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Two recommended books on causality
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Motivation

• Usual warning: „Correlation is not causation“ 

• But sometimes (if not very often) one needs causation to

understand statistical data
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Simpsons Paradox

Seite 6

• Record recovery rates of 700 patients given access to a drug

Recovery rate 
with drug

Recovery rate
without drug

Men 81/87 (93%) 234/270 (87%)

Women 192/263 (73%) 55/80 (69%)

Combined 273/350 (78%) 289/350 (83%)

• Paradox: 
• For men, taking drugs has benefit

• For women, taking drugs has benefit, too.

• But: for all persons taking drugs has no benefit



Quiz

How can the data be explained? What is the correct implication?
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Recovery rate 
with drug

Recovery rate
without drug

Men 81/87 (93%) 234/270 (87%)

Women 192/263 (73%) 55/80 (69%)

Combined 273/350 (78%) 289/350 (83%)



Resolving the Paradox (Informally)

• We have to understand the causal mechanisms that lead to the data in order to resolve the 

paradox

• In drug example
• Why has taking drug less benefit for women? 
• Answer: Estrogen has negative effect on recovery

• Data: Women more likely to take drug than men
• Choosing randomly any person taking drugs will rather give a woman – and for these recovery is less 

beneficial

• In this case: Have to consider segregated data 
• (not aggregated data)

Seite 8



Resolving the Paradox Formally 

• We have to understand the causal mechanisms that lead to the data in order to resolve the 

paradox

• Drug usage and recovery have common cause

• Gender is a confounder
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Gender

Drug usage Recovery



Simpson’s Paradox (Again)

• Record recovery rates of 700 patients given access to a drug w.r.t. blood pressure (BP) 

segregation

• BP recorded at end of experiment

• This time segregated data recommend not using drug whereas aggregated data does
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Recovery rate 
without drug

Recovery rate
with drug

Low BP 81/87 (93%) 234/270 (87%)

High BP 192/263 (73%) 55/80 (69%)

Combined 273/350 (78%) 289/350 (83%)



Resolving the Paradox (Informally)

• We have to understand the causal mechanisms that lead to the data in order to resolve the 

paradox

• In this example
• Drug effect is: lowering blood pressure (but may have 
• toxic effects)

• Hence: In aggregated population drug usage recommended
• In segregated data one sees only toxic effects
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Resolving the Paradox Formally

• We have to understand the causal mechanisms that lead to the data in order to resolve the 

paradox
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Blood pressure
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Quiz
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• What is happening here? Exercise is bad for Cholesterol levels?



No
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Ingredients of a Statistical Theory of Causality

• Working definition of causation

• Method for creating causal models

• Method for linking causal models with features of data

• Method for reasoning over model and data
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Working definition of causality
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A (random) variable X is a cause of a (random) variable Y if Y - in any way -
relies on X for its value



Overview of basic definitions in a probabilistic graph

• Vertices

• Edges

• Adjacency - edge between two nodes

• Complete graph - edge between every pair of nodes

• Directed graph – edge that goes out of one node and into another (arrow)

• Path between X and Y – Sequence of nodes

• Parent 

• Child

• Ancestor

• Descendant

• Acyclic
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We are working with directed acyclic graphs (DAGs).



Bayesian Networks vs. SCMs

• BNs model statistical dependencies
• Directed, but not necessarily cause-relation 
• Inherently statistical 
• Default application: discrete variables

• SCMs model causal relations
• SCMs with random variables (RVs) induce BNs
• Assumption: There is hidden causal (deterministic) structure behind statistical data
• More expressive than BNs:  Every BN can be modeled by SCMs but not vice versa
• Default application: continuous variables
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Reminder: Conditional Independence

• Event A independent of event B iff P(A | B) = P(A)

• RV X is independent of RV Y iff
• P(X | Y) = P(X)                           iff

• for every x-value of X and for every y-value Y event X = x is independent of event Y = y
• Notation:     (X ⫫ Y)P or even shorter: (X ⫫ Y)

• X is conditionally independent of Y given Z iff
• P(X | Y, Z) = P(X | Z)

• Notation:   (X ⫫ Y | Z)P or even shorter: (X ⫫ Y|Z)
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(In)dependences on Chains

• Z and Y are dependent

• ( For some z,y: P(Z=z | Y = y) ≠ P(Z = z) )

• Y and X are dependent
• (…)

• Z and X are likely dependent

• Z and X are independent, conditioned on Y

• ( For all x,z,y: P(Z=z | X=x,Y = y) = P(Z = z | Y = y) )
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X

Y

Z

Rule 1 (Conditional Independence in Chains)
Variables X and Z are independent given set of variables Y iff
there is only one path between X and Z and this path is unidirectional and Y
intercepts that path



(In)dependences in Forks

• X and Z are dependent

• ( ∃z,y: P(X=x | Z = z) ≠ P(X = x) )

• Y and X are dependent
• …

• Z and Y are likely dependent

• Y and Z are independent, conditioned on X

• ( ∀x,z,y: P(Y=y | Z=z,X = x) = P(Y = y | X = x) )
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X

ZY

Rule 2 (Conditional Independence in Forks)
If           variable X is a common cause of variables Y and Z

and there is only one path between Y, Z
then     Y and Z are conditionally independent given X. 



(In)dependence in Colliders

• X and Z are likely dependent

• ( ∃z,y: P(X=x | Z = z) ≠ P(X = x) )

• Y and Z are likely dependent

• X and Y are independent

• X and Y are likely conditionally dependent, given Z

• ( ∃x,z,y: P(X= x | Y=y,Z = z) ≠  P(X = x | Z = z) )
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Z

YX

Rule 3 (Conditional Independence in Colliders)
If        a variable Z is the collision node between

variables X and Y and there is only one path 
between X, Y, 

then   X and Y are unconditionally independent, but are dependent conditional 
on Z and any descendant of Z



Quiz

• Give an example for a collider and interpret the conditional dependence.
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Quiz

• Give an example for a collider and interpret the conditional dependence.
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Z

YX

If scholarship received (Z) 

but low grade (Y),  

then must be musically talented (X)



D-Separation

• Z (possibly a set of variables) prohibits the ``flow’’ of statistical effects/dependence 

between X and Y
• Must block every path
• Need only one blocking variable for each path
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Property
X independent of Y (conditioned on Z)  for all compatible 
distributions iff
X d-separated from Y by Z in graph



D-Separation definition
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Definition (formal) 

A path p in G (between X and Y) is blocked by Z iff

1. p contains chain A → B →  C or fork A ← B →  C s.t. B ∈ Z 
or

2. p contains collider A →  B ← C s.t. B ∉ Z and all  descendants 
of B  are ∉ Z

If Z blocks every path between X and Y, then X and Y are d-
separated conditional on Z, for short: (X ⫫ Y | Z)G

Definition (informal)   
X is d-separated from Y by Z iff
Z blocks every possible path between X and Y



Quiz
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• Given an empty conditioning set, are Z and Y dependent?



Quiz
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W

X
Z

Y

T

• Given a conditioning set {X}, are Z and Y dependent?

• Given a conditioning set {W}, are Z and Y dependent?

• Given a conditioning set {X,W}, are Z and Y dependent?



Quiz
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• Is there a situation without R in the conditioning set, where Z and Y are independet?

W

X
Z

Y

T

R
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