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Decision Making under Uncertainty

• Many environments have multiple possible outcomes

• Some of these outcomes may be good; 

others may be bad

• Some may be very likely; 

others unlikely
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Nondeterministic vs. Probabilistic Uncertainty

• 𝑎, 𝑏, 𝑐
• Decision that is

• best for worst case
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Nondeterministic model Probabilistic model

• 𝑎 𝑝𝑎 , 𝑏 𝑝𝑏 , 𝑐 𝑝𝑐
• Decision that

• maximises expected 

utility value



Expected Utility

• Random variable 𝑋 with 𝑛 range values 𝑥1, … , 𝑥𝑛 and probability distribution 𝑝1, … , 𝑝𝑛
• E.g.: 𝑋 is the state reached after doing an action 𝐴 = 𝑎 under uncertainty with 𝑛 possible outcomes

• Function 𝑈 of 𝑋
• E.g., 𝑈 is the utility of a state

• The expected utility of 𝐴 = 𝑎 is

𝐸𝑈[𝐴 = 𝑎] =

𝑖=1

𝑛

𝑃 𝑋 = 𝑥𝑖 𝐴 = 𝑎 ∙ 𝑈 𝑋 = 𝑥𝑖
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One State/One Action Example
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𝑠0

𝑠3𝑠2𝑠1

𝑎1

𝟎. 𝟐 𝟎. 𝟕 𝟎. 𝟏
𝟏𝟎𝟎 𝟓𝟎 𝟕𝟎

𝑈(𝑠0) = 100 ∙ 0.2 + 50 ∙ 0.7 + 70 ∙ 0.1
= 20 + 35 + 7
= 62



One State/Two Actions Example
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𝑎2

𝑠4
𝟎. 𝟐 𝟎. 𝟖

𝟖𝟎

𝑠0

𝑠3𝑠2𝑠1

𝑎1

𝟎. 𝟐 𝟎. 𝟕 𝟎. 𝟏
𝟏𝟎𝟎 𝟓𝟎 𝟕𝟎

𝑈2 𝑠0 = 74
𝑈 𝑠0 = max{𝑈1 𝑠0 , 𝑈2 𝑠0 }

= 74

𝑈1 𝑠0 = 62



Introducing Action Costs
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𝑎2

𝑠4
𝟎. 𝟐 𝟎. 𝟖

𝟖𝟎

𝑠0

𝑠3𝑠2𝑠1

𝑎1

𝟎. 𝟐 𝟎. 𝟕 𝟎. 𝟏
𝟏𝟎𝟎 𝟓𝟎 𝟕𝟎

𝑈2 𝑠0 = 74 − 25 = 49
𝑈 𝑠0 = max{𝑈1 𝑠0 , 𝑈2 𝑠0 }

= 57

𝑈1 𝑠0 = 62 − 5 = 57

−5 −25



MEU Principle

• A rational agent should choose the 

action that maximizes agent’s 

expected utility

• This is the basis of the field of 

decision theory

• The MEU principle provides a 

normative criterion for rational 

choice of action 

AI solved?

Seite 11

Figure: AIMA, Russell/Norvig



Not quite…

• Must have complete model of:
• Actions
• Utilities
• States

• Even if you have a complete model, it might be computationally intractable

• In fact, a truly rational agent takes into account the utility of reasoning as well – bounded

rationality

• Nevertheless, great progress has been made in this area, and we are able to solve much 

more complex decision-theoretic problems than ever before
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Setting

• Agent can perform actions in an environment
• Environment
• Time: episodic or sequential
• Episodic: Next episode does not depend on the previous episode
• Sequential: Next episode depends on previous episodes

• Non-deterministic
• Outcomes of actions not unique
• Associated with probabilities (➝ probabilistic model)

• Partially observable (treated formally as part of Topic 7 – Advanced Decision Making)
• Latent, i.e., not observable, random variables

• Agent has preferences over states/action outcomes
• Encoded in utility or utility function ➝ Utility theory

• “Decision theory = Utility theory + Probability theory”
• Model the world with a probabilistic model
• Model preferences with a utility (function)
• Find action that leads to the maximum expected utility, also called decision making 
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Outline

• Utility Theory – mainly Ch. 16.1-16.4
• Preferences
• Utilities
• Dominance
• Preference structure

• Markov Decision Process / Problem (MDP)
• Markov property
• Sequence of actions, history, policy
• Value iteration, policy iteration
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Preferences

• An agent chooses among prizes (𝐴, 𝐵, etc.) and lotteries, i.e., situations with uncertain 

prizes
• Outcome of a nondeterministic action is a lottery 

• Lottery 𝐿 = 𝑝, 𝐴; 1 − 𝑝 , 𝐵
• 𝐴 and 𝐵 can be lotteries again
• Prizes are special lotteries: 1, 𝑅; 0, not 𝑅
• More than two outcomes: 
• 𝐿 = 𝑝1, 𝑆1; 𝑝2, 𝑆2; ⋯ ; 𝑝𝑛, 𝑆𝑛 , σ𝑖=1

𝑛 𝑝𝑖 = 1

• Notation
• 𝐴 ≻ 𝐵 𝐴 preferred to 𝐵
• 𝐴 ∼ 𝐵 indifference between 𝐴 and 𝐵
• 𝐴 ≿ 𝐵 𝐵 not preferred to 𝐴

Seite 15



Rational Preferences

• Idea: preferences of a rational agent must obey constraints

• Rational preferences ⇒ behavior describable as maximization of expected utility
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Rational Preferences (contd.)

• Violating constraints leads to self-evident irrationality

• Example
• Constraint: Preferences are transitive
• An agent with intransitive preferences can be induced to give away all its money

• If 𝐵≻𝐶, then an agent who has 𝐶
would pay (say) 1 cent to get 𝐵

• If 𝐴≻𝐵, then an agent who has 𝐵
would pay (say) 1 cent to get 𝐴

• If 𝐶≻𝐴, then an agent who has 𝐴
would pay (say) 1 cent to get 𝐶
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Axioms of Utility Theory

1. Orderability
• 𝐴 ≻ 𝐵  𝐴 ≺ 𝐵  𝐴~𝐵
• ≺,≻, ~ jointly exhaustive, pairwise disjoint

2. Transitivity
• 𝐴 ≻ 𝐵  𝐵 ≻ 𝐶  𝐴 ≻ 𝐶

3. Continuity
• 𝐴 ≻ 𝐵 ≻ 𝐶𝑝 𝑝, 𝐴; 1 − 𝑝, 𝐶 ~𝐵

4. Substitutability
• 𝐴~𝐵 𝑝, 𝐴; 1 − 𝑝, 𝐶 ~ 𝑝, 𝐵; 1 − 𝑝, 𝐶

Also holds if replacing ~ with ≻

5. Monotonicity
• 𝐴 ≻ 𝐵(𝑝 ≥ 𝑞 𝑝, 𝐴; 1 − 𝑝, 𝐵 ≿ 𝑞, 𝐴; 1 − 𝑞, 𝐵 )

6. Decomposability
• 𝑝, 𝐴; 1 − 𝑝, 𝑞, 𝐵; 1 − 𝑞, 𝐶 ~ 𝑝, 𝐴; 1 − 𝑝 𝑞, 𝐵; 1 − 𝑝 1 − 𝑞 , 𝐶
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Decomposability:
There is no fun in gambling.

𝐴

𝐵

𝐶

𝑝

1 − 𝑝
𝑞

1 − 𝑞

𝐴

𝐵

𝐶

𝑝

1 − 𝑝 𝑞

1 − 𝑝 1 − 𝑞



And Then There Was Utility

• Theorem (Ramsey, 1931; von Neumann and Morgenstern, 1944):
• Given preferences satisfying the constraints, there exists a real-valued function 𝑈 such that

𝑈 𝐴 ≥ 𝑈 𝐵 ⇔ 𝐴 ≿ 𝐵

𝑈 𝑝1, 𝑆1; … ; 𝑝𝑛, 𝑆𝑛 = 

𝑖

𝑝𝑖𝑈 𝑆𝑖

MEU principle
• Choose the action that maximises expected utility

• Note: an agent can be entirely rational (consistent with MEU) without ever representing or 

manipulating utilities and probabilities
• E.g., a lookup table for perfect tictactoe
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Utilities

• Utility maps states to real numbers. 

Which numbers?

• Standard approach to the assessment of human utilities:

• Compare a given state 𝐴 to a standard lottery 𝐿_𝑝 that has 

• “best possible outcome” ⊤ with probability 𝑝
• ”worst possible catastrophe” ⊥ with probability (1−𝑝)

• Adjust lottery probability 𝑝 until 𝐴~𝐿_𝑝
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~ 𝐿

continue as before

instant death

pay-$30-and-
continue-as-
before

0.999999

0.000001



Utility Scales

• Normalised utilities: 𝑢⊤ = 1.0, 𝑢⊥ = 0.0
• Utility of lottery 𝐿 ~ (pay-$30-and-continue-as-before): 𝑈 𝐿 = 𝑢⊤ ∙ 0.999999 + 𝑢⊥ ∙ 0.000001 =

0.999999

• Behaviour is invariant w.r.t. positive linear transformation

• 𝑈′ 𝑟 = 𝑘1𝑈 𝑟 + 𝑘2
• No unique utility function; 𝑈′ 𝑟 and 𝑈 𝑟 yield same behaviour

• Micromorts: one-millionth chance of death
• Useful for Russian roulette, paying to reduce product risks, etc.

• QALYs: quality-adjusted life years
• Useful for medical decisions involving substantial risk
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Ordinal Utility Functions

• With deterministic prizes only (no lottery choices), only ordinal utility can be determined, 

i.e., the total order on prizes
• The ordinal utility function also called the value function
• Provides a ranking of alternatives (states), but not a meaningful metric scale (numbers do not matter)
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Quiz

Suppose you win 1 million dollars in a quiz show. You get offered the possibility to flip a coin. 

Head you get 2.5 million dollars, tail you get nothing. Would a rational agent flip the coin? 

Would you?
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Money

• Money does not behave as a utility function

• Given a lottery 𝐿 with expected monetary value 𝐸𝑀𝑉 𝐿 , usually 𝑈 𝐿 < 𝑈 𝑆𝐸𝑀𝑉 𝐿 , i.e., 

people are risk-averse
• 𝑆𝑀: state of possessing total wealth $𝑀
• Utility curve
• For what probability 𝑝 am I indifferent 

between a prize 𝑥 and a lottery 
𝑝, $𝑀; 1 − 𝑝 , $0 for large 𝑀?

• Right: Typical empirical 
data, extrapolated with
risk-prone behaviour 
for negative wealth
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Figure: AIMA, Russell/Norvig



Money Versus Utility

• Money ≠ Utility
• More money is better, but not always in a linear relationship to the amount of money

• Expected Monetary Value
• Risk-averse

• 𝑈 𝐿 < 𝑈 𝑆𝐸𝑀𝑉 𝐿

• Risk-seeking

• 𝑈 𝐿 > 𝑈 𝑆𝐸𝑀𝑉 𝐿

• Risk-neutral

• 𝑈 𝐿 = 𝑈 𝑆𝐸𝑀𝑉 𝐿

• Linear curve
• For small changes in wealth 

relative to current wealth
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Multi-attribute Utility Theory

• A given state may have multiple utilities
• ...because of multiple evaluation criteria
• ...because of multiple agents (interested parties) with different utility functions

• We will look at 
• Cases in which decisions can be made without combining the attribute values into a single utility value
• Strict dominance 
• Stochastic dominance

• Cases in which the utilities of attribute combinations can be specified very concisely
• Preference structure
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Strict Dominance

• Typically define attributes such that 𝑈 is monotonic in each dimension

• Strict dominance
• Choice 𝐵 strictly dominates choice 𝐴 iff

∀ 𝑖 ∶ 𝑋𝑖 𝐵 ≥ 𝑋𝑖 𝐴 (and hence 𝑈 𝐵 ≥ 𝑈 𝐴 )

Seite 27



Stochastic Dominance

• Cumulative distribution 𝑝1 first-order stochastically dominates distribution 𝑝2 iff
∀𝑥 ∶ 𝑝2 𝑥 ≤ 𝑝1 𝑥

• With a strict inequality for some interval
• Then, 𝐸𝑝1 > 𝐸𝑝2 (𝐸 referring to expected value)

• The reverse is not necessarily true
• Does not imply that every possible return of the superior distribution is larger than every possible return of 

the inferior distribution

• Example:
• As we have negative costs, S2 dominates S1 with ∀𝑥 ∶ 𝑝𝑆2 𝑥 ≤ 𝑝𝑆1 𝑥
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https://people.duke.edu/~dgraham/ECO_463/Handouts/StochasticDominance.pdf
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Example
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Stochastic Dominance

• Cumulative distribution 𝑝1 second-order stochastically dominates distribution 𝑝2 iff

∀ 𝑡 ∶ න
−∞

𝑡

𝑝2 𝑥 ⅆ𝑥 ≤ න
−∞

𝑡

𝑝1 𝑥 ⅆ𝑥

• Or: 𝐷 𝑡 = ∞−
𝑡
𝑝1 𝑥 − 𝑝2 𝑥 ⅆ𝑥 ≥ 0

• With a strict inequality for some interval

• Then, 𝐸𝑝1 ≥ 𝐸𝑝2 (𝐸 referring to expected value)

• Example:
• 𝐴 second-order stoch. dominates 𝐵 • No dominance of either 𝐴 or 𝐵
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Preference Structure

• To specify the complete utility function 𝑈 𝑟1, … , 𝑟𝑛 , we need ⅆ𝑛 values in the worst case
• 𝑛 attributes
• Each attribute with ⅆ distinct possible values
• Worst case meaning: Agent’s preferences have no regularity at all 

• Supposition in multi-attribute utility theory 
• Preferences of typical agents have much more structure

• Approach
• Identify regularities in the preference behavior
• Use so-called representation theorems to show that an agent with a certain kind of preference structure 

has a utility function 
𝑈 𝑟1, … , 𝑟𝑛 = 𝐹 𝑓1 𝑟1 , … , 𝑓𝑛 𝑟𝑛

• where 𝐹 is hopefully a simple function such as addition
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Preference Structure: Deterministic

• 𝑅1 and 𝑅2 preferentially independent (PI) of 𝑅3 if
• Preference between 𝑟1, 𝑟2, 𝑟3 and 𝑟1

′, 𝑟2
′, 𝑟3 does not depend on 𝑟3

• E.g., 𝑁𝑜𝑖𝑠𝑒, 𝐶𝑜𝑠𝑡, 𝑆𝑎𝑓𝑒𝑡𝑦
• 20,000 𝑠𝑢𝑓𝑓𝑒𝑟, $4.6 𝑏𝑖𝑙𝑙𝑖𝑜𝑛, 0.06 ⅆ𝑒𝑎𝑡ℎ𝑠/𝑚𝑜𝑛𝑡ℎ
• 70,000 𝑠𝑢𝑓𝑓𝑒𝑟, $4.2 𝑏𝑖𝑙𝑙𝑖𝑜𝑛, 0.06 ⅆ𝑒𝑎𝑡ℎ𝑠/𝑚𝑜𝑛𝑡ℎ

• Theorem (Leontief, 1947)
• If every pair of attributes is PI of its complement, then every subset of attributes is PI of its complement
• Called mutual PI (MPI)

• Theorem (Debreu, 1960):
• MPI ⇒ ∃ additive value function 

𝑉 𝑟1, … , 𝑟𝑛 =
𝑖
𝑉𝑖 𝑟𝑖

• Hence assess 𝑛 single-attribute functions
• Often a good approximation
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Preference Structure: Stochastic

• Need to consider preferences over lotteries

• 𝑅 is utility-independent (UI) of 𝑆 iff
• Preferences over lotteries in 𝑅 do not depend on 𝑠

• Mutual UI (Keeney, 1974): 

Each subset is UI of its complement 

⇒ ∃ multiplicative utility function
• For 𝑛 = 3:

𝑈 = 𝑘1𝑈1 + 𝑘2𝑈2 + 𝑘3𝑈3
+𝑘1𝑘2𝑈1𝑈2 + 𝑘2𝑘3𝑈2𝑈3 + 𝑘3𝑘1𝑈3𝑈1
+𝑘1𝑘2𝑘3𝑈1𝑈2𝑈3

• I.e., requires only 𝑛 single-attribute utility functions and 𝑛 constants
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Intermediate Summary

• Preferences
• Preferences of a rational agent must obey constraints 

• Utilities
• Rational preferences = describable as maximization of expected utility
• Utility axioms
• MEU principle

• Dominance
• Strict dominance
• First-order + second-order stochastic dominance

• Preference structure
• (Mutual) preferential independence
• (Mutual) utility independence
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Outline

Utility Theory
• Preferences
• Utilities
• Dominance
• Preference structure

Markov Decision Process/Problem (MDP) – Ch. 17.1-17.3
• Markov property
• Sequence of actions, history, policy
• Value iteration, policy iteration
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Simple Robot Navigation Problem

• In each state, the possible actions are U, D, R, and L

• The effect of action U is as follows (transition model):
• With probability 0.8, move up one square 
• If already in the top row or blocked, no move

• With probability 0.1, move right one square 
• If already in the rightmost row or blocked, no move

• With probability 0.1, move left one square
• If already in the leftmost row or blocked, no move

• Same transition model holds for D, R, and L

and their respective directions
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Markov Property

• Also known as Markov-𝑘 with 𝑘 = 1
• 𝑘 ≤ 𝑡

𝑃 𝑥𝑡+1 | 𝑥𝑡, … , 𝑥0 = 𝑃(𝑥𝑡+1| 𝑥𝑡, … , 𝑥𝑡−𝑘+1)

• 𝑘 = 1
𝑃 𝑥𝑡+1 | 𝑥𝑡, … , 𝑥0 = 𝑃 𝑥𝑡+1 | 𝑥𝑡
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The transition properties depend only 
on the current state, not on previous 
history (how that state was reached).



Sequence of Actions

• In each state, the possible actions are U, D, R, and L; 

the transition model for each action is (pictured):

• Current position: [3,2]

• A planned sequence of actions: (U, R)
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Sequence of Actions

• In each state, the possible actions are U, D, R, and L; 

the transition model for each action is (pictured):

• Current position: [3,2]

• A planned sequence of actions: (U, R)
• U is executed
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Sequence of Actions

• In each state, the possible actions are U, D, R, and L; 

the transition model for each action is (pictured):

• Current position: [3,2]

• A planned sequence of actions: (U, R)
• U has been executed
• R is executed
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Histories

• In each state, the possible actions are U, D, R, and L; 

the transition model for each action is (pictured):

• Current position: [3,2]

• A planned sequence of actions: (U, R)
• U has been executed
• R is executed
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2

3

1

4321

[4,2][3,3][3,2]
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[3,2]

9 possible sequences of states, called 

histories, and 6 possible final states



Probability of Reaching the Goal

• In each state: possible actions U, D, R, L; trans. model:
𝑃([4,3]  | (𝑈,𝑅).[3,2])=

𝑃([4,3]  | 𝑅.[3,3])∙𝑃([3,3]  | 𝑈.[3,2])

+𝑃([4,3]  | 𝑅.[4,2])∙𝑃([4,2]  | 𝑈.[3,2])

𝑃([4,3]  | 𝑅.[3,3])=0.8 𝑃([3,3]  | 𝑈.[3,2])=0.8

𝑃([4,3]  | 𝑅.[4,2])=0.1 𝑃([4,2]  | 𝑈.[3,2])=0.1

𝑃([4,3]  | (𝑈,𝑅).[3,2])=0.8∙0.8+0.1∙0.1=0.65
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Utility Function

• [4,3] : power supply

• [4,2] : sand area the robot cannot escape (stops the run)

• Goal: robot needs to recharge its batteries

• [4,3] and [4,2] are terminal states

• In this example, we define the utility of a history by 
• The utility of the last state (+1 or –1) minus 0.04 ∙ 𝑛
• 𝑛 is the number of moves
• I.e., each move costs 0.04, 

which provides an incentive 
to reach the goal fast
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Utility of an Action Sequence

• Consider the action sequence 𝒂 = (U,R) from [3,2]

• A run produces one of 7 possible histories, each with a probability

• Utility of the sequence is the expected utility of histories ℎ:

𝑈(𝒂) =
ℎ
𝑈ℎ𝑃 ℎ

• Optimal sequence = the one with maximum utility
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-1 [4,2][3,3][3,2]

[3,3][3,2] [4,1] [4,2] [4,3][3,1]

[3,2]

Is the optimal 

sequence what we 

want?



Reactive Agent Algorithm
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Act()

repeat

s ← sensed state

if s is terminal then

exit

a ← choose action (given s)

perform a

Accessible or observable state

Figure: AIMA, Russell/Norvig



Policy (Reactive/Closed-loop Strategy)

• Policy 𝜋
• Complete mapping from states to actions

• Optimal policy 𝜋∗

• Always yields a history (ending at terminal state) with maximum expected utility
• Due to Markov property
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Act()

repeat

s ← sensed state

if s is terminal then

exit

a ← 𝜋(s)
perform a

+1

2

3

1

4321

-1

Note that [3,2] is a “dangerous” state 
that the optimal policy tries to avoid

How to compute 𝜋∗?
Solving a Markov Decision 

Processc



Markov Decision Process / Problem (MDP)

• Sequential decision problem for a fully observable, stochastic environment with a 

Markovian transition model and additive rewards (next slide)

• Model components
• a set of states 𝑆 (with an initial state 𝑠0)
• a set 𝐴 𝑠 of actions in each state
• a transition model 𝑃 𝑠′ 𝑠, 𝑎
• a reward function 𝑅(𝑠)
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-1 U, D, L, R each move costs 0.04



Additive Utility

• History 𝐻 = (𝑠0, 𝑠1, … , 𝑠𝑛)
• In each state 𝑠, agent receives reward 𝑅 𝑠
• Utility of 𝐻 is additive iff 

= 𝑈 𝑠0, 𝑠1, … , 𝑠𝑛 = 𝑅 𝑠0 + 𝑈 𝑠1, … , 𝑠𝑛

=
𝑖=0

𝑛

𝑅 𝑠𝑖

• Discount factor 𝛾 ∈]0,1]: 

𝑈 𝑠0, 𝑠1, … , 𝑠𝑛 =
𝑖=0

𝑛

𝛾𝑖𝑅 𝑠𝑖

• Close to 0: future rewards insignificant

• Corresponds to interest rate ൗ1−𝛾
𝛾
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𝑅(𝑠_𝑛 )=+1 if 𝑠_𝑛=[4,3]
𝑅(𝑠_𝑛 )=−1 if 𝑠_𝑛=[4,2]
𝑅(𝑠_𝑖 )=−0.04 if 𝑖=0, …, 𝑛−1
𝛾=1



Principle of MEU

• History ℎ = (𝑠0, 𝑠1, … , 𝑠𝑛)
Utility of ℎ: 

𝑈 𝑠0, 𝑠1, … , 𝑠𝑛 =
𝑖=0

𝑛

𝑅 𝑠𝑖

• Bellman equation: 

𝑈 𝑠𝑖 = 𝑅 𝑠𝑖 + 𝛾max
𝑎



𝑠𝑗

𝑃 𝑠𝑗| 𝑎. 𝑠𝑖 𝑈 𝑠𝑗

• Optimal policy: 

𝜋∗ 𝑠𝑖 = argmax
𝑎



𝑠𝑗

𝑃 𝑠𝑗| 𝑎. 𝑠𝑖 𝑈 𝑠𝑗
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• Robot navigation example:

• Bellman equation for [1,1]

with 𝛾=1 as discount factor

𝑈(1,1)=−0.04+𝛾 max┬(𝑈,𝐿,𝐷,𝑅)

{ 0.8𝑈(1,2)+0.1𝑈(2,1)+0.1𝑈(1,1), (U)

0.8𝑈(1,1)+0.1𝑈(1,1)+0.1𝑈(1,2), (L)

0.8𝑈(1,1)+0.1𝑈(2,1)+0.1𝑈(1,1), (D)

0.8𝑈(2,1)+0.1𝑈(1,2)+0.1𝑈(1,1)   } (R)

+1

2

3

1

4321

-1



Value Iteration

• Initialise the utility of each non-terminal 

state 𝑠𝑖 to 𝑈0 𝑠𝑖 = 0
• For 𝑡 = 0, 1, 2, …, do
• 𝑈𝑡+1 𝑠𝑖 ← 𝑅 𝑠𝑖 + 𝛾max

𝑎
σ𝑠𝑗 𝑃 𝑠𝑗| 𝑎. 𝑠𝑖 𝑈𝑡 𝑠𝑗

• So called Bellman update
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• Robot navigation example:
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Value Iteration

Initialise the utility of each non-terminal state 

𝑠𝑖 to 𝑈0 𝑠𝑖 = 0
For 𝑡 = 0, 1, 2, …, do

𝑈𝑡+1 𝑠𝑖 ← 𝑅 𝑠𝑖 + 𝛾max
𝑎



𝑠𝑗

𝑃 𝑠𝑗| 𝑎. 𝑠𝑖 𝑈𝑡 𝑠𝑗

So called Bellman update
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• Robot navigation example:

0.288

𝑈𝑡 3,1

𝑡0 302010

0.611
0.5

0

Note the importance 
of terminal states and 

connectivity of the 
state-transition graph
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0.6110.6550.705

0.762

0.812 0.868 0.918

0.660



Value Iteration: Algorithm

• Returns a policy 𝜋
that is optimal

• Inputs
• MDP:
• States 𝑆
• For all 𝑠 ∈ 𝑆
• Actions 𝐴 𝑠
• Transitio model 

𝑃 𝑠′| 𝑎. 𝑠
• Rewards 𝑅 𝑠

• Discount 𝛾
• Maximum error allowed 𝜖

• Local variables
• 𝑈,𝑈′ vectors of utilities for states in 𝑆, initially 0
• 𝛿 maximum change in utility of any state in an iteration
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function value-iteration(mdp,𝜖)
U’ ← 0, π ←〈〉
repeat

U ← U’

𝛿 ← 0

for each state s ∈ S do

U’[s] ← R(s) + 𝛾 maxa∈A(s)Σs’P(s’|a.s)U[s’]

if |U’[s] - U[s]| > 𝛿 then

𝛿 ← |U’[s] - U[s]|

until 𝛿 < 𝜖(1-𝛾)/𝛾
for each state s ∈ S do

π(s) ← argmaxa∈A(s)Σs’P(s’|a.s)U[s’]

return π



Evolution of Utilities

• For 𝑡 = 0, 1, 2, …, do
• 𝑈𝑡+1 𝑠𝑖 ← 𝑅 𝑠𝑖 + 𝛾max

𝑎
σ𝑠𝑗

𝑃 𝑠𝑗| 𝑎. 𝑠𝑖 𝑈𝑡 𝑠𝑗

• Value iteration ≈ information propagation
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• Robot navigation example:

0.288
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0.762

0.812 0.868 0.918

0.660

Figure right: AIMA, Russell/Norvig



Argmax Action

• For 𝑡 = 0, 1, 2, …, do
• 𝑈𝑡+1 𝑠𝑖 ← 𝑅 𝑠𝑖 + 𝛾max

𝑎
σ𝑠𝑗

𝑃 𝑠𝑗| 𝑎. 𝑠𝑖 𝑈𝑡 𝑠𝑗

• Argmax action may change over iterations
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• Robot navigation example:

• Bellman equation for [1,1]
• with 𝛾=1 as discount factor
• 𝑈(1,1)=−0.04+𝛾 max┬(𝑈,𝐿,𝐷,𝑅)
{ 0.8𝑈(1,2)+0.1𝑈(2,1)+0.1𝑈(1,1), (U)
0.8𝑈(1,1)+0.1𝑈(1,1)+0.1𝑈(1,2), (L)
0.8𝑈(1,1)+0.1𝑈(2,1)+0.1𝑈(1,1), (D)
0.8𝑈(2,1)+0.1𝑈(1,2)+0.1𝑈(1,1)   } (R)

0.288
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1

4321

-1

0.6110.6550.705

0.762

0.812 0.868 0.918

0.660

Figure right: AIMA, Russell/Norvig



Effect of Rewards

• For 𝑡 = 0, 1, 2, …, do
• 𝑈𝑡+1 𝑠𝑖 ← 𝑅 𝑠𝑖 + 𝛾max

𝑎
σ𝑠𝑗

𝑃 𝑠𝑗| 𝑎. 𝑠𝑖 𝑈𝑡 𝑠𝑗

• Optimal policies for different rewards:
• For 𝑅 𝑠 = −0.04, see right ⇢
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• Robot navigation example:
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𝑅 𝑠 < −1.6284

+1

-1

−0.4278 < 𝑅 𝑠 < −0.0850

+1

-1

−0.0221 < 𝑅 𝑠 < 0

+1

-1

𝑅 𝑠 > 0

+1

-1

Data for figures: AIMA, Russell/Norvig



Effect of Allowed Error & Discount

• For 𝑡 = 0, 1, 2, …, do
• 𝑈𝑡+1 𝑠𝑖 ← 𝑅 𝑠𝑖 + 𝛾max

𝑎
σ𝑠𝑗

𝑃 𝑠𝑗| 𝑎. 𝑠𝑖 𝑈𝑡 𝑠𝑗

• Iterations required to ensure a maximum 

error of 𝜀 = 𝑐 · 𝑅𝑚𝑎𝑥
• 𝑅𝑚𝑎𝑥 maximum reward
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• Robot navigation example:

• 𝑅𝑚𝑎𝑥 = +1
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Figure: AIMA, Russell/Norvig



Policy Iteration

• Pick a policy 𝜋0 at random

• Repeat:
• Policy evaluation: Compute the utility of each state for 𝜋𝑡
• 𝑈𝑡 𝑠𝑖 = 𝑅 𝑠𝑖 + 𝛾σ𝑠𝑗 𝑃 𝑠𝑗|𝜋𝑡 𝑠𝑖 . 𝑠𝑖 𝑈𝑡 𝑠𝑗
• No longer involves a max operation as action is determined by 𝜋𝑡

• Policy improvement: Compute the policy 𝜋𝑡+1 given 𝑈𝑡
• 𝜋𝑡+1 𝑠𝑖 = argmax

𝑎
σ𝑠𝑗 𝑃 𝑠𝑗|𝜋𝑡 𝑠𝑖 . 𝑠𝑖 𝑈𝑡 𝑠𝑗

• If 𝜋𝑡+1 = 𝜋𝑡, then return 𝜋𝑡

Seite 57

Solve the set of linear equations:

𝑈 𝑠𝑖 = 𝑅 𝑠𝑖 + 𝛾

𝑠𝑗

𝑃 𝑠𝑗|𝜋 𝑠𝑖 . 𝑠𝑖 𝑈 𝑠𝑗

(often a sparse system)



Policy Iteration: Algorithm

• Returns a policy 𝜋 that is optimal

• Inputs: MDP
• States 𝑆
• For all 𝑠 ∈ 𝑆, actions 𝐴 𝑠 , transition model 𝑃 𝑠′| 𝑎. 𝑠 , rewards 𝑅 𝑠

• Local variables
• 𝑈 vectors of utilities for states in 𝑆, initially 0
• 𝜋 a policy vector indexed by state, initially random
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function policy-iteration(mdp)

repeat

U ← policy-evaluation(𝜋,U,mdp)
unchanged ← true

for each state s ∈ S do

if maxa∈A(s)Σs’P(s’|a.s)U[s’] > Σs’P(s’|𝜋[s].s)U[s’] then
𝜋[s] ← argmaxa∈A(s)Σs’P(s’|a.s)U[s’]
unchanged ← false

until unchanged

return 𝜋



Policy Evaluation

• Compute the utility of each state for 𝜋
• 𝑈𝑡 𝑠𝑖 = 𝑅 𝑠𝑖 + 𝛾σ𝑠𝑗

𝑃 𝑠𝑗|𝜋𝑡 𝑠𝑖 . 𝑠𝑖 𝑈𝑡 𝑠𝑗

• Complexity of policy evaluation: 𝑂 𝑛3

• For 𝑛 states, 𝑛 linear equations with 𝑛 unknowns
• Prohibitive for large 𝑛

• Approximation of utilities
• Perform 𝑘 value iteration steps with fixed policy 𝜋𝑡, return utilities

• Simplified Bellman update: 𝑈𝑡+1 𝑠𝑖 = 𝑅 𝑠𝑖 + 𝛾σ𝑠𝑗 𝑃 𝑠𝑗|𝜋 𝑠𝑖 . 𝑠𝑖 𝑈𝑡 𝑠𝑗
• Asynchronous policy iteration (next slide)
• Pick any subset of states
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Asynchronous Policy Iteration

• Further approximation of policy iteration
• Pick any subset of states and do one of the following 
• Update utilities 
• Using simplified value iteration as described on previous slide

• Update the policy 
• Policy improvement as before

• Is not guaranteed to converge to an optimal policy
• Possible if each state is still visited infinitely often, knowledge about unimportant states, etc.

• Freedom to work on any states allows for design of domain-specific heuristics
• Update states that are likely to be reached by a good policy
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Intermediate Summary

• MDP
• Markov property
• Current state depends only on previous state

• Sequence of actions, history, policy
• Sequence of actions may yield multiple histories, i.e., sequences of states, with a utility
• Policy: complete mapping of states to actions
• Optimal policy: policy with maximum expected utility

• Value iteration, policy iteration
• Algorithms for calculating an optimal policy for an MDP
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Online Decision Making

• Decision making based on probabilistic graphical models 

(PGMs)
• Do not precompute a policy beforehand but decide on an action 

(sequence) online given current observations

• Static case (episodic, without effects on next state)
• PGMs extended with action and utility nodes
• MEU query (problem): Calculate expected utility for each action, 

decide to execute action with highest expected utility

• Dynamic case (temporal, with effects 

on next state)
• Dynamic PGMs extended with action 

and utility nodes
• MEU query (problem): Calculate 

expected utility for sequence of actions, 
decide to execute action sequence with 
highest expected utility
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Lecture next winter term (WiSe
2022/23) on Relational Inference 
and Online Decision Making

https://www.ifis.uni-luebeck.de/index.php?id=703&L=0

https://www.ifis.uni-luebeck.de/index.php?id=703&L=0


Outline

Utility Theory
Preferences
Utilities
Dominance
Preference structure

Markov Decision Process / Problem (MDP)
Markov property
Sequence of actions, history, policy
Value iteration, policy iteration

⟹ Next: Probabilistic Models
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