

Automated Planning and Acting Probabilistic Models

Institute of Information Systems

Dr. Mattis Hartwig

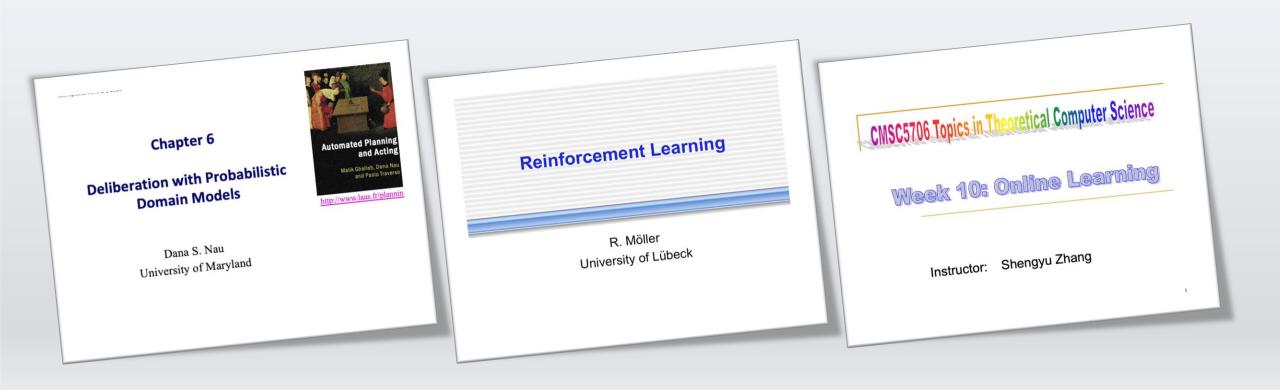
Content

- Planning and Acting with **Deterministic** Models
- Planning and Acting with **Refinement** Methods
- Planning and Acting with **Temporal** Models
- 4. Planning and Acting with **Nondeterministic** Models
- Standard Decision Making

- 6. Planning and Acting with **Probabilistic**Models
 - a. Stochastic Shortest-Path Problems
 - b. Heuristic Search Algorithms
 - c. Online Approaches Including Reinforcement Learning
- 7. **Advanced** Decision Making
- 8. **Human-aware** Planning

Acknowledgements

- Automated Planning and Acting Chapter 6
- Slides based on material provided by Dana Nau, Ralf Möller, and Shengyu Zhang
- Adapted by Tanya Braun



Outline

- 6.2 Stochastic shortest path problems
 - Safe/unsafe policies
 - Optimality
 - Policy iteration, value iteration
- 6.3 Heuristic search algorithms (omitted)
- 6.4 Online probabilistic planning
 - Lookahead
 - Reinforcement learning

Probabilistic Planning Domain

- $\Sigma = (S, A, \gamma, P, cost)$
 - S = set of states
 - A = set of actions
 - $\gamma: S \times A \rightarrow 2^S$ a transition function
 - P(s' | s, a) = probability of going to state s' if we perform a in s
 - Require $P(s' | s, a) \neq 0$ iff $s' \in \gamma(s, a)$
 - $cost: S \times A \to \mathbb{R}^{>0}$
 - cost(s, a) = cost of action a in state s
 - may omit, default is cost(s, a) = 1

Difference in syntax: MDPs do not have an explicit transition function γ , only a set of applicable actions A(s) per state and the transition model $P(s' \mid s, a)$

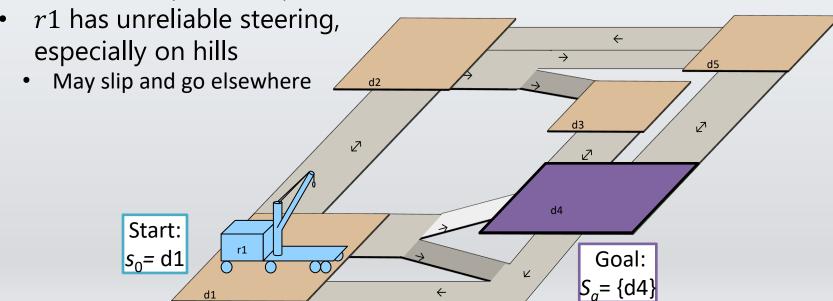
Instead of maximizing expected utility as before:

Minimize expected cost

Example

- Robot r1 starts at d1
- Objective: get to d4
- Simplified state names: write $\{loc(r1) = d2\}$ as d2
- Simplified action names: write move(r1, d2, d3) as m23

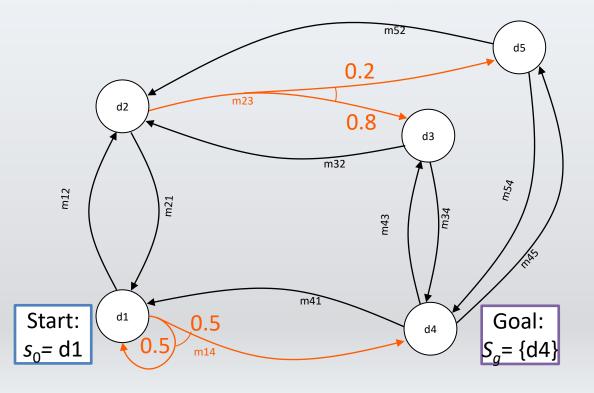
- m14: P(d4 | d1, m14) = 0.5P(d1 | d1, m14) = 0.5
- m23: P(d3 | d2, m23) = 0.8P(d5 | d2, m23) = 0.2
- m21: P(d2 | d1, m21) = 1
- *m*34, *m*41, *m*43, *m*45, *m*52, *m*54: like *m*21



Policies, Problems, Solutions

- Stochastic shortest path (SSP) problem:
 - a triple (Σ, s_0, S_g)
- Policy:
 - partial function $\pi: S \to A$ s.t.
 - for every $s \in Dom(\pi) \subseteq S$, $\pi(s) \in Applicable(s)$
- Solution for (Σ, s_0, S_g) :
 - a policy π s.t.
 - $s_0 \in Dom(\pi)$ and
 - $\hat{\gamma}(s_0,\pi) \cap S_g \neq \emptyset$

• m14: $P(d4 \mid d1, m14) = 0.5$ $P(d1 \mid d1, m14) = 0.5$ • m23: $P(d3 \mid d1, m23) = 0.8$ $P(d5 \mid d1, m23) = 0.2$

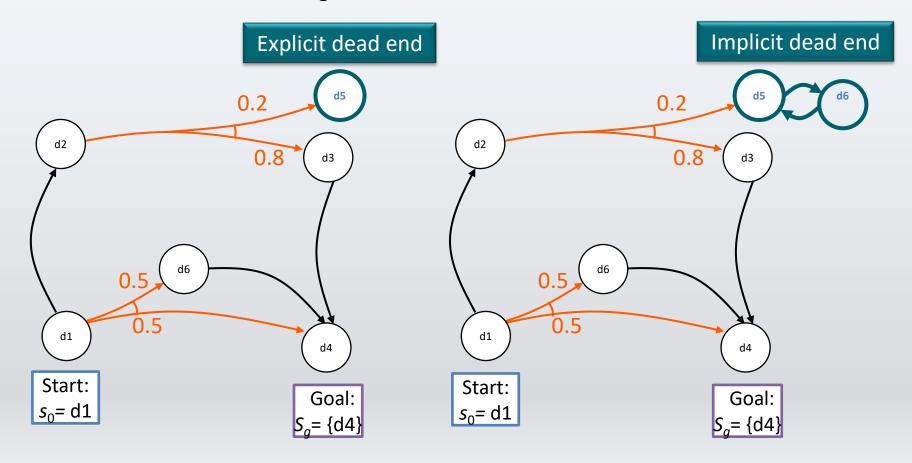


Notation and Terminology

- As before:
 - Transitive closure
 - $\hat{\gamma}(s,\pi) = \{s \text{ and all states reachable from } s \text{ using } \pi\}$
 - $Graph(s, \pi)$ = rooted graph induced by π at s
 - Nodes: $\hat{\gamma}(s,\pi)$
 - Edges: state transitions
 - $leaves(s,\pi) = \hat{\gamma}(s,\pi) \setminus Dom(\pi)$
- A solution policy π is closed if it does not stop at non-goal states unless there is no way to continue
 - for every state $s \in \hat{\gamma}(s, \pi)$, either
 - $s \in Dom(\pi)$ (i.e., π specifies an action at s),
 - $s \in S_g$ (i.e., s is a goal state), or
 - $Applicable(s) = \emptyset$ (i.e., there are no applicable actions at s)

Dead Ends

- Dead end
 - A state or set of states from which the goal is unreachable



Histories

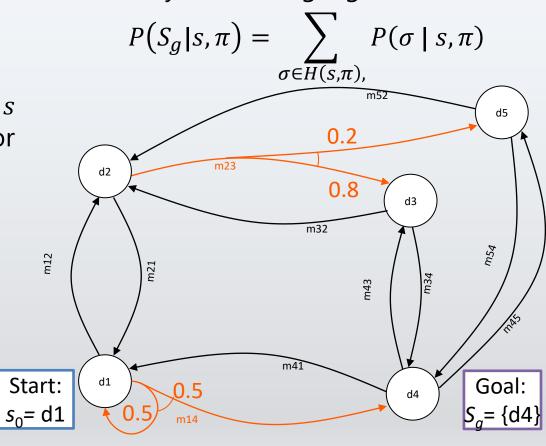
- History: sequence of states $\sigma = \langle s_0, s_1, s_2, ... \rangle$
 - May be finite or infinite
 - $\sigma = \langle d1, d2, d3, d4 \rangle$
 - $\sigma = \langle d1, d2, d1, d2, ... \rangle$
- $H(s,\pi)$ = {all possible histories if we start at s and follow π , stopping if $\pi(s)$ is undefined or if we reach a goal state}
- If $\sigma \in H(s,\pi)$, then

$$P(\sigma \mid s, \pi) = \prod_{i} P(s_{i+1} \mid s_i, \pi(s_i))$$

• Thus

$$\sum_{\sigma \in H(s,\pi)} P(\sigma \mid s,\pi) = 1$$

Probability of reaching a goal:

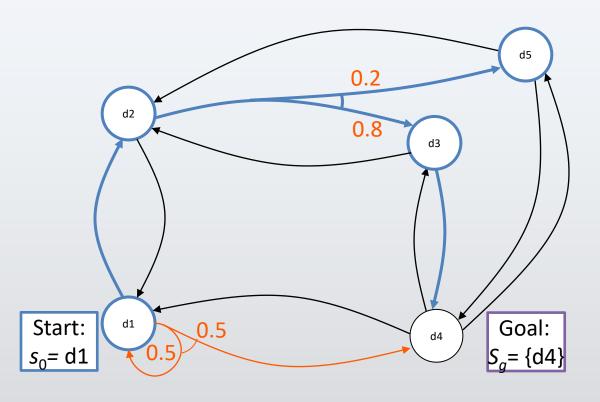


Quiz

Do you have an idea for a definition of an unsafe solution?

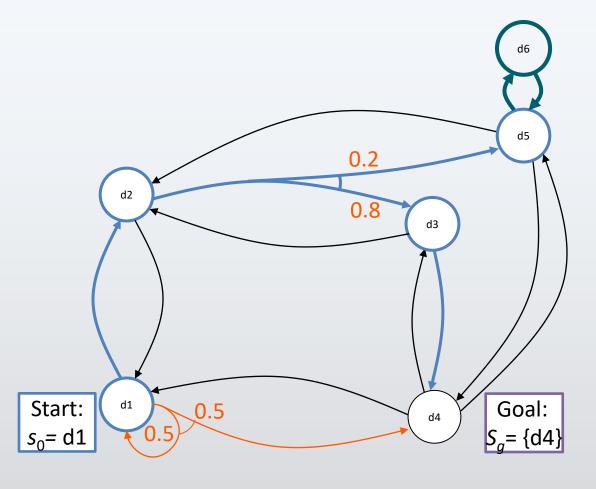
Unsafe Solutions

- Unsafe solution: $0 < P(S_g|s_0, \pi) < 1$
- Example:
 - $\pi_1 = \{(d1, m12), (d2, m23), (d3, m34)\}$
 - $H(s_0, \pi_1)$ contains two histories:
 - $\sigma_1 = \langle d1, d2, d3, d4 \rangle$
 - $P(\sigma_1|s_0, \pi_1)$ = $1 \cdot 0.8 \cdot 1 = 0.8$
 - $\sigma_2 = \langle d1, d2, d5 \rangle$
 - $P(\sigma_2|s_0, \pi_1)$ = 1 · 0.2 = 0.2
 - $P(S_g|s_0,\pi_1) = 0.8$



Unsafe Solutions

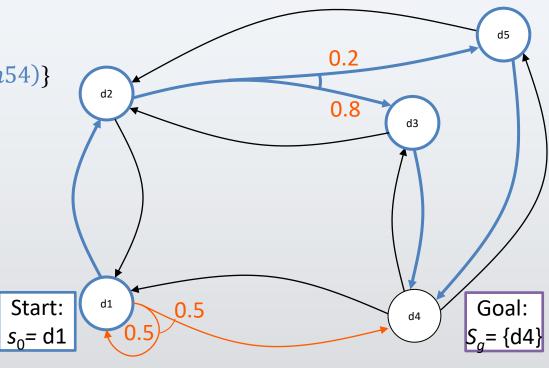
- Unsafe solution: $0 < P(S_g|s_0, \pi) < 1$
- Example:
 - $\pi_2 = \{(d1, m12), (d2, m23), (d3, m34), (d5, m56), (d6, m65)\}$
 - $H(s_0, \pi_2)$ contains two histories:
 - $\sigma_1 = \langle d1, d2, d3, d4 \rangle$
 - $P(\sigma_1|s_0, \pi_2)$ = $1 \cdot 0.8 \cdot 1 = 0.8$
 - $\sigma_3 = \langle d1, d2, d5, d6, ... \rangle$
 - $P(\sigma_3|s_0, \pi_2)$ = $1 \cdot 0.2 \cdot 1 \cdot \dots = 0.2$
 - $P(S_g|s_0,\pi_2) = 0.8$



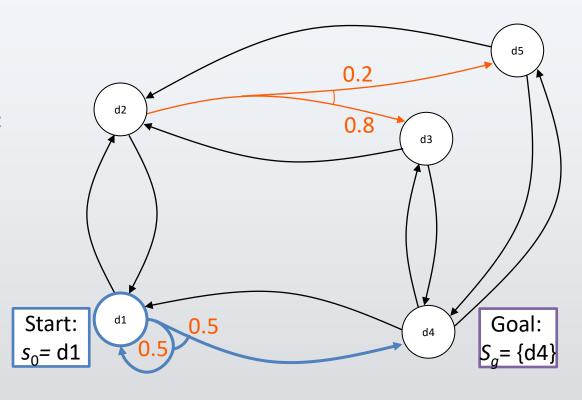
- Safe solution: $P(S_g|S_0,\pi)=1$
- An acyclic safe solution:

•
$$\pi_3 = \{(d1, m12), (d2, m23), (d3, m34), (d5, m54)\}$$

- $H(s_0, \pi_3)$ contains two histories:
 - $\sigma_1 = \langle d1, d2, d3, d4 \rangle$
 - $P(\sigma_1|s_0, \pi_3)$ = $1 \cdot 0.8 \cdot 1 = 0.8$
 - $\sigma_4 = \langle d1, d2, d5, d4 \rangle$
 - $P(\sigma_4|s_0, \pi_3)$ = $1 \cdot 0.2 \cdot 1 = 0.2$
- $P(S_g|s_0,\pi_3)$ = 0.8 + 0.2 = 1



- Safe solution: $P(S_g|S_0,\pi)=1$
- A cyclic safe solution:
 - $\pi_4 = \{(d1, m14)\}$
 - $H(s_0, \pi_4)$ contains infinitely many histories:
 - $\sigma_5 = \langle d1, d4 \rangle$
 - $P(\sigma_5|s_0,\pi_4) = 0.5 = \left(\frac{1}{2}\right)^1$
 - $\sigma_6 = \langle d1, d1, d4 \rangle$
 - $P(\sigma_6|s_0, \pi_4)$ = $0.5 \cdot 0.5 = \left(\frac{1}{2}\right)^2$
 - ...
 - $P(S_g|s_0, \pi_4)$ = $\frac{1}{2} + \frac{1}{4} + \dots = 1$



- Safe solution: $P(S_g|s_0,\pi)=1$
- Another cyclic safe solution:

•
$$\pi_5 = \{(d1, m14), (d4, m41)\}$$

•
$$H(s_0, \pi_5) = H(s_0, \pi_4)$$
:

•
$$\sigma_5 = \langle d1, d4 \rangle$$

•
$$P(\sigma_5|s_0,\pi_5) = 0.5 = \left(\frac{1}{2}\right)^1$$

•
$$\sigma_6 = \langle d1, d1, d4 \rangle$$

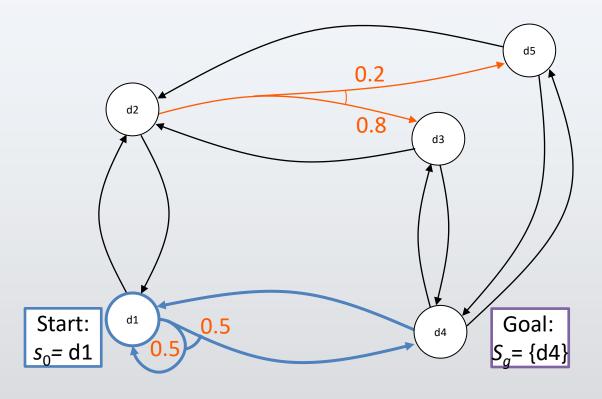
•
$$P(\sigma_6|s_0, \pi_6)$$

= $0.5 \cdot 0.5 = \left(\frac{1}{2}\right)^2$

• ...

•
$$P(S_g|s_0, \pi_5)$$

= $\frac{1}{2} + \frac{1}{4} + \dots = 1$

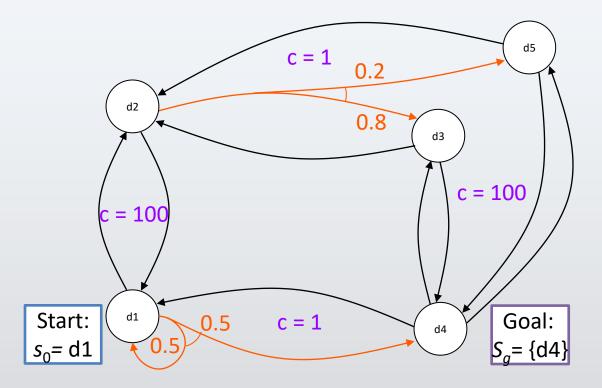


Expected Cost

- cost(s, a) = cost of using a in s
 - Example
 - Each "horizontal" action costs 1
 - Each "vertical" action costs 100
- Costs of a history

$$\sigma = \langle s_0, s_1, s_2, \dots \rangle$$

• $cost(\sigma | s_0, \pi)$ = $\sum_{s_i \in \sigma} cost(s_i, \pi(s_i))$



Expected Cost

- Let π be a safe solution
- At each state $s \in Dom(\pi)$, expected cost of following π to goal:
 - Weighted sum of history costs:

$$V^{\pi}(s) = cost(s, \pi(s)) + \sum_{\substack{\sigma \in H(s, \pi), \\ \sigma' = \sigma \setminus \{s\}}} P(\sigma'|s, \pi) cost(\sigma'|s, \pi)$$

Recursive formulation

$$V^{\pi}(s) = \begin{cases} 0 & \text{if } s \in S_g \\ cost(s, \pi(s)) + \sum_{s' \in \gamma(s, \pi(s))} P(s'|s, \pi(s)) V^{\pi}(s') & \text{otherwise} \end{cases}$$

Compare policy evaluation of the policy iteration algorithm of the previous topic

Example

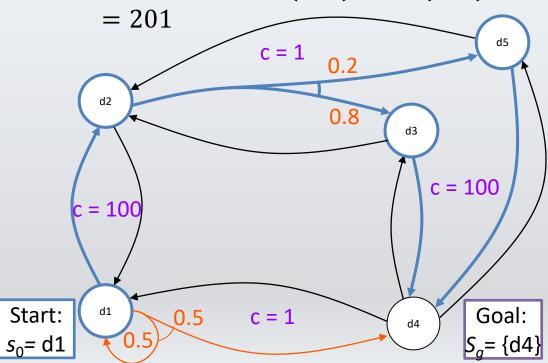
- $\pi_3 = \{(d1, m12), (d2, m23), (d3, m34), (d5, m54)\}$
- Weighted sum of history cost:
 - $\sigma_1 = \langle d1, d2, d3, d4 \rangle$
 - $P(\sigma_1|s_0,\pi_3) = 0.8$
 - $cost(\sigma_1|s_0, \pi_3)$ = 100 + 1 + 100 = 201
 - $\sigma_4 = \langle d1, d2, d5, d4 \rangle$
 - $P(\sigma_4|s_0,\pi_3) = 0.2$
 - $cost(\sigma_4|s_0, \pi_3)$ = 100 + 1 + 100 = 201
- $V^{\pi_3}(d1)$ = 0.8(201) + 0.2(201)= 201

- Recursive equation
 - $V^{\pi_3}(d1)$

$$=100+V^{\pi_3}(d2)$$

$$= 100 + 1 + 0.8V^{\pi_3}(d3) + 0.2V^{\pi_3}(d5)$$

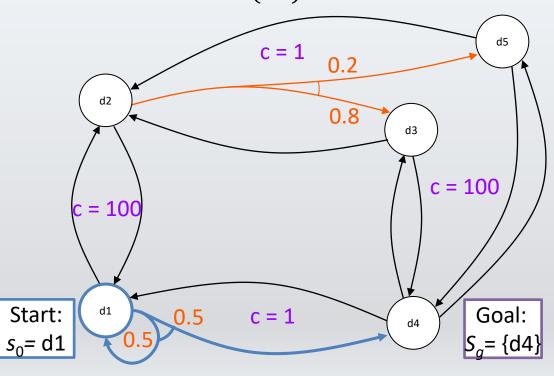
= 100 + 1 + 0.8(100) + 0.2(100)



•
$$\pi_4 = \{(d1, m14)\}$$

- Weighted sum of history cost:
 - $\sigma_5 = \langle d1, d4 \rangle$
 - $P(\sigma_5|s_0,\pi_4) = \left(\frac{1}{2}\right)^1$
 - $cost(\sigma_5|s_0,\pi_4)=1$
 - $\sigma_6 = \langle d1, d1, d4 \rangle$
 - $P(\sigma_6|s_0, \pi_4) = \left(\frac{1}{2}\right)^2$
 - $cost(\sigma_6|s_0,\pi_4)=2$
 - ...
- $V^{\pi_4}(d1)$ = $\frac{1}{2}(1) + \frac{1}{4}(2) + \dots$ = 2

- Recursive equation
 - $V^{\pi_4}(d1) = 1 + 0.5(0) + 0.5(V^{\pi_4}(d1))$ $\Leftrightarrow 0.5V^{\pi_4}(d1) = 1$ $\Leftrightarrow V^{\pi_4}(d1) = 2$



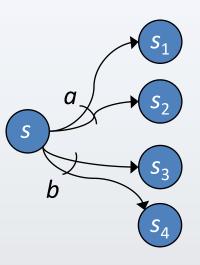
Planning as Optimisation

- Let π and π' be safe solutions
 - π dominates π' if $\forall s \in Dom(\pi) \cap Dom(\pi') : V^{\pi}(s) \leq V^{\pi'}(s)$
- π is optimal if π dominates every safe solution
 - If π and π' are both optimal, then $V^{\pi}(s) = V^{\pi'}(s)$ at every state where they are both defined
- $V^*(s)$ = expected cost of getting to the goal using an optimal safe solution
- Recall expected cost of following π to goal starting in s

$$V^{\pi}(s) = \begin{cases} 0 & \text{if } s \in S_g \\ cost(s, \pi(s)) + \sum_{s' \in \gamma(s, \pi(s))} P(s'|s, \pi(s)) V^{\pi}(s') & \text{otherwise} \end{cases}$$

Optimality principle (Bellman's theorem):

$$V^*(s) = \begin{cases} 0 & \text{if } s \in S_g \\ \min_{a \in Applicable(S)} \left\{ cost(s, \pi(s)) + \sum_{s' \in \gamma(s, \pi(s))} P(s'|s, \pi(s)) V^*(s') \right\} & \text{otherwise} \end{cases}$$



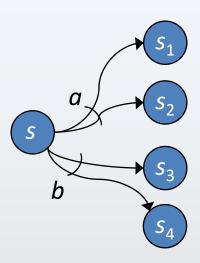
Cost to Go

- Let (Σ, s_0, S_g) be a safe SSP
 - I.e., S_g is reachable from every state
 - Same as safely explorable in non-deterministic models
- Let π be a safe solution that is defined at all non-goal states
 - I.e., $Dom(\pi) = S \setminus S_g$
- Let $a \in Applicable(s)$
- Cost-to-go

$$Q^{\pi}(s,a) = cost(s,a) + \sum_{s' \in \gamma(s,a)} P(s'|s,a) V^{\pi}(s')$$

- Expected cost if we start at s, use a, and use π afterward
- For every $s \in S \setminus S_g$, let

$$\pi'(s) \in \underset{a \in Applicable(s)}{\operatorname{argmin}} Q^{\pi}(s, a)$$



Policy Iteration

- Inputs
 - SSP problem (Σ, s_0, S_g)
 - Initial policy π_0
- Finds an optimal policy
- Converges in a finite number of steps

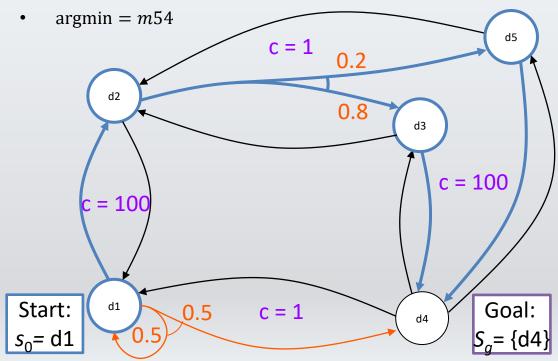
n equations, n unknowns, where n = |S|

```
 \begin{array}{c} \mathbf{policy\text{-}iteration}\left(\boldsymbol{\varSigma},\boldsymbol{s_0},\boldsymbol{S_g},\boldsymbol{\pi_0}\right) \\ \boldsymbol{\pi} \leftarrow \boldsymbol{\pi_0} \\ \mathbf{loop} \\ \\ \mathbf{compute}\left\{\mathbf{V}^{\boldsymbol{\pi}}(s) \mid s \in S\right\} \\ \mathbf{for} \ \mathbf{every} \ \mathbf{state} \ s \in S \setminus S_g \ \mathbf{do} \\ \boldsymbol{A} \leftarrow \mathbf{argmin}_{a \in Applicable(s)} \ \boldsymbol{\mathcal{Q}}^{\boldsymbol{\pi}}(s,a) \\ \mathbf{if} \ \boldsymbol{\pi}(s) \in \boldsymbol{A} \ \mathbf{then} \\ \boldsymbol{\pi'}(s) \leftarrow \boldsymbol{\pi}(s) \\ \mathbf{else} \\ \boldsymbol{\pi'}(s) \leftarrow \mathbf{any} \ \mathbf{action} \ \mathbf{in} \ \boldsymbol{A} \\ \mathbf{if} \ \boldsymbol{\pi'} = \boldsymbol{\pi} \ \mathbf{then} \\ \mathbf{return} \ \boldsymbol{\pi} \\ \boldsymbol{\pi} \leftarrow \boldsymbol{\pi'} \end{array}
```

Example

- Start with
 - $\pi = \pi_0 = \{(d1, m12), (d2, m23), (d3, m34), (d5, m54)\}$
- Expected cost
 - $V^{\pi}(d4) = 0$
 - $V^{\pi}(d3) = 100 + 1 \cdot V^{\pi}(d4) = 100$
 - $V^{\pi}(d5) = 100 + 1 \cdot V^{\pi}(d4) = 100$
 - $V^{\pi}(d2) = 1 + (0.8 \cdot V^{\pi}(d3) + 0.2 \cdot V^{\pi}(d5))$ = 101
 - $V^{\pi}(d1) = 100 + 1 \cdot V^{\pi}(d2) = 201$
- Cost-to-go
 - Q(d1, m12) = 100 + 1(101) = 201
 - Q(d1, m14)= 1 + 0.5(201) + 0.5(0) = 101.5
 - argmin = m14
 - Q(d2, m23)= 1 + (0.8(100) + 0.2(100)) = 101
 - Q(d2, m21) = 100 + 201 = 301
 - argmin = m23

- Cost-to-go continued
 - Q(d3, m34) = 100 + 0 = 100
 - Q(d3, m32) = 1 + 101 = 102
 - argmin = m34
 - Q(d5, m54) = 100 + 0 = 100
 - Q(d5, m52) = 1 + 101 = 102

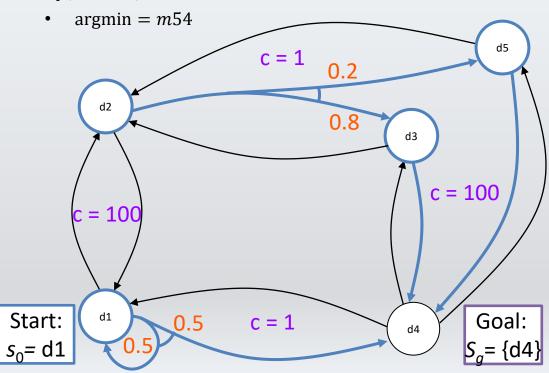


Example

- Continue with
 - $\pi = \{(d1, m14), (d2, m23), (d3, m34), (d5, m54)\}$
- Expected cost
 - $V^{\pi}(d4) = 0$
 - $V^{\pi}(d3) = 100 + V^{\pi}(d4) = 100$
 - $V^{\pi}(d5) = 100 + V^{\pi}(d4) = 100$
 - $V^{\pi}(d2) = 1 + (0.8V^{\pi}(d3) + 0.2V^{\pi}(d5))$ = 101
 - $V^{\pi}(d1) = 1 + (0.5V^{\pi}(d1) + 0.5V^{\pi}(d4))$ = 2
- Cost-to-go
 - Q(d1, m12) = 100 + 101 = 201
 - Q(d1, m14)= 1 + 0.5(2) + 0.5(0) = 2
 - argmin = m14
 - Q(d2, m23)= 1 + (0.8(100) + 0.2(100)) = 101
 - Q(d2, m21) = 100 + 2 = 102
 - argmin = m23

 π unchanged

- Cost-to-go continued
 - Q(d3, m34) = 100 + 0 = 100
 - Q(d3, m32) = 100 + 101 = 201
 - argmin = m34
 - Q(d5, m54) = 100 + 0 = 100
 - Q(d5, m54) = 100 + 101 = 201



Value Iteration

- Inputs
 - SSP problem (Σ, s_0, S_g)
 - Convergence criterion $\eta > 0$
 - *V*₀ is a heuristic fct. for initial values
 - $V_0(s) = 0 \ \forall s \in S_g$
 - E.g., adapt a heuristics from Ch. 2
- Returns optimal policy π
- V_i = values computed at i'th iteration
- π_i = policy computed from V_i
- Synchronous: computes V_i and π_i from old V_{i-1} and π_{i-1}
- Asynchronous: update V and π in place
 - New values available immediately
 - More efficient than synchronous version

```
\begin{array}{l} \mathbf{sync\text{-}value\text{-}iteration}\left(\boldsymbol{\Sigma},\boldsymbol{s}_{0},\boldsymbol{S}_{g},\boldsymbol{V}_{0},\boldsymbol{\eta}\right) \\ \mathbf{for} \ i = 1,2,\dots \ \mathbf{do} \\ \mathbf{for} \ \mathrm{every} \ \mathrm{state} \ s \in S \setminus S_{g} \ \mathbf{do} \\ \mathbf{for} \ \mathrm{every} \ a \in Applicable(s) \ \mathbf{do} \\ \boldsymbol{Q}(s,a) \leftarrow cost(s,a) + \boldsymbol{\Sigma}_{s'\in S}P(s'\mid s,a)\,\boldsymbol{V}_{i-1}(s') \\ \boldsymbol{V}_{i}(s) \leftarrow \min_{a \in Applicable(s)} \, \boldsymbol{Q}(s,a) \\ \boldsymbol{\pi}_{i}(s) \leftarrow \mathrm{argmin}_{a \in Applicable(s)} \, \boldsymbol{Q}(s,a) \\ \mathbf{if} \ \max_{s \in S} |\, \boldsymbol{V}_{i}(s) - \boldsymbol{V}_{i-1}(s) \,| \, \leq \, \boldsymbol{\eta} \ \mathbf{then} \\ \mathbf{return} \ \boldsymbol{\pi}_{i} \end{array}
```

```
async-value-iteration (\Sigma, s_0, S_g, V_0, \eta)

global \pi \leftarrow \emptyset

global V(s) \leftarrow V_0(s) \ \forall \ s

loop

r \leftarrow \max_{s \in S \setminus Sg} \text{Bellman-Update}(s)

if r \leq \eta then

return \pi

Bellman-Update(s)

V_{old} \leftarrow V(s)

for every a \in Applicable(s) do

Q(s,a) \leftarrow cost(s,a) + \Sigma_{s' \in S} P(s' \mid s,a) V(s')

V(s) \leftarrow \min_{a \in Applicable(s)} Q(s,a)

\pi(s) \leftarrow argmin_{a \in Applicable(s)} Q(s,a)

return |V(s) - V_{old}|
```

Asynchronous

•
$$Q(d1, m12) = 100 + 0 = 100$$

•
$$Q(d1, m14) = 1 + (0.5(0) + 0.5(0)) = 1$$

•
$$V_1(d1) = 1$$
; $\pi_1(d1) = m14$

•
$$Q(d2, m21) = 100 + 0 = 100$$

•
$$Q(d2, m23) = 1 + (0.2(0) + 0.8(0)) = 1$$

•
$$V_1(d2) = 1$$
; $\pi_1(d2) = m23$

•
$$Q(d3, m32) = 1 + 0 = 1$$

•
$$Q(d3, m34) = 100 + 0 = 100$$

•
$$V_1(d3) = 1$$
; $\pi_1(d3) = m32$

•
$$Q(d5, m52) = 1 + 0 = 1$$

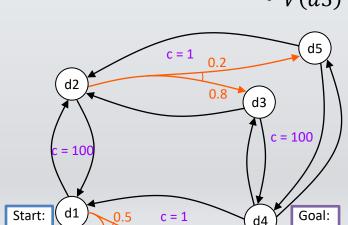
•
$$Q(d5, m54)$$

= $100 + 0 = 100$

•
$$V_1(d5) = 1;$$

 $\pi_1(d5) = m52$

•
$$r = \max(1 - 0, 1 - 0, 1 - 0, 1 - 0) = 1$$



•
$$Q(d1, m12) = 100 + 0 = 100$$

•
$$Q(d1, m14) = 1 + (0.5(0) + 0.5(0)) = 1$$

•
$$V(d1) = 1$$
; $\pi(d1) = m14$

•
$$Q(d2, m21) = 100 + 1 = 101$$

•
$$Q(d2, m23) = 1 + (0.2(0) + 0.8(0)) = 1$$

•
$$V(d2) = 1$$
; $\pi(d2) = m23$

•
$$Q(d3, m32) = 1 + 1 = 2$$

•
$$Q(d3, m34) = 100 + 0 = 100$$

•
$$V(d3) = 2$$
; $\pi(d3) = m32$

•
$$Q(d5, m52) = 1 + 1 = 2$$

•
$$Q(d5, m54) = 100 + 0 = 100$$

•
$$V(d5) = 2$$
; $\pi(d5) = m52$

•
$$r = \max(1 - 0, 1 - 0, 2 - 0, 2 - 0) = 2$$

Asynchronous

•
$$Q(d1, m12) = 100 + 1 = 101$$

•
$$Q(d1, m14) = 1 + (0.5(1) + 0.5(0)) = 1.5$$

•
$$V_1(d1) = 1.5$$
; $\pi_1(d1) = m14$

•
$$Q(d2, m21) = 100 + 1 = 101$$

•
$$Q(d2, m23) = 1 + (0.2(1) + 0.8(1)) = 2$$

•
$$V_1(d2) = 2$$
; $\pi_1(d2) = m23$

•
$$Q(d3, m32) = 1 + 1 = 2$$

•
$$Q(d3, m34) = 100 + 0 = 100$$

•
$$V_1(d3) = 2$$
; $\pi_1(d3) = m32$

•
$$Q(d5, m52) = 1 + 1 = 2$$

• Q(d5, m54) = 100 + 0 = 100

•
$$V_1(d5) = 1;$$

 $\pi_1(d5) = m52$

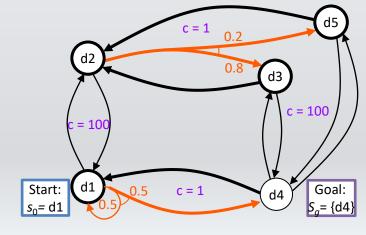
•
$$r = \max(1.5 - 1, 2 - 1, 2 - 1, 2 - 1) = 1$$

$$V(d1) = 1$$

$$V(d2) = 1$$

$$V(d3) = 1$$

$$V(d5) = 1$$



- Q(d1, m12) = 100 + 1 = 101
- Q(d1, m14) = 1 + (0.5(1) + 0.5(0)) = 1.5
 - V(d1) = 1.5; $\pi(d1) = m14$
- Q(d2, m21) = 100 + 1.5 = 101.5
- Q(d2, m23) = 1 + (0.2(2) + 0.8(2)) = 3
 - V(d2) = 3; $\pi(d2) = m23$
- Q(d3, m32) = 1 + 3 = 4
- Q(d3, m34) = 100 + 0 = 100
 - V(d3) = 4; $\pi(d3) = m32$
 - Q(d5, m52) = 1 + 3 = 4
 - Q(d5, m54) = 100 + 0 = 100
 - V(d5) = 4; $\pi(d5) = m52$

•
$$r = \max(1.5 - 1, 3 - 1, 4 - 2, 4 - 2) = 2$$

$$V(d1) = 1$$

 $V(d2) = 1$
 $V(d3) = 2$
 $V(d5) = 2$

Asynchronous

•
$$Q(d1, m12) = 100 + 2 = 102$$

•
$$Q(d1, m14) = 1 + (0.5(1.5) + 0.5(0)) = 1.75$$

•
$$V_1(d1) = 1.75$$
; $\pi_1(d1) = m14$

•
$$Q(d2, m21) = 100 + 1.5 = 101.5$$

•
$$Q(d2, m23) = 1 + (0.2(2) + 0.8(2)) = 3$$

•
$$V_1(d2) = 3$$
; $\pi_1(d2) = m23$

•
$$Q(d3, m32) = 1 + 2 = 3$$

•
$$Q(d3, m34) = 100 + 0 = 100$$

•
$$V_1(d3) = 3$$
; $\pi_1(d3) = m32$

•
$$Q(d5, m52) = 1 + 2 = 3$$

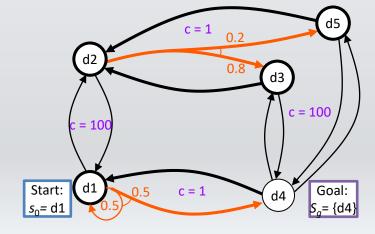
•
$$Q(d5, m54) = 100 + 0 = 100$$

•
$$V_1(d5) = 3;$$

 $\pi_1(d5) = m52$

•
$$r = \max(1.75 - 1.5,$$

 $3 - 2,3 - 2,3 - 2) = 1$
 $V(d1) = 1.5$
 $V(d2) = 2$
 $V(d3) = 2$
 $V(d5) = 2$



•
$$Q(d1, m12) = 100 + 3 = 103$$

•
$$Q(d1, m14) = 1 + (0.5(1.5) + 0.5(0)) = 1.75$$

•
$$V(d1) = 1.75$$
; $\pi(d1) = m14$

•
$$Q(d2, m21) = 100 + 1.75 = 101.75$$

•
$$Q(d2, m23) = 1 + (0.2(4) + 0.8(4)) = 5$$

•
$$V(d2) = 5$$
; $\pi(d2) = m23$

•
$$Q(d3, m32) = 1 + 5 = 6$$

•
$$Q(d3, m34) = 100 + 0 = 100$$

•
$$V(d3) = 6$$
; $\pi(d3) = m32$

•
$$Q(d5, m52) = 1 + 5 = 6$$

•
$$Q(d5, m54) = 100 + 0 = 100$$

•
$$V(d5) = 6$$
; $\pi(d5) = m52$

•
$$r = \max(1.75 - 1.5, 5 - 3.$$

 $6 - 4, 6 - 4) = 2$

$$V(d1) = 1.5$$

$$V(d2) = 3$$

$$V(d3) = 4$$

$$V(d5) = 4$$

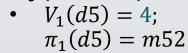
Asynchronous

•
$$Q(d1, m12) = 100 + 3 = 103$$

•
$$Q(d1, m14) = 1 + (0.5(1.75) + 0.5(0)) = 1.875$$
 •

Start:

- $V_1(d1) = 1.875$; $\pi_1(d1) = m14$
- Q(d2, m21) = 100 + 1.75 = 101.75
- Q(d2, m23) = 1 + (0.2(3) + 0.8(3)) = 4
 - $V_1(d2) = 4$; $\pi_1(d2) = m23$
- Q(d3, m32) = 1 + 3 = 4
- Q(d3, m34) = 100 + 0 = 100
 - $V_1(d3) = 4$; $\pi_1(d3) = m32$
- Q(d5, m52) = 1 + 3 = 4
- Q(d5, m54) = 100 + 0 = 100



 $r = \max(1.875 - 1.75,$

$$4 - 3.4 - 3.4 - 3) = 1$$

$$V(d1) = 1.75$$

$$V(d2) = 3$$

$$V(d3) = 3$$

V(d5) = 3

How long before $r \leq \eta$? How long, if the "vertical" actions cost 10 instead of 100?

0.5 c = 1

- Q(d1, m12) = 100 + 5 = 105
- Q(d1, m14) = 1 + (0.5(1.75) + 0.5(0)) =1.875
 - V(d1) = 1.875; $\pi(d1) = m14$
- Q(d2, m21) = 100 + 1.875 = 101.875
- Q(d2, m23) = 1 + (0.2(6) + 0.8(6)) = 7
 - V(d2) = 7; $\pi(d2) = m23$
- Q(d3, m32) = 1 + 7 = 8
- Q(d3, m34) = 100 + 0 = 100
 - V(d3) = 8; $\pi(d3) = m32$
 - Q(d5, m52) = 1 + 7 = 8
 - Q(d5, m54) = 100 + 0 = 100
 - V(d5) = 8; $\pi(d5) = m52$

$$V(d1) = 1.75$$

 $V(d2) = 5$
 $V(d3) = 6$
 $V(d5) = 6$

c = 100

Goal:

$$V(d1) = 1.75$$

 $V(d2) = 5$
 $V(d3) = 6$ $r = \max(1.875 - 1.75, 7 - 5, 8 - 6, 8 - 6) = 2$

Discussion

- Policy iteration
 - Computes new π in each iteration; computes V^{π} from π
 - More work per iteration than value iteration
 - Needs to solve a set of simultaneous equations
 - Usually converges in a smaller number of iterations
- Value iteration
 - Computes new V in each iteration; chooses π based on V
 - New *V* is a revised set of heuristic estimates
 - Not V^{π} for π or any other policy
 - Less work per iteration: does not need to solve a set of equations
 - Usually takes more iterations to converge
- At each iteration, both algorithms need to examine the entire state space
 - Number of iterations polynomial in |S|, but |S| may be quite large
- Next: use search techniques to avoid searching the entire space

Summary

- SSPs
- Solutions, closed solutions, histories
- Unsafe solutions, acyclic safe solutions, cyclic safe solutions
- Expected cost, planning as optimization
- Policy iteration
- Value iteration (synchronous, asynchronous)
 - Bellman-update

Outline

- 6.2 Stochastic shortest path problems
 - Safe/unsafe policies
 - Optimality
 - Policy iteration, value iteration
- 6.3 Heuristic search algorithms (omitted)
- 6.4 Online probabilistic planning
 - Lookahead
 - Reinforcement learning

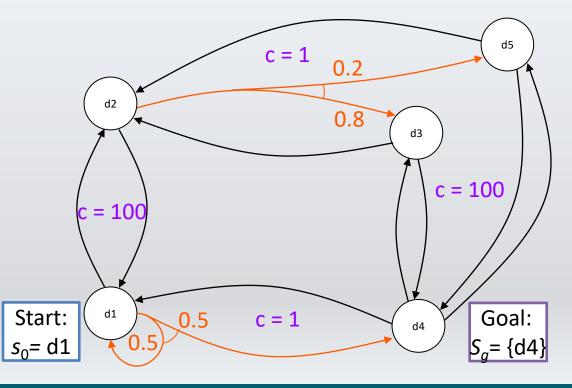
Outline

- 6.2 Stochastic shortest path problems
 - Safe/unsafe policies
 - Optimality
 - Policy iteration, value iteration
- 6.3 Heuristic search algorithms (omitted)
- 6.4 Online probabilistic planning
 - Lookahead
 - Reinforcement learning

Planning and Acting

- Same as in Ch. 2, except s instead of ξ
 - Could use s ← abstraction of ξ
 as in Ch. 2
 - Inputs: SSP problem (Σ, s_0, S_g) , vector of parameters θ
- Could also use Run-Lazy-Lookahead or Run-Concurrent-Lookahead
- What to use for Lookahead?
 - AO*, LAO*, ... (in book) → Modify to search part of the space
 - Classical planner running on determinised domain
 - Stochastic sampling algorithms

```
Run-Lookahead (\Sigma, s_0, S_g, \theta)
s \leftarrow s_0
while s \notin S_g and Applicable(s) \neq \emptyset do
a \leftarrow Lookahead(s, \theta)
perform action a
s \leftarrow observe resulting state
```



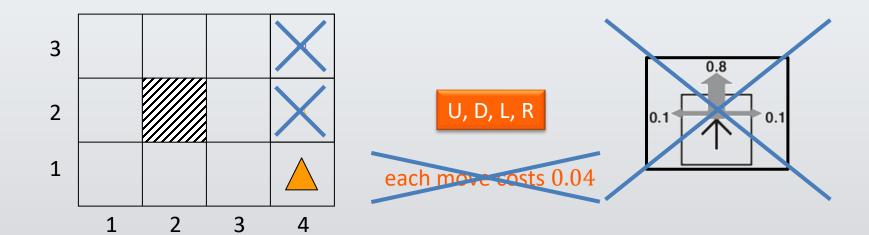
Planning and Acting

- If Lookahead = classical planner on determinized domain
 - \Rightarrow FS-Replan (Ch. 5)
- Problem: Forward-search may choose a plan that depends on low-probability outcome
- RFF algorithm (see book) attempts to alleviate this

```
Run-Lookahead (\Sigma, s_0, S_g, \theta)
s \leftarrow s_0
while s \notin S_g and Applicable(s) \neq \emptyset do
a \leftarrow \text{Lookahead}(s, \theta)
perform action a
s \leftarrow \text{observe resulting state}
```

```
FS-Replan (\Sigma, s, S_g)
\pi_d \leftarrow \emptyset
while s \notin S_g and Applicable(s) \neq \emptyset do
if \pi_d undefined for s then
\pi_d \leftarrow \text{Forward-Search}(\Sigma_d, s, S_g)
if \pi_d = \text{failure then}
return failure
perform action \pi_d(s)
s \leftarrow \text{observe resulting state}
```


- Agent, placed in an environment, must learn to act optimally in it
- Assume that the world behaves like an MDP, except
 - Agent can act but does not know the transition model
 - Agent observes its current state and its reward but does not know the reward function
- Goal: learn an optimal policy



Factors That Make RL Hard

- Actions have non-deterministic <u>effects</u>
 - which are initially <u>unknown</u> and must be learned
- Rewards / punishments can be infrequent
 - Often at the end of long sequences of actions
 - How does an agent determine what action(s) were really responsible for reward or punishment?
 - Credit assignment problem
 - World is large and complex

Passive vs. Active Learning

- Passive learning
 - Agent acts based on a fixed policy π and tries to learn how good the policy is by observing the world go by
 - Analogous to policy iteration (without the optimisation part)
- Active learning
 - Agent attempts to find an optimal (or at least good) policy by exploring different actions in the world
 - Analogous to solving the underlying MDP

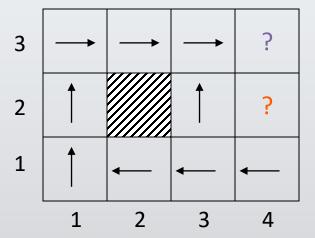
Model-based vs. Model-free RL

- Model-based approach to RL
 - Learn the MDP model (P(s'|s,a)) and R), or an approximation of it
 - Use it to find the optimal policy
- Model-free approach to RL
 - Derive the optimal policy without explicitly learning the model

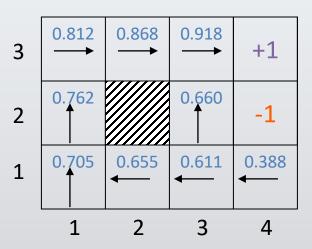
Passive RL

- Suppose the agent is given a policy
- Wants to determine how good it is

• Given π :



Need to learn $U^{\pi}(s)$:

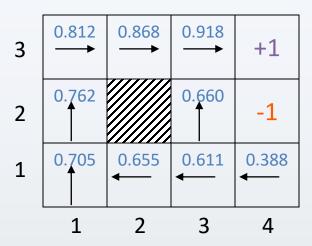


Passive RL

- Given policy π :
 - Estimate $U^{\pi}(s)$
- Not given
 - Transition model P(s'|s,a)
 - Reward function R(s)
- Simply follow the policy for many epochs
 - Epochs: training sequences / trials

$$(1,1) \rightarrow (1,2) \rightarrow (1,3) \rightarrow (1,2) \rightarrow (1,3) \rightarrow (2,3) \rightarrow (3,3) \rightarrow (3,4) + 1$$

 $(1,1) \rightarrow (1,2) \rightarrow (1,3) \rightarrow (2,3) \rightarrow (3,3) \rightarrow (3,2) \rightarrow (3,3) \rightarrow (3,4) + 1$
 $(1,1) \rightarrow (2,1) \rightarrow (3,1) \rightarrow (3,2) \rightarrow (4,2) - 1$



 Assumption: restart or reset possible (or no terminal states with the end of an epoch given by the receipt of a reward)

Direct Utility Estimation (DUE)

- Model-free approach
 - Estimate $U^{\pi}(s)$ as average total reward of epochs containing s
 - Calculating from s to end of epoch
- Reward-to-go of a state s
 - The sum of the (discounted) rewards from that state until a terminal state is reached
- Key: use observed reward-to-go of the state as the direct evidence of the actual expected utility of that state

DUE: Example

- Suppose the agent observes the following trial:
 - $(1,1)_{-0.04} \rightarrow (1,2)_{-0.04} \rightarrow (1,3)_{-0.04} \rightarrow (1,2)_{-0.04} \rightarrow (1,3)_{-0.04} \rightarrow (2,3)_{-0.04} \rightarrow (3,3)_{-0.04} \rightarrow (3,4)_{+1}$
- The total reward starting at (1,1) is 0.72
 - I.e., a sample of the observed-reward-to-go for (1,1)
- For (1,2), there are two samples of the observed-reward-to-go
 - Assuming $\gamma = 1$
 - 1. $(1,2)_{-0.04} \rightarrow (1,3)_{-0.04} \rightarrow (1,2)_{-0.04} \rightarrow (1,3)_{-0.04} \rightarrow (2,3)_{-0.04} \rightarrow (3,3)_{-0.04} \rightarrow (3,4)_{+1}$ [Total: 0.76]
 - 2. $(1,2)_{-0.04} \rightarrow (1,3)_{-0.04} \rightarrow (2,3)_{-0.04} \rightarrow (3,3)_{-0.04} \rightarrow (3,4)_{+1}$ [Total: 0.84]

DUE: Convergence

- Keep a running average of the observed reward-to-go for each state
 - E.g., for state (1,2), it stores $\frac{(0.76+0.84)}{2} = 0.8$
- As the number of trials goes to infinity, the sample average converges to the true utility

DUE: Problem

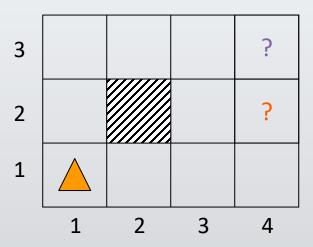
- Big problem: it converges very slowly!
- Why?
 - Does not exploit the fact that utilities of states are not independent
 - Utilities follow the Bellman equation

$$U^{\pi}(s_i) = R(s_i) + \gamma \sum_{s_j} P(s_j | \pi(s_i), s_i) U^{\pi}(s_j)$$

Dependence on neighbouring states

DUE: Problem

- Using the dependence to your advantage
 - Suppose you know that state (3,3) has a high utility
 - Suppose you are now at (3,2)
 - Bellman equation would be able to tell you that (3,2) is likely to have a high utility because (3,3) is a neighbour
- DUE cannot tell you that until the end of the trial



Adaptive Dynamic Programming (ADP)

- Model-based approach
- Given policy π :
 - Estimate $U^{\pi}(s)$
 - All while acting in the environment
- How?
- Basically learns the transition model P(s'|s,a) and the reward function R(s)
 - Takes advantage of constraints in the Bellman equation
- Based on P(s'|s,a) and R(s), performs policy evaluation (part of policy iteration)

Recap: Policy Iteration

- Pick a policy π_0 at random
- Repeat:
 - Policy evaluation: Compute the utility of each state for π_t
 - $U_t(s_i) = R(s_i) + \gamma \sum_{s_j} P(s_j | \pi_t(s_i).s_i) U_t(s_j)$
 - No longer involves a max operation as action is determined by π_t
 - Policy improvement: Compute the policy π_{t+1} given U_t
 - $\pi_{t+1}(s_i) = \underset{a}{\operatorname{argmax}} \sum_{s_j} P(s_j | \pi_t(s_i), s_i) U_t(s_j)$
 - If $\pi_{t+1} = \pi_t$, then return π_t

Can be solved in $O(n^3)$, where n = |S|

Solve the set of linear equations:

$$U(s_i) = R(s_i) + \gamma \sum_{s_j} P(s_j | \pi(s_i).s_i) U(s_j)$$

(often a sparse system)

ADP: Estimate the Utilities

- Make use of policy evaluation to estimate the utilities of states
- To use policy equation

$$U_{t+1}(s_i) = R(s_i) + \gamma \sum_{s_j} P(s_j | \pi(s_i), s_i) U_t(s_j)$$

agent needs to learn P(s'|s,a) and R(s)

How?

ADP: Learn the Model

- Learning R(s)
 - Easy because it is deterministic
 - Whenever you see a new state, store the observed reward value as R(s)
- Learning P(s'|s,a)
 - Keep track of how often you get to state s' given that you are in state s and do action a
 - E.g., if you are in s=(1,3) and you execute R three times and you end up in s'=(2,3) twice, then $P(s'|\mathbf{R},s)=\frac{2}{3}$

ADP: Algorithm


```
function passive-ADP-agent (percept)
   returns an action
   input: percept, indicating current state s', reward r'
   static:
       \pi, fixed policy
       mdp, MDP with P[s'|s,a], R(s), \gamma
        U, table of utilities, initially empty
       N_{\rm sa}, table of freq. for s-a pairs, initially 0
       N_{sas'}, table of freq. for s-a-s' triples, initially 0
        s, a, previous state and action, initially null
   if s' is new then
       U[s'] \leftarrow r'
        R[s'] \leftarrow r'
    if s is not null then
        increment N_{sa}[s,a] and N_{sas'}[s,a,s']
       for each t s.t. N_{sas}, [s, a, t] \neq 0 do
           P[t|s,a] \leftarrow N_{sas'}[s,a,t] / N_{sa}[s,a]
    U \leftarrow Policy-evaluation(\pi, U, mdp)
    if Terminal?(s') then
        s, a \leftarrow \text{null}
   else
        s, a \leftarrow s', \pi[s']
    return a
```

Update transition model

Update

reward

function

ADP: Problem

- Need to solve a system of simultaneous equations costs $O(n^3)$
 - Very hard to do if you have 10^{50} states like in Backgammon
 - Could make things a little easier with modified policy iteration
- Can the agent avoid the computational expense of full policy evaluation?

Temporal Difference Learning (TD)

- Instead of calculating the exact utility for a state, can the agent approximate it and possibly make it less computationally expensive?
- Yes, it can! Using TD:

$$U^{\pi}(s_i) = R(s_i) + \gamma \sum_{s_j} P(s_j | \pi(s_i), s_i) U^{\pi}(s_j)$$

- Instead of doing the sum over all successors, only adjust the utility of the state based on the successor observed in the trial
- Does not estimate the transition model model-free

TD: Example

- Suppose you see that $U^{\pi}(1,3) = 0.84$ and $U^{\pi}(2,3) = 0.92$
- If the transition $(1,3) \rightarrow (2,3)$ happens all the time, you would expect to see:

$$U^{\pi}(1,3) = R(1,3) + U^{\pi}(2,3)$$

 $\Rightarrow U^{\pi}(1,3) = -0.04 + U^{\pi}(2,3)$
 $\Rightarrow U^{\pi}(1,3) = -0.04 + 0.92 = 0.88$

• Since you observe $U^{\pi}(1,3) = 0.84$ in the first trial and it is a little lower than 0.88, so you might want to "bump" it towards 0.88

Aside: Online Mean Estimation

- Suppose that we want to incrementally compute the mean of a sequence of numbers
 - E.g., to estimate the mean of a random variable from a sequence of samples

$$\hat{X}_{n+1} = \frac{1}{n+1} \sum_{i=1}^{n+1} x_i = \left(\frac{1}{n+1} \sum_{i=1}^n x_i\right) + \frac{1}{n+1} x_{n+1} = \left(\frac{n}{n(n+1)} \sum_{i=1}^n x_i\right) + \frac{1}{n+1} x_{n+1}$$
 average of $n+1$ = $\left(\frac{n+1-1}{n(n+1)} \sum_{i=1}^n x_i\right) + \frac{1}{n+1} x_{n+1} = \left(\frac{n+1}{n(n+1)} \sum_{i=1}^n x_i\right) - \left(\frac{1}{n(n+1)} \sum_{i=1}^n x_i\right) + \frac{1}{n+1} x_{n+1}$ = $\left(\frac{1}{n} \sum_{i=1}^n x_i\right) - \left(\frac{1}{(n+1)} \cdot \frac{1}{n} \sum_{i=1}^n x_i\right) + \frac{1}{n+1} x_{n+1} = \left(\frac{1}{n} \sum_{i=1}^n x_i\right) + \frac{1}{n+1} \left(x_{n+1} - \frac{1}{n} \sum_{i=1}^n x_i\right)$ = $\hat{X}_n + \frac{1}{n+1} \left(x_{n+1} - \frac{\hat{X}_n}{n+1} + \frac{\hat{X}_n}{n+1} + \frac{1}{n+1} x_n + \frac{1}{n+1} x$

• Given a new sample x_{n+1} , the new mean is the old estimate (for n samples) plus the weighted difference between the new sample and old estimate

TD Update

• TD update for transition from s to s'

$$U^{\pi}(s) = U^{\pi}(s) + \alpha (R(s) + \gamma U^{\pi}(s') - U^{\pi}(s))$$

learning rate

new (noisy) sample of utility based on next state

- Similar to one step of value iteration
- Equation called backup
- So, the update is maintaining a "mean" of the (noisy) utility samples
- If the learning rate decreases with the number of samples (e.g., 1/n), then the utility estimates will eventually converge to true values

$$U^{\pi}(s_i) = R(s_i) + \gamma \sum_{s_j} P(s_j | \pi(s_i), s_i) U^{\pi}(s_j)$$

TD: Convergence

- Since TD uses the observed successor s' instead of all the successors, what happens if the transition $s \to s'$ is very rare and there is a big jump in utilities from s to s'?
 - How can $U^{\pi}(s)$ converge to the true equilibrium value?
- Answer:
 - The average value of $U^{\pi}(s)$ will converge to the correct value
 - This means the agent needs to observe enough trials that have transitions from s to its successors
 - Essentially, the effects of the TD backups will be averaged over a large number of transitions
 - Rare transitions will be rare in the set of transitions observed

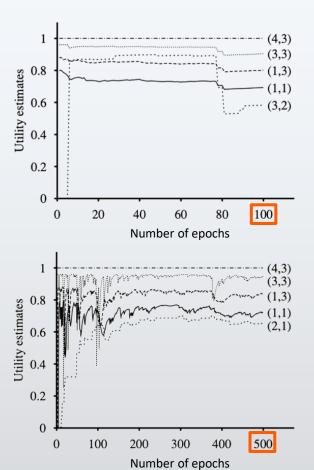
Comparison between ADP and TD

- Advantages of ADP
 - Converges to true utilities in fewer iterations
 - Utility estimates do not vary as much from the true utilities
- Advantages of TD
 - Simpler, less computation per observation
 - Crude but efficient first approximation to ADP
 - Do not need to build a transition model to perform its updates

ADP and TD

- Utility estimates for 4x3 grid
 - ADP, given optimal policy
 - Notice the large changes occurring around the 78th trial—this is the first time that the agent falls into the -1 terminal state at (4,2)

- TD
 - More epochs required
 - Faster runtime per epoch



Figures: AIMA, Russell/Norvig

Overall comparisons

- DUE (model-free)
 - Simple to implement
 - Each update is fast
 - Does not exploit Bellman constraints and converges slowly
- ADP (model-based)
 - Harder to implement
 - Each update is a full policy evaluation (expensive)
 - Fully exploits Bellman constraints
 - Fast convergence (in terms of epochs)
- TD (model-free)
 - Update speed and implementation similar to direct estimation
 - Partially exploits Bellman constraints adjusts state to "agree" with observed successor
 - Not all possible successors
 - Convergence in between DUE and ADP

Passive Learning: Disadvantage

- Learning $U^{\pi}(s)$ does not lead to an optimal policy, why?
 - Only evaluated π (no optimisation)
 - Models are incomplete/inaccurate
 - Agent has only tried limited actions, cannot gain a good overall understanding of P(s'|s,a)
- Solution: Active learning

Goal of Active Learning

- Assume that the agent still has access to some sequence of trials performed by the agent
 - Agent is not following any specific policy
 - Assume for now that the sequences should include a thorough exploration of the space
 - We will talk about how to get such sequences later
- The goal is to learn an optimal policy from such sequences
 - Active RL agents
 - Active ADP agent
 - Q-learner (based on TD algorithm)

Active ADP Agent

- Model-based approach
- Using the data from its trials, agent estimates a transition model \widehat{T} and a reward function \widehat{R}
 - With $\hat{T}(s, a, s')$ and $\hat{R}(s)$, it has an estimate of the underlying MDP
 - Like passive ADP using policy evaluation
- Given estimate of the MDP, it can compute the optimal policy by solving the Bellman equations using value or policy iteration

$$U(s) = \hat{R}(s) + \gamma \max_{a} \sum_{s'} \hat{T}(s, a, s') U(s')$$

• If \hat{T} and \hat{R} are accurate estimations of the underlying MDP model, agent can find the optimal policy this way

Issues with ADP Approach

- Need to maintain MDP model
- T can be very large, $O(|S|^2 \cdot |A|)$
- Also, finding the optimal action requires solving the Bellman equation time consuming
- Can the agent avoid this large computational complexity both in terms of time and space?

Q-learning

- So far, focus on utilities for states
 - U(s) = utility of state s = expected maximum future rewards
- Alternative: store Q-values
 - Q(a, s) = utility of taking action a at state s = expected maximum future reward if action a taken at state s
- Relationship between U(s) and Q(a, s)?

$$U(s) = \max_{a} Q(a, s)$$

Q-learning can be model-free

• Note that after computing U(s), to obtain the optimal policy, the agent needs to compute

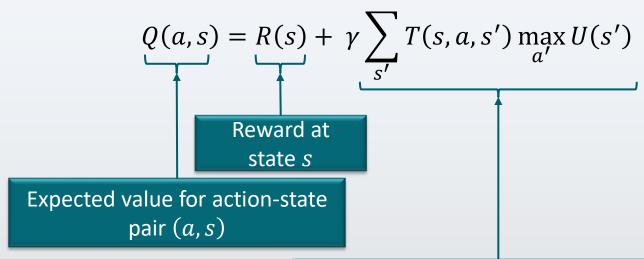
$$\pi(s) = \underset{a}{\operatorname{argmax}} \sum_{s'} T(s, a, s') U(s')$$

- Requires T, model of the world
- Even if it uses TD learning (model-free), it still needs the model to get the optimal policy
- However, if the agent successfully estimates Q(a,s) for all a and s, it can compute the optimal policy without using the model

$$\pi(s) = \operatorname*{argmax}_{a} Q(a, s)$$

Q-learning

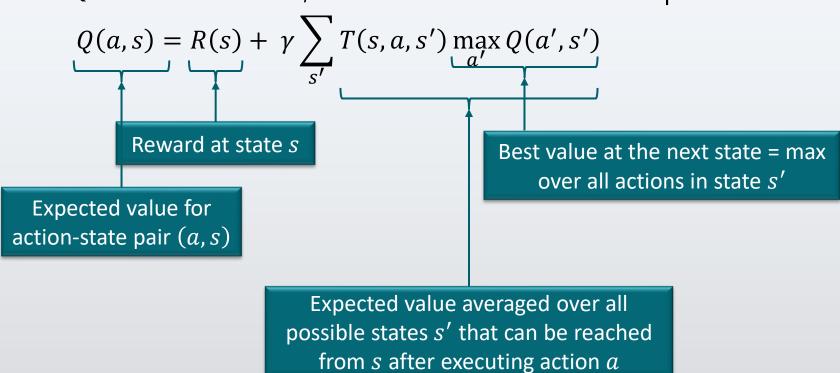
At equilibrium when Q-values are correct, we can write the constraint equation:



Expected value averaged over all possible states s' that can be reached from s after executing action a

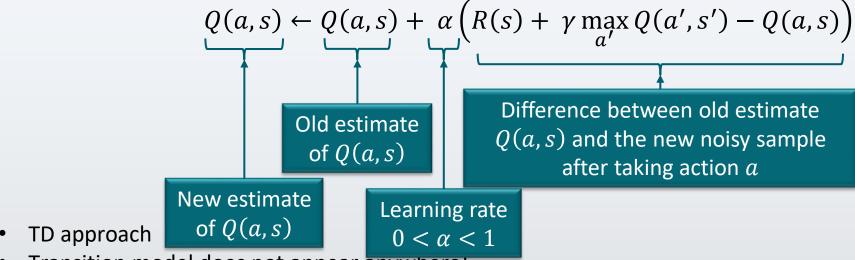
Q-learning

At equilibrium when Q-values are correct, we can write the constraint equation:



Q-learning without a Model

Q-update: after moving from s to state s' using action a



- Transition model does not appear anywhere!
- Once converged, optimal policy can be computed without transition model
 - Completely model-free learning algorithm

Q-learning: Convergence

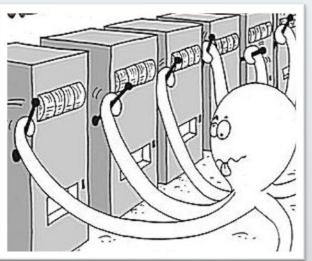
- Guaranteed to converge to true Q-values given enough exploration
- Very general procedure
 - Because it is model-free
- Converges slower than ADP agent
 - Because it is completely model-free and it does not enforce consistency among values through the model

Exploitation vs. Exploration

- Actions are always taken for one of the two following purposes
 - Exploitation: Execute the current optimal policy to get high payoff
 - Exploration: Try new sequences of (possibly random) actions to improve the agent's knowledge of the environment even though current model does not show they have a high payoff
- Pure exploitation: gets stuck in a rut
- Pure exploration: not much use if you do not put that knowledge into practice

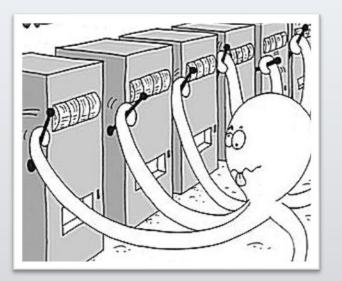
Nice Book: Algorithms to live by

- So far, we assumed that the agent has a set of epochs of sufficient exploration
- Multi-arm bandit problem:
 Statistical model of sequential experiments
 - Name comes from a traditional slot machine (one-armed bandit)
- Question: Which machine to play?



Actions

- n arms, each with a fixed but unknown distribution of reward
 - In terms of actions: Multiple actions $a_1, a_2, ..., a_n$
 - Each a_i provides a reward from an unknown (but stationary) probability distribution p_i
 - Specifically, expectation μ_i of machine i's reward unknown
 - If all μ_i 's were known, then the task is easy: just pick $\underset{i}{\operatorname{argmax}} \mu_i$
- With μ_i 's unknown, question is which arm to pull



Formal Model

- At each time step t = 1, 2, ..., T:
 - Each machine i has a random reward $X_{i,t}$
 - $E[X_{i,t}] = \mu_i$ independent of the past (Markov property again)
 - Pick a machine I_t and get reward $X_{I_t,t}$
 - Other machines' rewards hidden
- Over T time steps, the agent has a total reward of $\sum_{t=1}^{T} X_{I_t,t}$
 - If all μ_i 's known, it would have selected $\underset{i}{\operatorname{argmax}} \mu_i$ at each time t
 - Expected total reward $T \cdot \max_{i} \mu_{i}$
- Agent's "regret": $T \cdot \max_{i} \mu_{i} \sum_{t=1}^{T} X_{I_{t},t}$

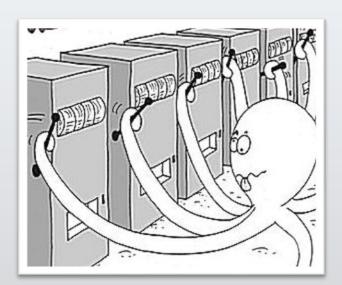
best machine's reward (in expectation)

agent's reward

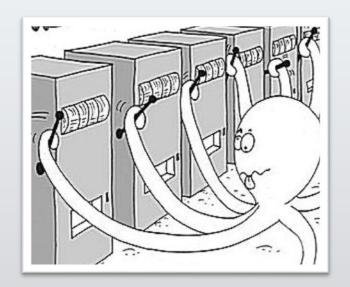
Exploitation vs. Exploration Reprise

- Exploration: to find the best
 - Overhead: big loss when trying the bad arms
- Exploitation: to exploit what the agent has discovered
 - Weakness: there may be better ones that it has not explored and identified
- Question:

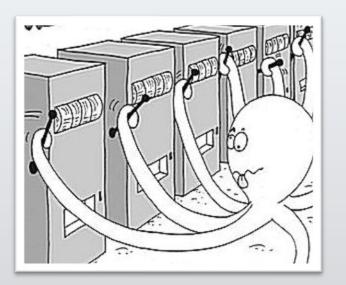
With a fixed budget, how to balance exploration and exploitation such that the total loss (or regret) is small?



- If μ_i is small, trying this arm too many times makes a big loss
 - So the agent should try it less if it finds the previous samples from it are bad
- But how to know whether an arm is good?
- The more the agent tries an arm i, the more information it gets about its distribution
 - In particular, the better estimate to its mean μ_i



- So the agent wants to estimate each μ_i precisely, and at the same time, it does not want to try bad arms too often
 - Two competing tasks
 - Exploration vs. exploitation dilemma
- Rough idea: the agent tries an arm if
 - Either
 it has not tried it often enough
 - Or its estimate of μ_i so far is high



UCB (Upper Confidence Bound) Algorithm

- Input: Set of actions A
- Assume rewards between 0 and 1
 - If they are not, normalise them
- For each action a_i , let
 - r_i = average reward from a_i
 - t_i = number of times a_i tried
- $t = \sum_i t_i$
- Confidence interval around r_i

```
r_i r_i + \sqrt{\frac{2 \ln t}{t_i}}
```

```
UCB(A)

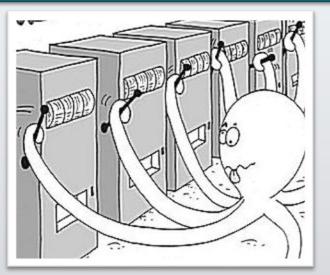
Try each action a_i once
loop

choose an action a_i that has

the highest value of r_i + \sqrt{2 \cdot \ln(t)/t_i}

perform a_i

update r_i, t_i, t
```

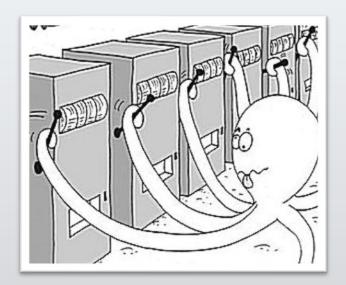


UCB: Performance

 Theorem: If each distribution of reward has support in [0,1], i.e., rewards are normalised, then the regret of the UCB algorithm is at most

$$O\left(\sum_{i:\mu_i<\mu^*}\frac{\ln T}{\Delta_i}+\sum_{j\in\{1,\ldots,n\}}\Delta_j\right)$$

- $\mu^* = \max_i \mu_i$
- $\Delta_i = \mu^* \mu_i$
 - Expected loss of choosing a_i once
- [without proof]
- Loss grows very slowly with T

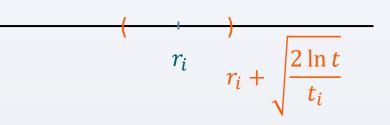


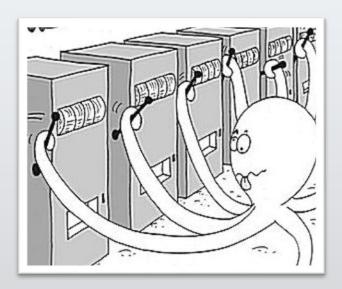
UCB: Performance

- Uses principle of optimism in face of uncertainty
 - Agent does not have a good estimate $\hat{\mu}_i$ of μ_i before trying it many times
 - Thus give a big confidence interval $[-c_i, c_i]$ for such i

•
$$c_i = \sqrt{\frac{2 \ln t}{t_i}}$$

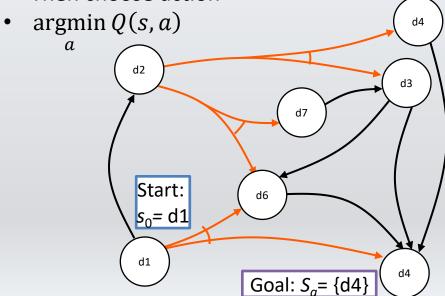
- And select an i with maximum $\mu_i + c_i$
- If an action has not been tried many times, then the big confidence interval makes it still possible to be tried
- I.e., in face of uncertainty (of μ_i), the agent acts optimistically by giving chances to those that have not been tried enough





UCT Algorithm

- Recursive UCB computation to compute Q(s,a) for cost
 - Min ops instead of max
 - Planning domain Σ , state s
 - Horizon *h* (steps into the future)
- Anytime algorithm:
 - Call repeatedly until time runs out
 - Then choose action



```
UCT (\Sigma, s, h)
     if s \in S then
           return 0
     if h = 0 then
           return V_0(s)
     if s \notin Envelope then
           add s to Envelope
           n(s) \leftarrow 0
           for all a ∈ Applicable(s) do
                 Q(s,a) \leftarrow 0
                 n(s,a) \leftarrow 0
     Untried \leftarrow \{a \in Applicable(s) \mid n(s,a)=0\}
     if Untried ≠ Ø then
           \tilde{a} \leftarrow \text{Choose}(\text{Untried})
     else
           \tilde{a} \leftarrow \operatorname{argmin}_{a \in Applicable(s)} \{Q(s, a) - C \cdot [log(n(s)) / n(s, a)]^{\frac{1}{2}}\}
     s' \leftarrow \text{Sample}(\Sigma, s, \tilde{a})
     cost-rollout \leftarrow cost(s, \tilde{a}) + UCT(s', h-1)
     Q(s, \tilde{a}) \leftarrow [n(s, \tilde{a}) \cdot Q(s, \tilde{a}) + cost - rollout]
                       /(1+n(s,\tilde{a}))
     n(s) \leftarrow n(s) + 1
     n(s,\tilde{a}) \leftarrow n(s,\tilde{a}) + 1
     return cost-rollout
```


- Suppose probabilities and costs unknown
- Suppose you can restart your actor as many times as you want
- Can modify UCT to be an acting procedure
 - Use it to explore the environment

perform \tilde{a} ; observe s'

```
UCT (\Sigma, s, h)
     if s \in S then
           return 0
     if h = 0 then
          return V_0(s)
     if s \notin Envelope then
           add s to Envelope
          n(s) \leftarrow 0
           for all a \in Applicable(s) do
                Q(s,a) \leftarrow 0
                n(s,a) \leftarrow 0
     Untried \leftarrow \{a \in Applicable(s) \mid n(s,a)=0\}
     if Untried ≠ Ø then
           \tilde{a} \leftarrow \text{Choose}(\text{Untried})
     else
           \tilde{a} \leftarrow \operatorname{argmin}_{a \in Applicable(s)}
                 \{O(s,a) - \hat{C} [log(n(s))/n(s,a)]^{\frac{1}{2}}\}
     s' Sample (\Sigma, s, \tilde{a})
     cost-\overline{rollout} \leftarrow \overline{cost}(s, \tilde{a}) + UCT(s', h-1)
     Q(s, \tilde{a}) \leftarrow [n(s, \tilde{a}) \cdot Q(s, \tilde{a}) + cost-rollout]
                      /(1+n(s,\tilde{a}))
     n(s) \leftarrow n(s) + 1
     n(s,\tilde{a}) \leftarrow n(s,\tilde{a}) + 1
     return cost-rollout
```

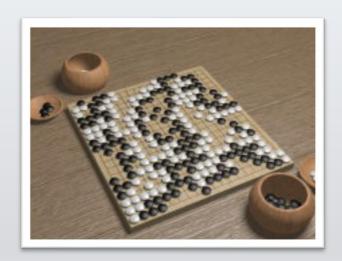

- Suppose probabilities and costs are unknown
 - But you have an accurate simulator for the environment
- Run UCT multiple times in the simulated environment
 - Learn what actions work best

perform \tilde{a} ; observe s'

```
UCT (\Sigma, s, h)
     if s \in S then
           return 0
     if h = 0 then
           return V_0(s)
     if s \notin Envelope then
           add s to Envelope
           n(s) \leftarrow 0
           for all a \in Applicable(s) do
                 Q(s,a) \leftarrow 0
                 n(s,a) \leftarrow 0
     Untried \leftarrow \{a \in Applicable(s) \mid n(s,a)=0\}
     if Untried ≠ Ø then
           \tilde{a} \leftarrow \text{Choose}(\text{Untried})
     else
           \tilde{a} \leftarrow \operatorname{argmin}_{a \in Applicable(s)}
                 \{O(s,a)-C\cdot[\log(n(s))/n(s,a)]^{\frac{1}{2}}\}
     s' Sample (\Sigma, s, \tilde{a})
      cost-\overline{rollout} \leftarrow \overline{cost}(s, \tilde{a}) + UCT(s', h-1)
     Q(s, \tilde{a}) \leftarrow [n(s, \tilde{a}) \cdot Q(s, \tilde{a}) + cost - rollout]
                      /(1+n(s,\tilde{a}))
     n(s) \leftarrow n(s) + 1
     n(s,\tilde{a}) \leftarrow n(s,\tilde{a}) + 1
     return cost-rollout
```

UCT in Two-Player Games

- Generate Monte Carlo rollouts using a modified version of UCT
 - Rollout: game is played out to very end by selecting moves at random, result of each playout used to weight nodes in game tree
- Main differences:
 - Instead of choosing actions that minimize accumulated cost, choose actions that maximize payoff at the end of the game
 - UCT for player 1 recursively calls UCT for player 2
 - Choose opponent's action
 - UCT for player 2 recursively calls UCT for player 1
- Produced the first computer programs to play Go well
 - ≈ 2008–2012
- Monte Carlo rollout techniques similar to UCT were used to train AlphaGo



Intermediate Summary

- Run-Lookahead
- Reinforcement learning
 - Passive learning
 - DUE
 - ADP
 - TD
 - Active learning
 - Active ADP
 - Q-learning
 - Multi-armed bandit problem
 - UCB, UCT

Outline per the Book

6.2 Stochastic shortest path problems

Safe/unsafe policies

Optimality

Policy iteration, value iteration

6.3 Heuristic search algorithms

Best-first search

Determinisation

6.4 Online probabilistic planning

Lookahead

Reinforcement learning

⇒ Next: More on Decision Making