D .."“_4 f"“ UNIVERSITAT ZU LUBECK
% =AY b

Automated Planning and Acting
Probabilistic Models

Institute of Information Systems

Dr. Mattis Hartwig

WAEYY © UNIVERSITAT ZU LUBECK

Content

1. Planning and Acting with Deterministic = 6. Planning and Acting with Probabilistic

Models Models
2. Planning and Acting with Refinement a. Stochastic Shortest-Path Problems
Methods b. Heuristic Search Algorithms

3. Planning and Acting with Temporal c. Online Approaches Including Reinforcement

Learning
Models =
4. Planning and Acting with 7. Advanced Decision

Nondeterministic Models 3 IIEI/Iaking | :
5. Standard Decision : uman-aware Fianning

Making

Acknowledgements

UNIVERSITAT ZU LUBECK
[]

Automated Planning and Acting Chapter 6

Slides based on material provided by Dana Nau, Ralf Moéller, and Shengyu Zhang
Adapted by Tanya Braun

|nstructor: Shengyu Zhang

lk
| 1 '1
| A e \
| 1 S x
{ 1 | | = oo, — ' \
| 1 | | et o Science &

‘3 | || ' cal Comp“te‘
ter 6 ‘a - | | | CN\SCE)T%TW\C% \

Chap n { |

\ . ment Learr“ g i \ | 1
pabilistic | | Reinforce \ | Learning |
iberation with Pro 8 1 | | : Online Le \
LS pomain Models \K '.1 —— ij\ \ week ﬂ@g @mﬂn %
K | mE——— R. Moller i ;"‘ 1
a S. Na | B 2 . | W t
U ‘vfr::y ifI:A;Y‘a“d \ \ University of Lubeck kg f |

| ',) B—— S
R\ B B e

) UNIVERSITAT ZU LUBECK

Outline

* 6.2 Stochastic shortest path problems
» Safe/unsafe policies
e Optimality
e Policy iteration, value iteration
* 6.3 Heuristic search algorithms (omitted)
* 6.4 Online probabllistic planning
* Lookahead
* Reinforcement learning

/] UNIVERSITAT ZU LUBECK

Probabilistic Planning Domain

e X = (5,4,y,P,cost)
e S =set of states
A = set of actions
y:S X A — 2% atransition function
P(s' | s,a) = probability of going to state s’ if we perform a in s
* Require P(s' | s,a) # 0iffs" € y(s,a)
cost: S X A > RO
e cost(s,a) = cost of action a in state s
* may omit, default is cost(s,a) =1

Difference in syntax: MDPs do not have an explicit Instead of maximizing
transition function y, only a set of applicable expected utility as

actions A(s) per state and the transition model before:
P(s'|s,a)

N
,'H_."' UNIVERSITAT ZU LUBECK
5 oy

Example
« Robot r1 starts at d1 * m14:P(d4 | d1l,m14) = 0.5
« Objective: get to d4 P(d1|d1l,m14) = 0.5
« Simplified state names: * m23:P(d3 | d2,m23) = 0.8
write {loc(r1) = d2} as d2 P(d5 | d2,m23) = 0.2
« Simplified action names: e m21: P(d2|dl,m21) =1
write move(rl,d2,d3) as m23 e m34, m41, m43, m45, m52, m54: like m21

« 11 has unreliable steering,

especially on hills
* May slip and go elsewhere d2

Start: [
rl
s.=d1l ‘o—6—
/

Seite 6

AR -
5 AT € UNIVERSITAT ZU LUBECK
e

Policies, Problems, Solutions

 Stochastic shortest path (SSP) problem: *m14:P(d4 | d1,m14) = 0.5

» atriple (%, 50,5,) P(d1|d1l,m14) = 0.5

« Policy: * m23: P(d3 | d1,m23) = 0.8

* partial function P(d5|d1,m23) =0.2
m:S > A s.t.

« foreverys € Dom(m) C S,
(s) € Applicable(s)
» Solution for (Z, so,S,):
e apolicy m s.t.
* So € Dom(m) and
* Y(se,m)NS; =@

m12

Start:
So=dl

Wi 5 UNIVERSITAT ZU LUBECK

Notation and Terminology

* As before:
* Transitive closure
* 9(s,m) = {s and all states reachable from s using 7}
* Graph(s,m) = rooted graph induced by 7 at s
* Nodes: y(s,m)
* Edges: state transitions
o leaves(s,m) = y(s,m)\Dom(rm)

« A solution policy m is closed if it does not stop at non-goal states unless there is no way to

continue
« for everystate s € y(s,), either
« s € Dom(m) (i.e., w specifies an action at s),
* s €S, (i.e,sisagoal state), or
» Applicable(s) = @ (i.e., there are no applicable actions at s)

J 5 UNIVERSITAT ZU LUBECK

Dead Ends

e Dead end

e A state or set of states from which the goal is unreachable

Explicit dead end Implicit dead end

Wi 5 UNIVERSITAT ZU LUBECK

Histories

« History: sequence of states ¢ = (sy, 51,53, ...) * Probability of reaching a goal:

* May be finite or infinite
« o =(d1,d2,d3,d4) P(Syls,) = Z P(o|s,m)
e o0=1{(d1,d2,d1,d2,...) o€H(s,m),

« H(s,m) = {all possible histories if we start at s
and follow =, stopping if m(s) is undefined or
if we reach a goal state}

 |fo € H(s,m), then

P(o|s,m) = HP(SHl |5i»7T(5i))

e Thus

m12

P(o|s,m) =1
o€H(s,m) Start:
s,=d1

) UNIVERSITAT ZU LUBECK

Quiz

Do you have an idea for a definition of an unsafe solution?

U7 S UNIVERSITAT ZU LUBECK

Unsafe Solutions

» Unsafe solution: 0 < P(S,|so,) < 1

« Example:
o m; = {(d1,m12),(d2,m23),(d3,m34)}

* H(sy, 1) contains two histories:
o, =(d1,d2,d3,d4)
* P(o1lsg, 1)
=1-08-1=0.8

. o, = {(d1,d2, d5)
. P(O'2|SO, T[l) Start:
=1-02=02 5= dl
* P(S4lso.m)
= 0.8

Seite 12

U7 S UNIVERSITAT ZU LUBECK

Unsafe Solutions

» Unsafe solution: 0 < P(S,|so,) < 1

« Example:
. 1, = {(d1,m12), (d2, m23), (d3, m34),
(d5,m56), (d6, m65)}
* H(sy, m,) contains two histories:
e o, = (d1,d2, d3, d4)
* P(o1lsg,m3)
=1-08:-1=0.8

. o, = (d1,d2,d5,d6, ...)
* P(o3lsp, m3) Start:
=1-02-1 =02 oe dl
* P(Sg|50r”2)
= 0.8

Seite 13

U7 S UNIVERSITAT ZU LUBECK

Safe Solutions

» Safe solution: P(S,|so,) = 1

* An acyclic safe solution:
« w3 = {(d1,m12),(d2,m23),(d3,m34), (d5,m54)}

* H(sy,m3) contains two histories:
oy =(d1,d2,d3,d4)
* P(o1lsg,m3)
=1-08-1=0.8

. 0, = {(d1,d2,d5, d4)
° P(O'4|SO, T[3) Start:
=1:021=02 5,= d1
* P(Sgls0,m3)
=08+02=1

Seite 14

5 UNIVERSITAT ZU LUBECK

Safe Solutions

» Safe solution: P(S,|so,) = 1

A cyclic safe solution: 0.2 a
« mw, ={(d1,ml14)} '

* H(sy,m,) contains infinitely many histories:

a 0.8
Og = (dl, d4‘)
1
P(os|sg,m4) = 0.5 = (%)
Og = (dl,dl, d4>

P(oglsg, m4)

2
—05.05 = (%) Start: Eo,s c Goal:

. 5= d1 5 = {d4}

* P(Slso,ma)

=Z4+-+ ..=1
2 4

Seite 15

5 UNIVERSITAT ZU LUBECK

Safe Solutions

» Safe solution: P(S,|so,) = 1

 Another cyclic safe solution: 0.2 a
o 75 = {(d1,m14), (d4, m41)} '
* H(So, 77'-5) - H(SOr 7T4-):

a 0.8
Og = (dl, d4‘)
1
P(O'5|So,7'[5) = 05 = (%)
Og = (dl, dl, d4>

P(oglsg, me)

2
=05.05 = (%) Start: Eo,s c Goal:

o S0~ dl Sa: {d4}
* P(Sg|so,ms)
=Z4+-+ ..=1
2 4

Seite 16

) 5 UNIVERSITAT ZU LUBECK

Expected Cost

* cost(s,a) = costofusingains
 Example
* Each “horizontal” action costs 1
e Each “vertical” action costs 100

« Costs of a history
0 = (So, S1,S2)
* cost(o]|sy,m)
= Ys,eqc05t(s;, (sy))

Start:
S,=d1

U7 S UNIVERSITAT ZU LUBECK

Expected Cost

 Let be a safe solution

« At each state s € Dom(m), expected cost of following 7 to goal:
* Weighted sum of history costs:

VT(s) = cost(s,n(s)) + z P(o'|s,) cost(c'|s,)
o€H(s,m),
o'= 0o \{s}
 Recursive formulation

r0 if s €Sy

VT(s) = cost(s,m(s)) + Z P(s'|s,m(s))V™(s") otherwise
] s'ey(s,m(s))

Compare policy evaluation of the policy iteration algorithm of the previous topic

AR -
.'W_:f" UNIVERSITAT ZU LUBECK
> oy

Example

e 13 ={(d1,m12),(d2, m23), « Recursive equation
(d3,m34), (d5,m54)} e V™(d1)
« Weighted sum of history cost: = 100 + V™3 (d2)
e 0, = (d1,d2,d3,d4) =100 + 1 + 0.8V™3(d3) + 0.2V™3(d5)
* P(oylsg,m3) = 0.8 =100 + 1 + 0.8(100) + 0.2(100)

* cost(oy|sg,m3)
=100+ 1+ 100 = 201

= 201

« o4, =(d1,d2,d5,d4)

o P(oylsy,m3) = 0.2

o cost(oylsgy, m3)
=100+ 1+ 100 = 201

 V™(d1)

= 0.8(201) + 0.2(201)

= 201 Start:
s,=dl

Seite 19

N
.'W_:"' UNIVERSITAT ZU LUBECK
> oy

Safe Solutions

« 1w, ={(d1,ml14)} « Recursive equation
« Weighted sum of history cost: « V™(d1) =1+ 0.5(0) + 0.5(V™(d1))
* 05 =(dl,d4) < 0.5V (d1) = 1
1\1 m
+ P(oslso) = (3) & V7 (d1) =2

« cost(os|sg,my) =1 : e
Cc=
0.2
e 0g =(d1,d1,d4) e —
1)2 0.8 °

* P(06|SO;7T4) = (E

* cost(oglsy,ms) = 2

c =100

Start: a 0.5 c=1 c Goal:
s,=d1 @ S ={d4

. VTa(d1)
=D +;@D+ -
=7

Wi 5 UNIVERSITAT ZU LUBECK

Planning as Optimisation

Let w and " be safe solutions
« 1 dominates i’ if Vs € Dom(m) N Dom(rt') : V7(s) < VT (s)
m is optimal if m dominates every safe solution
* Ifrand ' are both optimal, then V7 (s) = V™ (s)
at every state where they are both defined
« V*(s) = expected cost of getting to the goal using an
optimal safe solution
« Recall expected cost of following m to goal starting in s
0 ifs €8,

VT(s) = cost(s,m(s)) + Z ot))P(s’|s,7r(5))V7T(S') otherwise
s'ey(sn(s

« Optimality principle (Bellman's theorem):

0 if s € Sy

cost(s,m(s)) + 2 ,

V*(s) = :
a€Applicable(S) s'ey(s,m(s)

)P(s’ls,n(s))V*(s’)} otherwise

Seite 21

U7 S UNIVERSITAT ZU LUBECK

Cost to Go

Let (2,50, S,) be a safe SSP

* le., Sy isreachable from every state

* Same as safely explorable
in non-deterministic models

Let w be a safe solution that is defined
at all non-goal states
* le,Dom(m) =5\S§,
Let a € Applicable(s)
Cost-to-go

Q™ (s,a) = cost(s,a) + Xgrey(sa) P('ls, @) VT (s")
* Expected cost if we start at s, use a, and use m afterward

Forevery s € S\ S,, let

n'(s) € argmin Q"(s,a)
a€Applicable(s)

Seite 22

) UNIVERSITAT ZU LUBECK

Policy Iteration

* |Inputs
* SSP problem (Z; So» Sg) ;licy—iteration (Z,s0,8,,m,)
 |Initial policy T « T,
. . . . loop
Finds an optlma! pphcy ompute(Vi(s) (s € S}
« Converges in a finite number of steps for every state s € S \ S, do

A « argmin,es,siicapie(s) @ (Sr @)
if w(s) € A then

T’ (s) « m(Ss)
else

n’ (s) < any action in A
if ' = m then

return m

n equations, T < T’
n unknowns,
where n = ||

Wi UNIVERSITAT ZU LUBECK

Example

« Start with « Cost-to-go continued

e W= nod: {(d1,m12), (d2,m23),(d3,m34), (d5m54)} . 0(d3,m34) = 100 + 0 = 100
2 Bpaacl @one - Q(d3,m32) =1+ 101 = 102

. VT(d4) =0 . .

« V™(d3) =100+ 1-V™(d4) = 100 S e

N Vn(ds) =100+ 1 - Vn(d4) =100 . Q(d5,m54) =100+ 0 =100

+ V7™(d2) = 1+ (0.8-V™(d3) + 0.2 - V(d5)) * Qd5,m52) =1+101 =102

=101 * argmin = m54

e V™(d1)=100+1-V™(d2) = 201
« Cost-to-go

* (Q(d1,m12) =100+ 1(101) = 201

« Q(d1,m14)

=1+ 0.5(201) + 0.5(0) = 101.5
e argmin = ml4

+ Q(d2,m23)
=1+ (0.8(100) + 0.2(100)) = 101
+ Q(d2,m21) = 100 + 201 = 301
e argmin = m23

Start:
So=d1

Seite 24

Wi UNIVERSITAT ZU LUBECK

Example

» Continue with « Cost-to-go continued
e = {(cél,mlél), (d2,m23),(d3,m34), (d5,m54)} . 0(d3,m34) = 100 + 0 = 100
. EXVpne(i;[f) _C((;St » Q(d3,m32) =100 + 101 = 201
- V™(d3) = 100 + V™(d4) = 100 " argmin =m34
e V™(d5) =100+ V™(d4) = 100 « Q(d5,m54) =100+ 0 =100
+ V™(d2) = 1+ (0.8V™(d3) + 0.2V"(d5)) * Q(d5,m54) = 100 + 101 = 201
=101 e argmin = m54
« V™(d1) =1+ (0.5V7(d1) + 0.5V™(d4))
=2
« Cost-to-go
« Q(d1,m12) =100+ 101 = 201
« Q(d1,m14)
=14 05(2) +0.5(0) =2

* argmin = ml4
+ Q(d2,m23)
=1+ (0.8(100) + 0.2(100)) = 101

 Q(d2,m21) =100+ 2 =102
e argmin = m23

So=dl

Seite 25

UNIVERSITAT ZU LUBECK

Value Iteration

sync-value-iteration (2, s, S,, V;, 1)
for 1 = 1,2,.. do
. |nputs for every state s € S \ §, do
* SSP problem (Z, 50, S;) for every a € Applicable(s) do

» 207 Q(s,a) « cost(s,a)+d,,cP(s’Is,a)V;_;(s")
[]
Convergence criterion Vi(8) « min,e,iicapies 2(S,a)

n ?’0 o T;(S) « argmin.ea,yiicapie(s) 2(Sra)
e 1 |§§heur|st|c fct. if max_.|V,(s)- V,,(s)| < n then
for initial values return T,
* V(s)=0VsE€ES,
 E.g., adapt a heuristics from Ch. 2 async-value-iteration (X, s,, S, V,, 1)
« Returns optimal policy m g E
* V; = values computed at i'th iteration toon T W T
e ;= pOI|Cy Computed from I/l r « MaXg g g,B8ellman-Update (s)
* Synchronous: computes V; and m; from old V;_; if r < n then
and Ti_1q return 7
* Asynchronous: update V and m in place Bellman-Update (s)
* New values available immediately V., < V(s)
* More efficient than synchronous version for every a € Applicable(s) do

Q(s,a) « cost(s,a)+2,,cP(s’|s,a)V(s")
V<S) < minaEApplicable(s) Q(S’a)
T(s) « AXIMIN eapp1icable (s) Q(s,a)
return |V(s)-v_ 4l

N
..‘“_."' UNIVERSITAT ZU LUBECK
5 oy

Synchronous Asynchronous

9(dl,m12) =100 40 =100 _ .\ _ . Q(d1,m12) = 100 + 0 = 100
°QI(/1(aif)1= %;7:1(;)(:'%12 +05(0) = Q(d1,m14) = 1+ (0.5(0) +0.5(0)) = 1

Q(d2,m21) = 100 + 0 = 100 . V(d1) = 1; n(d1) = m14

Q(d2,m23) = 1+ (0.2(0) + 0.8(0)) = 1 0(d2,m21) = 100 + 1 = 101

.QI(/a%{%’i)”L;Z%;gll(df%::mlzg Q(d2,m23) =1+ (0.2(0) + 0.8(0)) =1
Q(d3,m34) =100+ 0 =100 * V(d2) = 1; n(d2) = m23
« V,(d3) =1; m;(d3) = m32 Q(d3,m32)=1+1=2

8&12%% =1+0=1 Q(d3,m34) = 100 + 0 = 100

=100+ 0 = 100 ° V(d3) = 2; T[(d3) = m32

e V,(d5) = 1; e Q(d5m52)=1+1=2
m1(d5) = m52 « Q(d5,m54) = 100 + 0 = 100
e r = max(l — 0, ° V(dS) = 2; 7T(d5) = m52
1-01-01-0)=1

« r=max(1—-0,1-0,
2-0,2—-0) =2

Start:
So=d1

Seite 27

N
..‘“_."' UNIVERSITAT ZU LUBECK
5 oy

Synchronous Asynchronous

Q(d1,m12) =100+ 1 = 101

Q(d1,m14) = 1+ (0.5(1) + 0.5(0)) = 1.5
« 11(d1) = 1.5; my(d1) = ml14

Q(d2,m21) =100+ 1 = 101

Q(d2,m23) = 1+ (0.2(1) +0.8(1)) =2
e V,(d2) =2; m,(d2) = m23

Q(d1,m12) = 100 + 1 = 101

Q(d1,m14) =1+ (0.5(1) + 0.5(0)) = 1.5
 V(d1) = 1.5; n(d1l) = m14

Q(d2,m21) = 100 + 1.5 = 101.5

Q(d2,m23) =1+ (0.2(2) + 0.8(2)) =3

« Q@d3,m32)=1+1=2 * V(d2) = 3; n(d2) = m23
« Q(d3,m34) =100+ 0 = 100 « Q(d3,m32)=1+3=4
= e + Q(d3,m34) = 100 +0 = 100
’ B - * V(d3) = 4; n(d3) = m32
C Gy o= * Q(d5,m52) =1+3 =4
7, (d5) = m52 « Q(d5,m54) =100+ 0= 100

« V(d5) = 4; n(d5) = m52
* r=max(1l.5—1,

2—12-12-1) =1 « r=max(1.5-1,3-1,

i n=2 [
v(d2) =1 _ s

v(d3) =1 f;f§i| a V(d3) = 2
V(d5) =1 V(d5) =2

Seite 28

N
..‘“_."' UNIVERSITAT ZU LUBECK
5 oy

Synchronous Asynchronous

Q(d1,m12) = 100 + 2 = 102
Q(d1,m14) = 1+ (0.5(1.5) + 0.5(0)) = 1.75
« 11(d1) =1.75; m;(d1) = m14
Q(d2,m21) = 100 + 1.5 = 101.5
Q(d2,m23) = 1+ (0.2(2) + 0.8(2)) =3
e V,(d2) =3; m,(d2) = m23

Q(d1,m12) = 100 + 3 = 103

Q(d1,m14) =1+ (0.5(1.5) + 0.5(0)) = 1.75
 V(d1) = 1.75; n(d1l) = m14

Q(d2,m21) = 100 + 1.75 = 101.75

Q(d2,m23) =1+ (0.2(4) + 0.8(4)) =5

* Q(d3,m32)=1+2=3 * V(d2) = 5; n(d2) = m23
. Q(d3.m34) = 100 + 0 = 100 . 0(d3,m32)=1+5=6
Qs ms2) 214223 ", Q(d3m34) = 100+ 0= 100
’ B - * V(d3) = 6; m(d3) = m32
L oy e + Qd5,m52) =1+5=6
m;(d5) = m52 * Q(d5,m54) =100+ 0 =100

* V(d5) = 6; m(d5) = m52
* r=max(1l.75— 1.5,

3—-23-23-2)=1 e r=max(1.75—-1.5,5 =3,

V({dl) =1.5 6—4,6— 4) =2 |V({d1) =15
V(d2) =2 V(d2) =3
V(d3) =2 ftffiil V(d3) =4
V(d5) =2 V(d5) = 4

Seite 29

N
,'H_."' UNIVERSITAT ZU LUBECK
5 oy

Synchronous Asynchronous

Q(d1,m12) = 100 + 3 = 103
Q(d1,m14) = 1+ (0.5(1.75) 4+ 0.5(0)) = 1.875
e V,(d1) = 1.875; m;(d1) = m14

Q(d1,m12) = 100 + 5 = 105
Q(d1,m14) = 1+ (0.5(1.75) + 0.5(0)) =

« 0(d2,m21) = 100 + 1.75 = 101.75 1.875
. Q(d2,m23) = 1+ (02(3) + 0.8(3)) = 4 * V(d1) = 1.875; m(dl) = m14
V(d2) = 4 7y(d2) = m23 . 0(d2,m21) = 100 + 1.875 = 101.875
e Q(d3,m32)=1+3=4 « Q(d2,m23) =1+ (0.2(6) +0.8(6)) =7
+ 0(d3,m34) =100+ 0 = 100 @RI . /(1)) = 7: 1(d2) = m23

e V,(d3) = 4; 1,(d3) = m32) . ()(d3,m32) =1+7 =8
8%22%3 = 10040 = 100 > R mEa) = MU=, U S
- " V,(d5) = 4: o * V(d3) = 8; n(d3) = m32
m1(d5) = m52 - Q(d5,m52) =1+7=8
T * Q(d5m54) =100+ 0 =100
e r =max(1.875—1.75, « V(d5) = 8; n(d5) = m52
4-34-34-3)=1

V](/cél)z)==1.375 Vl(/cg)z)==1.575 r = max(1.875 — 1.75,7 — 5,
V(d3) =3 — T V(d3) = 6 8—6,8—6)=2
V(d5) = 3 o @@, V(d5) =6

Seite 30

UNIVERSITAT ZU LUBECK

Discussion

Policy iteration
* Computes new 1 in each iteration; computes V'™ from m
* More work per iteration than value iteration
* Needs to solve a set of simultaneous equations
e Usually converges in a smaller number of iterations

Value iteration
* Computes new V in each iteration; chooses m based on I/
* New V is a revised set of heuristic estimates

* Not V™ for or any other policy

* Less work per iteration: does not need to solve a set of equations
* Usually takes more iterations to converge

At each iteration, both algorithms need to examine the entire state space
* Number of iterations polynomial in |S|, but |[S| may be quite large

Next: use search techniques to avoid searching the entire space

Wi UNIVERSITAT ZU LUBECK

Summary

* SSPs
« Solutions, closed solutions, histories
« Unsafe solutions, acyclic safe solutions, cyclic safe solutions
« Expected cost, planning as optimization
* Policy iteration
« Value iteration (synchronous, asynchronous)
e Bellman-update

) UNIVERSITAT ZU LUBECK

Outline

« 6.2 Stochastic shortest path problems

» Safe/unsafe policies

e Optimality

e Policy iteration, value iteration
* 6.3 Heuristic search algorithms (omitted)
* 6.4 Online probabllistic planning

* Lookahead

* Reinforcement learning

) 5 UNIVERSITAT ZU LUBECK

Outline

« 6.2 Stochastic shortest path problems

» Safe/unsafe policies

e Optimality

e Policy iteration, value iteration
* 6.3 Heuristic search algorithms (omitted)
* 6.4 Online probabilistic planning

* Lookahead

e Reinforcement learning

J 5 UNIVERSITAT ZU LUBECK

Planning and Acting

Run-Lookahead (Z, s,, Sg/ o)

« Same as in Ch. 2, except s instead of & S S ,
* Could use s < abstraction of & while s & S, and Applicable(s) # @ do
a «Lookahead(s, 0)
asin Ch. 2 perform action a
* |Inputs: SSP problem (2, SO,Sg), vector of parameters s « observe resulting state
0

* Could also use Run-Lazy-Lookahead or Run-
Concurrent-Lookahead

* What to use for Lookahead?
« AO*, LAO*, ... (in book)— Modify to search part of
the space
e Classical planner running on determinised domain
e Stochastic sampling
algorithms

] UNIVERSITAT ZU LUBECK

Planning and Acting

Run-Lookahead(Z,so,Sg,G)

 |f Lookahead = classical planner on _ ,
while s ¢ S, and Applicable(s) # @ do

determinized domain 2 —Lookahead (s, 6)
* = FS-Replan (Ch. 5) perform action a
* Problem: Forward-search may choose a plan s — observe resulting state
that depe.nds on low-probability outcome | FS-Replan (%, s, S,)
« RFF algorithm (see book) attempts to alleviate Ty — @
this while s ¢ S, and Applicable(s) # @ do
if n, undefined for s then

T, « Forward—Search(Zd,s,SQ
if n, = failure then
return failure
perform action m,(s)
S « Observe resulting state

5 UNIVERSITAT ZU LUBECK

Acting as Reinforcement Learning (RL)

« Agent, placed in an environment, must learn to act optimally in it
« Assume that the world behaves like an MDP, except

e Agent can act but does not know the transition model

* Agent observes its current state and its reward but does not know the reward function
* Goal: learn an optimal policy

each s 0.04

| X
| 7 X
A\

1 2 3

UNIVERSITAT ZU LUBECK

Factors That Make RL Hard

« Actions have non-deterministic effects
* which are initially unknown and must be learned
« Rewards / punishments can be infrequent
e Often at the end of long sequences of actions
* How does an agent determine what action(s) were really responsible for reward or punishment?
e Credit assighment problem
* World is large and complex

) 5 UNIVERSITAT ZU LUBECK

Passive vs. Active Learning

« Passive learning
* Agent acts based on a fixed policy and tries to learn how good the policy is by observing the world go by
* Analogous to policy iteration (without the optimisation part)
 Active learning
* Agent attempts to find an optimal (or at least good) policy by exploring different actions in the world
* Analogous to solving the underlying MDP

U7 S UNIVERSITAT ZU LUBECK

Model-based vs. Model-free RL

* Model-based approach to RL
* Learn the MDP model (P(s’|s,a) and R), or an approximation of it
e Use it to find the optimal policy

« Model-free approach to RL

e Derive the optimal policy without explicitly learning the model

U7 S UNIVERSITAT ZU LUBECK

Passive RL

Suppose the agent is given a policy
Wants to determine how good it is

* Given m: Need to learn U™(s):
0.812 | 0.868 | 0.918
3| — | — —_—s | — | — | +1
% 0.762 W/ 0.660
|| i 0E
% Z
1 T OfOS 0.655 | 0.611 | 0.388
“— — |[— |e—
1 1 2 3 4

Wi 5 UNIVERSITAT ZU LUBECK

Passive RL
0.812 | 0.868 | 0.918
. . 3| — | — | —| +1

« Given policy m:

* Estimate U™(s) 0.762 7 0.660 1
* Not given 2 f 7 f _

e Transition model P(s’|s, a) 1 | 0705 | 0.655 | 0.611 | 0.388

* Reward function R(s) f DA D

« Simply follow the policy for many epochs
* Epochs: training sequences / trials
1,1)-1,2)-»((1,3)->(1,2) > (1,3) »(23)—>@3,3) >34 +1
(1,1)->(1,2)-(1,3)-(23)>3,3)—>(32)>@3,3) >34 +1
(1,1)-(21)>((31)>(32) > (4,2) — 1
* Assumption: restart or reset possible (or no terminal states with the end of an epoch given by the receipt of
a reward)

1 2 3 4

U7 S UNIVERSITAT ZU LUBECK

Direct Utility Estimation (DUE)

* Model-free approach
e Estimate U™(s) as average total reward of epochs containing s
e (Calculating from s to end of epoch

« Reward-to-go of a state s
* The sum of the (discounted) rewards from that state until a terminal state is reached

« Key: use observed reward-to-go of the state as the direct evidence of the actual expected
utility of that state

5 UNIVERSITAT ZU LUBECK

DUE: Example

« Suppose the agent observes the following trial:
* (L, D_00s = (1,2) 0024 = (1,3) 004 = (1,2) 0,024 = (1,3)_0.04 = (2,3)_0.04 = (3,3)_0.04 = (34) 14
« The total reward starting at (1,1) is 0.72
* l.e., asample of the observed-reward-to-go for (1,1)
« For (1,2), there are two samples of the observed-reward-to-go
* Assumingy =1
1. (1,2)-g.04 = (1,3) 004 = (1,2) 0,04 = (1,3)_0.04 = (2,3)_0.04 ™
(3,3)-0.04 = (3,4) 14
[Total: 0.76]
2. (1,2)_004 = (1,3)_0.04 = (2,3)-0.04 = (3,3) 004 > (3,4)
[Total: 0.84]

U7 S UNIVERSITAT ZU LUBECK

DUE: Convergence

« Keep a running average of the observed reward-to-go for each state
(0.76+0.84) — 08

« As the number of trials goes to infinity, the sample average converges to the true utility

e E.g., for state (1,2), it stores

) UNIVERSITAT ZU LUBECK

DUE: Problem

* Big problem: it converges very slowly!

* Why?
* Does not exploit the fact that utilities of states are not independent
e Utilities follow the Bellman equation

U™ (s) = R(s) +v) P(s;lm(s0), 50)U™(5))

T |

Dependence on neighbouring states

Wi 5 UNIVERSITAT ZU LUBECK

DUE: Problem

« Using the dependence to your advantage
» Suppose you know that state (3,3) has a high utility
« Suppose you are now at (3,2)
* Bellman equation would be able to tell you that (3,2) is likely to have a high utility because (3,3) is a
neighbour

« DUE cannot tell you that until the end of the trial

7 ,
A .

5 UNIVERSITAT ZU LUBECK

Adaptive Dynamic Programming (ADP)

Model-based approach

Given policy m:
e Estimate U™(s)
e All while acting in the environment

How?

Basically learns the transition model P(s’|s, a) and the reward function R(s)
* Takes advantage of constraints in the Bellman equation

Based on P(s’|s,a) and R(s), performs policy evaluation (part of policy iteration)

J 5 UNIVERSITAT ZU LUBECK

Recap: Policy Iteration

* Pick a policy my at random
* Repeat:

* Policy evaluation: Compute the utility of each state for m;
* | Us(sy) = R(sp) + VZSJ-P(Sjlﬂt(si)-si)Ut(Sj)

* No longer involves a'max operation as action is determined by m;
* Policy improvement: Computetke policy ;41 given U;

© Tppq (Sp) = argmaXZsjP(SjIﬂt) -Si)Ut(Sj)

a

e Ifmyyq = my, then return

Can be solved Solve the set of linear equations:

in 0(n?), U(s;) = R(sy) +]/z P(sjlm(sy).s:)U(s))

wheren =

S| (often a sparse system)

NGy
5 MU © UNIVERSITAT ZU LUBECK
LS -,: fy

ADP: Estimate the Utilities

« Make use of policy evaluation to estimate the utilities of states
« To use policy equation

Upir(s) = R(s)) + v z P(s;|m(sy), s:)Ue(s;)

agent needs to learn P(s’|s,a) and R(s)
« How?

UNIVERSITAT ZU LUBECK

ADP: Learn the Model

* Learning R(s)
e Easy because it is deterministic
* Whenever you see a new state, store the observed reward value as R(s)
* Learning P(s'|s,a)
» Keep track of how often you get to state s’ given that you are in state s and do action a
 E.g. ifyouareins = (1,3) and you execute R three times and you end up in s’ = (2,3) twice, then

P(s'IR,s) ==

UNIVERSITAT ZU LUBECK

ADP: Algorithm

function passive-ADP-agent (percept)
returns an action
input: percept, indicating current state s’,
static:
m, fixed policy
mdp, MDP with P[s’|s,al, R(s), VY
Update U, table of utilities, initia%ly emp?yl
N,,, table of freq. for s-a pairs, initially O
reward N,.., table of freq. for s-a-s’ triples, initially 0
function s,a, previous state and action, initially null
s’ is new then

if s is not null then
increment N, [s,a] and N, [s,a,s’]
for each ¢ s.t. N, [s,a,t] # 0 do
Pltls,al « N_,.l[s,a,t] / N,I[s,al
U — Policy-evaluation (m, U, mdp)

if Terminal?(s’) then

Update
transition s,a < null

model else
S,a « s’ ,m[s’]
return a

UNIVERSITAT ZU LUBECK

ADP: Problem

« Need to solve a system of simultaneous equations — costs 0(n3)
* Very hard to do if you have 10°° states like in Backgammon
e Could make things a little easier with modified policy iteration

« Can the agent avoid the computational expense of full policy evaluation?

Wi 5 UNIVERSITAT ZU LUBECK

Temporal Difference Learning (TD)

 Instead of calculating the exact utility for a state, can the agent approximate it and possibly
make it less computationally expensive?
* Yes, it can! Using TD:

U™(s) = RGs) +7) P(5jl(s), 5:)U(s;)

* Instead of doing the sum over all successors, only adjust the utility of the state based on the successor
observed in the trial
* Does not estimate the transition model — model-free

'w_j' UNIVERSITAT ZU LUBECK
5 by

TD: Example

« Suppose you see that U™(1,3) = 0.84 and U™(2,3) = 0.92
 |f the transition (1,3) — (2,3) happens all the time, you would expect to see:
U™(1,3) = R(1,3) + U™(2,3)
= U™(1,3) = —0.04 + U™(2,3)
= U™(1,3) = —0.04 + 0.92 = 0.88
« Since you observe U™(1,3) = 0.84 in the first trial and it is a little lower than 0.88, so you
might want to “bump” it towards 0.88

UNIVERSITAT ZU LUBECK

Aside: Online Mean Estimation

» Suppose that we want to incrementally compute the mean of a sequence of numbers
* E.g., to estimate the mean of a random variable from a sequence of samples

N 1 i 1 1 n 1
Bt =S = () s = ()
ATENEL T g SiE1 A n+1 <=1 n+1 Mt n(n+1) <=1 n+1 Mt

average

ofn+1 (n+1-1x N [n+1 X 1 i N
samples \ n(n+ 1) i_lxl nt 1 m T n(n+1)i_1x‘ nn+1) L S L

R () L e) I R BT 3

1

“htirlenstl
I samplen + 1

earning rate
« Given a new sample x,,,1, the new mean is the old estimate (for n samples) plus the weighted difference

between the new sample and old estimate

BlNaE
! “_."' UNIVERSITAT ZU LUBECK
NS &

TD Update

e TD update for transition from s to s’
U™(s) = U™(s) + a(R(s) + yU™(s") — U”(S))
\ J
|

learning rate new (noisy) sample of utility

 Similar to one step of value iteration based on next state
e Equation called backup

* So, the update is maintaining a “mean” of the (noisy) utility samples
 |If the learning rate decreases with the number of samples (e.g., 1/n), then the utility
estimates will eventually converge to true values

UT(s) = R +y) P(slnCs0), 5:)U™(5)

UNIVERSITAT ZU LUBECK

TD: Convergence

« Since TD uses the observed successor s’ instead of all the successors, what happens if the
transition s — s’ is very rare and there is a big jump in utilities from s to s'?
* How can U™(s) converge to the true equilibrium value?
 Answer:
The average value of U™(s) will converge to the correct value
* This means the agent needs to observe enough trials that have transitions from s to its successors
* Essentially, the effects of the TD backups will be averaged over a large number of transitions
e Rare transitions will be rare in the set of transitions observed

UNIVERSITAT ZU LUBECK

Comparison between ADP and TD

« Advantages of ADP

e Converges to true utilities in fewer iterations
e Utility estimates do not vary as much from the true utilities
e Advantages of TD
e Simpler, less computation per observation
e Crude but efficient first approximation to ADP
* Do not need to build a transition model to perform its updates

UNIVERSITAT ZU LUBECK

ADP and TD
oy c . 1 -
« Utility estimates for 4x3 grid ok
* ADP, given optimal policy R
* Notice the large changes occurring around the 78t 20'6
trial—this is the first time that the agent falls into | 04
the -1 terminal state at (4,2) 02
"o @ w0 w
Number of epochs
. 1 1- gg;
* 2 0.8 i - (13)
* More epochs required R | &
. = 06 4] :
* Faster runtime per epoch 5
g 0.4 1
0.2 1
0

0 100 200 300 400

Number of epochs

Figures: AIMA, Russell/Norvig

UNIVERSITAT ZU LUBECK

Overall comparisons

« DUE (model-free)
e Simple to implement
e Each update is fast
* Does not exploit Bellman constraints and converges slowly

« ADP (model-based)
* Harder to implement
* Each update is a full policy evaluation (expensive)
* Fully exploits Bellman constraints
* Fast convergence (in terms of epochs)

 TD (model-free)
* Update speed and implementation similar to direct estimation
* Partially exploits Bellman constraints — adjusts state to “agree” with observed successor
* Not all possible successors
* Convergence in between DUE and ADP

@,

T 5 UNIVERSITAT ZU LUBECK
by
el

Passive Learning: Disadvantage

« Learning U™(s) does not lead to an optimal policy,
why?
* Only evaluated m (no optimisation)
* Models are incomplete/inaccurate

« Agent has only tried limited actions, cannot gain a good overall understanding of P(s’|s, a)
« Solution: Active learning

) 5 UNIVERSITAT ZU LUBECK

Goal of Active Learning

« Assume that the agent still has access to some sequence of trials performed by the agent
e Agent is not following any specific policy
e Assume for now that the sequences should include a thorough exploration of the space
 We will talk about how to get such sequences later

« The goalis to learn an optimal policy from such sequences
* Active RL agents
* Active ADP agent
* Q-learner (based on TD algorithm)

WIAJT = UNIVERSITAT ZU LUBECK
by

Active ADP Agent

Model-based approach

Using the data from its trials, agent estimates a transition model T and a reward function R
« With T(s,a,s’) and R(s), it has an estimate of the underlying MDP
* Like passive ADP using policy evaluation
Given estimate of the MDP, it can compute the optimal policy by solving the Bellman
equations using value or policy iteration

U(s) = R(s) +)/m;lxz T(s,a,s)U(s"

If T and R are accurate estimations of the underlying MDP model, agent can find the
optimal policy this way

AR o
> ‘r' UNIVERSITAT ZU LUBECK
LS -: oy

Issues with ADP Approach

* Need to maintain MDP model

« T can be very large, 0(|S|* - |A])

« Also, finding the optimal action requires solving the Bellman equation — time consuming

« Can the agent avoid this large computational complexity both in terms of time and space?

UNIVERSITAT ZU LUBECK

Q-learning

« So far, focus on utilities for states
o U(s) = utility of state s = expected maximum future rewards

« Alternative: store Q-values
* Q(a,s) = utility of taking action a at state s
= expected maximum future reward if action a taken at state s

« Relationship between U(s) and Q(a, s)?

U(s) = max Q(a,s)

Wi 5 UNIVERSITAT ZU LUBECK

Q-learning can be model-free

* Note that after computing U(s), to obtain the optimal policy, the agent needs to compute
n(s) = argmaxz: T(s,a,s")U(s")
a S/

* Requires T, model of the world
* Evenifit uses TD learning (model-free), it still needs the model to get the optimal policy

* However, if the agent successfully estimates Q(a, s) for all a and s, it can compute the
optimal policy without using the model

n(s) = argmax Q(a, s)

] UNIVERSITAT ZU LUBECK

Q-learning

« At equilibrium when Q-values are correct, we can write the constraint equation:

Q‘_(a,_s’) = R(s) + yz T(s,a,s') max U(s")

A

Reward at

state s

Expected value for action-state
pair (a, s)

Expected value averaged over all
possible states s’ that can be reached
from s after executing action a

] UNIVERSITAT ZU LUBECK

Q-learning

« At equilibrium when Q-values are correct, we can write the constraint equation:

Q(a,s) =R(s)+ vy) T(s,a,5s") max Q(a’,s")

J \ J

A

A

_____ over all actions in state s’
Expected value for
action-state pair (a, s)

iEx_pected value averaged over all
possible states s’ that can be reached
from s after executing action a

U7 S UNIVERSITAT ZU LUBECK

Q-learning without a Model

* Q-update: after moving from s to state s’ using action a

|Q(a, S)' — ?(a, S’) +‘_CL(R(S) + y max Q(a’,s") — Q(a, S))

Difference between old estimate
Q(a, s) and the new noisy sample
after taking action a

Old estimate

of Q(a, s)
Learning rate

New estimate
- TD approach [GRUCH)) 0<a<l1

* Transition model does not appear anywhere!
* Once converged, optimal policy can be computed without transition model
 Completely model-free learning algorithm

Seite 70

UNIVERSITAT ZU LUBECK

Q-learning: Convergence

« Guaranteed to converge to true Q-values given enough exploration

« Very general procedure
e Because it is model-free

« Converges slower than ADP agent
* Because it is completely model-free and it does not enforce consistency among values through the model

Wi 5 UNIVERSITAT ZU LUBECK

Exploitation vs. Exploration

« Actions are always taken for one of the two following purposes
* Exploitation: Execute the current optimal policy to get high payoff
* Exploration: Try new sequences of (possibly random) actions to improve the agent’s knowledge of the
environment even though current model does not show they have a high payoff
* Pure exploitation: gets stuck in a rut
* Pure exploration: not much use if you do not put that knowledge into practice

U7 S UNIVERSITAT ZU LUBECK

Nice Book: Algorithms to live by

e

I

A LGORI THMS
T O L I V E B Y

THE COMPUTEIR SCIENCE OF MUMAN DECISIONS

J UNIVERSITAT ZU LUBECK

Multi-Arm Bandit Problem

« So far, we assumed that the agent has a set of
epochs of sufficient exploration

e Multi-arm bandit problem:

Statistical model of sequential experiments
* Name comes from a traditional slot
machine (one-armed bandit)

« Question:
Which machine to play?

http://www.photoree.com/topic/gallery/turabell/1

) 5 UNIVERSITAT ZU LUBECK

Actions

* n arms, each with a fixed but unknown
distribution of reward
* In terms of actions: Multiple actions a4, a,, ..., a,

* Each a; provides a reward from an unknown (but
stationary) probability distribution p;

* Specifically, expectation u; of machine i’s reward
unknown o=
* Ifall u;’s were known, then the task is easy:

just pick argmax y;
i

-~ ‘,,l

« With y;'s unknown, question is
which arm to pull

) UNIVERSITAT ZU LUBECK

Formal Model

« Ateachtimestept=1,2,..,T:
* Each machine i has a random reward X ;
. E[Xl-,t] = u; independent of the past (Markov property again)
* Pick a machine I; and get reward X;_;
e Other machines’ rewards hidden
» Over T time steps, the agent has a total reward of },/_, X, ,

e Ifall g;’s known, it would have selected argmax y; at each time ¢t
i

* Expected total reward T - max y;
l

« Agent's “regret” T-maxp; — i1 X},
l

best machine’s agent’s reward

reward
(in expectation)

) 5 UNIVERSITAT ZU LUBECK

Exploitation vs. Exploration Reprise

« Exploration: to find the best
* Overhead: big loss when trying the bad arms

« Exploitation: to exploit what the agent has

discovered
* Weakness: there may be better ones that it has not
explored and identified

* Question:
With a fixed budget,
how to balance exploration
and exploitation such that
the total loss (or regret)
(s small?

U7 S UNIVERSITAT ZU LUBECK

Where Does the Loss Come from?

* If y; is small, trying this arm too many times

makes a big loss
* So the agent should try it less if it finds the previous
samples from it are bad

* But how to know whether an arm is good?
* The more the agent tries an arm i,
the more information it gets

about its distribution
* In particular, the better estimate
to its mean y;

U7 S UNIVERSITAT ZU LUBECK

Where Does the Loss Come from?

* So the agent wants to estimate each y;
precisely, and at the same time, it does not
want to try bad arms too often

 Two competing tasks
* Exploration vs. exploitation dilemma
« Rough idea: the agent tries an arm if
e Either
it has not tried it often enough
* Or
its estimate of u; so far is high

2 UNIVERSITAT ZU LUBECK

UCB (Upper Confidence Bound) Algorithm

* Input: Set of actions A UCB (&)

. Try each action a; once
Assume rewards Loop
between 0 and 1 choose an action a; that has

o Ifthey are not, the highest value of r;, + \/Z-ln(t)/ti
perform a;

normalise them
update r; ,

For each action a;, let
* 1; =average reward from q;
* t; = number of times a; tried
t = Ziti
Confidence interval around r;

[. \
\ i /

T 2Int
T =P
L

Seite 80

) 5 UNIVERSITAT ZU LUBECK

UCB: Performance

« Theorem: If each distribution of reward has

support in [0,1], i.e., rewards are normalised,
then the regret of the UCB algorithm is at

mMost
0] lnT+ z A
. A; J
Lp<p’

JE{1,..n}
© W =max y;
1
* A=t
* Expected loss of choosing a; once
e [without proof]

* Loss grows very slowly with 7

UCB: Performance

» Uses principle of optimism in face of uncertainty
* Agent does not have a good estimate fi; of u; before

trying it many times
* Thus give a big confidence

interval [—c;, ¢;] for such i

2Int
ti

* And select an i with maximum p; + ¢;

o Cl:

e If an action has not been tried
many times, then the big confidence
interval makes it still possible to
be tried

* l.e., inface of uncertainty (of y;),
the agent acts optimistically by
giving chances to those that have not
been tried enough

—~
~L-

) UNIVERSITAT ZU LUBECK

Seite 82

UNIVERSITAT ZU LUBECK

UCT Algorithm

UCT (X, s, h)
if s € S then
« Recursive UCB computation to compute __ xetuza O
if h = 0 then
Q(S; Cl) for cost return V, (s)
* Min ops instead of max if s ¢ Envelope then
* Planning domain X, state s a?d) S tg Envelope
0 . ni(s —
Hor!zon h(step.smto the future) Yo 211 & & Aeeliesbie (s G
* Anytime algorithm: O(s,a) « O
* Call repeatedly until time runs out n(s,a) « 0

Untried — {a € Applicable(s)| n(s,a)=0}
if Untried # @ then

4 « Choose (Untried)
else

d « argminaEApplicable(s)

{O(s,a)-C-[log(n(s))/n(s,a)]l”}
s’ « Sample (2, s,a)
cost—rollout « cost(s,ad) + UCT(s’,h-1)
QO(s,d8) « [n(s,a)0(s,a)+cost-rollout]
/ (1+n(s,a))

n(s) « n(s) + 1
n(s,a) « n(s,a) + 1
return cost-rollout

* Then choose action

e argmin Q(s, a)
a

Goal: S = {d4}

Seite 83

UNIVERSITAT ZU LUBECK

UCT as an Acting Procedure

UCT (X, s, h)
if s € S then
e Suppose probabilities and costs unknown ” ;etugnt}?
1 = en
« Suppose you can restart your actor as many R TS
times as you want if s € Envelope then
« Can modify UCT to be an acting procedure add s to Envelope

n(s) « 0
for all a € Applicable(s) do
Q(s,a) <« 0
n(s,a) < 0
Untried — {a € Applicable(s)| n(s,a)=0}
if Untried # @ then
4 « Choose (Untried)
else
d <« argmin

e Use it to explore the environment

a€Applicable(s)

(n(s))/n(s,a)l”?}

cost—rollout « cost(s,ad) + UCT(s’,h-1)

QO(s,d8) « [n(s,a)0(s,a)+cost-rollout]
/(l+n(s,a))

e — n(s) « n(s) + 1
perform d; observe s’ n(s,d) < n(s,a) + 1

return cost-rollout

UNIVERSITAT ZU LUBECK

UCT as a Learning Procedure

UCT (X, s, h)
if s € S then
« Suppose probabilities and costs are unknown return O
; if h = 0 then
e But you have an accurate simulator for the

' return V,(s)
environment if s ¢ Envelope then

* Run UCT multiple times in the simulated adel tg BATELeIDE
. n(s)
environment for all a € Applicable(s) do
e Learn what actions work best O(s,a) « O

n(s,a) <« 0O
Untried — {a € Applicable(s)| n(s,a)=0}
if Untried # @ then
d <« Choose (Untried)
else
d « argminaEApplicable ©)

(n(s))/n(s,a)l”?}

cost—rollout « cost(s,ad) + UCT(s’,h-1)

QO(s,d8) « [n(s,a)0(s,a)+cost-rollout]
/(l+n(s,a))

e — n(s) « n(s) + 1
perform d; observe s’ n(s,d) < n(s,a) + 1

return cost-rollout

J 5 UNIVERSITAT ZU LUBECK

UCT in Two-Player Games

Generate Monte Carlo rollouts using a modified version of UCT
* Rollout: game is played out to very end by selecting moves at random, result of each playout used to
weight nodes in game tree
Main differences:
* Instead of choosing actions that minimize accumulated cost,
choose actions that maximize payoff at the end of the game
e UCT for player 1 recursively calls UCT for player 2
* Choose opponent’s action
e UCT for player 2 recursively calls UCT for player 1
Produced the first computer programs

to play Go well
e =2008-2012

Monte Carlo rollout techniques similar
to UCT were used to train AlphaGo

) 5 UNIVERSITAT ZU LUBECK

Intermediate Summary

* Run-Lookahead

« Reinforcement learning
e Passive learning
* DUE
« ADP
e TD
e Active learning
* Active ADP
* Q-learning
* Multi-armed bandit problem
 UCB, UCT

) 5 UNIVERSITAT ZU LUBECK

Outline per the Book

6.2 Stochastic shortest path problems
Safe/unsafe policies
Optimality
Policy iteration, value iteration

6.3 Heurtistic search algorithms
Best-first search
Determinisation

6.4 Online probabilistic planning
Lookahead
Reinforcement learning

= Next: More on Decision Making

