optimal sequence what we want?
Reactive Agent Algorithm

Act()

repeat

$s \leftarrow$ sensed state

if s is terminal then

exit

$a \leftarrow$ choose action (given s)

perform a

Figure: AIMA, Russell/Norvig
Policy (Reactive/Closed-loop Strategy)

- **Policy π**
 - *Complete* mapping from states to actions

- **Optimal policy π^***
 - Always yields a history (ending at terminal state) with maximum expected utility
 - Due to Markov property

Note that [3,2] is a “dangerous” state that the optimal policy tries to avoid

How to compute π^*?
Solving a Markov Decision Process
Markov Decision Process / Problem (MDP)

- **Sequential** decision problem for a fully observable, stochastic environment with a Markovian transition model and additive rewards (next slide)

- Model components
 - a set of states \(S \) (with an initial state \(s_0 \))
 - a set \(A(s) \) of actions in each state
 - a transition model \(P(s'|s, a) \)
 - a reward function \(R(s) \)

![Grid with rewards and moves](image)

Each move costs 0.04
Additive Utility

- History $H = (s_0, s_1, ..., s_n)$
- In each state s, agent receives reward $R(s)$
- Utility of H is additive iff
 $$U(s_0, s_1, ..., s_n) = R(s_0) + U(s_1, ..., s_n)$$
 $$= \sum_{i=0}^{n} R(s_i)$$
 - Discount factor $\gamma \in]0,1]$:
 $$U(s_0, s_1, ..., s_n) = \sum_{i=0}^{n} \gamma^i R(s_i)$$
 - Close to 0: future rewards insignificant
 - Corresponds to interest rate $1-\gamma/\gamma$
Principle of MEU

- History \(h = (s_0, s_1, ..., s_n) \)
 Utility of \(h \):
 \[
 U(s_0, s_1, ..., s_n) = \sum_{i=0}^{n} R(s_i)
 \]

- Bellman equation:
 \[
 U(s_i) = R(s_i) + \gamma \max_a \sum_j P(s_j | a, s_i) U(s_j)
 \]

- Optimal policy:
 \[
 \pi^*(s_i) = \arg\max_a \sum_j P(s_j | a, s_i) U(s_j)
 \]

Robot navigation example:

- Bellman equation for \([1,1]\)
 with \(\gamma = 1 \) as discount factor
 \[
 U(1,1) = -0.04 + \gamma \max_{U,L,D,R} (\{ 0.8U(1,2)+0.1U(2,1)+0.1U(1,1), ~ (U) \\
 0.8U(1,1)+0.1U(1,1)+0.1U(1,2), ~ (L) \\
 0.8U(1,1)+0.1U(2,1)+0.1U(1,1), ~ (D) \\
 0.8U(2,1)+0.1U(1,2)+0.1U(1,1) \})
 \]
Value Iteration

- Initialise the utility of each non-terminal state s_i to $U_0(s_i) = 0$
- For $t = 0, 1, 2, \ldots$, do
 - $U_{t+1}(s_i) \leftarrow R(s_i) + \gamma \max_a \sum s_j P(s_j | a, s_i) U_t(s_j)$
 - So called Bellman update

Robot navigation example:

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>+1</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>-1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>+1</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>-1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
Value Iteration

Initialise the utility of each non-terminal state \(s_i \) to \(U_0(s_i) = 0 \)
For \(t = 0, 1, 2, \ldots, \) do

\[
U_{t+1}(s_i) \leftarrow R(s_i) + \gamma \max_a \sum_{s_j} P(s_j | a.s_i) U_t(s_j)
\]

So called Bellman update

- Robot navigation example:

```
<table>
<thead>
<tr>
<th></th>
<th>3</th>
<th>2</th>
<th>1</th>
<th>0.705</th>
<th>0.655</th>
<th>0.611</th>
<th>0.288</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0.812</td>
<td>0.868</td>
<td>0.918</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.762</td>
<td></td>
<td></td>
<td>0.660</td>
<td></td>
<td></td>
<td>-1</td>
</tr>
</tbody>
</table>
```

Note the importance of terminal states and connectivity of the state-transition graph
Value Iteration: Algorithm

- Returns a policy \(\pi \) that is optimal
- Inputs
 - MDP:
 - States \(S \)
 - For all \(s \in S \)
 - Actions \(A(s) \)
 - Transition model \(P(s'|a.s) \)
 - Rewards \(R(s) \)
 - Discount \(\gamma \)
 - Maximum error allowed \(\epsilon \)
- Local variables
 - \(U, U' \) vectors of utilities for states in \(S \), initially 0
 - \(\delta \) maximum change in utility of any state in an iteration

```python
function value-iteration(mdp, \epsilon)
    U' ← 0, \pi ← \langle \rangle
    repeat
        U ← U'
        \delta ← 0
        for each state \( s \in S \) do
            U'[s] ← R(s) + \gamma \max_{a \in A(s)} \sum_{s'} P(s'|a.s) U[s']
            if |U'[s] - U[s]| > \delta then
                \delta ← |U'[s] - U[s]|
        until \delta < \epsilon(1-\gamma)/\gamma
        for each state \( s \in S \) do
            \pi(s) ← \arg\max_{a \in A(s)} \sum_{s'} P(s'|a.s) U[s']
    return \pi
```
Evolution of Utilities

• For $t = 0, 1, 2, \ldots$, do
 • $U_{t+1}(s_i) \leftarrow R(s_i) + \gamma \max_a \sum_{s_j} P(s_j \mid a, s_i) U_t(s_j)$
 • Value iteration \approx information propagation

<table>
<thead>
<tr>
<th>3</th>
<th>0.812</th>
<th>0.868</th>
<th>0.918</th>
<th>+1</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>0.762</td>
<td></td>
<td>0.660</td>
<td>-1</td>
</tr>
<tr>
<td>1</td>
<td>0.705</td>
<td>0.655</td>
<td>0.611</td>
<td>0.288</td>
</tr>
</tbody>
</table>

Figure right: AIMA, Russell/Norvig
Argmax Action

- For $t = 0, 1, 2, \ldots$, do

 $U_{t+1}(s_i) \leftarrow R(s_i) + \gamma \max_a \sum_{s_j} P(s_j | a, s_i) U_t(s_j)$

- Argmax action may change over iterations

Robot navigation example:

- Bellman equation for [1,1]

 with $\gamma=1$ as discount factor

 $U(1,1) = -0.04 + \gamma \max (U,L,D,R)$

 \[
 \begin{cases}
 0.8U(1,2) + 0.1U(2,1) + 0.1U(1,1), & (U) \\
 0.8U(1,1) + 0.1U(1,1) + 0.1U(1,2), & (L) \\
 0.8U(1,1) + 0.1U(2,1) + 0.1U(1,1), & (D) \\
 0.8U(2,1) + 0.1U(1,2) + 0.1U(1,1) & (R)
 \end{cases}
 \]
Effect of Rewards

For $t = 0, 1, 2, \ldots$, do

- $U_{t+1}(s_i) \leftarrow R(s_i) + \gamma \max_a \sum_{s_j} P(s_j|a,s_i) U_t(s_j)$

Optimal policies for different rewards:
- For $R(s) = -0.04$, see right...

Robot navigation example:

- $R(s) < -1.6284$
- $-0.4278 < R(s) < -0.0850$
- $-0.0221 < R(s) < 0$
- $R(s) > 0$

Data for figures: AIMA, Russell/Norvig
Effect of Allowed Error & Discount

- For \(t = 0, 1, 2, \ldots \), do
 - \(U_{t+1}(s_i) \leftarrow R(s_i) + \gamma \max_a \sum_{s_j} P(s_j| a, s_i) U_t(s_j) \)
 - Iterations required to ensure a maximum error of \(\varepsilon = c \cdot R_{\text{max}} \)
 - \(R_{\text{max}} \) maximum reward

Robot navigation example:

\[
\begin{array}{cccc}
3 & 4 & 1 & 2 \\
\rightarrow & \rightarrow & \rightarrow & +1 \\
2 & 3 & 1 & 4 \\
\uparrow & \uparrow & \uparrow & -1 \\
1 & 2 & 3 & 4 \\
\end{array}
\]

- \(R_{\text{max}} = +1 \)

Figure: AIMA, Russell/Norvig
Policy Iteration

- Pick a policy π_0 at random
- Repeat:
 - Policy evaluation: Compute the utility of each state for π_t
 - $U_t(s_i) = R(s_i) + \gamma \sum_{s_j} P(s_j | \pi_t(s_i), s_i) U_t(s_j)$
 - No longer involves a max operation as action is determined by π_t
 - Policy improvement: Compute the policy π_{t+1} given U_t
 - $\pi_{t+1}(s_t) = \operatorname{argmax}_a \sum_{s_j} P(s_j | \pi_t(s_t), s_i) U_t(s_j)$
 - If $\pi_{t+1} = \pi_t$, then return π_t

Solve the set of linear equations:

$$U(s_i) = R(s_i) + \gamma \sum_{s_j} P(s_j | \pi(s_i), s_i) U(s_j)$$

(often a sparse system)
Policy Iteration: Algorithm

function policy-iteration(mdp)
 repeat
 U ← policy-evaluation(\(\pi, U, mdp\))
 unchanged ← true
 for each state \(s \in S\) do
 if \(\max_{a \in A(s)} \Sigma_{s'} P(s'|a,s)U[s'] > \Sigma_{s'} P(s'|\pi[s],s)U[s']\) then
 \(\pi[s] ← \arg\max_{a \in A(s)} \Sigma_{s'} P(s'|a,s)U[s']\)
 unchanged ← false
 until unchanged
 return \(\pi\)

• Returns a policy \(\pi\) that is optimal
• Inputs: MDP
 • States \(S\)
 • For all \(s \in S\), actions \(A(s)\), transition model \(P(s'|a,s)\), rewards \(R(s)\)
• Local variables
 • \(U\) vectors of utilities for states in \(S\), initially 0
 • \(\pi\) a policy vector indexed by state, initially random
Policy Evaluation

- Compute the utility of each state for π
 - $U_t(s_i) = R(s_i) + \gamma \sum_{s_j} P(s_j|\pi_t(s_i).s_i)U_t(s_j)$
- Complexity of policy evaluation: $O(n^3)$
 - For n states, n linear equations with n unknowns
 - Prohibitive for large n
- Approximation of utilities
 - Perform k value iteration steps with fixed policy π_t, return utilities
 - Simplified Bellman update: $U_{t+1}(s_i) = R(s_i) + \gamma \sum_{s_j} P(s_j|\pi(s_i).s_i)U_t(s_j)$
 - Asynchronous policy iteration (next slide)
 - Pick any subset of states
Asynchronous Policy Iteration

• Further approximation of policy iteration
 • Pick any subset of states and do one of the following
 • Update utilities
 • Using simplified value iteration as described on previous slide
 • Update the policy
 • Policy improvement as before
• Is not guaranteed to converge to an optimal policy
 • Possible if each state is still visited infinitely often, knowledge about unimportant states, etc.
• Freedom to work on any states allows for design of domain-specific heuristics
 • Update states that are likely to be reached by a good policy
Intermediate Summary

- MDP
 - Markov property
 - Current state depends only on previous state
 - Sequence of actions, history, policy
 - Sequence of actions may yield multiple histories, i.e., sequences of states, with a utility
 - Policy: complete mapping of states to actions
 - Optimal policy: policy with maximum expected utility
 - Value iteration, policy iteration
 - Algorithms for calculating an optimal policy for an MDP
Online Decision Making

• Decision making based on probabilistic graphical models (PGMs)
 • Do not precompute a policy beforehand but decide on an action (sequence) online given current observations
• Static case (episodic, without effects on next state)
 • PGMs extended with action and utility nodes
 • MEU query (problem): Calculate expected utility for each action, decide to execute action with highest expected utility
• Dynamic case (temporal, with effects on next state)
 • Dynamic PGMs extended with action and utility nodes
 • MEU query (problem): Calculate expected utility for sequence of actions, decide to execute action sequence with highest expected utility

https://www.ifis.uni-luebeck.de/index.php?id=703&L=0
Outline

Utility Theory
 Preferences
 Utilities
 Dominance
 Preference structure

Markov Decision Process / Problem (MDP)
 Markov property
 Sequence of actions, history, policy
 Value iteration, policy iteration

⇒ Next: Probabilistic Models