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Abstract—An agent in pursuit of a task may work with a
corpus containing documents associated with Subjective Con-
tent Descriptions (SCDs) that add value in the context of the
agent’s task. On the pursuit of new documents to add to the
corpus, an agent may come across documents without associated
SCDs or documents where content and SCDs are interleaved.
Therefore, this paper presents approaches estimating SCDs using
the well-known BERT [1] language model. Furthermore, the
paper presents approaches separating SCDs and actual content
given interleaved in a document also using BERT. An extensive
evaluation compares the performance of the approaches using
BERT to prior approaches.

I. INTRODUCTION

An agent in pursuit of a task, explicitly or implicitly defined,
may work with a corpus of text documents as a reference
library. From an agent-theoretic perspective, an agent is a
rational, autonomous unit acting in a world fulfilling a defined
task, e.g., providing document retrieval services given requests
from users. We assume that the corpus represents the context
of the task, since collecting documents is not an end in itself.
Further, documents in a given corpus might be associated with
additional location-specific data making the content nearby
the location explicit by providing descriptions, references,
or explanations. We refer to these location-specific data as
Subjective Content Descriptions (SCDs) [2].

For example, humans reading the word bank in a text
dealing about money, would assume the bank to be a financial
institution and not something to sit on. To clarify, the SCD
could be another sentence, defining the bank as a financial
institution, or a link to an entity financial institution in an
external source.

Coming back to an agent providing a document retrieval
service, we assume the agent maintains a corpus of text
documents and then retrieves documents from its corpus based
on the documents’ SCDs. However, typically text documents
are not associated with SCDs or SCDs and actual content are
interleaved in a text document. In both cases, the agent has to
estimate the SCDs for the documents in its corpus.

The contributions of this paper are approaches to estimate
SCDs in both cases using the Transformer Language Model
(TLM) [3] Bidirectional Encoder Representations from Trans-
formers (BERT) [1]. We present how to separate SCDs and ac-
tual content given interleaved in text documents using BERT.

Further on, we describe how to use BERT to automatically
associate SCDs to a text document without associated SCDs.

In an extensive evaluation, we compare the performance of
the approaches using BERT with the approaches introduced
by Kuhr et al. [4], [2]. Further, we demonstrate the capacity
of our approaches by solving a more realistic and advanced
scenario. Given two corpora featuring two contexts, e.g.,
scientific papers and children’s books, a model representing
both corpora has to estimate SCDs depending on the context.
Thus, for a document without associated SCDs the model first
has to determine the context and then has to estimate context-
specific SCDs. We present a context-sensitive model using our
approaches and differing only in the way the training data is
arranged.

The remainder of this paper is structured as follows: We
start with related work and then recap the basics of SCDs and
TLMs. Afterwards, we describe two problems from the field of
SCDs, namely the Most Probably Suited SCD and inline SCD
problem. We introduce approaches solving each problem using
BERT. Finally, we evaluate our approaches on the well-known
20 newsgroups dataset1 and generate SCDs using definitions
from the online dictionary Wiktionary2.

II. RELATED WORK

Adding data to corpora of text documents has been in-
vestigated for a long time. Often the data associated with a
corpus is denoted an annotation. Thus, an SCD is an annotation
subjectively describing the content depending on the corpus’
context. The Brown Corpus [5] is one of the first corpora used
to analyze natural language. First, the distribution of words
among different categories and contexts of natural language
was analyzed. Later, part-of-speech tags were added, these tags
can already be interpreted as annotations assigning a class to
each word.

In the beginning of natural language annotation, most
annotations had to be manually added to the corpora. Even
today, crowdsourcing can be used to manually annotate
text documents [6]. Furthermore, semi-automatic and auto-
matic annotation systems were developed, too, e.g, DBpedia3

and OpenCalais4.

1http://qwone.com/~jason/20Newsgroups/
2https://en.wiktionary.org/
3https://www.dbpedia.org/
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Since 2017, TLMs have shown that they are a powerful
technique processing natural language and reached remarkable
improvements in the field of Natural Language Processing
(NLP). Compared to approaches used in the field of NLP
before, TLMs can handle much larger amounts of data using
a special architecture of neural networks. Thus, TLMs allow
to build larger and more powerful models, while they can be
used for the same NLP related tasks. TLMs can be used to
translate text documents [3] and generate sentences [7]. BERT,
the TLM used in this paper, is an encoder and calculates vector
representations for text documents.

III. PRELIMINARIES

This section specifies notations and describes the concept
of SCDs and BERT.

A. Notations

Before we introduce SCDs and BERT, we formalize our
setting of a corpus.
• A word wi, i = 1, ..., L, is a basic unit of discrete data

from a vocabulary V = {w1, . . . , wL}, L ∈ N.
• A document d is defined as a sequence of words

(wd1 , . . . , w
d
N ), N ∈ N, where each word wdi ∈ d is an

element of vocabulary V .
• A subsequence of words from d can be represented as
wdi,j = (wdi , ..., w

d
j ) where 1 ≤ i < j ≤ N . Commonly

used subsequences are sentences, they are defined as a
sequence of words terminated by punctuation symbols
like ".", "!", or "?".

• A corpus D represents a set of documents {d1, . . . , d|D|},
|D| ∈ N.

• An SCD t = (w′1, ..., w
′
l), l ∈ N, is a sequence of

words. The SCD t can be associated with a position
ρ ∈ [i, j] in a document d. We use the term located
SCD interchangeably for associated SCD and represent a
located SCD t by the tuple (t, ρ).

• For each document d ∈ D there exists a set g denoted
as SCD set containing M located SCDs {(tj , ρj)}Mj=1.
Given a document d, the term g(d) refers to the set of
located SCDs associated with document d. The set of all
located SCD tuples in D is given by g(D) =

⋃
d∈D g(d).

• For each located SCD (t, ρ) ∈ g(d) there exists an SCD
window wind,ρ ⊆ wd1,N that refers to a sequence of
words in d surrounding the word wdρ . In our case the SCD
window is represented by the sentence wdρ belongs to.

• Each word wd ∈ wind,ρ is associated with an influence
value I(wd, wind,ρ) representing the distance in the text
between wd and position ρ. The closer wd is positioned to
ρ in wind,ρ, the higher its corresponding influence value
I(wd, wind,ρ). The influence value is chosen according
to the task and might be distributed binomial, linear, or
constant.

B. Subjective Content Descriptions

Kuhr et al. have introduced SCDs in [2]. SCDs provide addi-
tional location-specific data for documents. The data provided

Algorithm 1 Training the SCD-word distribution matrix δ(D)
1: function BUILDMATRIX(D, g(D))
2: Input: Corpus D, Set of SCDs g(D)
3: Output: SCD-word distribution matrix δ(D)
4: Initialize an M × L matrix δ(D) with zeros
5: for each d ∈ D do
6: for each (t, ρ) ∈ g(d) do
7: for each wd ∈ wind,ρ do
8: δ(D)[t][wd] += I(wd, wind,ρ)

9: return δ(D)

by SCDs may be of various types, like additional definitions
or links to knowledge graphs. However, in our evaluation and
use-cases we use text documents annotated with additional
textual definitions.

Kuhr et al. use an SCD-word distribution represented by a
matrix when working with SCDs. The SCD-word distribution
matrix, in short SCD matrix, can be interpreted as a generative
model. A generative model for SCDs is characterized by the
assumption that the SCDs generate the words of the docu-
ments. We assume that each SCD shows a specific distribution
of words near the SCD’s location in the document.

The SCD matrix δ(D) models the distributions of words for
all SCDs g(D) of a corpus D and is structured as follows:

δ(D) =



w1 w2 w3 · · · wL

t1 v1,1 v1,2 v1,3 · · · v1,L

t2 v2,1 v2,2 v2,3 · · · v2,L
...

...
...

...
...

...
tM vM,1 vM,2 vM,3 · · · vM,L


The SCD matrix consists of M rows, one for each SCD in

g(D), and each row contains the word probability distribution
for the SCD. Therefore, the SCD matrix has L columns, one
for each word in the vocabulary of the corresponding corpus.

The supervised training of an SCD matrix is described in
Algorithm 1. Given a corpus D, the algorithm iterates over
each document in the corpus and the document’s located
SCDs. For each located SCD given by a tuple (t, ρ), the SCD
matrix is updated following a sentence-wise approach: First,
the sentence in d at position ρ is reconstructed and represented
by wind,ρ. Next, the row of the matrix representing SCD t gets
incremented for each word in the sentence wind,ρ..

Kuhr et al. use a sliding window instead of our previously
described sentence-wise approach. The authors assume an
SCD generates the words in a certain radius around the SCD’s
location, while we assume an SCD generates the words of the
sentence at the SCD’s location. The sentence-wise approach
is required in this paper due to the comparability to BERT
working on whole sentences. Furthermore, a sliding window
results in more computations and as we use larger corpora
than Kuhr et al., sentence-wise iteration allows us to keep the
number of computations sufficiently low.



After Algorithm 1 has finished, the SCD matrix needs
to be normalized row-wise to meet the requirements of a
probability distribution. However, we skip the normalization
because multiple calculations on small decimal values on
a computer reduce the accuracy. Later, we use the cosine
similarity with the rows of the matrix and the cosine simi-
larity does a normalization by definition. Thus, by skipping
the normalization, we save computational resources and get
slightly more accurate results.

The SCD matrix is a basic model used in IV to solve two
problems from the field of SCDs.

C. Transformer Language Models

In this subsection, we describe Transformer Language Mod-
els (TLMs) and focus on the Bidirectional Encoder Represen-
tations from Transformers (BERT) [1].

Vaswani et al. [3] have introduced TLMs in 2017. TLMs
are special neural networks using so-called transformer units
and the so-called attention mechanism. Today, TLMs are a
common technique in the field of NLP, thus, we omit further
descriptions and refer to [3]. TLMs have been adapted in
several ways and many succeeding models have been created.

A well-known TLM is BERT, introduced by Devlin et al. [1]
in 2019. BERT is an encoder and encodes a sequence of input
tokens, i.e. words, into a sequence of vector representations. In
addition to the encoded vector for each word, BERT features
a class output representing the entire input sequence in one
vector.

Training BERT requires two stages, the pre-training and
fine-tuning. The pre-training is done on a huge corpus and
pursues the objective to understand natural language. A pre-
trained model provides a general language understanding and
context dependent encoding of input tokens. Normally, such
pre-trained models do not facilitate a special task and are
available for public download.

Afterwards, the fine-tuning is done on a previously pre-
trained model. During the fine-tuning the model is trained
by labeled inputs and “learns” how to solve its special use-
case, often including learning linear classifiers for the encoded
vectors from scratch. As the model already provides an un-
derstanding of natural language, the fine-tuning may be done
on less data and runs much faster.

In the following sections, BERT is depicted as a box getting
the input tokens at the bottom and yielding the encoded vector
outputs at the top. The sequence of input tokens contains
two special tokens, [CLS] marks the beginning and [SEP]
separates two sentences.

Next, we apply use-cases of BERT to two problems from
the field of SCDs and fine-tune a pre-trained model for each
use-case.

IV. TRANSFORMER LANGUAGE MODELS FOR SUBJECTIVE
CONTENT DESCRIPTIONS

Using the theoretical foundations of SCDs and TLMs intro-
duced in the previous section, the contribution of this paper is
to combine the concept of SCDs with TLMs and use BERT to

solve problems from the field of SCD. We select two problems
Kuhr et al. have introduced along with SCDs and describe the
solution presented by Kuhr et al. as well as present our solution
using BERT. For each of the two problems, we present how to
apply two different use-cases of BERT. Thus, in the evaluation
we compare the performance of both approaches using BERT
with the approach presented by Kuhr et al.

BERT gets a sequence of tokens as input. We decide to use
one sentence as one input sequence and a token for each word
in the sentence. We argue that this sentence-wise approach
maintains the logical structure of the documents. As the most
influential words of a word belong to the same sentence as the
word itself.

Next, we present the first problem along with the solution
by Kuhr et al. and the solution using BERT before addressing
the second problem.

A. Identifying Subjective Content Descriptions

In the scenario of the inline SCD (iSCD) problem [4],
documents are annotated with SCDs, but the SCDs are not
separated from the content of the documents. For each word
of each document, the agent has then to decide whether the
word is part of an SCD or belongs to the content. The iSCD
problem asks to separate SCDs and content given interleaved
in a document d′. Formalized, the iSCD problem’s input is a
document d′ = (wd

′

1 , ..., w
d′

N ) and the output is the content d
as sequence of words and a set of SCDs g(d).

Example 1 (Inline SCD Example). Assume a new document
d′ contains the following sentence with two SCDs interleaved.
The underlined words represent the SCDs, while other the
words form the content.

“We visited the bisons large animals in the zoo a
place where non-domestic animals are exhibited.”

Document d′ can be represented as a sequence of words.

d′ = (wd
′

1 , w
d′

2 , w
d′

3 , w
d′

4 , w
d′

5 , w
d′

6 ,w
d′

7 , w
d′

8 , w
d′

9 ,

wd
′

10, w
d′

11, w
d′

12, w
d′

13, w
d′

14, w
d′

15, w
d′

16)

After solving the iSCD problem, the result would be:

d = (wd
′

1 , w
d′

2 , w
d′

3 , w
d′

4 , w
d′

7 , w
d′

8 , w
d′

9 )

g(d) = { {(wd′5 , wd
′

6 ), 4},
{(wd′10, wd

′

11, w
d′

12, w
d′

13, w
d′

14, w
d′

15, w
d′

16), 9} }

Applying the sentence-wise approach, the input for the
iSCD problem is a sequence of sentences to be distinguished
into the sentences being SCDs and the sentences being content.
Thus, the iSCD problem is a classification problem with two
classes, namely SCD and content.

1) Solving the iSCD Problem with the SCD Matrix: In [4]
the authors propose the following three approaches solving the
iSCD problem: (i) the word-based approach, (ii) the threshold-
based approach, and (iii) the Hidden Markov Model (HMM)-
based approach. Approach (ii) and (iii) use the SCD matrix
described in III-B.
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Figure 1. Use-cases of BERT solving the iSCD problem.

We decide to use the threshold-based approach for our
evaluation. Even though the performance of the HMM-based
approach is slightly better, choosing a good threshold th
results in a nearly equal performance and the threshold-based
approach simplifies the implementation significantly.

2) Solving the iSCD Problem with BERT: BERT’s use-
cases sequence classification and next sentence prediction can
be used to classify the input sequence. In Figure 1 both use-
cases are depicted already adjusted to SCDs.

For each use-case we describe the general operating princi-
ple and the adaptations made for SCDs.

a) Sequence Classification: A single sentence is used as
input. The task of the model is to assign a class to the sentence.
The classes assigned are taken from the class labels in the
training data used for fine-tuning. The classification uses a
linear classifier at BERT’s class output.

Using sequence classification to solve the iSCD problem by
BERT is straightforward. For each sentence as input sequence
the encoded representation is calculated. From the encoded
representation, only the vector at the class output is needed
to classify the sentence as SCD or content. We train a linear
classifier for the vectors at the class output.

We fine-tune the model with D and measure the model’s
performance on a different D′. Especially, the sets of SCDs
are disjoint, i.e., g(D)∩ g(D′) = ∅. The disjoint sets of SCDs
are important to prevent the model from simply memorizing
all SCDs. To prevent the model from remembering undesired
relations, we also randomly shuffle the sentences such that no
pattern of occurrence between SCD and content exists.

A disadvantage when using sequence classification is that
the relation between sentences and their associated SCDs is
not modeled. Each sentence, whether SCD or content, gets
classified independently.

b) Next Sentence Prediction: A pair of two sentences
is used as input. The task of the model is to classify if
both sentences are in a relation. The relation between both
sentences is given by boolean labels in the training data used
for fine-tuning. Again, a linear classifier at BERT’s class
output is used.

Applied to SCDs, we specify to model the relation between
a sentence from the content and its associated SCD. The
model is fine-tuned on tuples of two sentences, meaning the
first sentence is always a sentence from the content and the
second sentence may be a related SCD or the subsequent
sentence from the content. Thus, the model classifies the
second sentence as (related) SCD or no SCD.

As with sequence classification, we use different corpora

and disjoint sets of SCDs, as well as shuffle the tuples of
sentences.

Next, we present the second problem from the field of SCDs
along with solutions.

B. Estimating Most Probably Suited Subjective Content De-
scriptions

In the scenario of the Most Probably Suited Subjective
Content Descriptions (MPS2CDs) problem documents are not
associated with SCDs. The MPS2CD problem asks for the M
most probably suited SCDs t1, ..., tM for a document d′ given
the SCD matrix δ(D):

g(d′) = argmax
t1,...,tM∈g(D)

P (t1, ..., tM | d′, δ(D))

The definition of the MPS2CD problem does not consider the
sentence-wise iteration used while training the SCD matrix.
We can reformulate the MPS2CD problem to consider the
sentence-wise iteration:

g(d′) =
⋃

sentences wind′,ρ∈d′
argmax
t∈g(D)

P (t | wind′,ρ, δ(D))

Solving the MPS2CD problem allows us to estimate SCDs
from the set of SCDs known by δ(D) for each sentence in a
document.

1) Solving the MPS2CD Problem with the SCD Matrix:
Analogous to the reformulated MPS2CD problem, an algo-
rithm solving the problem iterates over each sentence of d′.
For each sentence the algorithm creates a vector representing
the words of the sentence δ(wind′,ρ). The vector is created
using the approach that was used for the rows of the matrix
in Algorithm 1. Then the cosine similarity is used to compare
δ(wind′,ρ) with each row of the SCD matrix δ(D)[t] repre-
senting SCD t. The most probably suited SCD t′ is defined as
the SCD belonging to the row resulting in the highest cosine
similarity value.

t′ ← argmax
t∈g(D)

‖δ(D)[t]‖ 2 · ‖δ(wind′,ρ)‖ 2
‖δ(D)[t]‖2 · ‖δ(wind′,ρ)‖2

The MPS2CD algorithm allows us to estimate the most
probably suited SCDs for any sentence given the words of
the sentence and the SCD matrix.

2) Solving the MPS2CD Problem with BERT: BERT’s use-
cases multiple choice and question answering can be used
to choose, given an input sequence, a most probably suited
answer from set of possible answers. In Figure 2 both use-
cases are depicted already adjusted to SCDs.

For each use-case we describe the general operating prin-
ciple and the adaptations made for SCDs. Finally, we outline
the difference between the solution by Kuhr et al. and our
solutions using BERT.

a) Multiple Choice: A single sentence, the query, to-
gether with a set of sentences, the possible answers, is used
as input. The task of the model is to select the best answer
from the set of answers for the query.

Multiple choice uses next sentence prediction multiple
times. For each possible answer to the query, a pair of query
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Figure 2. Use-cases of BERT solving the MPS2CD problem.

and answer is passed to the next sentence prediction. Then
for each pair, the next sentence prediction returns a score and
the answer in the pair reaching the best score is returned as
solution for the multiple choice use-case.

Using the multiple choice use-case to solve the MPS2CD
problem by BERT is straightforward. For each sentence a set
of four SCDs {t1, t2, t3, t4} is given. We offer four SCDs
to BERT because the duration running BERT four times is
acceptable and well-known tasks like SWAG [8] also provide
four options to choose from. In the set of four SCDs, the
solution always has to be unique, i.e., one SCD may be
associated with the sentence while the other three must not
be associated.

We fine-tune and measure the performance of the model
again on different corpora and disjoint sets of SCDs. How-
ever, we do not shuffle the ordering of the sentences in the
documents and only randomly choose at which of the four
positions the correct SCD is presented to the model.

b) Question Answering: A single sentence, the question,
and a short document containing the answer are used as input.
The task of the model is to select the answer to the question
in the short document. The selection is done by returning a
start and end position and thus an interval. Then, the answer
generated by the model is formed by the words of the short
document contained in the interval.

During the fine-tuning two vectors are trained. The start
vector is used to calculate the start position and the end
vector to calculate the end position, respectively. The data used
during fine-tuning contains start and end positions as labels.
To calculate the start position, each output vector resulting
from a token of the short document is dot-multiplied by the
start vector. The softmax across all dot-products gives the start
position. The end position is calculated the same way using
the end vector.

Analogous to multiple choice, the question answering use-
case gets a sentence and four SCDs to select one SCD from.
The four SCDs are randomly shuffled and concatenated to a
short document. The sentence and the short document are then
fed into BERT. BERT returns an interval and selects the words
in this interval of the short document as SCD for the sentence.

The input sequence must not exceed BERT’s size of 512
tokens, concatenating four SCDs might result in too long
documents. If a document gets too long, we first try to omit

one or two SCDs and ignore the entire sample in the end.
We fine-tune and measure the performance of the model

again on different corpora. Once more, we use disjoint sets of
SCDs as well as, in addition, the same set of possible SCDs
for both corpora.

c) Notable Difference: The MPS2CD algorithm provided
by Kuhr et al. returns an SCD known by the model and does
not select a best SCD from a given set. To validate the solution
of the MPS2CD algorithm, we have to compare two SCDs, the
SCD labeled as correct in the given set and the SCD returned
by the MPS2CD algorithm. Especially, when the sets of SCDs
used for training and testing are disjoint, the two SCDs will
never be equal but might be both correct.

In our evaluation, the SCDs are gained from an agent. This
agent allows inverse queries, i.e., the agent can tell if it would
annotate a sentence with both annotations. If the agent would
do so for both SCDs, we assume the MPS2CD algorithm
selected the correct SCD.

Next, we present how to combine multiple corpora with
different contexts and SCDs such that our approaches can
handle multiple corpora jointly without further changes to the
approaches.

C. Context-Specific Subjective Content Descriptions

The title of this paper states to estimate context-specific
SCDs. The estimation is primarily situated in the MPS2CD
problem, but we didn’t consider the specific contexts until now.

In the previous sections, we have always assumed context-
specific SCDs because the collection of documents in a corpus
always represents a specific context for us. The corpora and
the SCDs represent a context and the model silently learns that
context. However, in a more realistic scenario, a model also
has to disambiguate between multiple contexts. For example,
a sentence in a scientific paper should be annotated with
different SCDs than a sentence in a children’s book.

Determining a context and estimating MPS2CDs for a
document can be realized with two distinct models. The first
model selects the contextually most similar corpus to the
document from a set of known corpora, and depending on the
selected corpus, a second model trained on the selected corpus
then estimates the MPS2CDs of the document. However,
we propose a context-sensitive model combining both steps.
We can use the same approaches and problems introduced
previously in IV-A and IV-B. The corpora of different contexts
and their SCDs only need to be combined into one large corpus
as follows:

Given are two corpora Dc1 ,Dc2 representing two dif-
ferent contexts c1, c2 with their context dependent SCDs
g(Dc1), g(Dc2). We create a combined corpus D and its SCDs
g(D) to train the context-sensitive model on:

D = Dc1 ∪ Dc2 , g(D) = g(Dc1) ∪ g(Dc2)

D and g(D) are formed by the union while taking care to
update the positions of the located SCDs.

In the combined corpus the context-sensitive model now
represents the originating corpus and the MPS2CD of the



originating corpus together. Thus, the context-sensitive model
estimates for a sentence an MPS2CD matching the sentence’s
context.

Next, we present an extensive evaluation of our approaches
using BERT to solve two problems from the field of SCDs
and evaluate the context-sensitive model.

V. EVALUATION

After we have introduced overall four approaches solving
the iSCD or MPS2CD problem with BERT, we present an
evaluation. For each problem we compare the performance of
the two approaches using BERT to the approach by Kuhr et
al. using an SCD matrix. Especially, we demonstrate that both,
BERT and the SCD matrix, are capable techniques to model
the relations of SCDs and sentences.

A. Datasets

In this evaluation we use the 20 newsgroups5 dataset. 20
newsgroups is a well-known corpus consisting of e-mails from
20 e-mail newsgroups. Thematically, the 20 newsgroups can be
divided into six topics. The entire corpus consists of 18 828
text documents. The documents have between 1 and 39 682
words with a median of 160 words.

For training the SCD matrix and fine-tuning BERT on the
20 newsgroups dataset, we need not only the documents but
also SCDs associated with each sentence in the documents.
However, documents in the 20 newsgroups dataset are not
associated with SCDs. Therefore, we use definitions from the
online dictionary Wiktionary6 and annotate each sentence with
a definition from Wiktionary acting as SCD. The set of defi-
nitions from Wiktionary contains in total 293 296 definitions
for 201 688 different words and phrases.

The Wiktionary annotation agent allows us to automate the
annotation of documents and generates g(D) for any corpus D.
For the same sentence, the agent always returns the same SCD,
while trying to maximize the variance of SCDs for similar
but different sentences. The Wiktionary annotation agent also
allows to generate non-matching SCDs for a sentence and thus
gives negative samples. Furthermore, it is possible to query the
agent inversely and check if an SCD describes a sentence.

To evaluate the context-sensitive model proposed in IV-C, a
second annotation agent and a second dataset is needed. The
second annotation agent works similar to the Wiktionary anno-
tation agent, but uses annotations from the 500 000 quotes [9]
dataset. As second dataset we use Manuscript cultures7, an
openly accessible journal publishing exhibition catalogues and
articles from the field of written artefacts. The two datasets
Manuscript cultures and 20 newsgroups provide two different
contexts, namely written artefacts and computer and science.

B. Workflow

In the evaluation workflow, the experiments run on two
different platforms. All experiments using the SCD matrix

5http://qwone.com/~jason/20Newsgroups/
6https://en.wiktionary.org/
7https://www.csmc.uni-hamburg.de/publications/mc.html

run on a virtual machine featuring 8 Intel 6248 cores at
2.50GHz (up to 3.90GHz) and 16GB RAM. However, the
virtual machine does not provide a graphics card needed for
the used Huggingface Transformers implementation of BERT.
Thus, all experiments using BERT run on an NVIDIA A100
40GB graphics card of an NVIDIA DGX.

We run all experiments five times and take the arithmetic
mean of the resulting scores to increase the statistical correct-
ness. Each experiment follows a similar procedure:

1) Download the corpus and the set of SCDs for the
annotation agent.

2) Lowercase all characters, stem the words, tokenize the
sentences and eliminate stop words from a wordlist
containing 179 words. These four tasks are called pre-
processing tasks. We perform them on the corpus and
the set of SCDs for the annotation agent. Preprocessing
a text of a document transforms the text in a more
digestible form for machine learning algorithms and
increases their performance [10].

3) Split the corpus randomly into a training set containing
80% of the documents and a test set containing the
remaining 20%. If a disjoint set of SCDs is used in the
current experiment, the set of SCDs for the annotation
agent is also split into 80% and 20% of the definitions.

4) Generate the SCDs for the training set and test set by the
annotation agent. If the iSCD problem is evaluated in the
current experiment, also generate documents containing
randomly interleaved SCDs and content.

5) On the training set train the SCD matrix or fine-tune
BERT, depending on the current experiment. We use the
pre-trained bert-base-uncased8 version of BERT.
This version of BERT is case insensitive and a standard
model to fine-tune for downstream tasks.

6) Evaluate the performance of the trained model on the
test set.

C. Performance Measures

For each sample in the test set a prediction is generated
using the trained model and the predicted value is compared
against the sample’s label. Given the number of samples
predicted correct and wrong, the accuracy is defined by

accuracy =
#correct

#correct+#wrong
.

Furthermore, we calculate for the intervals returned by
BERT’s question answering use-case the following measures:
The interval similarity introduced by Kabir et al. [11] takes the
overlapping ratio of intervals into account and yields a score
between 0 and 1. We use the mean interval similarity across
all samples in the test set.

Allen’s interval algebra [12] provides the relations during
and contains between two intervals. The predicted interval
may contain the SCD or the predicted interval may be located
during the SCD. We count across all samples in the test set,

8https://huggingface.co/bert-base-uncased

http://qwone.com/~jason/20Newsgroups/
https://en.wiktionary.org/
https://www.csmc.uni-hamburg.de/publications/mc.html
https://huggingface.co/bert-base-uncased
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Figure 3. Accuracies gained for all scenarios.

how often the predicted and labeled intervals are equal or in
each of the two relations. Using this counts, we can calculate
accuracies for during and contains, too.

D. Results

In this section, we present results gained using the previ-
ously described workflow for experiments. First, we define
for each problem and each approach a scenario to measure
the performance in an experiment:
Matrix iSCD: This scenario uses an SCD matrix to solve

the iSCD problem (IV-A1). As threshold we use the 0.7
percentile of all similarity values yielded by the SCDs in the
training data.
BERT Classify: This scenario uses the sequence classifi-

cation use-case of BERT to solve the iSCD problem (IV-A2a).
BERT Next: This scenario uses the next sentence prediction

use-case of BERT to solve the iSCD problem (IV-A2b).
Matrix MPS2CD: This scenario uses an SCD matrix to

solve the MPS2CD problem (IV-B1).
BERT Choose: This scenario uses the multiple choice use-

case of BERT to solve the MPS2CD problem (IV-B2a).
BERT Highlight: This scenario uses the question an-

swering use-case of BERT to solve the MPS2CD problem
(IV-B2b). The interval returned by BERT highlights the
MPS2CD for a given sentence.

We do not need to specify more hyperparameters for the
scenarios using the SCD matrix. In contrast, there are multiple
hyperparameters to specify for BERT. We use a batch size
of 40 during fine-tuning (10 for BERT Choose), because 40
samples fit into the 40GB of memory of the graphics card. The
pre-trained model bert-base-uncased uses a dropout of
0.1 and cross-entropy loss to determine the model’s error.

We run the fine-tuning for 3 epochs and use AdamW [13].
We test multiple values for the hyperparameters of AdamW
and select the best, α = 5 · 10−5 (also called learning rate),
β1 = 0.9, β2 = 0.999, ε = 10−8 and λ = 0.01 (also called
weight decay). The learning rate rises linear from 0 to α in
the first 500 steps of the fine-tuning.

The accuracies in Figure 3 demonstrate that BERT is good
at solving the iSCD problem. There is only a very small differ-
ence between BERT Classify and BERT Next. The small
difference indicates that BERT does not benefit much when
getting a pair of sentence and associated SCD simultaneously.
The scenario using the SCD matrix reaches an accuracy of
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Figure 5. Accuracies, interval accuracies, and interval similarities gained
from BERT Highlight.

0.61 only and thus Matrix iSCD is clearly worse than BERT
Classify and BERT Next. In our scenario of the iSCD
problem, the chance for a sentence being an SCD is 50%.
Thus, an accuracy of 0.61 gained by Matrix iSCD comes
close to random guessing. Also choosing different thresholds
does not lead to better accuracies. Even though the authors
of [4] got similar results, they identify sliding windows of
words containing the SCDs. Thus, the authors solve a slightly
different and a more difficult problem, meaning they can not
randomly guess to reach an accuracy of 0.5.

For the MPS2CD problem, the scenarios using BERT
and the SCD matrix result in similar values. Only BERT
Highlight with a disjoint set of SCDs achieves a very
low accuracy. As BERT Highlight asks to highlight the
matching SCD out of four SCDs, the accuracy of 0.25 is as
worse as randomly highlighting an SCD. Hence, we simplify
the problem for BERT Highlight and do not split the set of
SCDs. Using BERT Highlight with the same set of SCDs,
then, shows a similar performance as the other two scenarios.

Besides the performance of all scenarios, also the runtime
and the computational resources needed for training are rele-
vant. In Figure 4, the duration for training each of the models
is shown with a logarithmic scale. The training time of an
SCD matrix is always similar and very fast in contrast to the
fine-tuning of BERT.

Along with Figure 3 we only have considered the accuracy
for BERT Highlight, but BERT Highlight returns inter-
vals and we have already defined an interval similarity and two
more accuracies based on Allen’s interval algebra. In Figure 5
all four measures for BERT Highlight are shown, again
distinguished by using the same set or a disjoint set of SCDs.
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and the Manuscript cultures dataset.

The accuracy, accuracy during and interval similarity yield
similar values. The accuracy contains yields slightly higher
values, i.e., BERT Highlight returns occasionally a larger
interval containing the correct SCD.

Overall BERT Choose and Matrix MPS2CD show the best
performance solving the MPS2CD problem and BERT Next
yields the best accuracy for the iSCD problem.

E. Context-Specific Subjective Content Descriptions

So far we only have a single context, the 20 newsgroups
dataset and the Wiktionary annotation agent. However, as
proposed in IV-C, we can use the same scenarios from the pre-
vious subsection to train a context-sensitive model representing
different corpora with different contexts. We use a combined
corpus of two different corpora with two different annotation
agents, where both pairs of corpus and agent represent a
different context.

The accuracies of the context-sensitive model in Figure 6 are
very similar to the accuracies of the single-context model in
Figure 3. The context-sensitive model reaches slightly smaller
values solving the MPS2CD problem, while the relations
between the accuracies of the scenarios remain the same.
Surprisingly, solving the iSCD problem, the values reached
by the context-sensitive model are slightly better.

The context-sensitive model shows the potential of BERT
and the SCD matrix for estimating SCDs. Although, the model
takes a second objective, i.e., detecting the context, the overall
performance of the model is minimally reduced at most.

VI. CONCLUSION

This paper introduces approaches using BERT to solve
two problems from the field of SCDs, namely the iSCD and
MPS2CD problem. In an extensive evaluation, two introduced
approaches solving each problem are compared to prior ap-
proaches for each problem. Summarized, the evaluation shows
that BERT can be fined-tuned well to represent SCDs for text
documents. On the iSCD problem, BERT performs better than
the prior approach using the SCD matrix. On the MPS2CD
problem, the prior approach using the SCD matrix performs
slightly better.

Furthermore, the evaluation shows that the SCD matrix
and BERT provide enough capacity to additionally learn the
context of corpora and yield context-specific results. The

proposed context-sensitive model uses the same approaches
introduced and only differs in the corpus used for training.
The model thereby detects the context of a sentence before
estimating the SCD depending on the detected context.

We conclude that TLMs such as BERT are able to grasp
the concept of SCDs, in a way that TLMs can be trained to
solve SCD-related tasks.

As future work, it would be interesting to rerun the evalua-
tion using other TLMs. DistilBERT [14] is a distilled version
of BERT. Distillation is a mechanism to reduce the size of
a model by trying to imitate a larger model focusing on the
model’s task. Distilled TLMs often provide better results and
use less computational resources. Longformer [15] has no limit
on the length of the input sequence and would allow to run
BERT Highlight with more than four SCDs to select from.
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