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Abstract

At the heart of many machine learning (ML) algorithms lie large probabilistic models
that use random variables to describe behaviour or structure hidden in data. Often, a
model is shaped by a pool of known individuals (objects, constants) and relations be-
tween them, leading to probabilistic relational models. In probabilistic relational models,
an ocean of queries is possible, asking for the probability of specific events, a most prob-
able explanation, or a marginal distribution of a set of interchangeable randvars. Exact
inference, in contrast to approximate inference, allows for attributing errors in a result
to the model itself as the result is exact. Therefore, the problem studied in this disser-
tation is the problem of exact repeated inference, specifically, solving multiple instances
of different query answering problems in probabilistic relational models.
To solve the problem, we combine the lifting idea with junction trees, also known as

clique trees or join trees, a well studied data structure representing clusters of randvars in
a model. Junction trees allow for efficient repeated inference. Lifting efficiently handles
sets of known objects by working with representatives of objects behaving identically
and only looking at specific objects if necessary. We categorise the contributions into
three parts. First, we present the lifted junction tree algorithm, which includes lifting
of junction trees to first-order junction trees and answering queries without inducing
additional groundings. For calculations on first-order junction trees, we incorporate a
version of lifted variable elimination to exploit lifting not only for the tree structure but
also the calculations. Second, we extend the query language of this first version of the
lifted junction tree algorithm. We introduce parameterised queries as a new construct of
queries, which applies lifting to queries as well. We transform lifted variable elimination
into an algorithm to compute most probable assignments. Third, we concentrate on the
lifted junction tree algorithm itself: We provide a version for adaptive inference, which
includes adapting a first-order junction tree to incremental changes in a model. We also
dive into the lifted junction tree algorithm as a framework, investigating requirements
for other inference algorithms to become a subroutine like lifted variable elimination. We
end this dissertation by looking into unknown universes.
The algorithm versions presented in this dissertation each receive an empirical evalu-

ation, testing how they react under growing numbers of objects and random variables.
Additionally, we provide extensive theoretical analyses, investigating the connection of
the lifted junction tree algorithm with lifted variable elimination and the propositional
junction tree algorithm as well as investigating the connection between computing dis-
tributions versus most probable assignments in probabilistic relational models.
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Kurzfassung

Im Herzen von vielen Algorithmen des maschinellen Lernens liegen große probabilistische
Modelle, in denen mittels Zufallsvariablen ein bestimmtes Modellverhalten oder latente
Strukturen in Daten beschrieben werden. Ein Modell wird dabei oft durch eine Menge
von bekannten Individuen (Objekten, Konstanten) und Relationen zwischen Individuen
charakterisiert, was zu probabilistischen relationalen Modellen führt. In probabilistischen
relationalen Modellen ist ein Meer von Anfragen möglich, von Anfragen an Wahrschein-
lichkeiten von bestimmten Ereignissen, über Anfragen an wahrscheinlichste Erklärungen,
bis hin zu Anfragen an Marginalverteilungen von austauschbaren Zufallsvariablen. Ex-
akte Inferenz, im Gegensatz zu approximativer Inferenz, ermöglicht es Abweichungen
zwischen Inferenzergebnis und Realität dem Modell selbst zuzuschreiben. Deshalb be-
fasst sich diese Dissertation mit dem Problem der exakten mehrfachen Inferenz. Genauer
gesagt geht es darum, in probabilistischen relationalen Modellen wiederholt Instanzen
von unterschiedlichen Problemen der Anfragebeantwortung zu lösen.
Um das Problem zu lösen, kombinieren wir das so genannte Lifting mit Baumzerlegun-

gen von Graphen, die probabilistische relationale Modelle darstellen. Baumzerlegungen
selbst bilden eine Baumstruktur (im englischen junction tree, clique tree oder join tree),
in der Knoten eine Menge von Zufallsvariablen sind, die wiederum Cliquen im probabilis-
tischen relationalen Modell bilden. Diese Baumstruktur ermöglicht effiziente mehrfache
Inferenz. Lifting beschreibt die Idee, mit Repräsentanten für Objekte zu arbeiten, die
sich gleich verhalten. Einzelne Objekte werden nur, wenn notwendig, angeguckt. Wir
unterteilen die Beiträge dieser Dissertation in drei Teile. Als erstes präsentieren wir den
Lifted Junction Tree Algorithmus, was das Lifting von Baumzerlegungen beinhaltet und
die Anfragebeantwortung auf diesen Baumstrukturen ohne zusätzliche Instantiierungen.
Für die Anfragebeantwortung setzen wir die geliftete Variablenelimination ein, so dass
wir Lifting nicht nur bei der Baumzerlegung ausnutzen, sondern auch bei Rechnungen.
Als zweites erweitern wir die Anfragesprache des Lifted Junction Tree Algorithmus.Wir
stellen parametrisierte Anfragen als ein neues Konstrukt für Anfragen vor, welches Lift-
ing ebenfalls auf Anfragen anwendet, und wir schreiben die geliftete Variablenelimina-
tion um, so dass wahrscheinlichste Zuweisungen berechnet werden. Als drittes erweitern
wir den Lifted Junction Tree Algorithmus, einmal für adaptive Inferenz inklusive dem
Anpassen einer Baumzerlegung an inkrementelle Änderungen in einem Modell und ein-
mal als Rahmenwerk für Inferenzalgorithmen, die die geliftete Variablenelimination als
Unterprozedur ersetzen können. We schließen diese Dissertation ab, in dem wir uns
unbekannten Universen zuwenden, in denen die Objekte nicht vorher bekannt sind.

v



Kurzfassung

Die Algorithmen der Dissertation werden jeweils empirisch untersucht, um zu testen,
wie sie auf wachsende Zahlen von Objekten und Zufallsvariablen reagieren. Zusätzlich
analysieren wir die Algorithmen bezüglich deren Richtigkeit und Komplexität. Dabei
untersuchen wir auch die Verbindung von dem propositionalen Junction Tree Algorithmus
und der gelifteten Variablenelimination mit dem Lifted Junction Tree Algorithmus sowie
die Verbindung zwischen der Berechnung von Marginalverteilungen und der Berechnung
von wahrscheinlichsten Zuweisungen in probabilistischen relationalen Modellen.
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Chapter 1

Introduction

At the heart of many machine learning (ML) algorithms lie vast amounts of data that
are condensed into large probabilistic models that use random variables (randvars) to
describe behaviour or structure hidden in data. After a surge in effective ML algorithms
over the last decade, efficient algorithms for inference come into focus to make use of the
models learned or to optimise ML algorithms further (LeCun, 2018). Often, a model is
shaped by a pool of known individuals (objects, constants) and relations between them.
Thus, handling sets of individuals efficiently enables algorithms to provide inference that
no longer has a runtime complexity exponential in the number of individuals (Niepert
and Van den Broeck, 2014). Lifting efficiently handles sets of individuals by working with
representatives of individuals behaving identically and only looking at specific individuals
if necessary. Lifting has emerged from the observation that symmetries in a probabilistic
graphical model, i.e., a probabilistic model with a graphical structure, enable treating
indistinguishable individuals as a group, while still answering probability queries exactly.
Exact inference, in contrast to approximate inference, allows for attributing errors in an
inference result to the model itself as the result is exact. Exact inference is paramount
in, e.g., decision support for health care (Wemmenhove et al., 2007). Additionally, one
instance of an inference problem seldom appears by itself but rather in company with
many other instances. Repeated inference aims at solving a set of problem instances
efficiently. The problem that this dissertation focusses on is that of

exact repeated inference,
specifically, solving multiple instances of the query answering (QA) problem,

in probabilistic relational models.

In QA algorithms, queries typically concern a marginal (conditional) distribution, often
with only a single randvar in the margin, or a most probable explanation (MPE), which
is the most probable assignment to all model randvars. In contrast, the goal of this
dissertation was to design an algorithm for exact repeated inference of various types of
queries, ranging from a probability of a set of randvars (conjunctive query) to the most
probable assignment of a subset of model randvars (maximum a posteriori, MAP).

1



Chapter 1 Introduction

1.1 Related Work

In the last three decades and counting, researchers have sped up runtimes for inference
significantly, first working on propositional inference and then incorporating lifting into
various algorithms and modelling frameworks.
Propositional formalisms benefit from variable elimination (VE, Zhang and Poole,

1994). VE decomposes a model into subproblems to evaluate them in an efficient order.
A decomposition tree (dtree) represents such a decomposition (Darwiche, 2001). For re-
peated inference in a propositional setting, Lauritzen and Spiegelhalter (1988) introduce
junction trees (jtrees), a representation of clusters in a model, along with an algorithm
for solving QA problems (junction tree algorithm, JT). A cluster is a subset sufficient
for solving a QA problem without considering the original model for each QA problem.
The remaining model contains factorial parts important for QA in the cluster. There-
fore, the outside factors need to be projected into each cluster by recursively querying
for outside randvars. JT implements answering these recursive queries efficiently using
dynamic programming principles, which is called message passing, also known as prob-
ability propagation (PP), and then JT answers queries on clusters. Shafer and Shenoy
(1990) and Jensen et al. (1990) provide well known PP schemes based on VE that trade
off runtime and storage differently. Darwiche (2001) demonstrates a connection between
jtrees and VE, namely, a dtree representing the decomposition during VE allows for
building a jtree.
Lifted inference as a fundamental inference technique has sparked further progress.

Lifted VE (LVE), first introduced by Poole (2003) and expanded by de Salvo Braz et
al. (2005, 2006), saves computations by reusing intermediate results for isomorphic sub-
problems (lifted summing out). Milch et al. (2008) introduce counting to lift certain
computations where lifted summing out does not apply. Taghipour et al. (2013b) as well
as Apsel and Brafman (2011) refine counting to lift even more cases. Taghipour et al.
(2013c) extend the formalism to its current standard by decoupling the algorithm from
the formalism for specifying individuals. LVE focusses on solving one query, leading to
inefficiencies given a set of queries. Additionally, LVE is specified for single query terms.
For repeated inference in probabilistic relational models, Van den Broeck et al. (2011)

apply lifting to knowledge compilation (KC) and weighted model counting (WMC), in-
troducing first-order KC (FOKC). FOKC compiles a model into a so called circuit and
uses a lifted version of WMC to answer queries for probabilities of events and marginal
distributions of single randvars. While FOKC computes probabilities in runtime lin-
ear w.r.t. its circuit size, its compilation process may lead to circuit sizes exponential
w.r.t. an input model. Van den Broeck and Niepert (2015) approximate symmetries in
asymmetrical models. Friedman and Van den Broeck (2018) go in the direction of ap-
proximate inference using approximate KC. Lifted belief propagation (LBP) combines
PP and lifting for an approximate solution (Jaimovich et al., 2007; Singla and Domingos,
2008; Kersting et al., 2009; Gogate and Domingos, 2010), which may become arbitrar-

2



1.1 Related Work

ily bad. Ahmadi et al. (2013) present counting LBP that also runs a so called colour
passing algorithm to build a lifted representation out of a grounded model. Kersting
et al. (2017) transfer lifting to linear programs, viewing a linear program as a coloured
graph and applying colour passing to compress the graph. In fact, there are a plethora
of lifted approximate QA algorithms, from LBP over lifted variational inference (Choi
and Amir, 2012) to lifted sampling using importance sampling (Gogate and Domingos,
2011) or Markov Chain Monte Carlo (Niepert, 2012, 2013).
To scale lifting, Das et al. (2016) use graph databases storing compiled models for

faster counting. Other methods incorporate lifting for gaining efficiency, e.g, in continu-
ous models (Choi et al., 2010) or in dynamic models (Ahmadi et al., 2013; Gehrke et al.,
2019c), methods for the latter are based on work by Murphy (2002). Other formalism
incorporate lifting as well such as logic programming (Bellodi et al., 2014) and probabilis-
tic theorem proving (Gogate and Domingos, 2011), which is also based on WMC. Lifting
also applies for solving a maximum expected utility (MEU) problem in a probabilistic
relational model, with Nath and Domingos (2010a) presenting an approximate approach.
Apsel and Brafman (2012b) solve the MEU problem based on an early LVE version.
More recently, Gehrke et al. (2019e) present an MEU version of LVE and transfer the
result to dynamic models (Gehrke et al., 2019a).
For an analysis of lifting, Taghipour et al. (2013a) lift dtrees to the first-order setting,

incorporating that lifted summing out handles isomorphic instances. They introduce
first-order dtrees (FO dtrees), which form the basis for analysing the complexity of LVE
and permit determining in advance if lifted inference is possible. Van den Broeck (2011)
provides completeness results for FOKC, introducing the notion of domain liftability.
Completeness refers to an algorithm being able to do lifted inference for any possible
model of some model class. Jaeger and Van den Broeck (2012) present upper and lower
complexity bounds, while Taghipour et al. (2013d) present completeness results for LVE.
Only a handful of approaches focus on repeated inference in probabilistic relational

models and they have their own drawbacks, e.g., by being approximate or by an ex-
ponential size of circuits. Therefore, we set out to design an algorithm for solving the
problem of exact repeated inference differently, introducing the lifted junction tree al-
gorithm (LJT) (Braun and Möller, 2016). LJT has its foundations in JT and lifting,
compiling a model into a first-order jtree (FO jtree) in contrast to FOKC compiling a
model into a circuit. We have adapted LJT and LVE to support lifted QA for con-
junctive queries, parameterised queries, and MPE queries (Braun and Möller, 2018b,e,f).
Additionally, we have worked on adaptive inference (Braun and Möller, 2018a) to effi-
ciently handle incremental changes in a model or in observations. We have analysed LJT
as a framework, allowing for other QA algorithms to take the role of LVE, and fused
LJT with LVE and FOKC (Braun and Möller, 2018c). Together, these works provide a
comprehensive investigation of an algorithm for solving the QA problem repeatedly in
probabilistic relational models faced with different types of queries. Now, this research
culminates in the dissertation at hand.
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Chapter 1 Introduction

1.2 Contributions

In this dissertation, we make a number of contributions to lifted and repeated inference.
We can summarise the contributions as follows.

(1) Lifting of jtrees Repeated patterns in a propositional probabilistic model, or a
grounded version of a relational model, lead to duplicate nodes in a jtree. Lifting a
jtree allows for compactly representing “duplicate” nodes, allowing QA algorithms to
use relations explicitly represented in an FO jtree for efficient QA. This contribution
comprises (a) a definition of FO jtrees along with parameterised clusters (parclusters)
as its nodes, (b) an algorithm for building an FO jtree from an FO dtree, including a
proof that, also in the lifted case, the clusters of an FO dtree form an FO jtree, and (c) a
merging procedure to minimise an FO jtree.

(2) Lifted QA on FO jtrees incorporating LVE Given an FO jtree, we transfer JT to
the lifted setting, exploiting relational structures for efficient exact, repeated inference.
Like JT, LJT still consists of the steps construction, evidence entering, message passing,
and query answering. But given the FO nature of the underlying model, messages may
cause groundings and thus, require additional work, called fusion, after construction to
ensure an FO jtree does not cause groundings during message calculation.

(3) Completeness and complexity results for LJT We show that the completeness
results of LVE also hold for LJT. We also analyse the complexity of LJT, demonstrating
that the connection existing between VE and JT also exists between LVE and LJT and
that lifting JT to LJT mirrors the effect of lifting VE to LVE.

(4a) Lifted QA for conjunctive queries on FO jtrees On our way to supporting more
complex queries, we extend the query answering step of LJT to handle conjunctive
queries, in which a single query may contain a set of query terms. The challenge for
LJT arises when the query terms do not appear in a single parcluster.

(4b) Lifted QA by lifting of queries A query with interchangeable query terms leads
to a blowup in the query, the computational effort, and the result representation. Pre-
senting lifting for queries, we allow for parameters in query terms to compactly encode
interchangeable query terms. Using parameters in queries enables LVE to eliminate non-
query terms, avoiding grounding on query terms. Benefitting from work on counting, the
result can also be encoded in a more compact way.

(4c) Combined completeness and complexity results for complex queries We provide
results for LVE and LJT given more complex queries, which influence whether groundings
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occur. Thus, given more complex queries, completeness of LVE and LJT also depends
on the class of queries.

(5a) Redefined LVE operators for solving MPE queries Previous work on solving
MPE queries in a lifted way rely on very early LVE versions. With this contribution, we
redefine the LVE operator suite by Taghipour et al. (2013c) to solve MPE problems.

(5b) LVE and LJT versions for MAP queries MAP queries are even harder to answer
than MPE queries as MAP queries involve a set of randvars that have to be summed out
and a set of randvars that have to be maxed out afterwards with max-out and sum-out
operations not being commutative. Thus, MAP queries impose an elimination order that
may result in intermediate results much larger than during answering MPE queries. We
specify lifted algorithms based on LVE and LJT for MAP queries.

(5c) Completeness and complexity results for LVE and LJT versions answering MPE
and MAP queries We analyse LVE and LJT for MPE and MAP w.r.t. completeness,
drawing parallels to LVE and LJT for answering queries for probability distributions.
Given an FO jtree, we are able to characterise MAP queries that do not lead to larger
intermediate results than MPE queries.

(6) Adaptive inference on FO jtrees Adaptive inference aims at answering queries
more efficiently than starting from scratch after incremental changes in either model
or evidence. Incremental changes in evidence allow LJT to save parts of its message
passing. Incremental changes in a model are less obvious to handle by LJT as changes
may influence an underlying FO jtree. This contribution consists of (a) an algorithm for
adjusting an FO jtree to incremental changes in a model and (b) adaptive LJT (aLJT)
to fast reach the point of answering queries again after changes.

(7) LJT as a framework for QA algorithms LJT uses LVE as a subroutine for cal-
culations regarding messages and queries. Therefore, it is possible to replace LVE with
another QA algorithm as long as the QA algorithm supports the queries needed for mes-
sage and query calculations. This contribution contains (a) conditions for QA algorithms
to function as a subroutine within LJT, (b) a discussion of LVE as a subroutine as well
as FOKC as a candidate, and (c) a fused version of LJT with LVE and FOKC, using
LVE for messages and FOKC for queries.

1.3 Structure

After this introduction, we start with an introductory example, highlighting the potential
of lifting and jtrees as well as the different query types we cover. We follow the example
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with a chapter on preliminaries, defining parameterised models as the representation for-
malism based on Poole (2003); Taghipour et al. (2013c) and recapping LVE as defined by
Taghipour et al. (2013c) as a QA algorithm for singular inference. We also introduce FO
dtrees (Taghipour et al., 2013a) as a means to build FO jtrees. We end the preliminaries
with a brief excursion into FOKC.
After the preliminaries, the main body of this dissertation begins, which is divided

into three parts, presenting the contributions of this dissertation.

• Part I presents LJT for repeated inference in probabilistic relational models.

– Chapter 4 presents LJT itself along with FO jtrees (Contributions 1, 2).

– Chapter 5 presents a theoretical analysis of LJT, looking at soundness, com-
pleteness, and complexity (Contribution 3).

– Chapter 6 presents an empirical evaluation in five parts.

This first part was mainly published in

Tanya Braun and Ralf Möller. Lifted Junction Tree Algorithm. In Pro-
ceedings of KI 2016: Advances in Artificial Intelligence, pages 30–42.
Springer, 2016

Tanya Braun and Ralf Möller. Preventing Groundings and Handling
Evidence in the Lifted Junction Tree Algorithm. In Proceedings of KI
2017: Advances in Artificial Intelligence, pages 85–98. Springer, 2017

Tanya Braun and Ralf Möller. Counting and Conjunctive Queries in the
Lifted Junction Tree Algorithm - Extended. In Postproceedings of the
5th International Workshop on Graph Structures for Knowledge Repre-
sentation and Reasoning at the 26th International Joint Conference on
Artificial Intelligence, pages 54–72. Springer, 2018

Tanya Braun and Ralf Möller. Avoiding Repetition in Repeated Inference
on Probabilistic Relational Models: The Lifted Junction Tree Algorithm.
Submitted

LJT in this form answers queries with single query terms and a set of observations.

• Part II contains extensions to the query language.

– Chapter 8 presents LJT for conjunctive queries, allowing for a set of query
terms in a single query (Contribution 4a).

– Chapter 9 presents parameterised queries as a new construct for queries with
interchangeable query terms (Contribution 4b).

– Chapter 10 presents LVE and LJT versions for MPE or MAP queries, re-
defining LVE operators for maxing out randvars (Contributions 5a, 5b). The
chapter also contains an overview of related work on MPE and MAP queries.
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Each chapter contains a theoretical analysis (Contributions 4c and 5c) as well as an
empirical evaluation. The second part is based on the following conference papers

Tanya Braun and Ralf Möller. Counting and Conjunctive Queries in the
Lifted Junction Tree Algorithm - Extended. In Postproceedings of the
5th International Workshop on Graph Structures for Knowledge Repre-
sentation and Reasoning at the 26th International Joint Conference on
Artificial Intelligence, pages 54–72. Springer, 2018

Tanya Braun and Ralf Möller. Parameterised Queries and Lifted Query
Answering. In IJCAI-18 Proceedings of the 27th International Joint Con-
ference on Artificial Intelligence, pages 4980–4986. IJCAI Organization,
2018

Tanya Braun and Ralf Möller. Lifted Most Probable Explanation. In
Proceedings of the International Conference on Conceptual Structures,
pages 39–54. Springer, 2018

• Part III presents further extensions of LJT.

– Chapter 11 presents LJT for adaptive inference, including an overview of
related work on adaptive inference (Contribution 6). This chapter draws upon
the following publication, but is extended with proofs regarding adapting an
FO jtree.

Tanya Braun and Ralf Möller. Adaptive Inference on Probabilistic
Relational Models. In Proceedings of AI 2018: Advances in Artificial
Intelligence, pages 487–500. Springer, 2018

– Chapter 12 presents LJT as a framework and a fused version of LJT, LVE,
and FOKC, based on the following works (Contribution 7). The second paper,
published at a conference, is a slightly shorter version of first one, published
at a workshop.

Tanya Braun and Ralf Möller. Fusing First-order Knowledge Compi-
lation and the Lifted Junction Tree Algorithm. In 8th International
Workshop on Statistical Relational AI at the 27th International Joint
Conference on Artificial Intelligence, 2018

Tanya Braun and Ralf Möller. Fusing First-order Knowledge Compi-
lation and the Lifted Junction Tree Algorithm. In Proceedings of KI
2018: Advances in Artificial Intelligence, pages 24–37. Springer, 2018

The first part and all subsequent chapters each end with a brief interim conclusion
including future work concentrating on the topic at hand. Chapter 13 takes a look
into what the future might hold for lifted inference, swarming into unknown universes.
Chapter 14 presents conclusions and ends with some more broad future work.
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Chapter 2

Repeated Inference by Example

Before we head into the midst of lifted inference, we take a step back and look at a
propositional model. With the help of this model, we illustrate repeated inference with
JT and show how lifting has potential for enhancing JT.

2.1 An Epidemic Example

Based on an example by de Salvo Braz et al. (2005) about sick people and an epidemic, we
model the interplay of natural disasters, an epidemic, and people being sick. If a natural
disaster occurs, an epidemic outbreak is more likely, which makes it more likely to get
sick. A randvar Epid indicates whether an epidemic occurs. We consider M natural
disasters (e.g., earthquake, flood) and N people. For each disaster j and each person i,
we introduce a randvar Natj indicating whether j occurs and a randvar Sicki indicating
whether i is sick. Each randvar has a boolean range, i.e., R : V ars → {true, false},
where V ars refers to the randvars.
Given a set of randvars, a world describes a particular state where each randvar has

some range value assigned. Following the idea of distribution semantics (Sato, 1995),
a joint probability distribution emerges by assigning all possible worlds a value, i.e., a
positive, real number, and normalising the values s.t. the sum is 1. A factorisation breaks
a joint distribution down into factors for a sparse encoding. Factors explicitly represent
influences between randvars. Hammersley and Clifford (1971) show in an unpublished
paper the equivalence between a positive full joint distribution and its factorisation, with
Besag (1974) providing more general proofs, superseding the unpublished work as noted
by Clifford in the discussion of Besag’s article (1974).
For the epidemic example, the set of factors contains for each j a factor φ1(Epid,Natj)

modelling how a natural disaster impacts an epidemic outbreak. For each i, the set
contains a factor φ2(Epid, Sicki) expressing how an epidemic influences a person being
sick. φ2 is identical for all N persons, which implies that an epidemic affects all persons
in exactly the same way. The same holds for all M disasters causing an epidemic. The
factors specify a model which is shown in Fig. 2.1 as a factor graph (FG). Variable nodes
(ellipses) correspond to randvars, factor nodes (boxes) to factors. An edge goes from a
variable node to a factor node if the depicted factor contains the randvar. A model defines
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Epid

φ1

φ1

φ1

Nat1

Nat2
...

NatM

φ2

φ2

φ2

Sick1

Sick2
...

SickN

Figure 2.1: An example FG

Nat1, Epidφ1, φ
′

Nat2, Epidφ1, φ
′

...

NatM , Epidφ1, φ
′

Sick1, Epid φ2, φ
′′

Sick2, Epid φ2, φ
′′

...

SickN , Epid φ2, φ
′′

Figure 2.2: An example jtree

a joint distribution over all randvars. For the epidemic example, the joint distribution is
given by

P (Epid,Nat1, . . . , NatM , Sick1, . . . , SickN ) =
1

Z

M∏
j=1

φ1(Epid,Natj)

N∏
i=1

φ2(Epid, Sicki)

Z =
∑

e∈R(Epid)

M∏
j=1

∑
nj∈R(Natj)

φ1(Epid = e,Natj = nj)
N∏
i=1

∑
si∈R(Sicki)

φ2(Epid = e, Sicki = si)

with Z as the normalisation constant. The product
∏

is a join over shared randvars
(here Epid), leading to possibly large intermediate results. The sum

∑
goes over the

range of a randvar, adding the values that the randvar maps to while other randvars have
fixed range values. When computing probability distributions, the goal is to exploit a
factorisation as much as possible.

2.2 Repeated Inference versus Singular Inference

Suppose we want to compute the marginal distributions P (Epid) and P (Sick1). For
P (Epid), VE sums out each randvar not occurring in the query, eliminating the randvars:

P (Epid) =
∑

n1∈R(Nat1)

· . . . ·
∑

nM∈R(NatM )

·
∑

s1∈R(Sick1)

· . . . ·
∑

sN∈R(SickN )

P (Epid,Nat1 = n1, . . . , NatM = nM , Sick1 = s1, . . . , SickN = sN )

=
1

Z

∑
n1∈R(Nat1)

φ1(Epid,Nat1 = n1) · . . . ·
∑

nM∈R(NatM )

φ1(Epid,NatM = nM )

·
∑

s1∈R(Sick1)

φ2(Epid, Sick1 = s1) · . . . ·
∑

sN∈R(SickN )

φ2(Epid, SickN = sN )

(2.1)

In each factor, VE sums out the randvar that is not Epid, multiplying the resulting factors
in the end, and normalising the result. The computation of Z is not necessary, a simple
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α normalisation suffices. For P (Sick1), VE does not sum-out Sick1. Instead, VE sums
out Epid. After summing out the Sicki randvars (except Sick1) and Natj randvars, VE
multiplies the resulting factors into one s.t. Epid only appears in one factor (prerequisite
for VE) and sums out Epid. Comparing both computations, we can observe that both
queries require eliminating the Natj randvars and all Sickj randvars but Sick1.
In a jtree, the model is clustered into submodels (discussed in detail in Chapter 4).

Each node in a jtree is a cluster, i.e., a set of randvars. Each cluster has a local model
containing those factors of the model whose arguments appear in the cluster, as well as
information required from other clusters. For the epidemic example, each combination
of Epid with a Natj and a Sicki randvar forms a cluster as shown in Fig. 2.2 with local
models in grey. JT answers a query on a cluster that contains the query term. For
P (Epid), JT can choose any cluster, e.g., {Nat2, Epid}, and eliminates all non-query
randvars of the chosen cluster, i.e., Nat2, using VE:

P (Epid) =
1

Z
φ′(Epid) ·

∑
n2∈R(Nat2)

φ1(Epid,Nat2 = n2)

where φ′(Epid) refers to information from other nodes. For query P (Sick1), JT elimi-
nates Epid from the factors at cluster {Sick1, Epid}. A jtree introduces some overhead,
but in the above example, immensely decreases the number of computations to perform
for answering a single query.

2.3 Ground Inference versus Lifted Inference

The example also shows the great potential of lifting. In Eq. (2.1), all Natj sums are
identical due to φ1 being identical. The same holds for the Sicki sums. Lifted summing
out computes the sum once and exponentiates the result to the number of sums:

P (Epid) =
1

Z

 ∑
n∈R(Nat1)

φ1(Epid,Nat1 = n)

M

·

 ∑
s∈R(Sick1)

φ2(Epid, Sick1 = s)

N

Symmetries in a model affect its jtree. In the example, the clusters containing Natj
randvars are all duplicates of each other. The same holds for the Sicki clusters. Infor-
mation in each φ′ (or φ′′) is identical. Two instead of M +N clusters suffice. For query
P (Epid), LJT chooses one of the two clusters and eliminates all non-query randvars in
the chosen cluster using LVE:

P (Epid) =
1

Z
· φ′(Epid) ·

 ∑
n∈R(Nat1)

φ1(Epid,Nat1 = n)

M
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2.4 More Query Types

The queries so far, P (Epid) and P (Sick1), concern a single query term, Epid and Sick1

respectively. But queries may be more complex than concerning a single query term.
With more complex queries, challenges arise to answer queries efficiently by still leverag-
ing lifting and selecting clusters. Another query type we look at are conjunctive queries
such as P (Epid, Sick1) containing more than one query terms, which are not straightfor-
ward to answer if the query terms do not occur in one cluster. We also look at a special
form of conjunctive query, namely, conjunctions of interchangeable query terms, e.g.,
P (Sick1, Sick2, . . . , SickN ). These queries, answered naively, can lead LVE to revert to
propositional VE. Another important query type are assignment queries in the form of
MPE and MAP queries. In contrast to eliminating randvars by summing out as before,
an MPE requires eliminating randvars by maxing out. For the epidemic example, an
MPE query is answered by solving

arg max
e∈R(Epid)

arg max
n1∈R(Nat1)

. . . arg max
nM∈R(NatM )

arg max
s1∈R(Sick1)

. . . arg max
sN∈R(SickN )

P (Epid = e,Nat1 = n1, . . . , NatM = nM , Sick1 = s1, . . . , SickN = sN )

which can be optimised by exploiting the factorisation of the full joint, which, under
lifting, reduces to solving arg max once for the different Natj and Sicki randvars. An
MAP query asks for the most likely assignment to a subset of all randvars, which involves
summing out the remaining randvars, e.g.,

arg max
e∈R(Epid)

arg max
s1∈R(Sick1)

. . . arg max
sN∈R(SickN )

∑
n1∈R(Nat1)

· . . . ·
∑

nM∈R(NatM )

P (Epid = e,Nat1 = n1, . . . , NatM = nM , Sick1 = s1, . . . , SickN = sN )

Computing an MAP query is harder than an MPE query as arg max and
∑

are not
commutative, thereby restricting the order of elimination, which may lead to prohibitively
large intermediate results. The given MAP query does not lead to larger intermediate
results than answering an MPE query. But, an MAP query without Epid requires Epid
to be summed out before maxing out the Sicki randvars. To sum out a randvar, it may
only occur in one factor, which means that all factors, including the N Sicki factors,
need to be multiplied into one factor, which leads to a factor size of 2N+1 instead of
a maximum factor size of 22. The problem of larger intermediate factors than during
MPE queries or simple probability distribution queries also apply for lifted algorithms,
but under lifting, identical

∑
and arg max operations are only calculated once

In the forthcoming chapters, we present lifted algorithms for answering multiple queries
of various types. Before starting with the main contribution, LJT for repeated inference,
we introduce notations and recap the original LVE.
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Chapter 3

Preliminaries

This section presents definitions for models and the QA problem. We recap LVE for
single queries and introduce FO dtrees, which LJT uses for the construction of FO jtrees.

3.1 Parameterised Models

In the epidemic example, all N persons and M natural disasters behave in the same way
w.r.t. Epid. To facilitate modelling such a scenario, logical variables (logvars) parame-
terise randvars (parameterised randvars, PRVs) to represent a set of randvars. Logvars
have a domain that contains constants. Replacing logvars with constants, i.e., grounding
a logvar in a PRV, leads to classic propositional randvars. For certain scenarios, one
might wish to restrict logvars to certain constants, which is why PRVs are often accom-
panied by a constraint indicating admissible constants. Given a set of PRVs, a world still
describes a particular state where each grounding of a PRV has some value. This form
of notation and its semantics have its roots in the work by Poole (2003). The definitions
here are mostly based on the definitions given by Taghipour et al. (2013c), though we
have developed the definitions further. We first define PRVs with all its components.

Definition 3.1.1 (PRV, constraint). Let R be a set of randvar names, L a set of logvar
names, andD a set of constants. All sets are finite. A PRV A is a syntactical construct of
a randvar R ∈ R possibly combined with logvars L1, . . . , Ln ∈ L into R(L1, . . . , Ln), n ≥
0. If n = 0, the PRV is parameterless and constitutes a propositional randvar. The
term R(A) denotes the possible values (range) of a PRV A. An event A = a denotes
the occurrence of PRV A with range value a ∈ R(A). As is common, we abuse notation
and write a instead of A = a if A is clearly identifiable. If the range is boolean, we
denote A = true by a and A = false by ¬a with a possibly being parameterised. For
a set of PRVs A = {A1, . . . , An}, we define R(A) =

⋃n
i=1R(Ai). For a sequence of

PRVs A = (A1, . . . , An), we define R(A) = ×ni=1R(Ai). Each logvar L has a domain
D(L) ⊆ D. A substitution θ = {Xi → ti}ni=1 = {X → t} replaces each occurrence
of logvar Xi with term ti, ti ∈ L or ti ∈ D(Xi). A constraint is a tuple (X , CX ) of a
sequence of logvars X = (X1, . . . , Xn) and a set CX ⊆ ×ni=1D(Xi). A PRV A, or logvar
L, under constraint C is given by A|C , or L|C , respectively. The symbol > for C marks
that no restrictions apply, i.e., CX = ×ni=1D(Xi). |> may be omitted in A|> or L|>.
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The term lv(P ) refers to the logvars in P , which may be a PRV or a constraint. The
term gr(P ) denotes the set of all instances of P w.r.t. given constraints. An instance is
an instantiation (grounding) of P , substituting the logvars in P with a set of constants
from the given constraints. Constraints act as an abstraction for, e.g., instances stored
in a database. Let us specify the randvars from the epidemic example as PRVs.

Example 3.1.1. The set of logvar names L = {X,D} contains the logvars for the
epidemic example. Logvar X represents people with domain D(X) = {x1, . . . , xN},
e.g., D(X) = {alice, bob, eve} for N = 3. Logvar D represents disasters with domain
D(D) = {d1, . . . , dM}, e.g., D(D) = {earthquake, flood} for M = 2. The set of randvar
names is R = {Epid, Sick,Nat}. Combining X with Sick and D with Nat leads to
the PRVs Sick(X) and Nat(D). Additionally, Epid forms a parameterless PRV. The
range of each PRV is boolean. A substitution θ = {X → eve} applied to Sick(X) leads
to Sick(eve). A constraint C = ((X), C(X)) allows for restricting X to a subset of its
domain D(X), e.g., C(X) = {(eve), (bob)}. Given C, gr(Sick(X)|C) refers to set of all
instances of Sick(X) under C, i.e., {Sick(eve), Sick(bob)}. Given a > constraint, the set
also includes Sick(alice).

Another syntactical construct is a counting randvar (CRV), which possibly allows for
a compact encoding of a factor. The idea behind a CRV is that there is a set of n
interchangeable randvars where it does not matter which randvars have a certain range
value, only how many. The range of a CRV is a set of histograms. A particular range
value is a histogram that specifies for each range value v of the underlying randvar how
many of those n randvars have this value v. Let us look at an example.

Example 3.1.2 (CRV as a compact encoding). Assume a factor φ with n = 3 boolean
arguments R1, R2, and R3 (i.e., m = 2 range values), mapping to potentials in {5, 6, 7}:

(¬r1,¬r2,¬r3) 7→ 5, (¬r1,¬r2, r3) 7→ 6, (¬r1, r2,¬r3) 7→ 6, (¬r1, r2, r3) 7→ 7,

(r1,¬r2,¬r3) 7→ 6, (r1,¬r2, r3) 7→ 7, (r1, r2,¬r3) 7→ 7, (r1, r2, r3) 7→ 6

Two false values and one true value map to 6. One false value and two true values map
to 7. Now, assume a factor ψ with one CRV and a logvar L, denoted as ψ(#L[R(L)]).
Histograms range from [0, 3] to [3, 0], as there are n = 3 interchangeable arguments, with
the first position referring to true and the second to false. The factor is defined by

[0, 3] 7→ 5, [1, 2] 7→ 6, [2, 1] 7→ 7, [3, 0] 7→ 6.

Both φ and ψ encode the same information. But whereas φ has mn = 23 = 8 mappings,
ψ has

(
n+m−1
m−1

)
=
(

3+2−1
2−1

)
= 4 mappings, which is no longer exponential in n.

A CRV as part of the model allows for explicitly modelling different probabilities for
n interchangeable randvars Ri being all true, all false, or something in between. Instead
of n arguments, a factor has one argument A with a range of histograms from [n, 0] to
[0, n]. The range of histograms contains all possibilities of distributing n objects into m
buckets, m being the number of possible range values of the Ri randvars.
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3.1 Parameterised Models

Example 3.1.3 (Modelling with a CRV). Consider not only one but five epidemics. It
is most likely that no epidemic occurs at all, less likely that one occurs, but least likely
that all occur. With a logvar E of five domain values and a CRV #E [Epid(E)], a factor
φ(#E [Epid(E)]) models such a scenario:

[0, 5] 7→ 10, [1, 4] 7→ 5, [2, 3] 7→ 3, [3, 2] 7→ 3, [4, 1] 7→ 2, [5, 0] 7→ 1

CRVs allow for a compact encoding as well as a more straight-forward modelling of
some scenarios, and will become important during LVE as a major device for enabling
lifted computations. We formally define a CRV next.

Definition 3.1.2 (CRV). LetR(X)|C denote a PRV under constraint C with lv(R(X)) =
{X}, meaning either X is a singleton set or other parameters of R are constants. Then,
the expression #X [R(X)|C ] denotes a CRV. Its range is the space of possible histograms.
A histogram h is a set of tuples {(vi, ni)}mi=1, vi ∈ R(R(X)), ni ∈ N, m = |R(R(X))|,
and

∑m
i=1 ni = |gr(X|C)|. A shorthand notation for the set of tuples is [n1, . . . , nm].

As a function, h takes a range value vi and returns its count ni from the tuple (vi, ni).
Summing over j histograms {(vi, ni,j)}mi=1 of a PRV means adding for each vi the ni
counts, i.e., {(vi,

∑
j ni,j)}mi=1. Multiplying a histogram {(vi, ni)}mi=1 with a value c yields

a histogram {(vi, c · ni)}mi=1. The multinomial coefficient Mul(h) denotes the number of
assignments h encodes (Taghipour, 2013), given by

Mul(h) =
n!∏m
i=1 ni!

(3.1)

If {X} ⊂ lv(R(X)), the CRV is a parameterised CRV (PCRV) representing a set of
CRVs. Since counting binds logvar X, lv(#X [R(X)]) = lv(R(X)) \ {X}.

With PRVs and PCRVs, we need to define how to determine set relations and operations
as well as how to perform element tests.

Definition 3.1.3. Let two sets A′|C′ and A′′|C′′ of constrained P(C)RVs be given. Then,

A′|C′op A′′|C′′ iff gr(A
′
|C′)op gr(A

′
|C′),

where op ∈ {=,⊂,⊆,⊃,⊇,∪,∩}. An element test of a P(C)RV A|C ∈ A′|C′ is determined
by A|C ∈ A′|C′ iff gr(A|C) ⊆ gr(A′|C′). An element test of an instance of a P(C)RV R(x)

works analogously, i.e., R(x) ∈ A′|C′ iff R(x) ∈ gr(A′|C′)

In most cases, it suffices to work on the P(C)RVs and their constraints. E.g., for an
equality of two PRVs, the randvar names and the constraints have to coincide. If one were
to assume that logvar names refer to distinct domains, a situation which occurs during
FO jtree construction (see Chapter 4), one does not even need to compare constraints
but only the randvar names and the logvars appearing in the PRVs.
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At this point, we have constructs to represent relations in a world. We still need means
to form a model with logvars, PRVs, and PCRVs. Here, parametric factors (parfactors)
come into play. Parfactors allow for PRVs and PCRVs as arguments. A parfactor de-
scribes a factor, mapping argument values to real values (potentials), of which at least
one is non-zero. This factor applies to each instance of the arguments.

Definition 3.1.4 (Parfactor, model). Let Φ be a set of factor names, X ⊆ L a set of
logvars, A = (A1, . . . , Ak) a sequence of P(C)RVs, built from R and X, and (X , CX ) a
constraint on X. Using a function φ : ×ki=1R(Ai) 7→ R+, φ ∈ Φ, a parfactor is given
by ∀x ∈ CX : φ(A)|(X ,CX ), substituting X with x in A. For short, we write φ(A) (no
substitution), omitting |(X , CX ) if >. A set of parfactors {gi}ni=1 forms a model.

Fully specifying φ requires all input-output pairs. The definitions still permit models
with only propositional randvars. For a parfactor or model P , lv(P ) refers to the logvars
in P , gr(P ) to the set of instances of P , leading to a set of grounded parfactors. The
term rv(P ) refers to the set of PRVs with their constraints in P . Next, we model the
epidemic example as a parameterised model and specify an extended model Gex as a
running example for the remainder of this thesis.

Example 3.1.4. Using the PRVs Epid, Sick(X), and Nat(D), D(X) = {xi}Ni=1 and
D(D) = {dj}Mj=1, and factor names φ1, φ2, the epidemic example becomes G = {gi}2i=1,

g1 = ∀d ∈ {dj}Mj=1 : φ1(Epid,Nat(d))|> = φ1(Epid,Nat(D)),

g2 = ∀x ∈ {xi}Ni=1 : φ2(Epid, Sick(x))|> = φ2(Epid, Sick(X)).

Figure 3.1a shows G as a parfactor graph, i.e., an FG with PRVs as variable nodes. Factor
nodes are layered if any input contains a logvar. gr(G) yields a set of factors equivalent
to the original example, where Sick(xi) corresponds to Sicki and Nat(dj) to Natj .
For the running example, we extend G to include man-made disasters, e.g., a man-

made virus or a war to cause an epidemic. A person may also travel, contributing to
a faster spread of a disease. Helping against an epidemic are some form of medicine
for treating a person. Formally, L = {D,W,M,X}, Φ = {φ0, φ1, φ2, φ3}, and R =
{Epid,Nat,Man, Sick, Travel, T reat}. The domains are D(D) = {earthquake, flood},
D(W ) = {virus, war}, D(M) = {injection, tablet}, and D(X) = {alice, bob, eve}.
Next to Epid, Sick(X), and Nat(D), the boolean PRVs Man(W ), Travel(X), and
Treat(X,M) exist. The model is given by Gex = {g0, g1, g2, g3} where

g0 = φ0(E),

g1 = ∀(d,w) ∈ D(D)×D(W ) :φ1(E,Nat(d),Man(w))|> = φ1(E,Nat(D),Man(W )),

g2 = ∀(x) ∈ D(X) :φ2(E,S(x),T ravel(x))|> = φ2(E,S(X),T ravel(X)),

g3 = ∀(x,m) ∈ D(X)×D(M) :φ3(E,S(x), T reat(x,m))|> = φ3(E,S(X),T reat(X,M)),

with Epid abbreviated by E and Sick by S. We omit concrete mappings for φ0 to φ3,
of which φ0 has 21 and the others 23 input-output pairs.
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Epid
g1

Nat(D)
g2

Sick(X)

(a) Epidemic example from Chapter 2 as a
parameterised model

Epidg1

Nat(D)

Man(W )

g0
g2

Sick(X)

Travel(X)

Treat(X,M)g3

(b) Extended epidemic example model Gex

Figure 3.1: Parfactor graphs

Figure 3.1b depicts Gex as a parfactor graph with four factor nodes for g0 to g3 and
six variable nodes for the six PRVs. The factor node of g0 is not layered as Epid is
parameterless. The other factor nodes have layers since g1, g2, and g3 contain PRVs.

The semantics of a parameterised model G is given by grounding w.r.t. constraints and
building a full joint distribution, formally defined as follows.

Definition 3.1.5 (Semantics). G represents the full joint probability distribution

PG =
1

Z

∏
f∈gr(G)

f, Z =
∑

v∈R(rv(gr(G)))

∏
φ(A)∈gr(G)

φ(πA(v))

where πA(v) denotes a projection of the current set of range values v onto A.

Basic query types on G are (i) a probability of a particular event, i.e., P (Q = q),
(ii) a marginal distribution of a randvar, i.e., P (Q), or (iii) a conditional distribution of
a randvar given a set of events, i.e., P (Q|{Ej = ej}mj=1). Answering such queries reduces
to computing marginal distributions w.r.t. PG. We define a query as follows.

Definition 3.1.6 (Query, QA problem). A query P (Q|{Ej = ej}mj=1) consists of a query
term Q and a set of events {Ej = ej}mj=1, with Q ∈ rv(G) and Ej ∈ rv(G) being
grounded or parameterless PRVs, i.e., of the form R(x) or R. Given a non-empty set of
events, the query is for a conditional distribution. Otherwise, the query is for a marginal
distribution. To query a probability, the query term is an event Q = q. The QA problem
refers to the problem of computing a probability (distribution) for a query.

Example 3.1.5 (Queries). For Gex, P (Treat(eve, injection)) is a query without a set of
events asking for the marginal distribution of Treat(eve, injection). Given a single event
Sick(eve) = true, P (Treat(eve, injection)|sick(eve)) asks for a conditional distribution.

Over the course of this dissertation, the query definition becomes more general. Before
looking at QA algorithms, we take a closer look at the set of events, also referred to as
evidence. If a model contains PRVs, events may concern groundings of one PRV with
the same observation. Thus, a parfactor compactly encodes these events.

Definition 3.1.7 (Evidence). A parfactor φe(R(X))|Ce
encodes evidence for a set of

events {R(xi) = o}ni=1 of a PRV R(X) or PCRV #X [R(X)]. φe maps the value o to 1
and the other values in R(R(X)) to 0. Ce = (X , {(xi)}ni=1) holds observed instances.
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Example 3.1.6 (Evidence). Assume we observe sick(eve), which is only one event. The
parfactor φe(Sick(X))|Ce

represents sick(eve) as follows: The factor φe has the mappings
φe(true) = 1 and φe(false) = 0. Ce = ((X), {(eve)}) restricts the domain of X to eve.
As Ce contains one grounding, we can simplify φe(Sick(X))|Ce

to φe(Sick(eve)) because
Ce is a singleton constraint, meaning (eve) is the only sequence in Ce.
Assume there are 100 people in Gex and we observe sick(xi) for 10 of them, i.e.,

the set of events is {Sick(xi) = true}10
i=1. Then, C ′e = ((X), {(x1), . . . , (x10)}) restricts

the domain of X to x1, . . . , x10 in φe(Sick(X))|C′e . Assuming that the set of events
also includes {Travel(xi) = true}10

i=1, another parfactor φe(Travel(X))|C′e models the
{Travel(xi) = true}10

i=1 subset of events using the same φe and C ′e as before.

The next section recaps LVE including how evidence encoded in parfactors enables
LVE to handle evidence as a whole, i.e., without grounding.

3.2 Lifted Variable Elimination - Singular Inference

LVE is an algorithm for solving the QA problem. Many researchers have refined LVE over
the years. LVE seeks to avoid grounding as well as explicitly building a joint distribution
using lifting, leveraging relational structures in a model, and the factorisation of a model.
LVE accomplishes efficient QA for single queries. But, given another query for the same
model, LVE starts with the original model.
Even though the basic idea of lifting is rather intuitive as seen in Chapter 2, a complete

specification of LVE as an algorithm is highly involved to ensure correct results. This
section highlights some of the LVE operators, recaps LVE as an inference algorithm, and
introduces FO dtrees as a helper structure for constructing FO jtrees.

LVE Operators (Taghipour et al., 2013c) LVE works on parameterised models. Its
main operator lifted summing out basically sums out a PRV for one representative in-
stance and exponentiates the result for the isomorphic instances as seen during the epi-
demic example in Chapter 2. Lifted summing out of a PRV A has three preconditions
to ensure correctness, i.e., summing out isomorphic instances (Taghipour et al., 2013c):

(i) A may only appear in one parfactor (similarly to randvars during VE).

(ii) A must contain all logvars of the parfactor.

(iii) The logvars that are only in A, Xexcl, need to be count-normalised w.r.t. the re-
maining logvars in the parfactor. Count normalisation means that for different
groundings of the remaining logvars the same number of groundings of Xexcl exists.

The importance of these conditions will become apparent over the course of the upcoming
examples. Let us look at how LVE sums out PRV Treat(X,M) in Gex.
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Example 3.2.1 (Lifted summing out). Only g3 = φ3(Epid, Sick(X), T reat(X,M)) con-
tains Treat(X,M). Treat(X,M) also contains all logvars in g3, with Xexcl = {M} and
logvar X remaining. The constraint in g3 is >, i.e., each combination of constants from
D(X) and D(M) exist. Thus, for each constant of X, there appear |D(M)| = 2 constants
of M , meaning M is count-normalised w.r.t. X with a count of c = 2. Summing out
follows VE: Fixing the range values of Epid and Sick(X), LVE adds up the potentials
for the range values of Treat(X,M). It then raises the resulting potentials to the power
of c, yielding an intermediate parfactor φ′3(Epid, Sick(X)) with four input-output pairs.

Further LVE operators transform a model to enable lifted summing out. The most
basic transforming operator grounds a logvar. The operator multiply ensures that a PRV
A appears in only one parfactor. Multiplying parfactors is even more elaborate than
multiplying factors. The multiplication is still a join over shared PRVs. But, multiplying
parfactors also needs to consider how many instances each parfactor represents to ensure
correct potentials in the result.
Another important operator is a count conversion to build a CRV (Milch et al., 2008).

Counting binds a logvar, and thus, may lead to a PRV containing all logvars of a parfactor,
enabling lifted summing out. The alternative to counting would be grounding, which is
exponential in the number of constants, while counting is polynomial as indicated in
Example 3.1.2. To illustrate counting, let us sum out Nat(D) and Man(W ) in Gex,
which LVE also needs to eliminate given Treat(eve, injection) as a query term.

Example 3.2.2 (Counting). Nat(D) andMan(W ) occur in φ1(Epid,Nat(D),Man(W ))
but do not contain both logvars. LVE could ground a logvar, e.g., logvar D:

φ1(Epid,Nat(d1),Man(W )), φ1(Epid,Nat(d2),Man(W ))

where d1 = earthquake and d2 = flood. For summing out Man(W ), which also elimi-
nates W , i.e., all potentials are raised to the power of |D(W )| after summing out, i.e., ∑

m∈R(Man(W ))

φ1(Epid,Nat(d1),m) · φ1(Epid,Nat(d2),m)

|D(W )|

(3.2)

LVE would need to multiply the parfactors s.t. Man(W ) appears in one parfactor: ∑
m∈R(Man(W ))

φ′1(Epid,Nat(d1), Nat(d2),m)

|D(W )|

= φ′′1(Epid,Nat(d1), Nat(d2))

Since the product in Expression (3.2) only regards φ1, the resulting parfactor with func-
tion φ′1 exhibits the same symmetry as the factor in Example 3.1.2. Instead of grounding
D, LVE replaces Nat(D) with a CRV #D[Nat(D)] in g1:

φ#
1 (Epid,#D[Nat(D)],Man(W ))

#D[Nat(D)] has a range of [0, 2], [1, 1], and [2, 0], the first position referring to nat and
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the second position to ¬nat. φ#
1 has 12 input-output pairs instead of the 16 pairs of φ′1.

With e ∈ R(Epid), [n1, n2] ∈ R(#D[Nat(D)]), and m ∈ R(Man(W )), φ#
1 is given by:

φ#
1 (e, [n1, n2],m) = φ1(e, true,m)n1 · φ1(e, false,m)n2 (3.3)

Counting excludes D as a logvar, enabling summing out Man(W ) without grounding: ∑
m∈R(Man(W ))

φ#
1 (Epid,#D[Nat(D)],m)

|D(W )|

= φ#
1
′(Epid,#D[Nat(D)])

Next, LVE sums out #D[Nat(D)] from φ#
1
′, which is also more efficient than summing

out Nat(d1) and Nat(d2) individually in φ′′ after grounding.

A logvar X has to fulfil preconditions for count conversion to apply in a parfactor
g = X : φ(A)|C (Taghipour et al., 2013c):

(i) Only one input Ai ∈ A contains X.

(ii) X is count-normalised w.r.t. X \ {X}.

(iii) No inequality constraint exists between X and any other counted logvar in g.

If the above preconditions hold, LVE counts X in g by converting Ai into a CRV A′i. In
the new function φ′, the input for the position of A′i is a histogram h = {(ai, ni)}ni=1 and
the output is defined accordingly:

φ′(. . . , ai−1, h, ai+1, . . . ) 7→
∏

ai∈R(Ai)

φ(. . . , ai−1, ai, ai+1, . . . )
h(ai)

See Expression (3.3) as a showcase. More refined count conversions exist (Apsel and
Brafman, 2011; Taghipour et al., 2013b), which we use in later chapters. To sum out a
CRV, LVE has to consider that a histogram h may represent several assignments. E.g.,
histogram [1, 1] for #D[Nat(D)] represents two assignments, namely, nat(d1),¬nat(d2)
and ¬nat(d1), nat(d2). Summing out #D[Nat(D)], LVE adds the potential at [1, 1] twice.
The number of assignments h encodes is given by Mul(h) defined in Expression (3.1).
Now that we have seen the two most important LVE operators (lifted summing out,

count conversion), we look at how LVE prepares a model for eliminating non-query terms,
which includes shattering, a term coined by de Salvo Braz et al. (2005), and evidence
handling, given a query P (Q|{Ej = ej}mj=1.
First, LVE shatters a model on a query term Q if Q is an instance of a PRV. Shattering

splits each parfactor that contains the query term. More specifically, splitting a parfactor
g means that LVE replaces g with two copies gq and gr, and alters their constraints
respectively. The constraint in gq contains those sequences that include the Q grounding
for X. The constraint in gr holds the remaining sequences. Let us look at Gex and the
query term Treat(eve, injection) from the query P (Treat(eve, injection)|sick(eve)).
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Example 3.2.3 (Shattering). LVE shatters Gex on Treat(eve, injection), which ap-
pears in parfactor g3 = φ3(Epid, Sick(X), T reat(X,M))|> with eve and injection al-
lowed by the constraint >. Shattering duplicates g3, leading to gq3 and gr3. In gq3 =
φ3(Epid, Sick(X), T reat(X,M))|Cq

3
, the second component of Cq3 is {(eve, injection)},

which is singleton, i.e., gq3 can be simplified: φ3(Epid, Sick(eve), T reat(eve, injection)).
The constraint in gr3 contains the tuples {(eve, tablet), (alice, injection), (alice, tablet),
(bob, injection), (bob, tablet)}. At this point, M is not count-normalised w.r.t. X as eve
has one M constant in Cq3 , while alice and bob have two.

Second, LVE absorbs evidence, which shatters a model on evidence as well. For each
evidence parfactor ge = φe(R(X))|Ce

, LVE tests each parfactor g ∈ G if R(X) ∈ rv(g).
If this is the case, LVE splits g on Ce by replacing g with ge and gr. The constraint in
ge contains those sequences that include the groundings of X in Ce. The constraint in
gr contains the remaining sequences. Then, ge absorbs ge, which can be thought of as
multiplying ge into ge, which sets all potentials in ge to 0 where R(X) 6= o. Then, LVE
drops the mappings with 0 and removes R(X) from ge as R(X) = o in all mappings. LVE
exponentiates the remaining potentials if a logvar disappears with absorption. Though we
look at evidence in general, computing conditional probabilities is not guaranteed to be
liftable unless evidence consists of PRVs with at most one logvar (Van den Broeck, 2013).
Let us look at Gex and evidence sick(eve) from P (Treat(eve, injection)|sick(eve)).
Example 3.2.4 (Absorption). After shattering Gex on Treat(eve, injection), LVE shat-
ters Gex also on sick(eve). Parfactors g0 and g1 do not contain Sick(eve). Parfactor
g2 = φ2(Epid, Sick(X), T ravel(X)) covers Sick(eve). Shattering splits g2 into ge2 =
φ2(Epid, Sick(eve), T ravel(eve)) and gr2 = φ2(Epid, Sick(X), T ravel(X))|Cr

2
, Cr2 con-

taining {(alice), (bob)}. gq3 contains only Sick(eve). The constraint in gr3 has the tuples
{(eve, tablet), (alice, injection), (alice, tablet), (bob, injection), (bob, tablet)}. LVE splits
gr3 into gre3 for (eve, tablet) and grr3 for the remaining tuples. In grr3 ,M is count-normalised
w.r.t. X. LVE absorbs sick(eve) in ge2, g

q
3, and gre3 , yielding φ′2(Epid,Travel(eve)),

φq3
′(Epid,Treat(eve,injection)), and φre′3 (Epid,Treat(eve,tablet)).

With lifted operations, shattering, and absorption in place, we look at LVE as an
inference algorithm for answering a given query.

Algorithm Description The inference algorithm of LVE as specified by Taghipour et
al. (2013c) answers queries with a single query term. Algorithm 1 shows LVE with
input model G, query term Q, and evidence E. LVE first splits G on Q. It absorbs E
(shattering if needed) and starts to eliminate non-query terms. LVE selects an operation
from a list of possible sum-out operations based on the expected size of the intermediate
result (number of mappings in the resulting parfactor) as a simple heuristics. For lifted
summing out, the result is smaller than before because LVE eliminates a PRV. If lifted
summing out is not possible, LVE applies one of its transforming operators to enable a
lifted sum-out operation, choosing the operator using the same heuristics as before. After
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Algorithm 1 Lifted Variable Elimination Algorithm
procedure LVE(Model G, Query term Q, Evidence E)

G← Shatter G on Q
G← Absorb E in G . Shatters G on E if necessary
while G contains non-query PRV do

if there exists a PRV A eliminable then
G← Sum out A in G

else
G← Apply transforming operator applicable in G

G← Multiply remaining parfactors in G and normalise the result
return G . Contains one normalised parfactor

a transformation, LVE tests again for lifted summing out. After LVE has eliminated all
non-query terms, a set of parfactors with the query term as argument remains. The set
may be singleton. LVE multiplies the parfactors in the set into one and normalises the
result to get the queried probability distribution. For a new query or new evidence, LVE
restarts from the original model G. To illustrate LVE, let us look at how LVE answers
P (Treat(eve, injection)|sick(eve)).

Example 3.2.5 (LVE). Figure 3.2 shows Gex as a parfactor graph after query shattering
and absorbing evidence according to Examples 3.2.3 and 3.2.4. LVE starts with summing
out operations. Proceeding with increasing size of intermediate results, LVE sums out

• Travel(eve) from ge2, resulting in ge′2 = φ′2(Epid),

• Treat(eve, tablet) from gre3 , resulting in gre′3 = φ′3(Epid),

• Travel(X) from gr2 (gr2 contains all occurrences of Travel(X), Travel(X) con-
tains all logvars, X is count-normalised; exponent is 1 as no logvar is eliminated),
resulting in gr′2 = φ′′2(Epid, Sick(X)), and

• Treat(X,M) from grr3 (grr3 contains all occurrences of Treat(X,M), Treat(X,M)
contains all logvars, M is count-normalised; exponent is 2 as two M values exist
for each X value), resulting in grr′3 = φ′′3(Epid, Sick(X)).

Fig. 3.3 shows the remaining model after performing the four sum-out operations. At
this point, no further summing out is possible. Next to grounding each logvar (8 to 16
mappings), LVE can count either D or W (each 12 mappings), and multiply gr′2 and
grr′3 (4 mappings). Thus, LVE multiplies gr′2 and grr′3 into g23 = φ23(Epid, Sick(X))
and can now eliminate Sick(X), resulting into g′23 = φ′23(Epid). Next, LVE randomly
chooses to count D, resulting in g#

1 = φ#
1 (Epid,#D[Nat(D)],Man(W )). Now, LVE

eliminates Man(W ), followed by eliminating #D[Nat(D)], resulting in g′1 = φ′1(Epid).
The remaining non-query randvar is Epid. LVE multiplies all remaining parfactors
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Epid

Treat(eve, injection)

gq3ge2 gre3
Travel(eve) Treat(eve, tablet)

g1

Nat(D)

Man(W )

g0
gr2

Sick(X)

Travel(X)

Treat(X,M)grr3

Figure 3.2: Parfactor graph of Gex after shattering
and absorbing evidence

Epid

Treat(eve, injection)

gq3ge′2 gre′3

g1

Nat(D)

Man(W )

g0
gr′2

Sick(X)

grr′3

Figure 3.3: Parfactor graph of Gex
in Fig. 3.2 after four summing-out

(ge′2 , gre′3 , g′23, g′1, g0, g
q
3) into one parfactor g = φ(Epid, Treat(eve, injection)) and

sums out Epid. Normalising g′ = φ′(Treat(eve, injection)) provides the result for
P (Treat(eve, injection)|sick(eve)).

At the end of this example, LVE has successfully produced an answer to the query
P (Treat(eve, injection)|sick(eve)) on Gex. As demonstrated, LVE provides an efficient
means for QA, incorporating relational aspects in its computations. However, it does not
handle multiple queries efficiently, redoing computations. Here, LJT comes in, using an
FO jtree to cluster model factors to avoid redoing computations. But before presenting
LJT, we look at FO dtrees, as means to build FO jtrees.

First-order Dtrees The changes in a model over the course of an LVE run can be
represented as a tree based on partitions of parfactors. LVE starts with all parfactors
in separate partitions. Multiplying parfactors combines the partitions of the parfactors.
When summing out a P(C)RV from a parfactor afterwards, the P(C)RV disappears from
the partition. At the end of an LVE run, all partitions have been combined and only
the query term is left. One can represent such a partitioning as a tree, specifically
an FO dtree, building one bottom-up as follows: The parfactors appear at the leaves.
Inner nodes represent multiplication of parfactors and subsequent summing out of a
P(C)RV along with the manipulation of partitions. When summing out a P(C)RV, LVE
multiplies parfactors by way of representatives, sums out a representative instance of
the P(C)RV and exponentiates the result for all isomorphic instances. Thus, one inner
node might represent the multiplication and summing out with representatives, while
another represents the exponentiation for the isomorphic instances. The root represents
the last operation performed in an LVE run. Since the elimination order during LVE is
not necessarily unique, there does not exist a unique FO dtree. The same holds for VE
and its representation as a propositional dtree.
One can interpret an FO dtree top-down as a recursive decomposition of a model into

partitions of parfactors where one partition includes P(C)RVs or logvars not part of any
other partition. This top-down interpretation gives rise to a simple routine for construct-
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ing an FO dtree without a query and a specific elimination order (Taghipour, 2013).1

At the root, a model forms one partition. Within a partition, one can partition the
current model based on P(C)RVs/logvars or test for logvars X that, if grounded, lead to
isomorphic models that are partially grounded w.r.t. X. If such logvars exist, an inner
node for isomorphic instances, called DPG node for decomposition into partial ground-
ings, is introduced and the model is partially grounded with representative constants for
X. Partitioning and partially grounding a model continues until parfactors only contain
representative constants and each appears in an own partition. Before we look at an FO
dtree for Gex, we define FO dtrees based on the definition by Taghipour et al. (2013a).

Definition 3.2.1 (FO dtree nodes). An FO dtree can have three types of nodes:

• A DPG node TX represents an exponentiation (bottom up) or a decomposition into
partial groundings (top down). TX is given by a tuple (X,x, C). X = {X1, . . . Xk}
is a set of logvars of the same domain DX. x = {x1, . . . xk} is a set of representative
constants from DX. C is a constraint on x such that ∀i, j : xi 6= xj .

• A VE node T represents a partitioning (multiplication, summing out bottom up).

• A leaf node L contains a parfactor, grounded with representative constants.

Let the sets DPG, V E, and Leaf contain all DPG, VE, and leaf nodes respectively.
Then, an FO dtree for a model G is a tree (V,E) where V = DPG ∪ V E ∪ Leaf and

E = (DPG× V E) ∪ (V E ×DPG) ∪ (V E × V E) ∪ (V E × Leaf) .

A VE node can follow a DPG node as well as a VE node. DPG nodes and leaf nodes
can only follow VE nodes. Further, the following holds:

• Each DPG node TX has a child VE node Tx, whose model is a representative of
the model at TX using a bijective substitution θ = {Xi → xi}ki=1 mapping X to x.

• Child Tx of a DPG node TX has k! children isomorphic up to permutation of x.

• Each leaf with representative constant x in its parfactor descends from exactly one
DPG node TX s.t. x ∈ x.

• Each leaf descending from DPG node TX has all constants x in its parfactor.

Given a DPG or VE node T in an FO dtree, mod(T ) refers to all parfactors and rv(T ) to
all PRVs in leaf parfactors of the subtree starting in T after applying inverse substitutions
for the DPG nodes in the subtree. Given a leaf node L, mod(L) refers to the parfactor
in L and rv(L) to the arguments of its parfactor. Depicting an FO dtree as a graph, we
denote a DPG node TX by (∀x : C), a VE node as a dot, and a leaf by its parfactor.

1An FO dtree requires a normal form for the model, in which each pair of logvars has either identical
or distinct domains, each constraint encodes X 6= X ′ for each pair of co-domain logvars appearing in
a parfactor, and for each pair of co-domain logvars in a parfactor, its constraint encodes X 6= X ′.
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{Epid}
∅

g0∀w:> TW
{Nat(D)}
{Epid}

Tw
{Man(w)}
{Epid,Nat(D)}

∀d:> TD
∅
{Epid,Nat(D),Man(w)}

Td
∅
{Epid,Man(w), Nat(d)}

g′′1

∀x:>TX
∅
{Epid}

Tx
{Sick(x)}
{Epid}

{Travel(x)}
{Epid, Sick(x)}

g′2

∀m:>TM
∅
{Epid, Sick(x)}

Tm
{Treat(x,m)}
{Epid, Sick(x)}

g′′3

Figure 3.4: FO dtree for Gex (grey labels: upper line – cutset, lower line – context)

Example 3.2.6 (FO dtree). Figure 3.4 depicts an FO dtree without set braces for the
DPG node labels and their children. Ignore the grey labels for now. Let us look at the
FO dtree in a top-down fashion. The root node is a VE node with three children. One is a
leaf node for g0. The remaining model is partitioned w.r.t. logvars (one could use X, W ,
or D for partitioning). The two partitions are {g1 = φ′1(Epid,Nat(D),Man(W ))} and
{g2 = φ2(Epid, Sick(X), T ravel(X)), g3 = φ3(Epid, Sick(X), T reat(X,M))}. In the
first partition, logvars D and W allow for a partial grounding into isomorphic instances.
If choosing W , as done for the FO dtree in the figure, the root has a child DPG node
TW = (W,w,>). TW has a child Tw replacing logvar W with representative object w,
i.e., θ = {W → w}. Tw has the model {g′1 = φ′1(Epid,Nat(D),Man(w))}. Again,
D permits a partial grounding into isomorphic instances. Thus, the child of Tw is a
DPG node TD = (D, d,>) with child Td where θ = {D → d}. The model at Td is
{g′′1 = φ′′1(Epid,Nat(d),Man(w))}. g′′1 contains only representative constants so we have
a leaf node. Going back to the root, we look at the second partition, where logvar X
allows for a decomposition into partial groundings. So, the root has a third child, a DPG
node TX = (X,x,>), leading to a substitution θ = {X → x}. TX has a child Tx with the
model {g′2 = φ′2(Epid, Sick(x), T ravel(x)), g′3 = φ′3(Epid, Sick(x), T reat(x,M))}. The
model is partitioned on logvar M . Thus, the children are a VE node with model {g′2}
and a DPG node TM = (M,m,>), as grounding M leads to isomorphic instances. The
VE node with model {g′2} has a leaf child containing g′2. TM has a child Tm with model
{g′′3 = φ′′3(Epid, Sick(x), T reat(x,m))}. Tm has a leaf child containing g′′3 .
Starting bottom up, the VE node Tm represents summing out Treat(X,M) using

representatives x and m. Its parent node represents the exponentiation for isomorphic
instances of M , i.e., injection and tablet. The parent node of the g′2 leaf node represents
summing out Travel(X) using representative x. No immediate DPG node appears as a
parent since summing out Travel(X) does not eliminate a logvar. VE node Tx represents
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multiplying the two resulting parfactors of the just mentioned sum-out operations and
summing out Sick(X) using x. TX represents the exponentiation for the isomorphic
instances of X, with a parfactor with argument Epid remaining. Starting at the leaf
node of g′′1 , a similar interpretation about a sequence of LVE operations is possible.

Darwiche (2001) defines properties, namely cutset, context, and cluster, for proposi-
tional dtrees. The properties, which denote sets of randvars, characterise VE operations
at a node, where cutset randvars are eliminated (“cut”), context randvars appear fixed,
and a cluster is the union of both. Taghipour et al. (2013a) define cutsets, contexts, and
clusters for FO dtrees. LJT will use the clusters for constructing an FO jtree. We define
the sets for FO dtrees based on the definitions by Taghipour et al. (2013a).

Definition 3.2.2 (Cutset, context, cluster). Let ancestors(T ) refer to all nodes between
node T and the root, children(T ) to all direct children of T . If T ∈ DPG, children(T ) =
{Txθ|Tx ∈ children(T ) ∧ θ ∈ Θx}, Θx = {θi}ni=1 is the set of grounding substitutions for
representatives x. Cutset, context, and cluster2 of a DPG or VE node T are given by

cutset(T ) =

 ⋃
Ti,Tj∈children(T )

rv(Ti) ∩ rv(Tj)

 \ acutset(T )

acutset(T ) =
⋃

T ′∈ancestors(T )

cutset(T ′) (ancestor cutset)

context(T ) = rv(T ) ∩ acutset(T )

cluster(T ) = cutset(T ) ∪ context(T )

For a leaf node L with parfactor g, cutset(L) = ∅ and context(L) = cluster(L) = rv(g).

An FO dtree shows if a count conversion is necessary: Counting logvars X is possible
and necessary if, at a DPG node TX, X appears in the cluster at TX. Next, we illustrate
cutsets, contexts, and clusters in the FO dtree of Gex.

Example 3.2.7 (Properties). The grey labels in Fig. 3.4 are cutsets and contexts. The
upper line is the cutset, the lower line the context at each inner node. Leaf contexts and
clusters consist of the parfactor arguments. At the root, the cutset consists of Epid since
it occurs in all children. The context is empty with an empty acutset. The left child
TW is a DPG node with child Tw where the possible grounding substitutions for w are
virus and war. Thus, children(TW ) = {Tvirus, Twar}, relevant for computing the cutset
of TW . The intersection of the randvars of Tvirus and Twar contains Epid and Nat(D),
which means Nat(D) remains in the cutset of TW , since Epid is in the acutset of TW .
Intersecting the randvars of TW with its acutset leaves Epid in the context of TW . At
Tw, the only child is a DPG node with randvars Epid, Nat(D), and Man(w), meaning
no other child exists for intersection. Removing the acutset leavesMan(w) in the cutset.

2There exists an algorithm to calculate cutsets in polynomial time for each inner node based on a set
of conditions derived from the definitions (Taghipour, 2013).
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The context consists of the other two randvars. For TD, the grounding substitutions
are earthquake and flood. Intersecting the randvars of Tearthquake and Tflood results in
{Epid,Man(w)}, which both appear in the acutset of TD. Intersecting Epid, Man(w),
and Nat(D) with its acutset for the context leads to all three variables in the context.
The DPG child TX of the root has an empty cutset as the only randvar in two T ∈

children(TX), Epid, appears in its acutset, i.e., Epid appears in the context of TX . All
other PRVs contain an x that is replaced with different values, i.e., alice, bob, eve, and
therefore lead to different randvars. At Tx, the VE child has the randvars Epid, Sick(x),
and Travel(x), while the DPG child has the randvars Epid, Sick(x), and Treat(x,M).
The intersection leaves Epid and Sick(x), which results in Sick(x) in the cutset and
Epid in the context. At the VE child, only one child exists with randvars Epid, Sick(x),
and Travel(x), meaning a cutset of Travel(x) and a context of Epid and Sick(x). At
the DPG child TM , the grounding substitutions are injection and tablet. Intersecting
the randvars of the children Tinjection and Ttablet results in {Epid, Sick(x)}, which is the
acutset of TM . Thus, the cutset is empty, with the context containing {Epid, Sick(x)}.
At Tm, the only child with randvars Epid, Sick(x), and Treat(x,m) leads to a cutset of
{Treat(x,m)} and a context of {Epid, Sick(x)}.
To illustrate the connection between the properties and the LVE operations behind

the nodes, let us look at the parent of leaf g′′3 . The parent is a VE node, which stands
for the representative elimination of Treat(x,m), which appears in the cutset of the VE
node. The PRVs in the context, Epid and Sick(x), also appear during summing out as
a fixed part, which remains after the elimination. The parent DPG node representing
the exponentiation does not have Treat(x,m) in its cutset, as it is already eliminated.
At the parent VE node of g′2, LVE eliminates Travel(x), which appears in the cutset,
while Epid and Sick(x) remain in the result after summing out. At Tx, the two paths
unite. Tx represents a multiplication for and summing out of Sick(x), which appears in
the cutset, while TX represents the exponentiation, after which Epid remains.
The left child of the root does not represent the LVE operations so explicitly as LVE

performs a count conversion, which the FO dtree shows as necessary and possible: At
DPG node TD, the PRV Nat(D) appears in the cluster of TD, specifically in the context
of TD. The cutsets below Tw are empty, which follows LVE since it cannot eliminate any
PRV without a count conversion. After counting D in Nat(D), LVE eliminates Man(w)
represented at Tw and exponentiates the result at TW . After eliminating Man(W ), LVE
can eliminate #D[Nat(D)], which appears in the cutset of TW to eliminate next. One
could reformulate the FO dtree with a CRV #D[Nat(D)]: The DPG node TD and its
child Td disappear and the leaf follows after Tw. An extra VE node between the root
and TW explicitly represents the elimination of #D[Nat(D)].

LVE is an algorithm for single queries that leverages relational structures for efficient
inference. LVE uses the factorisation of a full joint expressed in a probabilistic graphical
model. The factors are then used for computations, with computations organised in
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such a way that small intermediate results arise. LVE falls into the category of bottom-
up dynamic programming approaches (Dechter, 1999) where the individual factors are
combined and processed to produce the final result. Another algorithm falling into this
category is the propositional JT, which uses VE in its computations.
In contrast to the bottom-up method just presented, WMC methods for example

perform probabilistic inference by way of top-down dynamic programming (Darwiche,
2001). These methods condition a model on each possible world for a subset of randvars,
possibly dividing a model into smaller subproblems. The solutions to the subproblems are
then combined into one overall solution. Van den Broeck et al. (2011) provide WFOMC
as a relational variant of WMC and present FOKC to solve WFOMC problems.
Before presenting LJT as an efficient algorithm for multiple queries based on LVE,

we take a brief excursion into FOKC as another lifted algorithm for repeated inference,
which we use during the empirical evaluation of the next part for comparison.

3.3 Exkursion: First-order Knowledge Compilation

The inputs for KC-based algorithms are logical formulas associated with a weight, i.e.,
weighted models. Propositional KC compiles a weighted model into a so-called circuit for
probabilistic inference (Darwiche and Marquis, 2002). A circuit is a tree-like structure
where leaves contain simple events of randvars, i.e., A = a or A = ¬a for boolean
randvars, and inner nodes represent either a conjunction or a disjunction. Events can
be set to 0 or 1 based on evidence. Further leaves contain the weights (or probabilities)
from the model. During inference, the weights are propagated through the tree with
conjunctions being replaced by a multiplication and a disjunction being replaced by an
addition. The result at the root is a model count for the underlying model.
To ensure that weights are combined appropriately, the events of the branches going

into a conjunction need to be disjoint (independent) s.t. the weights can be multiplied,
and only one of the branches going into a disjunction may be true at a time s.t. the
weights can simply be added. These restrictions require a model to fulfil a normal form,
specifically, the deterministic decomposable negation normal form (d-DNNF). The NNF
ensures that only simple events occur with negations only directly in front of terms.
Decomposable means that all pairs of conjuncts are independent. Deterministic refers
to only one disjunct being true at a time. In summary, d-DNNF allows for efficient
reasoning, as computing the weight of a conjunction decomposes into a product of the
weights of its conjuncts and the weight of a disjunction is equal to the sum of weights of its
disjuncts. Other normal forms exist, which allow for QA of certain query types to depend
linearly on the size of the circuit (Darwiche and Marquis, 2002). The disadvantage of
the normal forms is that the circuits grow very large. They grow the larger, the more
strict the normal form is. The upside is that the more strict the normal form is, the more
query types are supported in linear time w.r.t. circuit size.
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Given repeated patterns in a model, identical branches exist in a circuit which can be
exploited for more efficient inference in two ways: (i) Identical branches can be combined
into one representative to form a more compact circuit. (ii) In identical branches, the
calculations are identical, which means they can be carried out once for a representative
and applied to all instances. Van den Broeck et al. apply lifting to KC and WMC,
introducing weighted first-order model counting (WFOMC) and a first-order d-DNNF
(FO d-DNNF, Van den Broeck et al., 2011; Van den Broeck and Davis, 2012). FOKC
aims at solving a WFOMC problem by building FO d-DNNF circuits given a query and
evidence and computing model counts on the circuits. Of course, different compilation
flavours exist, e.g., compiling into C++ program code (Kazemi and Poole, 2016b), which
does not change the problem in itself. So, we focus on FOKC. We briefly take a look at
WFOMC problems, FO d-DNNF circuits, and QA with FOKC. Please refer to the work
by Van den Broeck (2013) for details.

WFOMC Problem (Van den Broeck et al., 2011) Notations are based on (function-
free) first-order logic, where an atom p(t1, . . . , tn) consists of a predicate p of arity n and
n terms ti. Terms are either constants or variables, the latter comparable to logvars in
parameterised models. A literal l is an atom a or its negation ¬a. From these basic units,
one forms a clause c as a disjunction of literals l1 ∨ · · · ∨ lk, assumed to be universally
quantified. Clauses may be constrained by an (in)equality between two terms. A theory
∆ is a finite set of clauses, denoting the conjunction of its clauses, i.e., the theory is
in conjunctive normal form (CNF). An expression is an atom, a literal, a clause, or a
theory. An expression is ground if its does not contain any variables. The Herbrand base
HB(∆) is the set of all possible ground atoms of the atoms in a theory ∆. A Herbrand
interpretation I is a set of ground atoms, in which all atoms are assumed to be true, while
all other atoms from a Herbrand base are assumed to be false. An interpretation satisfies
a theory ∆, written as I |= ∆, if is satisfies all clauses c ∈ ∆. Such an interpretation is
called a model for the theory, withM(∆) = {I|I |= ∆} denoting the set of models.
For WFOMC, a theory ∆ is augmented with a positive and a negative weight function

wT and wF respectively, which assign weights to predicates in ∆. Then, a WFOMC
problem for ∆, wT , and wF consists of computing∑

I∈M(∆)

∏
a∈I

wT (pred(a))
∏

a∈HB(∆)\I

wF (pred(a))

where pred maps atoms to their predicate.
To transform parfactor models into WFOMC problems, one maps each input-output

pair in a parfactor to a formula with corresponding weights. See (Van den Broeck,
2013) for a complete description of how to transform parfactor models into WFOMC
problems. Consider parfactor g2 ∈ Gex as an example. Assume that its potential function
φ2(Epid, Sick(X), T ravel(X)) maps the input (true, true, true) to 7 and the remaining
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inputs to 2. The PRVs in g2 become atoms, with X becoming a variable. Then, φ2

translates into two formulas,

∀X : f1(X)⇔ epid ∧ sick(X) ∧ travel(X) (3.4)
∀X : f2(X)⇔ ¬epid ∨ ¬sick(X) ∨ ¬travel(X) (3.5)

creating new predicates f1 and f2 for the weight functions that encode 7 and 2 (wF maps
to 1 by default):

wT (f1) = 7 wF (f1) = 1

wT (f2) = 2 wF (f2) = 1

Formula (3.4) describes the first input-output pair given above. Formula (3.5) catches the
remaining cases that all have the same weight. If φ2 maps to eight different potentials,
eight formulas are necessary to encode the same model. The two formulas are not in
CNF, but can be transformed by replacing ⇔ with corresponding implications, which
in turn can be represented using disjunctions. Then, the expression can be turned into
CNF by expand the conjunctions accordingly.

Compilation The way ∆ is defined with being in CNF and negations appearing directly
in front of atoms, ∆ may already be in FO d-DNNF. But, one may want to use other
logical connectors than ∨ and ∧ in clauses. Therefore, FOKC needs to convert ∆ to be
in FO d-DNNF such that the following holds: (i) Negations appear directly in front of
the atoms. (ii) All conjunctions are decomposable (all pairs of conjuncts independent).
(iii) All disjunctions are deterministic (only one disjunct true at a time). In the above
example of turning g2 into two formulas as given in (3.4) and (3.5), the set of clauses does
not adhere to the definition of a theory given before. With these two formulas as input,
FOKC converts them to fulfil the FO d-DNNF, which leads to a theory ∆2 consisting of
the following eight clauses:

epid ∨ f2(X) sick(X) ∨ f2(X) travel(X) ∨ f2(X)

epid ∨ ¬f1(X) sick(X) ∨ ¬f1(X) travel(X) ∨ ¬f1(X)

¬epid ∨ ¬sick(X) ∨ ¬travel(X) ∨ ¬f2(X)

¬epid ∨ ¬sick(X) ∨ ¬travel(X) ∨ f1(X) (3.6)

Given the constants of the parameterised model, an interpretation of ∆2 is given by

{epid, sick(alice), sick(bob), sick(eve),

travel(alice), travel(bob), travel(eve), f1(alice), f1(bob), f1(eve)} (3.7)

with the remaining ground atoms f2(alice), f2(bob), and f2(eve) in the Herbrand base
of ∆2 being false. The smallest interpretation is {f2(alice), f2(bob), f2(eve)}.
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Figure 3.5: FO d-DNNF circuit (grey nodes appear after smoothing)

An FO d-DNNF circuit represents such a theory as a directed acyclic graph. As with a
propositional circuit, inner nodes are labelled with ∨ and ∧. Additionally, set-disjunction
and set-conjunction represent isomorphic parts in ∆, explicitly representing repeated
structures. Figure 3.5 shows an FO d-DNNF circuit for ∆2 (ignore grey nodes for now).
Leaf nodes contain atoms from the clauses, with atoms of newly created predicates (e.g.,
f1 and ¬f1) getting corresponding weights (7 and 1) associated. Looking at the root
disjunction, the two subtrees are deterministic. E.g., the left subtree has epid as a node
of the following conjunction, while the right subtree has ¬epid as a node, which are
mutually exclusive. The other two disjunction have mutually exclusive assignments for
sick(x) and travel(x) respectively. If ¬epid holds, then the last two clauses of ∆2 are
satisfied. To satisfy epid ∨ f2(X) and epid ∨ ¬f1(X), f2 and ¬f1 have to hold, which
makes the remaining clauses satisfied as well. Together, ¬epid, f2, and ¬f1 make up
the right subtree of the root. The left subtree becomes true under the interpretation in
(3.7). The subtree also contains a set-conjunction for all groundings of X, denoting that
the subtree starting in the set-conjunction is identical for each grounding of X. Before
one can propagate weights, the circuit needs to be smoothed, i.e., in each branch need
to occur the same set of predicates. For the circuit in Fig. 3.5, smoothing leads to the
grey nodes to appear. The labels of the grey nodes anticipate weight calculations.
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Algorithm 2 First-order Knowledge Compilation
procedure FOKC(Model G, Queries {Qj}mj=1, Evidence E)

Reduce G to WFOMC problem with ∆, wT , wF
Compile a circuit Ce for ∆, E
for each query Qj do

Compile a circuit Cqe for ∆, Qj , E
Compute P (Qj |E) through model counts in Cqe, Ce . Expression (3.8)

Propagating weights in a FO d-DNNF circuit compares to propagating weights in a
propositional d-DNNF circuit, with ∨ and ∧ being replaced by + and ·, respectively.
The weight of leaf nodes containing a variable is exponentiated to the power of the
groundings of its variables. At inner nodes of set-conjunctions, the model count of the
child is exponentiated to the power of the number of interchangeable conjuncts being
represented. At inner nodes of set-disjunctions, the children can be grouped into subsets
of equal size, where each child has the same model count. Thus, one has to compute a
model count for each subset. Propagating weights from the leaves to the root in Fig. 3.5
leads to a model count of 2709, using 1 as the neutral element for the model counts of
predicate leaves. Next, we look at how FOKC answers queries.

Query Answering Algorithm 2 shows QA with FOKC for input model G, a set of query
randvars {Qi}mi=1, and evidence E. FOKC starts with transforming G into a WFOMC
problem ∆ with weight functions wT and wF . It compiles a circuit Ce for ∆ including
E. Handling evidence requires FOKC to set up three types of nodes instead of one
for a set of instances, one for instances with observation true, one for the instances with
observation false and one for remaining instances, which blows up the circuit size further
but is necessary to handle evidence. For details regarding how FOKC exactly handles
evidence, refer to Van den Broeck and Davis (2012). For each query Qi, FOKC compiles
a circuit Cqe for ∆ including E and Qi. It then computes

P (Qi|E) =
WFOMC(Cqe, wT , wF )

WFOMC(Ce, wT , wF )
(3.8)

by propagating model counts in Cqe and Ce based on wT and wF . FOKC can reuse the
denominator model count for all Qi.
FOKC reuses model circuits and counts for different queries. Calculations within a

circuit reuse counts for interchangeable instances like LVE does during lifted summing
out. The next part introduces LJT, applying lifting to jtrees instead of circuits and using
LVE in its calculations, to provide efficient repeated inference based on LVE.
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Chapter 4

The Lifted Junction Tree Algorithm

LVE as an algorithm for solving the QA problem provides a means for lifted inference
to efficiently answer single queries. But, LVE unnecessarily repeats computations when
presented with another query. LJT focusses on efficient repeated inference, meaning
solving multiple QA problems, avoiding repetition of calculations. An important basis
for LJT is the well-known propositional junction tree algorithm, JT, which focusses on
repeated inference in propositional models. With LJT, we combine both ideas, the lifting
concept as well as LVE to efficiently incorporate relational aspects of a model during
computations and the jtree concept to efficiently provide answers to multiple queries.
The following paper introduced LJT, providing first definitions,

Tanya Braun and Ralf Möller. Lifted Junction Tree Algorithm. In Proceedings
of KI 2016: Advances in Artificial Intelligence, pages 30–42. Springer, 2016

which was extended regarding counting, evidence, and fusion, a new step in LJT, and
then received a full specification and theoretical and empirical analysis (under review):

Tanya Braun and Ralf Möller. Preventing Groundings and Handling Evidence
in the Lifted Junction Tree Algorithm. In Proceedings of KI 2017: Advances
in Artificial Intelligence, pages 85–98. Springer, 2017

Tanya Braun and Ralf Möller. Counting and Conjunctive Queries in the
Lifted Junction Tree Algorithm - Extended. In Postproceedings of the 5th
International Workshop on Graph Structures for Knowledge Representation
and Reasoning at the 26th International Joint Conference on Artificial Intel-
ligence, pages 54–72. Springer, 2018

Tanya Braun and Ralf Möller. Avoiding Repetition in Repeated Inference on
Probabilistic Relational Models: The Lifted Junction Tree Algorithm. Sub-
mitted

This part contains the first three contributions of this dissertation regarding FO jtrees,
LJT as a QA algorithm, and first completeness and complexity results. Chapter 4 starts
with an introduction to jtrees before defining FO jtrees, followed by a presentation of
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LJT. The chapter ends with a description of how to prevent algorithm-induced ground-
ings. Chapters 5 and 6 contribute a theoretical analysis and an empirical evaluation
respectively. A conclusion wraps up this first part before we move on to the next part
on more complex queries.

4.1 An Introduction to Junction Trees

LJT focusses on efficient repeated inference, meaning solving multiple different QA prob-
lems. An important basis for LJT is the well-known propositional junction tree algorithm,
JT, by Lauritzen and Spiegelhalter (1988) for repeated inference in propositional models.
Using a small submodel would be preferable to restarting with a modelG for each query.

Exploiting that G encodes (conditional) independencies between randvars through its
factorisation, one needs to find a submodel Gi ⊂ G, as small as possible, whose randvars
are independent of the randvars in the remaining model given a set or sets of randvars S,
called separators. Separators separate Gi from the remaining model, i.e., the randvars
in Gi are conditionally independent from the remaining randvars given the separators.
In other words, hidden behind each S lie factors that are no longer relevant for an-

swering a query on Gi if S is given, i.e., answering a query for a randvar Q on Gi is
possible. But without all S given, the remaining factors in G \ Gi and their influences
on the randvars in Gi are missing. To combine the missing factors, one can query for
each S on the factors that lie hidden behind S, using e.g., VE to answer such a query.
Gi together with the answer to each queried S is sufficient to answer a query for Q.
To be able to reuse submodels and queries for S when given different queries, the idea

is to partition G into n submodels once. Each submodel contains a set of randvars, which
form a cluster Ci, with the submodel Gi building a local model for Ci. Then, the clusters
are arranged into an acyclic graph, i.e., a jtree, s.t. if a randvar appears in two clusters, the
randvar appears in every cluster on the path between the two. This graph arrangement
highly influences the partitioning of G. Given such a graph, neighbouring clusters Ci,Cj

share randvars, which form a separator Sij that renders Ci independent from all randvars
that lie behind Cj and vice versa. After Ci has queried each neighbour for Sij , Ci can
answer a query using the answers from the neighbours and Gi. At each Ci, querying
neighbours for Sij recursively spawns queries over separators at neighbours. Instead of
implementing these queries naively for each cluster, one may rearrange the queries using
dynamic programming: Leaves are the first to provide an answer to their neighbour.
From there on, clusters provide answers to neighbours further inward and then back
outward. In JT, this scheme is called message passing where a message is the result of
a query for a separator. JT calculates a message using VE to eliminate all randvars but
the separator from its local model and received message from other neighbours.
Consider the jtree in Fig. 2.2 for the epidemic example where the Sicki and Natj

randvars each appear with the Epid randvar in an own cluster. Each node in the repre-
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sentation has a local model of factors whose arguments appear in the cluster. The local
models of φ1’s and φ2’s partition the input model. The separator between all clusters
is Epid. Consider the leaf cluster {Sick1, Epid} with φ2 in its local model. Combining
the remaining model behind Epid, i.e., all φ1’s and φ2’s into one factor, i.e., φ′′, renders
{Sick1, Epid} independent given φ′′. Message passing arranges for each local model to
also contain these φ′’s and φ′′’s, making the clusters independent from each other..
The jtree also shows that repeated structure in a model lead to duplicate nodes and

identical messages, i.e., φ′’s and φ′′’s. Thus, LJT lifts jtrees to provide a compact repre-
sentation of a parameterised model. As such, we use the lifting concept including LVE to
efficiently incorporate relational aspects of a model in data structures and calculations
and exploit the jtree concept to efficiently provide answers to multiple queries. Before
specifying LJT, we define FO jtrees as the underlying data structure.

4.2 First-order Jtrees

In a first-order version of a jtree, the nodes are parameterised clusters, called parclusters
for short. Parclusters are sets of PRVs, which have their origin in the clusters of an FO
dtree. We define parclusters and FO jtrees and then look at an FO jtree for Gex.

Definition 4.2.1 (Parcluster, FO jtree). Let X be a set of logvars, A a set of PRVs
with lv(A) ⊆ X, and (X , CX ) a constraint on X. Then, ∀x ∈ CX : A|C denotes a
parcluster, substituting X in A with x. We write A|(X ,CX ) for short. We omit |(X , CX )
if the constraint is >. Definition 3.1.3 regarding set relations and operations of sets of
PRVs also applies to parclusters.
An FO jtree for a model G is a cycle-free graph J = (V,E), where V ⊆ 2rv(G) is

the set of nodes and E ⊆ {{i, j}|i, j ∈ V, i 6= j} the set of edges. Each node in V is a
parcluster Ci. J must satisfy three properties: (i) ∀Ci ∈ V : Ci ⊆ rv(G). (ii) ∀g ∈ G :
∃Ci ∈ V : rv(g) ⊆ Ci. (iii) If ∃A ∈ rv(G) : A ∈ Ci ∧ A ∈ Cj , then ∀Ck on the path
between Ci and Cj : A ∈ Ck (running intersection property). An FO jtree is minimal
if by removing a PRV from a parcluster, the FO jtree ceases to be an FO jtree, i.e., it
no longer fulfils at least one property. The set Sij , called separator of edge {i, j} ∈ E,
is defined by Ci ∩ Cj . The term nbs(i) refers to the neighbours of node i, defined by
{j|{i, j} ∈ E}. Each Ci ∈ V has a local model Gi and ∀g ∈ Gi : rv(g) ⊆ Ci. The local
models Gi partition G.

Empty separators identify independent parts of a model. An FO jtree with empty
separators practically dissolves into a forest of FO jtrees, where LJT can work individually
on each FO jtree in the forest.

Example 4.2.1 (FO Jtrees). Figure 4.1a shows an FO jtree for the parameterised model
of the epidemic example in Chapter 2, which is a much more compact representation than
the jtree in Fig. 2.2. Instead of M duplicate clusters with Natj and Epid as well as N
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Epid
Nat(D)

{g1}

C1

Epid
Sick(X)

{g2}

C2

(a) Example in Chapter 2

Epid
Nat(D) Man(W )

{g0, g1}

C1

Epid
Sick(X) Travel(X)

{g2}

C2

Epid
Sick(X) Treat(X,M)

{g3}

C3

(b) Model Gex

Figure 4.1: FO jtrees with local models in grey

duplicate clusters with Sicki and Epid in the jtree, the FO jtree has two parclusters,
involving the two logvars X and D with domains D(X) = {xi}Ni=1 and D(D) = {dj}Mj=1:

C1 = ∀d ∈ {dj}Mj=1 : {Nat(d), Epid}|> = {Nat(D), Epid},
C2 = ∀x ∈ {xi}Ni=1 : {Sick(x), Epid}|> = {Sick(X), Epid}.

Separator S12 contains Epid as the shared PRV of the two parclusters. For the extended
model Gex, Fig. 4.1b shows an FO jtree with three parclusters,

C1 = ∀(d,w) ∈ D(D)×D(W ) : {E,Nat(d),Man(w)}|> = {E,Nat(D),Man(W )},
C2 = ∀(x) ∈ D(X) : {E,S(x), T ravel(x)}|> = {E,S(X), T ravel(X)},
C3 = ∀(x,m) ∈ D(X)×D(M) : {E,S(x), T reat(x,m)}|> = {E,S(X), T reat(X,M)}

where E stands for Epid and S for Sick. The separators are S12 = {Epid} and S23 =
{Epid, Sick(X)}|> = {Epid, Sick(X)}. Each parcluster is a set of PRVs from Gex and
the parfactor arguments appear in some node. PRVs that appear more than once, i.e.,
Epid and Sick(X), appear in each parcluster on the path between appearances. The
given FO jtree is minimal as removing any PRV from any of the parclusters leads to
either g1, g2, or g3 to no longer have its arguments appear in a parcluster. The local
models G1 = {g0, g1}, G2 = {g2}, and G3 = {g3} partition Gex.

With the lifted version of a jtree defined, we present LJT itself including how to
construct an FO jtree, pass messages, and answer queries.

4.3 Algorithm Description

Algorithm 3 shows LJT, which takes a model G, a set of queries {Qk}mk=1, and evidence
E as inputs. I.e., LJT solves the QA problem for the queries P (Qk|E) for each (ground)
query term Qk. Like JT, LJT has the steps construction, evidence entering, message
passing, and query answering. As we will see, a straight-forward translation of JT into
LJT has the effect of unnecessary groundings during message passing for certain models.
Thus, the complete specification of LJT includes an operation called fusion after the
construction step to remedy the effect, which we present at the end of this chapter.
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Algorithm 3 Lifted Junction Tree Algorithm
procedure LJT(Model G, Query terms {Qk}mk=1, Evidence E)

Construct an FO jtree J = (V,E) for G
Enter E into J
Pass messages on J . LVE as subroutine
for each Qk ∈ {Qk}mk=1 do

Find Ci ∈ V s.t. Qk ∈ Ci

G′ ← Gi ∪
⋃
j∈nbs(i)mji

LVE(G′, Qk, ∅) . Output or store result

Construction Darwiche (2001) shows that the clusters of the dtree nodes form a jtree,
which, however, is not necessarily minimal. The connection also holds for FO dtrees and
FO jtrees (see Chapter 5 for a proof), which LJT uses to build an FO jtree for model G.
In a jtree that has been built from a dtree, there are non-maximal clusters, i.e., clusters
are subsets of each other. But, there are no clusters that are larger than necessary
(Darwiche, 2009). First, we define how to convert FO dtree clusters into parclusters,
forming an FO jtree. Second, we specify how to minimise an FO jtree. A minimal (FO)
jtree ensures space efficiency as well as runtime efficiency during message passing.

Definition 4.3.1 (Conversion). Let B denote a cluster associated with an FO dtree
node T . If T is a descendant of a DPG node (X,x, C), then B is the cluster of T after
applying the inverse θ−1 of the substitution θ = {Xi → xi}ki=1, mapping x back onto X.
θ−1 also applies to leaf parfactors. Then, we define the following conversions for building
a parcluster Ci = A|C with a local model Gi:

• Let B be the cluster of a DPG node (Y,y, D). Then, B is converted into Ci by
setting (i) A = B, (ii) C = D, and (iii) Gi = ∅.

• Let B be the cluster of a VE node T . Then, B is converted into Ci by setting
(i) A = B, (ii) C = ∅, and (iii) Gi = ∅.

• Let B be the cluster of a leaf node with parfactor g. Then, B is converted into Ci

by setting (i) A = B, (ii) C = ∅, and (iii) Gi = {g}.

Example 4.3.1 (Non-minimal FO jtree). Figure 4.2 depicts the FO jtree after converting
the clusters of the FO dtree in Fig. 3.4 into parclusters. All parclusters originating from
DPG nodes may include DPG logvars in their constraints that do not occur in their
PRVs. The parclusters from the leaf nodes have non-empty local models. The FO jtree
is valid since all parclusters are sets of PRVs from Gex, all parfactor arguments appear in
some node, and all PRVs contained in several nodes appear on all paths between them.

The FO jtree in Fig. 4.2 is not minimal as there exist parclusters that are subsets of
other parclusters, e.g., the former root cluster. Non-minimality makes message passing
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Epid

Epid

{g0}

Epid,Nat(D)|C
C = > = D(W )×D(D)

TW

Epid,Nat(D),Man(w)|C
C = > = D(W )×D(D)

Tw

Epid,Nat(D),Man(w)|C
C = > = D(W )×D(D)
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Epid,Nat(d),Man(w)|C
C = > = D(W )×D(D)

Td

Epid,Nat(d),Man(w)|C
C = > = D(W )×D(D)

{g1}

Epid|C
C = > = D(X)

TX

Epid, Sick(x)|C
C = > = D(X)

Tx

Epid, Sick(x), T ravel(x)|C
C = > = D(X)

Epid, Sick(x), T ravel(x)|C
C = > = D(X)

{g2}

Epid, Sick(x)|C
C = > = D(X)×D(M)

TM

Epid, Sick(x), T reat(x,m)|C
C = > = D(X)×D(M)

Tm

Epid, Sick(x), T reat(x,m)|C
C = > = D(X)×D(M)

{g3}

Figure 4.2: Non-minimal FO jtree for Gex with local models in grey (empty models
omitted). T labels denote from which node in Fig. 3.4 a parcluster originates.

inefficient and requires unnecessary memory. Therefore, LJT minimises an FO jtree by
merging adjacent nodes until no parcluster is a subset of any other parcluster, which
was the only violation of minimality. To keep parclusters as small as possible for query
answering, LJT does not merge parclusters that are not subsets. Doing so would lead
to parclusters larger than necessary. After merging, the FO jtree is minimal. Before we
illustrate how to minimise the FO jtree in Fig. 4.2, we define merging.

Definition 4.3.2 (Merging). Parclusters Ci and Cj with models Gi and Gj in an FO
jtree (V,E) merge iff Ci ⊆ Cj ∨ Cj ⊆ Ci including their constraints. The merged
parcluster Ck and its model Gk are given by Ck = Ci ∪ Cj and Gk = Gi ∪ Gj . Ck

replaces parclusters Ci and Cj in V . Ck takes over all neighbours of Ci and Cj in E.

Example 4.3.2 (Minimal FO jtree). Minimising the FO jtree in Fig. 4.2 leads to the
FO jtree in Fig. 4.1b. LJT merges the parclusters of the former root with the former
left child subtree. The resulting parcluster {Epid,Nat(D),Man(W )} with local model
{g1} is mergeable with the parcluster with local model {g0}. The merged parcluster
corresponds to parcluster C1 in Fig. 4.1b. LJT does not continue merging with the
parcluster labelled TX as neither constraint is a subset of the other. LJT merges TX with
the parcluster labelled Tx. It then continues down the left branch merging all parclusters
including the leaf. The resulting node corresponds to parcluster C2 in Fig. 4.1b. LJT
does not merge C2 and TM as the constraint of TM is a superset, while its PRVs are
a subset of C2. LJT merges the parclusters labelled TM , Tm, and the leaf into one
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parcluster, yielding parcluster C3 in Fig. 4.1b. Instead of merging the parcluster of TX
and Tx with the left branch, LJT could have chosen the right branch, which results in
the same parclusters but with C3 as the central parcluster and C2 as a leaf.

After construction, LJT has assembled an FO jtree with fitting separators and local
models that partition the input model G. Before passing messages, LJT handles evidence
to pass messages that combine missing parfactors as well as evidence.

Evidence Entering LJT next works on the evidence given in a query P (Q|{Ej = ej}mj=1,
which has been encoded in a set of evidence parfactors E. Entering evidence consists
of making evidence parfactors available at parclusters and absorbing evidence. A local
model Gi absorbs evidence ge = φe(R(X))|Ce

at a parcluster Ci iff

gr(R(X)|Ce
) ∩ gr(Ci) 6= ∅. (4.1)

As described in Section 3.2, LVE tests each parfactor in G against each evidence parfactor
for absorption. Unlike LVE, LJT avoids testing each parfactor in G using the running
intersection property of an FO jtree. To distribute gE , LJT finds a parcluster Ci that
meets Expression (4.1). Gi absorbs gE and LJT checks for each separator if

rv(gE) ∩ Sij 6= ∅. (4.2)

If Expression (4.2) is true for j, distribution continues at Cj . Otherwise, LJT stops
distributing gE in the subgraph behind j as R(X) can no longer appear due to the running
intersection property. Let us add the evidence from P (Treat(eve, injection)|sick(eve)).

Example 4.3.3 (Evidence in LJT). The evidence is sick(eve), which appears in C2

and C3 as shown in Fig. 4.1b. The local model at C1 is unaffected, shown in Fig. 4.3a.
In C2, LJT splits g2 into ge2 = φ2(Epid, Sick(eve), T ravel(eve)) for the evidence part
and gr2 = φ2(Epid, Sick(X), T ravel(X))|Cr

2
, Cr2 containing alice and bob, for the remain-

der. ge2 absorbs sick(eve), yielding ge2 = φ′2(Epid, Travel(eve)). G2 is now {gr2, ge2}
as shown in Fig. 4.3b. Absorption in C3 proceeds analogously: LJT splits g3 into
ge3 = φ3(Epid, Sick(eve), T reat(eve,M)) and gr3 = φ3(Epid, Sick(X), T reat(X,M))|Cr3 ,
Cr3 containing (X,M) tuples for alice and bob. ge3 absorbs sick(eve), resulting in ge3 =
φ′3(Epid, Treat(eve,M)). G3 is now {gr3, ge3} as shown in Fig. 4.3c.

Now, each local model Gi also contains evidence about its own PRVs. The next step
is message passing which makes G \Gi available at each parcluster.

Message Passing A message is the result of a query over a separator, which each par-
cluster asks each neighbour. A messagemij from parclusterCi to parclusterCj combines
for j all missing parfactors and evidence that lie behind Sij , making Cj independent from
the submodel behind Sij . LJT uses LVE to compute messages, skipping the last step
before returning the result (multiplying and normalising) as the message is only a partial
combination of the model and as such does not require normalisation.
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Figure 4.3: Parfactor graphs of local models after absorbing evidence

Definition 4.3.3 (Message). A message mij from parcluster Ci with local model Gi
to parcluster Cj is a set of parfactors, each with a subset of Sij as arguments, which
Cj stores. LJT computes mij by passing to LVE a query over Sij and a model G′ =
Gi ∪

⋃
k∈nbs(i),k 6=jmki, i.e., LVE(G′, Sij , ∅). LVE then eliminates Ci \ Sij from G′.

As parcluster Ci can only send a complete message to neighbour Cj after Ci has
received all messages from other neighbours, sending messages is arranged in an order
such that each parcluster sends a message to a neighbour once all necessary messages
arrived. The scheme that LJT uses has been introduced by Shafer and Shenoy (1990)
for propositional jtrees. Messages are sent based on two conditions, leading to basically
an inward and an outward pass:

(1) When a parcluster Ci has received messages from all neighbours but Cj , Ci sends a
message to Cj .

(2) When a parcluster Ci has received a message from its remaining neighbour Cj , Ci

sends messages to all other neighbours.

Condition (1) is automatically true at leaf parclusters. Condition (1) triggers sending
messages from the periphery of the FO jtree inward towards the centre. At the centre,
Condition (2) becomes true for a first parcluster, triggering outward sending of mes-
sages. Technically, whenever a condition is true, message calculation and sending may
commence, which makes message passing highly parallelisable. Doing so, a parcluster
Ci may receive all messages of its neighbours at once, meaning that Ci immediately
calculates messages for all neighbours. Let us look at messages in the FO jtree for Gex.

Example 4.3.4 (Message passing). Four messages flow in the FO jtree in Fig. 4.1b,
from parclusters C1 and C3 to parcluster C2 and back. Messages between C1 and C2

have the argument Epid and between C2 and C3 the arguments Epid and Sick(X).
Condition 1 is true at C1 and C3, leading to message calculations for neighbour C2.

For message m12, LJT eliminates C1 \ S12 = {Nat(D),Man(W )} with LVE from G′ =
G1 = {g0, g1}. The PRVs Nat(D) and Man(W ) appear in g1. LVE counts D, sums out
Man(W ), and sums out #D[Nat(D)], resulting in a parfactor g′1 = φ′1(Epid). Parfactor
g0 has only Epid as argument, which LVE does not eliminate. As LVE does not multiply
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Figure 4.4: Parfactor graphs of the messages

and normalise the parfactors in its model for messages, the message is m12 = {g0, g
′
1},

which is shown in Fig. 4.4a. For message m32, LJT eliminates C2\S23 = {Treat(X,M)}
from G′ = G3 = {gr3, ge3} with LVE. In gr3, LVE eliminates Treat(X,M) leading to a
parfactor gr′3 = φ′3(Epid, Sick(X)). Eliminating Treat(eve,M) in ge3 leads to a parfactor
ge′3 = φ′′3(Epid). The message is m32 = {gr′3 , ge′3 } as shown in Fig. 4.4b.
In a parallel execution, C2 receives m12 and m32, which makes Condition 2 true,

and starts calculating messages for its neighbours. For message m21 back to node C1,
LJT eliminates C2 \ S12 = {Sick(X), T ravel(X)} from G′ = G2 ∪m32 with LVE. LVE
eliminates Travel(X) from gr2, multiplies the result with gr′3 from m32, and eliminates
Sick(X). The result gr′23 as well as ge′3 from m32 make up m21. For message m23, LJT
eliminates C2 \ S23 = {Travel(X)} from G′ = G2 ∪m12, eliminating Travel(X) from
gr2 and Travel(eve) from ge2, with both results appearing in m23, depicted in Fig. 4.4c.
Since m12 = {g0, g

′′
1} consists of parfactors with argument Epid, which LJT does not

eliminate, m12 appears unchanged in m23. Fig. 4.4d shows a parfactor graph of m23.
In a non-parallel execution, LJT may deliver m12 first, which means C2 may now

calculate messagem23, which LJT delivers toC3. Afterm32 arrives atC2, LJT calculates
m21 for C1. The calculations are identical, only the order of sending messages changes.

At this point, each parcluster has received messages from each neighbour, which makes
each parcluster independent from all other parclusters. Based on the messages received
and its own local model, each parcluster can answer queries about its parcluster PRVs.
Before moving on to query answering, let us consider how messages influence LJT.
During construction, LJT does not count logvars identifiable in an FO dtree. The

reason lies in LJT not being able to always determine beforehand if a count conver-
sion is reasonable for message calculation. A count conversion may be superfluous
and thus unnecessarily enlarge a parfactor. Consider a scenario in which a parcluster
Ci = {Nat(D),Man(W )} has a separator Sij = {Man(W )} with some neighbour Cj .
The local model Gi contains a parfactor φ(Nat(D),Man(W )) with both logvars count-
able. To compute messagemij , LJT needs to eliminates Nat(D) by letting LVE countW
for summing outNat(D). Assume that the FO dtree used for constructing the underlying
FO jtree shows thatD is countable. If had LJT countedD leading to a CRV #D[Nat(D)]
during construction, the following scenario would arise: Ci = {#D[Nat(D)],Man(W )},
Sij = {Man(W )}, and Gi = {φ(#D[Nat(D)],Man(W ))}. In this scenario, LJT would
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have to eliminate #D[Nat(D)] but could not do so as #D[Nat(D)] would not contain all
logvars of φ(#D[Nat(D)],Man(W )), i.e., W would not appear in #D[Nat(D)]. Thus,
LVE would count W to sum out #D[Nat(D)], making counting D superfluous.
Another effect of message passing is that the heuristics LVE employs for choosing

the next operator no longer works for LJT. Again consider the above scenario, in which
Ci = {Nat(D),Man(W )}, Sij = {Man(W )}, and Gi = {φ(Nat(D),Man(W ))}. For
computing message mij , LJT needs to eliminate Nat(D). Only after counting W , LVE
can sum out Nat(D). But, assume that W has 50 values while D has 10. Based on
the LVE heuristics, LVE would count D as the intermediate result would be smaller.
Afterwards, LVE still cannot sum out #D[Nat(D)] as it does not contain the remaining
logvar W . LVE would then count W to sum out #D[Nat(D)], which makes counting
D superfluous, and unnecessarily blows up the representation. For LJT, we require the
heuristics to consider the PRVs in a separator. LJT only selects count operations for
PRVs in a separator if the sole other operator applicable is grounding.

Query Answering LJT starts processing queries, which are provided in advance or on
the fly in online QA. To answer a query with query term Qk, LJT finds a parcluster Ci

s.t. Qk ∈ Ci. LJT builds a submodel G′ consisting of the local model Gi and all messages
received at Ci. Using LVE, LJT eliminates all non-query terms in G′. Let us look at
query P (Treat(eve, injection)|sick(eve)) with query term Treat(eve, injection).

Example 4.3.5 (Query answering). Continuing with Example 4.3.4, LJT basically an-
swers the query P (Treat(eve, injection)) as the local models and messages have already
absorbed the evidence. Parcluster C3 covers Treat(eve, injection). The submodel G′ is
a union of G3 = {ge3, gr3} and message m23 = {g0, g

′
1, g

e′
2 , g

r′
2 }. LJT provides LVE with

G′ as the input model and Treat(eve, injection) as the query term. LVE shatters G′ on
Treat(eve, injection), Fig. 4.5a shows the result. Then, LVE eliminates all terms in G′

but Treat(eve, injection): LVE first sums out Treat(eve, tablet) from ger3 , resulting in
ger′3 = φ′3(Epid), and Treat(X,M) from gr3, resulting in gr′3 = φ′′3(Epid, Sick(X)). From
the product of gr′2 and gr′3 , LVE sums out Sick(X), resulting in a parfactor gr′23 with

Epid

Treat(eve,injection)

geq3ge′2 ger3
Treat(eve,tablet)

g′1

g0
gr′2

Sick(X)

Treat(X,M)
gr3

(a) After shattering

Epid

Treat(eve,injection)

geq3ge′2 ger′3

g′1

g0

gr′23

(b) Before eliminating Epid

Treat(eve,injection)

g

(c) Result

Figure 4.5: Parfactor graphs for G′ = G3 ∪m23 during QA
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argument Epid. Figure 4.5b shows the remaining parfactors. To sum out Epid, LVE
multiplies all parfactors into one. Then, LVE sums out Epid, resulting in a parfactor g,
shown in Fig. 4.5c, which holds the queried distribution after normalising.

When LJT answers the query on C3, it only has to eliminate the non-query terms in
C3, while LVE, working on G, has to eliminate all non-query terms in G. Specifically,
LVE eliminates Nat(D), Man(W ), and Travel(X), which are already eliminated in
C3. For the next query, LJT again works on a parcluster, saving eliminations and thus,
runtime, as shown in the evaluation in Chapter 6 as well.
The given example works nicely. But, as already indicated, there exist models that

lead to an FO jtree that causes unnecessary groundings during message passing. Next,
we look at when unnecessary groundings occur and discuss how to avoid them.

4.4 Avoiding Unnecessary Groundings: Fusion

LJT as discussed so far is a rather straightforward translation of JT. But, let us look at
an example model that LVE solves without grounding, while LJT grounds a logvar.

Example 4.4.1 (Unnecessary groundings). Consider the FO jtree in Fig. 4.6 for a model
identical to Gex except for a new logvar E in the PRVs Epid, Sick(X), and Treat(X,M).
E encodes different epidemics, e.g., e1, . . . , e5. Assume that no evidence is provided.
Given a query term, e.g., Treat(eve, injection, e1), LVE splits g′3 on the query term.
Then, LVE eliminates all non-query terms in a similar way as described in Example 3.2.5.
LJT would pass messages. For message m′12 from C′1 to C′2, LVE would count D

and E and sum out Man(W ) and #D[Nat(D)], resulting in a message with parfactors
g0 and φ(#E [Epid(E)]). For message m′23, LVE would need to sum out Travel(X),
which does not include all logvars of g′2. A count conversion would not apply since
both logvars appear in two PRVs. Thus, LVE would ground E to sum out Travel(X).
The result would be a parfactor φ(Epid(e1), . . . , Epid(e5), Sick(X, e1), . . . , Sick(X, e5)),
which, together with g0 and φ(#E [Epid(E)]), would make up the message to C′3.

LVE does not need to ground while LJT produces groundings due to message passing.
The reason lies in the separators impeding a reasonable elimination order. In the above
example, LVE eliminates Sick(X,E) before eliminating Epid(E) or Travel(X). But

Epid(E)
Nat(D) Man(W )

{g0, g′1}

C′1

Epid(E)
Sick(X,E) Travel(X)

{g′2}

C′2

Epid(E)
Sick(X,E) Treat(X,M,E)

{g′3}

C′3

Figure 4.6: Example FO jtree with unnecessary groundings during message passing

45



Chapter 4 The Lifted Junction Tree Algorithm

LJT needs to eliminate Travel(X) before Sick(X,E), which causes the grounding. To
avoid those algorithm-induced groundings, we first investigate when groundings to occur.
The idea is then to build a test to identify possible groundings and lastly, adjust the FO
jtree structure after construction such that the groundings do not occur.

Conditions for Unnecessary Groundings This paragraph examines when unnecessary
groundings occur. A lifted solution to a query means that an inference algorithm com-
putes an answer without grounding a part of the model. Not all models have a lifted
solution, i.e., they only have a solution for which groundings are unavoidable. But addi-
tionally to unavoidable groundings, LJT without fusion may require avoidable groundings
due to message calculations. Grounding a logvar is expensive and causes further ground-
ings when at the neighbouring parcluster, the grounded PRV of the message and the PRV
in the parcluster need to be eliminated. For illustration purposes, we use the examples
depicted in Figs. 4.7 and 4.8. Each example is a parcluster with two PRVs and an edge
with a separator consisting of one of the PRVs. The local model has one parfactor with
both PRVs as inputs. We use names L = {X,Y, Z} and R = {P,Q,R} to build PRVs.
As mentioned before, we are only interested in those groundings that occur due to

message passing, when a separator enforces an elimination order that leads to groundings.
In such a case, preconditions for summing out a variable are not fulfilled leading LVE
to ground a logvar when LVE calculates a message. To recap, lifted summing out of
a PRV A has three preconditions (Taghipour et al., 2013c): (i) A may only appear in
one parfactor. (ii) A must contain all logvars of the parfactor. (iii) The logvars that
are only in A, Xexcl, need to be count-normalised w.r.t. the remaining logvars in the
parfactor. Formally, for message mij from parcluster Ci with model Gi to parcluster Cj

given separator Sij , LJT eliminates AE
ij := Ci \ Sij from G′ := Gi

⋃
k∈nbs(i),k 6=jmki. To

eliminate A ∈ AE
ij from G′, LJT multiplies all parfactors g ∈ G′ that include A into a

parfactor gA = φ(AA)|CA. Let SAij := Sij ∩AA be the set of PRVs in the separator that
occur in gA. Then, the following may happen w.r.t. the preconditions mentioned above.
After the multiplication, gA is the only parfactor containing A, i.e., Precondition (i)
is fulfilled. Precondition (ii) may be violated whenever a PRV S ∈ SAij contains more
logvars than A, i.e., lv(S) ⊃ lv(A). Precondition (iii) holds in all cases since either A
contains completely different or more logvars than the PRVs in SAij and the logvars are
count-normalised based on the FO dtree used for FO jtree construction. Or, A contains
fewer logvars than the PRVs in SAij meaning that no logvars are eliminated, i.e., Xexcl is
empty and thus, count-normalised by default.
In summary, the only violation of a precondition that may lead to a grounding occurs

if S contains more logvars than A. So, for a lifted calculation, it necessarily has to hold
for each S ∈ SAij that

lv(S) ⊆ lv(A) (4.3)
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P (X)
Q(X,Y )

φ(P (X), Q(X,Y ))

Ci P (X)

(a) No groundings

P (X) R(Y )
Q(X,Y )

φ(P (X), R(Y ), Q(X,Y ))

Ci Q(X,Y )

(b) Groundings

P (X)
Q(X,Y )

φ(P (X), Q(X,Y ))

Ci Q(X,Y )

(c) #Y [Q(X,Y )]

Figure 4.7: Conceptual examples with liftable and non-liftable message calculation

i.e., A can be eliminated before S w.r.t. logvars. In other words, LVE could sum out the
separator PRVs last. Let us consider a few examples.

Example 4.4.2. Figure 4.7a shows a parcluster {P (X), Q(X,Y )} and a separator P (X).
For the message, LJT eliminates Q(X,Y ) from the local parfactor. Q(X,Y ) fulfils all
preconditions for lifted summing out. LJT could sum out P (X) last (unnecessary for the
message). Since S = P (X) and A = Q(X,Y ), Condition (4.3) holds. The set of logvars
of P (X) is a subset of the set of logvars of Q(X,Y ). No groundings occur.
Condition (4.3) also holds for all parclusters and separators in the FO jtree of Gex.

For message m12, separator PRV Epid has no logvars, making Condition (4.3) true for
both PRVs Nat(D) and Man(W ) to eliminate. The same holds for message m21 back
with PRVs Sick(X) and Travel(X). For the messages between C2 and C3, Condition
(4.3) also holds for S23 = {Epid, Sick(X)} as

• lv(Epid) ⊆ lv(Travel(X)) and lv(Sick(X)) ⊆ lv(Travel(X)) for m23 and

• lv(Epid) ⊆ lv(Treat(X,M)) and lv(Sick(X)) ⊆ lv(Treat(X,M)) for m32.

LVE has an operator suite designed to enable lifted summing out by applying one
of the transforming operators count-convert, multiply, split, expand, or ground. To fix
that Precondition (ii) may not hold, LVE would need to “eliminate” logvars to have A
contain all logvars in gA. Eliminating logvars is possible by counting the excess logvars
in S which depends on those excess logvars to be countable in gA. Formally, a count
conversion may induce Condition (4.3) for a particular S if

(lv(S) \ lv(A)) are countable in gA. (4.4)

Countable here refers to the preconditions of count conversion to apply. Counting lv(S)\
lv(A) “eliminates” these logvars from gA, meaning that A now contains all logvars in gA.
On the flip side, if Condition (4.4) does not hold, LJT has to ground.

Example 4.4.3. In Example 4.4.1, showcasing unnecessary groundings, Condition (4.4)
already is at play. A count conversion induces Condition (4.3) for the message m′12. The
separator consists of Epid(E) with a logvar E, which is not a subset of both lv(Nat(D))
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P (X)
. . .

φ(P (X), . . . )

CkP (X) P (X)

(a) No groundings at Ck

P (X)
Q(Y )

φ(P (X), Q(Y ))

CkP (X) Q(Y )

(b) No groundings at Ck

P (X)
R(X)

φ(P (X), R(X))

CkP (X) R(X)

(c) Groundings at Ck

Figure 4.8: Conceptual examples with #X [P (X)] in incoming message

and lv(Man(W )). But, E is countable in g1 and thus, Condition (4.4) holds, which
means counting E induces Condition (4.3).
Figure 4.7b shows a parcluster {P (X), Q(X,Y ), R(Y )} and separator Q(X,Y ) with

AE = {P (X), R(Y )} and S = Q(X,Y ) where LJT grounds. The set lv(Q(X,Y )) is
not a subset of each PRV in AE , i.e., Condition (4.3) does not hold. P (X) and R(Y )
are not countable in the local parfactor as no logvar appears in only one PRV, leading
LJT to ground Z (or Y ). Thus, Condition (4.4) does not hold. As described before,
LVE would not have this problem as it had eliminated Q(X,Y ) before P (X) and R(Y ),
which makes X and Y countable. Figure 4.7b describes the same setting that leads to
groundings for message m′23 in Example 4.4.1: The PRVs Epid(E) and Travel(X) need
to be eliminated but with S = Sick(X,E), Condition (4.3) does not hold. Sick(X,E)
has the logvars X and E, which are not a subset of lv(Epid(E)) and lv(Travel(X)).
Additionally, both X and E are not countable in g′2, preventing Condition (4.4) to hold.
In Fig. 4.7c, the separator PRV, Q(X,Y ), contains a logvar Y that does not appear

in the PRV to eliminate (P (X)). Y is countable so Condition (4.4) holds, and building
CRV #Y [Q(X,Y )] is possible. Now, X is the only logvar and P (X) is eliminable. The
same holds if P has more logvars not appearing in Q(X,Y ), e.g., P (X,Z).

Unfortunately, the newly count-converted PRVs may cause groundings at the receiving
parcluster: Counting a logvar L may prevent groundings when calculating message mi,j

at parcluster Ci but S as a CRV may cause problems at neighbour Cj since S appears in
Gj as a PRV. If LVE does not need to sum out S, the CRV does not lead to groundings.
But, if LVE has to sum out S for a message or query, LVE needs to multiply S as a PRV
and S as a CRV to fulfil Precondition (i) of lifted summing out, which is only possible
if the PRV becomes a CRV as well. For the conversion, L needs to be countable in Gj .
Otherwise, LVE needs to ground L. Hence, count conversion only prevents a grounding
if all following messages can handle the resulting CRV. Formally, for each parcluster Cj

receiving S with counted logvar L from a parcluster Ci, it has to hold ∀n ∈ nbs(j), n 6= i,

S ∈ Sjn ∨ L is countable in gS (4.5)

where gS is the product of all parfactors at Cj including messages that contain S. Let
us look at some examples for clarification.
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Example 4.4.4. Figure 4.8 shows example nodes as in Fig. 4.7 with another edge and
#X [P (X)] in an incoming message. In Fig. 4.8a, #X [P (X)] does not lead to groundings
as P (X) is in the next separator, i.e., the first disjunct in Condition (4.5) holds. However,
as #X [P (X)] is part of the next message, we have to check if #X [P (X)] causes groundings
at the receiver. Figure 4.8b exemplifies where #X [P (X)] is not in the next separator but
X is countable in φ(P (X), Q(Y )), i.e., the second disjunct in Condition (4.5) holds. In
Fig. 4.8c, neither disjunct holds. P (X) is not in the separator and X is not countable as
X appears in R(X) as well, which is part of the separator. Because X is not countable,
we cannot combine #X [P (X)] with the local P (X) for summing out. Instead, we need
to ground X and sum out each P (x), x ∈ C, individually. In Example 4.4.1, counting
E in Epid(E) leads to a CRV #E [Epid(E)] in message m′12. As Epid(E) is part of the
next message m23, i.e., the first conjunct of Condition (4.5) is true, the CRV version
#E [Epid(E)] does not lead to groundings. At C′3, no further message follows (first
conjunct true again), meaning the counting of E does not induce groundings.

In conclusion, a message calculation does not lead to unnecessary groundings if Con-
dition (4.3) holds, i.e., PRVS that are eliminated for a message contain at least as many
logvars as separator PRVs. If Condition (4.3) does not hold for a PRV that has to be
eliminated, Condition (4.3) may be induced by counting excess logvars (Condition (4.4))
but only if the resulting (P)CRVs do not cause groundings at receiving parclusters (Con-
dition (4.5)). If count conversions do not help, either because logvars are not countable or
because another parcluster cannot handle the resulting (P)CRV, preventing groundings
is only possible by preventing that the message has to be calculated in the first place.
And preventing a message is possible by merging the two parclusters between which the
offending message flows. Fusion, which we present next, is an additional step at the end
of construction to prevent unnecessary groundings based on the conditions given above
and merging parclusters.

Fusion The main idea of fusion is to combine parclusters if message calculation needs
groundings. Though, LJT does not continue merging parclusters during construction to
keep parclusters minimal, fusion presents a compromise. Without fusion, the smaller
parclusters yield more work during message passing and, subsequently, query answering
through grounding which enlarges a parcluster exponentially w.r.t. domain sizes. Fusion
leads to larger parclusters, which has a linear effect on the parcluster size and avoids
groundings, and thus, leads to more efficient message passing and query answering. We
set up a grounding test and present fusion, using the test to decide merging.
The grounding test checks each message (two checks per edge). For each message, the

test checks each separator PRV against each PRV to eliminate. We use the conditions
identified before. If Condition (4.3) holds, message calculation does not induce ground-
ings. If Condition (4.3) holds for a particular separator PRV S and a PRV A to eliminate,
the elimination does not lead to groundings. If Condition (4.3) does not hold, the test

49



Chapter 4 The Lifted Junction Tree Algorithm

checks if a count conversion helps, which involves Conditions (4.4) and (4.5), checking
if a count conversion is possible at the current parcluster (Condition (4.4)) and if true,
whether the resulting PCRV leads to groundings at another parcluster (Condition (4.5)).
A formal definition combining Conditions (4.3) to (4.5) follows next.

Definition 4.4.1 (Fusion test). Fusion checks message mij , PRV A to eliminate, and
separator PRV S. The test outcomes for S given mij and A are:

Condition (4.3) holds → No groundings. Check next S. (i)
Condition (4.3) does not hold → Check Cond. (4.4). (ii)
Condition (4.4) holds → Check Cond. (4.5) for each node receiving S. (iii)
Condition (4.4) does not hold → Groundings. (iv)
Condition (4.5) holds → No groundings. Check next S. (v)
Condition (4.5) does not hold → Groundings. (vi)

Testing A only needs AE of gA, which is easier to build than gA. But, we need to track
the changes w.r.t. arguments in a parfactor after quasi-eliminating A when considering
the next PRV A′ to eliminate. Since we do not have the actual messages for G′, we
assume that a message covers the separator. This slight over-approximation may result
in a larger AE which may lead to more PRVs in SEij that have to fulfil Conditions (4.3)
to (4.5). Thus, our test may identify false-positives but no false-negatives.
Fusion uses the test to decide combining two parclusters, which uses the merging

operation defined in Definition 4.3.2 for minimising an FO jtree. For each parcluster Ci

in J , fusion merges Ci with a neighbouring parcluster Cj until Conditions (4.3) to (4.5)
hold if applicable. To illustrate fusion including testing messages, let us look at the FO
jtree of Gex as well as the FO jtree that causes groundings in Fig. 4.6 from Example 4.4.1.

Example 4.4.5 (Fusion). Consider the FO jtree of Gex, which causes no groundings.
Fusion checks each message, concluding that no groundings occur (line i) as Condition
(4.3) holds for each separator PRV and PRV to eliminate.
In the FO tree of Example 4.4.1, message passing in LJT without fusion would cause

grounding a logvar during message calculation. With fusion, the messages are tested first.
The test goes through lines (ii), (iii), and (v) for m′12, concluding that no groundings

Epid(E)
Nat(D) Man(W )

{g0, g′1}

C′1

Epid(E) Treat(X,M,E)
Sick(X,E) Travel(X)

{g′2, g′3}

C′23

Figure 4.9: Fused FO jtree of the FO jtree in Fig. 4.6
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occur. For m′23, the test goes from line (ii) to line (iv) and concludes that groundings
occur. Therefore, fusion merges C′2 and C′3 into one parcluster with one local model

C′23 = {Epid(E), Sick(X,E), T ravel(X), T reat(X,M,E)}, G23 = {g′2, g′3}.

Figure 4.9 shows the resulting FO jtree. The remaining message to check, from C′23 back
to C′1, does not induce groundings, following line (i) for the PRVs Treat(X,M,E) and
Sick(X,E) to eliminate and lines (ii), (iii), and (v) for the PRV Travel(X) to eliminate.
C′23 is larger than the two former parclusters but avoids the exponential blowup during

message passing. In the FO jtree in Fig. 4.9, two messages flow. For m′123, E and D
are counted and then, Man(W ) and #D[Nat(D)] eliminated. For m′231, LVE sums
out Treat(X,M,E) and Sick(X,E) before counting E to sum out Travel(X), avoiding
grounding a logvar.

Given a fused FO jtree, LJT performs all calculations during an algorithm run in a
lifted way. Merging parclusters based on Conditions (4.3) to (4.5) may lead to more
count-conversions than LVE performs during a comparable algorithm run. If merging
parclusters only based on Condition (4.3), LJT does not perform any additional count
conversions compared to LVE. But, parclusters are larger as well, leading to more elim-
inations when answering individual queries. Keeping parclusters as small as possible is
one of the driving forces of LJT, which is why we accept additional count-conversions.
Next, we argue that fusion finds all avoidable groundings while possibly merging more
parclusters than necessary.

Theorem 4.4.1. Fusion prevents all unnecessary groundings (no false-negative) while
possibly merging more parclusters than necessary (false-positives).

Proof. The proof follows the same argument made at the beginning of this section: Vi-
olating Precondition (ii) leads to unnecessary groundings, i.e., PRVs that have to be
eliminated contain fewer logvars than separator PRVs. Condition (4.3) identifies all mes-
sages, for which PRVs have to be eliminated with fewer logvars than separator PRVs.
Conditions (4.3) and (4.4) identify all messages that count conversion salvages. I.e., after
applying the test, fusion has identified all messages that may lead to groundings. Fusion
then prevents that the messages that have groundings are sent by merging parclusters.
Afterwards, all separator and parcluster combinations fulfil either Condition (4.3) or
Conditions (4.3) and (4.4). Thus, Precondition (ii) is no longer violated.
As we over-approximate the arguments of the parfactors in a message by assuming

they contain the whole separator as arguments, fusion may identify a PRV A that has to
be eliminated and contains fewer PRVs than a separator PRV S, even though in an actual
message, A and S do not occur in a parfactor together. Then, A is eliminable without
grounding a logvar in S as S does not occur in a parfactor together with A to inhibit the
elimination. Therefore, fusion may merge more parclusters than necessary, i.e., it may
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produce false-positives regarding groundings. But, more importantly, fusion merges all
parclusters that would send a message that produces groundings during calculation, i.e.,
fusion prevents false-negatives.

After fusion, LJT continues with the second step on the fused FO jtree. After entering
evidence, LJT passes messages without inducing any avoidable groundings. During query
answering, LJT possibly has to work on larger local models if parclusters were fused but
parfactors in messages do not contain grounded PRVs, avoiding further groundings at
receiving parclusters. A comprehensive theoretical analysis of LJT follows next.
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Chapter 5

Theoretical Analysis of LJT

This chapter looks at correctness and complexity aspects of LJT. Correctness consists of
the aspects soundness and completeness. In the context of lifted inference algorithms,
a sound lifted algorithm produces an answer to a query that is equivalent to an answer
with any sound inference algorithm. A complete lifted algorithm refers to an algorithm
providing an answer to a query without grounding any logvar for any possible model
within a class of models. A class of models is characterised in terms of logvars, e.g., one
class consists of all possible models built with two logvars (two-logvar models). First, we
show that LJT is sound. Then, we present completeness and complexity results. Last,
we look at how model and FO jtree characteristics influence the performance of LJT.

5.1 Soundness

The soundness proof for LJT mainly relies on the work by Shenoy and Shafer (1990).
They define three axioms that justify local computations of marginals in Markov trees1

and show that probability propagation fulfils the axioms. Markov trees are trees whose
nodes contain sets of, e.g., randvars, making them basically jtrees. Markov trees also
have a property that says that if a randvar appears in two distinct nodes, the randvar
has to appear in every node on the path between the two nodes.
The proof for soundness of LJT has the following components. We start by showing

that LJT constructs a tree that fulfils the properties an FO jtree has to fulfil. Then, we
show that an FO jtree fulfils the properties of a jtree and that a jtree is a Markov tree.
Next, we show that minimising and fusing an FO jtree preserves the properties of an
FO jtree. After we have shown that LJT constructs a valid data structure, we move on
to show that evidence handling, message passing, and query answering for single query
terms is sound. We complete the proof by combining all components.

Lemma 5.1.1. Let G be a model and T be a corresponding FO dtree, i.e., mod(T ) = G.
Then, the structure of T combined with the clusters of T form an FO jtree for G.

Proof. An FO jtree is defined as a cycle-free graph (V,E), where the nodes in V are
parclusters. An FO jtree fulfils three properties: (i) ∀Ci ∈ V : Ci ⊆ rv(G). (ii) ∀g ∈ G :

1Shenoy and Shafer formulate the axioms for hypertrees and show that Markov trees are hypertrees.
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∃Ci ∈ V : rv(g) ⊆ Ci. (iii) If ∃A ∈ rv(G) : A ∈ Ci ∧ A ∈ Cj , then ∀Ck on the path
between Ci and Cj : A ∈ Ck (running intersection property).
We rely on Taghipour et al. (2013a) to build a valid FO dtree T of model G. As T is a

tree, it is cycle-free by definition. Now, we show that each property holds reformulating a
proof by Darwiche (2001), in which he shows that a dtree and its clusters form a jtree. As
mod(T ) = G, all PRVs in T are from G, i.e., rv(T ) = rv(G). The definitions for cutsets,
contexts, and clusters use rv(T ′) of subtrees T ′ of T with rv(T ′) ⊆ rv(T ) = rv(G). Thus,
cluster(i) of some node i contains a set of PRVs from G, fulfilling the first property. By
definition of an FO dtree, its leaves contain factors and as mod(T ) = G, each factor
appears in some leaf. As leaf clusters are given by the arguments of its factors, the PRVs
appear in a single cluster and thus, the second property is fulfilled. Showing that the
third property holds is more involved. If a PRV appears in the cutset, context, or cluster
of a node i, the PRV must appear in rv(i). Suppose that i, j, and k are three nodes
from T with k on the path connecting i and j and PRV A appears in cluster(i) and
cluster(j). We have to show that A also appears in cluster(k). We consider two cases.

• Assume that j is an ancestor of i. Then, k is an ancestor of i. AsA ∈ cluster(i), A ∈
rv(i). A ∈ rv(k) also holds since i is a descendant of k and therefore, rv(i) ⊆ rv(k).
A ∈ cluster(j) means that A ∈ cutset(j) or A ∈ context(j). If A ∈ cutset(j), then
A is in rv for two distinct descendants of j, one of which has i in its subtree. If
A ∈ context(j), then A ∈ acutset(j). As k is a descendant of j and A ∈ cutset(j) or
A ∈ acutset(j), it holds that A ∈ acutset(k). Since A ∈ acutset(k) and A ∈ rv(k),
A ∈ context(k) and with that, we have that A ∈ cluster(k).

• Assume j is not an ancestor of i. Then, we have a common ancestor c. k may
either be the common ancestor c or is on the path between j or i to c. It is enough
to show that A ∈ cluster(c). It follows from the first case that if A ∈ cluster(c)
and A ∈ cluster(i), that A ∈ cluster(k) with k on the path from i to c. The same
holds if k is on the path between j and c. Since A ∈ rv(i) and A ∈ rv(j) and
i and j are descendants of c in different subtrees, we have that A ∈ cutset(c) or
A ∈ acutset(c). Either way, with A ∈ rv(c), A ∈ cluster(c).

Thus, T and its clusters fulfil all three properties. The parcluster syntax does not inval-
idate the properties since it does not discard or alter any information.

Lemma 5.1.2. Let J be an FO jtree for model G. Minimising and fusing J preserves
the FO jtree properties.

Proof. Minimising and fusing an FO jtree J alters J if two nodes merge. Therefore, we
show that merging preserves the properties of an FO jtree. Darwiche (2009) states that
a transformation that merges clusters Ci and Cj into a cluster Ck = Ci ∪ Cj where
Ck inherits the neighbours of Ci and Cj preserves all three properties. Since we define
merging in the same way, minimising and fusing FO jtrees produces valid FO jtrees.
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Lemma 5.1.3. Let J be an FO jtree for model G. Then, J fulfils all properties a
propositional jtree fulfils and is a Markov tree.

Proof. The properties for a propositional jtree and model F are: (i) A cluster Ci is a
set of randvars from F . (ii) For every factor φ(R) in F , randvars R appear together in
a cluster Ci. (iii) If a randvar from F appears in clusters Ci and Cj , it must appear in
every cluster Ck on the path between nodes i and j in J . Each PRV A appearing in G
represents a set of randvars gr(A|C) and each parfactor φ(A)|C ∈ G represents a set of
factors f whose arguments come from the set gr(A|C). Therefore, a grounded randvar
R of A is in rv(G) and a grounded factor f derived from a parfactor g is in G.
Each parcluster C in the FO jtree J represents a set of randvars gr(C) ⊆ G, fulfilling

the first property. For every parfactor g of G, its arguments A appear in some Ci, i.e.,
A ⊆ Ci, meaning gr(A|C) ⊆ Ci. Thus, for every instance f in gr(g) with arguments
R ∈ gr(A|C), R ⊆ Ci. The third property holds by the same argument: If PRV A
appears in Ci, Cj , and in every Ck on the path connecting i and j, it also holds for each
ground randvar R ∈ gr(A|Ci

) and R ∈ gr(A|Cj
) that R appears in every Ck in between.

Next, we show is that J is a Markov tree. A Markov tree as defined by Shenoy and
Shafer (1990) is a hypertree, an acyclic hypergraph, which is a non-empty set of non-
empty subsets from some finite set of, e.g., randvars. If there is an edge between a set of
nodes, which itself are sets, then their intersection is not empty. If there are two distinct
nodes with an element X, then X is in every node on the path between the two nodes.
Regarding J , J is a tree, i.e., an acyclic graph. It is a hypergraph since each node is a set
of PRVs from the finite set of rv(G). J is a tree, thus, the intersections of neighbouring
nodes are not empty. The last point about two nodes containing X follows from the
running intersection property that J fulfils as an FO jtree. Therefore, J is a Markov
tree. We conclude that J fulfils the jtree properties and that J is a Markov tree.

At this point, we have shown that LJT constructs a valid FO jtree, which is also a
Markov tree. Next, we show that the remaining steps of LJT are sound.

Lemma 5.1.4. Let J be an FO jtree for model G. Then, entering evidence E in J is
sound, i.e., equivalent to absorbing evidence with LVE.

Proof. Evidence handling in LVE means absorbing each evidence parfactor in E at each
affected parfactor in model G using lifted absorption. Taghipour et al. (2013c) show
that lifted absorption and the overall handling of evidence within LVE is sound. As
the parfactors in J are equal to G, we handle evidence as Taghipour et al. (2013c) do.
Each evidence parfactor is distributed through FO jtree J and absorbed at each parfactor
affected by it using lifted absorption. Distributing evidence using the running intersection
property is sound as J fulfils the property. Thus, entering evidence E into J is sound.

Lemma 5.1.5. Let J be an FO jtree for model G. Then, message passing and query
answering in J is sound.
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Proof. Message passing and query answering correspond to probability propagation by
Shenoy and Shafer (1990). They show that probability propagation on Markov trees
fulfils their axioms for local computations. As a result, one may propagate information
from one node to another in a message and use the information afterwards to compute
marginals within nodes. The axioms concern two main operations, combination and
marginalisation, which correspond to multiplication and summing out for probability
propagation, carried out on potential functions with non-negative values that are not all
zero. The axioms, adapted to our setting and syntax, are:

(A1) Commutativity and Associativity of Combination Given three factors f1, f2, and
f3 respectively, then f1 · f2 = f2 · f1 and f1 · (f2 · f3) = (f1 · f2) · f3.

(A2) Consonance of Marginalisation Given a factor f(A) and two sets of randvars D
and B with D ⊆ B ⊆ A, A = rv(A), then∑

R(A\D)

∑
R(A\B)

f =
∑

R(A\D)

f.

(A3) Distributivity of Marginalisation over Combination Given two factors f1(A) and
f2(B), A = rv(A), and B = rv(B), then∑

R(B\A)

f1 · f2 = f1 ·
∑
R(B\A)

f2.

LJT takes a model that consists of parfactors, which represent factors that are potential
functions with non-negative values that are not all zero as given above. With LVE as
a subroutine, we follow Shenoy and Shafer (1990): Lifted multiplication fulfils (A1).
Lifted summing out fulfils (A2). Distributivity of multiplication over summation leads
to (A3) being fulfilled. Thus, we are justified to carry out local computations in J to
pass messages and compute query answers after two passes as shown by Lauritzen and
Spiegelhalter (1988). Given that LVE in the form of the suite of operators by Taghipour
et al. (2013c) is sound, the results of local computations are sound.

Next, we combine all previous lemmas to prove that LJT is sound.

Theorem 5.1.1. Let G be a model, {Qk}mk=1 a set of queries, and E evidence. Then,
LJT is sound, i.e., computes correct answers for each Qk ∈ {Qk}mk=1 based on G and E.

Proof. LJT consists of the steps construction including fusion, evidence entering, message
passing, and query answering. Lemmas 5.1.1 to 5.1.3 show that LJT constructs a valid
minimal FO jtree and maintains a valid FO jtree after fusion. Lemma 5.1.4 shows that
evidence is handled correctly. Lemma 5.1.5 shows that message passing is sound, which
allows to compute a correct answer to each query. Thus, LJT is sound.

The proof for Theorem 5.1.1 concludes the argument for LJT being sound. Next, we
argue that LJT is complete for two classes of models.

56



5.2 Completeness

5.2 Completeness

The completeness analysis is based on the notion of domain-liftability and the definition
of completeness by Van den Broeck (2011) as well as the completeness results of LVE by
Taghipour et al. (2013d). For lifted inference, domain-liftability characterises the goal
of providing algorithms with a time complexity polynomial in the domain sizes of the
model logvars. If an algorithm provides lifted solutions for a class of models with a given
number of logvars, then the algorithm is considered complete for this class.

Definition 5.2.1 (Domain-lifted, complete). For a model G, query Q, and evidence
E, a probabilistic inference algorithm is domain-lifted iff it runs in polynomial time in
|D(X1)|, . . . , |D(Xk)|, Xi ∈ lv(G). An algorithm is complete for a classM of models if
it is domain-lifted for all models G ∈M, all ground queries Q ∈ Q and evidence E ∈ E .

Van den Broeck (2011) presents completeness results for FOKC. Taghipour et al.
(2013d) provide results for LVE with generalised counting as well as an operator called
group inversion. They refer to this LVE version as C-FOVE+. Specifically, FOKC
and C-FOVE+ are complete w.r.t. the class of two-logvar models M2lv. Two-logvar
models have only two logvars per parfactor but allow for modelling relations such as
symmetry, e.g., φ(Friend(X,Y ), F riend(Y,X)), reflexivity, e.g., φ(Knows(X,X)), and
homophily, e.g., φ(Sick(X), ShareOffice(X,Y ), Sick(Y )). C-FOVE+ is also complete
w.r.t. the class of models Mprv1 in which each PRV has at most one logvar. In this
class, parfactors may have more than two logvars as long as PRVs only have one log-
var. There exist other models with more logvars that LVE and LJT compute in a
lifted way. The model from the fusion example contains three logvars in one parfac-
tor (E,X,M) and allows for lifted computation. But, C-FOVE+ is not complete for
the class of three-logvar models. Three-logvar models allow for modelling transitivity,
e.g., φ(Friends(X,Y ), F riends(Y,Z),Knows(X,Z)), which lead to groundings. More
recently, Kazemi et al. (2017) show that using another lifting rule known as domain recur-
sion allows for lifted runs of models representing transitivity. For LJT using C-FOVE+

as a subroutine, we argue for a completeness w.r.t. the same models as C-FOVE+.

Definition 5.2.2. Model classM2lv refers to models with parfactors with at most two
logvars and model classMprv1 to models with PRVs with at most one logvar.

Theorem 5.2.1. LJT using C-FOVE+ is complete for model classesM2lv andMprv1.

Proof. As C-FOVE+ is complete for these models, the models have a lifted solution,
which can be represented by an FO dtree. LJT turns the FO dtree into an FO jtree that
also allows for a lifted solution after fusion. We show that message passing does not lead
to new groundings. The following cases arise for two-logvar models:

1. The FO jtree has a single node. Then, LJT coincides with C-FOVE+. Thus, no
groundings occur while answering queries with C-FOVE+.
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2. The FO jtree has two or more nodes, with the separators having (a) only zero-logvar
PRVs, (b) at most one-logvar PRVs, or (c) at most two-logvar PRVs. We look at
the separators as they determine the messages, whose calculation has to remain lifted.

(a) The local models of neighbouring parclusters may contain two-logvar, one-logvar,
and zero-logvar PRVs to eliminate. The zero-logvar PRVs in separators do no
interfere with eliminating PRVs with logvars. Thus, PRVs with logvars are elimi-
nated with C-FOVE+ without grounding.

(b) The local models of neighbouring parclusters have two-logvar and one-logvar
PRVs to eliminate. Zero-logvar PRVs do not need to be eliminated as other-
wise, the nodes would have been merged. All two-logvar PRVs are eliminable
with C-FOVE+ as the one-logvar separators do not interfere. One-logvar PRVs
either concern only a single logvar, making the PRVs eliminable using lifted sum-
ming out. If one-logvar PRVs concern logvars with different domains, count
conversions enable lifted summing out, with generalised counting (Taghipour
and Davis, 2012) allowing for counting logvars that appear in more than one
PRV, e.g., logvars X and Y in parfactor φ(Q(X), R(X), S(Y ), T (Y )), resulting
in φ(#X [Q(X), R(X)], S(Y ), T (Y )) after count-converting X. If one-logvar PRVs
concern logvars of the same domain but with an inequality constraint, Taghipour
and Davis (2012) also formalise how to merge-count a PRV and a CRV with an
inequality constraint into one CRV, e.g., a CRV #X [Q(X)] and a PRV R(Y ),
X 6= Y , in a parfactor φ(#X [Q(X)], R(Y )), leading to φ(#X [Q(X), R(X)]). For
a CRV over multiple PRVs, an operator exist to eliminate individual PRVs, mean-
ing, it is possible to eliminate PRV Q(X) or R(X) from a CRV #X [Q(X), R(X)].
Thus, one-logvar PRVs are eliminable and the messages do not lead to groundings.

(c) The local models of neighbouring parclusters have two-logvar PVRs to eliminate.
PRVs with one or zero logvars occur in the separator or not at all due to fusion.
Two-logvar PRVs may occur in groups, e.g., P (X,Y ) and P (Y,X), or alone, e.g.,
Q(X,Y ). Groups appear as a whole in the separator or are to eliminate. LJT
eliminates two-logvar PRVs with C-FOVE+ in groups or alone, leaving the two-
logvar PRVs in the separator. Thus, messages do not lead to groundings.

Overall, no groundings in any case for all two-logvar models. Query answering then
works on submodels that are two-logvar models again, which have a lifted solution with
C-FOVE+. Therefore, LJT is complete for two-logvar models.
For models with one-logvar PRVs, cases 1, 2(a), and 2(b) apply and messages do not

lead to groundings with the same arguments. Query answering then works on local
models and messages of one-logvar PRVs using C-FOVE+, which is complete. Hence,
LJT is complete for models with one-logvar PRVs.

Now that we have shown that LJT is sound for all inputs and complete for two classes,
we look at complexity, drawing from the complexity results of LVE and JT.
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5.3 Complexity

The complexity analyses of LVE and LJT mirror the complexity analyses of VE and JT,
using the notion of tree width to characterise the complexity of inference. Tree width w
refers to the “largest” cluster, i.e., the cluster with the most randvars, in a dtree or jtree
(Darwiche, 2001). The largest cluster determines the worst case size a factor at a cluster
can have, namely, if the factor has all cluster randvars as arguments. The size of such a
factor is rw, r being the largest range size in a model. Eliminating all but one randvar is
bounded by O(rw) as there are at most rw − 1 sum-out operations. JT has a complexity
for a single query without preprocessing that is in O(rw). For VE, the complexity also
depends on the overall number of eliminations for a single query.
In a worst case scenario, the lifted versions of VE and JT ground all logvars and

perform inference at a propositional level for correct results. The interesting case arises
when a model allows for a lifted inference solution. First, we characterise liftable models,
which have a lifted inference solution and present the complexity results for LVE based
on work by Taghipour et al. (2013a). Then, we analyse the complexity of LJT stepwise
and as a whole. Last, we compare the complexity results with LVE and JT.

Liftability Taghipour et al. (2013a) show that the FO dtree of a model allows for a
liftability test to check for a lifted inference solution.

Theorem 5.3.1 (Taghipour et al. 2013a). An FO dtree T has a lifted inference solution
if its clusters only consist of PRVs with representative constants and PRVs with one
logvar. T is called liftable and its one-logvar PRVs are countable.

Counting the one-logvar PRVs leads to a counted liftable FO dtree of PRVs with repre-
sentative constants and CRVs. In a counted liftable FO dtree, all eliminations are lifted.
The FO dtree of Gex in Fig. 3.4 has only clusters of PRVs with representative constants
and one-logvar PRVs. That is, a lifted solution for Gex is possible, which we have seen
during the example calculations. For the complexity results, we concentrate on models
with counted liftable FO dtrees as these models have a lifted solution.

Complexity of LVE Given the lifting setup, Taghipour et al. (2013a) introduce the
notion of a lifted width to accommodate lifted calculations, which is defined as follows:

Definition 5.3.1 (Lifted width). The lifted width wT of an FO dtree T is a pair (wg, w#),
wg is the largest ground width and w# the largest counting width of the clusters of T .

The largest ground width is the largest number of PRVs with representative objects
in any cluster in T . The largest counting width is the largest number of CRVs in any
cluster in T . Per cluster, the complexity depends on the largest possible size a factor can
have, which depends on the largest range of its PRVs and CRVs as well as on the number
of PRVs and CRVs there are, i.e., wg and w#.
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Theorem 5.3.2 (Taghipour 2013). In a counted liftable FO dtree T of a model G, the
node complexity is

O(log2(n) · rwg · nw#·r#
# ), (5.1)

with (wg, w#) being the lifted width of T , n the largest domain size in lv(G), r the largest
range size among the PRVs in T , n# the largest domain size among the counted logvars,
and r# the largest range size among the PRVs in the CRVs.
Let nT be the number of nodes in T . Then, the complexity of LVE is

O(nT · log2(n) · rwg · nw#·r#
# ). (5.2)

In a worst case, all parfactors at a node are multiplied into one large parfactor with
wg PRVs and w# CRVs appearing in it. The product rwg ·nw#·r#

# bounds the worst case
size of this large parfactor. The term rwg refers to the size of the range of the PRVs with
representative objects. The term n

w#·r#
# refers to the size of the range of the w# CRVs.

The term n
r#
# over-approximates the range size of a CRV, which is given by

(n#+r#−1
r#−1

)
.

Example 5.3.1 (Worst case size). Given a cluster {Q,R(X),#Y [S(Y )] of boolean PRVs
(r = r# = 2) and a parfactor φ(Q,R(X),#Y [S(Y )]), the widths are wg = 2 and w# = 1.
Assume that the domains sizes are n = |D(X)| = 10 and n# = |D(Y )| = 5 Then,
rwg ·nw#·r#

# = 22 ·51·2 = 100 bounds the size of the parfactor, which is 22 ·
(

5+2−1
2−1

)1
= 24.

The parfactor size bounds the number of summations. For computing a count con-
version or an exponentiation after an elimination, i.e., a number of exponentiations and
multiplications for each line of a parfactor, the factor of log2(n) appears. Given Expres-
sion (5.1), the complexity of LVE in Expression (5.2) follows.

Complexity of LJT Assume that we have a minimal FO jtree J = (V,E) from a
counted liftable FO dtree T for a model G. The effort for constructing J from T is in
O(nT + nJ), nT being the number of nodes in T and nJ being the number of nodes in J
after minimising. Setting clusters as parclusters and minimising the result each visits all
nodes in T , leading to a complexity of O(nT ).
Fusion guarantees that message calculations do not lead to groundings for a model

that allows for a lifted solution. LJT performs the fusion check for each edge twice. The
check itself as well as merging does not depend on the factor size, only on the number
of PRVs and CRVs, i.e., wg + w#. There are nJ − 1 edges, leading to a complexity of
O(nJ · (wg +w#)). Fusion may decrease nJ and increase wJ . As minimising J leads to a
smaller number of clusters, which may further decrease with fusion, nT is usually much
larger than nJ . After fusion, J is a minimal FO jtree that does not induce groundings
with nJ = |V | nodes. The notion of a lifted width also applies to FO jtrees, with
wJ = (wg, w#) where wg is the largest number of PRVs in any parcluster of J and w# is
the largest number of CRVs in any parcluster of J .
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Analogously to Thm. 5.3.2, the largest possible factor in J is given by rwg · nw#·r#
# .

Evidence entering consists of absorbing evidence at each node if applicable.

Lemma 5.3.1. The complexity of absorbing an evidence parfactor is

O(nJ · log2(n) · rwg · nw#·r#
# ). (5.3)

Absorbing an evidence parfactor at a node has a complexity O(log2(n) ·rwg ·nw#·r#
# ) as

in Expression (5.1) since LJT manipulates the largest possible factor and exponentiates
the result if a logvar disappears. Absorbing an evidence parfactor at all nodes leads to
nj times the node complexity. For a set of evidence parfactors GE , the complexity comes
along with a factor of |GE |. Passing messages consists of calculating messages with LVE.

Lemma 5.3.2. The complexity of passing messages is

O(nJ · log2(n) · rwg · nw#·r#
# ). (5.4)

The calculation of a message at a node is in O(log2(n) · rwg · nw#·r#
# ) as in Expres-

sion (5.1) since a message acts like a query. As LJT sends two messages per edge, of
which there are nJ −1, the complexity has a factor nJ . The last step is query answering,
which consists of finding a parcluster and answering a query on an assembled submodel.

Lemma 5.3.3. The complexity of answering a set of queries {Qk}mk=1 is

O(m · log2(n) · rwg · nw#·r#
# ). (5.5)

Comparable to JT, the complexity of LJT depends only on the largest (par)cluster
(and not on the number of nodes like LVE), which means a complexity of O(log2(n) ·
rwg · nw#·r#

# ) as in Expression (5.1) for a single query Qk. For the set of m queries, the
complexity has a factor of m. We now combine the stepwise complexities to arrive at the
complexity of LJT by adding up the complexities in Expressions (5.3) to (5.5) without
construction as O(nT · (wg + w#)) is much smaller than the other complexities.

Theorem 5.3.3. The complexity of LJT is

O((nJ +m) · log2(n) · rwg · nw#·r#
# ). (5.6)

Comparison to LVE LVE and LJT spend the same effort on evidence. The overhead
of LJT includes constructing and fusing an FO jtree with a complexity of O(nT · (wg +
w#)), which is negligible compared to Expression (5.6). Message passing makes up the
remainder of the overhead, which has the same complexity as LVE for one query. The
complexity of LVE for m queries is

O(nT ·m · log2(n) · rwg · nw#·r#
# ). (5.7)
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Comparing Expressions (5.6) and (5.7) shows the difference in factor (nJ + m) for LJT
and factor (nT · m) for LVE. Given one query, i.e., m = 1, LJT has the additional
complexity of answering the query on a submodel. With m > 1, LJT has the complexity
in Expression (5.1) for each query, while LVE has the factor of nT for each query. A
special case is nJ = 1 where both complexities coincide. With nJ > 1, the complexity of
answering a query with LJT is lower than the complexity of LVE.
Let us illustrate the complexities by looking at Gex, its FO dtree, and its FO jtree

where nT = 6 is the number of VE nodes, nJ = 3 is the number of parclusters, n = 3 is
the largest domain size, r = 2 is the largest range size, wg = 3 is the largest ground width,
n# = 2 is the largest domain size of counted logvars (D), w# = 1 is the largest counting
width (#D[Nat(D)]), and r# = 2 the largest range size of a PRV in a CRV (Nat(D) in
#D[Nat(D)] has a boolean range). Then, Expressions (5.6) and (5.7) amount to

(3+m) · log2 3 · 23 · 2(1·2) (LJT)

6·m · log2 3 · 23 · 2(1·2) (LVE).

Without evidence, there arem = 6 representative queries, Epid, Nat(flood),Man(war),
Sick(eve), Travel(eve), and Treat(eve, injection). With evidence, there exist represen-
tative queries for the groups that have evidence and for the groups that do not. LJT
should offset its static overhead with the second query and save even more time compared
to LVE over the remaining four queries as the parclusters are relatively similar in size.

Comparison to the Junction Tree Algorithm Given the above formalisations and the
description from the introduction of this complexity analysis, the complexity of VE is
O(nTP ·r

wTP ), where nTP is the number of nodes in a propositional dtree TP for gr(G) and
wTP the width of TP , i.e., the largest number of randvars in any cluster. The complexity
of JT given a jtree JP from a dtree TP is

O((nJP +m) · rwJP ), (5.8)

where nJP is the number of nodes in JP and m the number of queries. Comparing
Expressions (5.6) and (5.8), one can observe that nJP is much larger than nJ as J
leverages the potential of lifting by avoiding duplicate nodes. Additionally, using LVE
and CRVs allows LJT to avoid duplicate calculations and more compact representations
through CRVs as well, which means that rwJP is much larger than rwg · nw#·r#

# .

5.4 Effect of Model Characteristics

The complexity results show the influence of the lifted width on the complexity and thus,
the runtime. This subsection looks at effects of model characteristics beyond the worst
case factor size. Before looking at the individual steps of LJT, we focus on an observation
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about the lifted width. For both LVE and LJT, the lifted width is bounded from below
by the parfactor with the most arguments.

Lemma 5.4.1. The ground width wg is bounded from below by the number of arguments
in a parfactor gmax = φ(Amax)|C ∈ G s.t. ∀g = φ(A) ∈ G, g 6= gmax : |A| ≤ |Amax|, i.e.,

wg ≥ |Amax|. (5.9)

As a cluster at a leaf in a corresponding FO dtree is given by the arguments of the
parfactor at the leaf, the largest size of a parcluster is at least the largest number of
arguments. A parfactor with a high number of arguments will lead to a large parcluster
that may absorb many smaller parclusters when minimising.
Construction depends on the one hand on logvars and their potential for DPGs and

on the other hand on the arguments of the parfactors. After FO dtree construction,
there exist as many leaf nodes as there are parfactors (N leaves). The resulting FO
jtree may have between N + 1 and 2N − 1 nodes if all leaves appear at the same level.
Minimising the FO jtree may result into one node as a worst case, meaning LJT matches
with LVE. In a best case, we have a parcluster for each parfactor, meaning small local
models and thus, fast QA. Effects of fusion range from no change to a collapse into one
node. Without a change, LJT checks all nodes without merging. Collapsing into one
node with the input model in its local model is a worst case scenario. We add overhead
for construction and fusion without a payoff since query answering compares to LVE.
Evidence has an effect on message passing and query answering since the local models

change with absorption. In a worst case, entering evidence means checking Expres-
sion (4.2) for each evidence parfactor gE at each node and each parfactor in a local
model absorbing gE . With more evidence, the size of intermediate results decreases and
runtimes decrease. Passing messages, LJT calculates a message for each neighbour at a
node. A high degree of neighbours may mean that computations repeat itself. A pop-
ular propositional message passing scheme is called Hugin (Jensen et al., 1990), which
multiplies incoming messages into a single factor at each node. Doing so, Hugin saves
multiplications when calculating different messages, but requires a division of factors to
avoid sending a message back to its sender and needs more memory for larger factors
at nodes. In LVE, multiplication is more involved due to logvars and the number of
instances they represent, which also means that specifying a division is more challeng-
ing. Additionally, one may multiply parfactors with different logvars into one parfactor,
in which a count conversion may become necessary, which leads to larger intermediate
results as before, all of which makes the Hugin scheme less favourable for LJT.
For query answering, the best case is an FO jtree with few PRVs per parcluster. With

a clever access function, e.g., some form of index, LJT quickly identifies a parcluster
for the query and sums out the few non-query PRVs. The next chapter compares the
runtimes of lifted QA algorithms for prototype implementations.
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Chapter 6

Empirical Evaluation of LJT

This section presents an empirical evaluation of LJT. We compare LJT to its proposi-
tional counterpart JT as well as LVE, an algorithm tailored for answering single queries.
To evaluate the performance of LJT w.r.t. repeated inference, we consider FOKC. LJT,
JT, and FOKC share the idea of compiling a model into a helper structure for faster
answering of individual queries. FOKC compiles a model into a so-called circuit (model
circuit) and computes a count in the model circuit. Given a query, FOKC compiles the
model including the query into another circuit (query circuit) and computes a count in
the query circuit. The query result is then given by the division of the two counts.
We have implemented a prototype of LJT and JT. Taghipour provides an implemen-

tation of LVE including the propositional version VE (available at https://dtai.cs.
kuleuven.be/software/gcfove). Van den Broeck provides an implementation of FOKC
(available at https://dtai.cs.kuleuven.be/software/wfomc). The implementation
handles only boolean range values and does not allow for lifted handling of evidence.
The programs are run on a virtual machine with 16GB working memory. We test the
implementations w.r.t. the parameters that influence the complexity of LJT, namely,
(i) largest domain size n, (ii) number of parclusters nJ , and (iii) lifted width (wg, w#) in
which wg is the ground width and w# the counting width.
The basic input model is Gex with boolean ranges, n = 1000, which we use for each

logvar, nJ = 3, wg = 3, and w# = 1. Evidence is empty and Sick(x1) is a representative
query. When varying one parameter, the remaining parameters stay fixed. Additionally,
for varying nJ , each new parcluster has a lifted width of (3, 0). For varying wg, each of
the nJ = 3 parclusters has a ground width of wg. For varying w#, each of the nJ = 3
parclusters has a counting width of w#. Doing so ensures that each message is affected
and that each possible query leads to a parcluster of worst case size. The overall number
of parfactors |G| varies between 3 and 70 with |gr(G)| ranging from 11 to 24,000,000,001.
We also test the effect of evidence as well as the effect of unnecessary groundings and
fusion. For evidence, we use the same basic setup as before, varying the amount of
evidence entered. For fusion, we use a slight variation of Gex with nJ = 4, which has
unnecessary groundings with LJT. After fusion, nJ = 3 and wg = 5. See Appendix B for
a closer look at the inputs. Taghipour et al. (2013c) include tests on two real-world data
sets, one modelled with four parfactors and the other with five parfactors. These data
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Chapter 6 Empirical Evaluation of LJT

sets, however, present rather plain overall settings as each model leads an FO jtree with
two parclusters and a lifted width of (2, 0). Our evaluation setup subsumes both models.
We present the empirical evaluation in five parts, one for each of the following topics

(1) the effect of the given parameters on the steps of LJT, (2) runtimes for query answer-
ing, (3) the tradeoff between compilation runtime versus fast query answering, (4) the
effect of evidence, and (5) the effect of unnecessary groundings and fusion on LJT.

6.1 Step-wise Evaluation

This part of the evaluation looks at the different steps of LJT while varying (i) the domain
size n, (ii) the number of parclusters nJ , and (iii) the lifted width (wg, w#). Given the
complexity of LJT with one query, n = n#, and boolean ranges, i.e., O(nJ · log2 n ·
2wg · n2w#), the following effect should occur from a theoretical view point: Varying n
should have no effect on construction while the other parameters may have a slight effect
as the model gets bigger. Without evidence, evidence entering should be unaffected,
only showing minimal runtimes from some if-statements checking for evidence. Message
passing should be affected in the order of magnitude log2 n · n2w# when varying n. The
effect of varying nJ should be linear and varying (wg, w#) should be exponential for each
component. For query answering, the same as for message passing should hold except
w.r.t. nJ , which should not have an effect on query answering.
Figure 6.1 shows runtimes for each LJT step as well as answering the given query with

LVE in milliseconds [ms], averaged over five runs. Triangles mark construction runtimes,
diamonds mark evidence entering runtimes, squares mark message passing runtimes,
circles mark query answering runtimes with LJT, and crosses mark query answering
runtimes with LVE. Evidence entering appears constant through each variation with no
evidence given, with the runtime clocking in around 0.007 ms.
Figure 6.1a shows runtimes for n varying from 2 to 1000 for all logvars on log-scaled

x- and y-axes. Construction appears constant w.r.t. n at around 56 ms whereas message
passing and query answering with LJT show an expected increase. Message passing has a
slightly steeper slope compared to query answering, with the effect of varying n applying
to each message. Message passing shows a similar runtime as LVE as they have similar
effort. Figure 6.1b shows runtimes on a log-scaled y-axis for nJ varying from 2 to 11.
Construction has a slight linear increase (invisible in the log-scaled plot), going from 49.4
ms to 51.6 ms. The same holds for message passing though at a larger scale, going from
170.4 ms to 193.7 ms. Surprisingly, query answering appears not as constant as expected
w.r.t. varying nJ , going from 2.5 ms to 15.6 ms. A reason may lie in LJT selecting a
parcluster with many neighbours for query answering, leading to a large submodel with
many messages, in contrast to a leaf parcluster with only one received message.
Figure 6.1c shows runtimes on a log-scaled y-axis for wg varying from 2 to 11. Con-

struction has a slightly stronger linear increase going from 49.8 ms to 62.4 ms. Message
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Figure 6.1: Step-wise runtimes [ms] for LJT and LVE (baseline); defaults: domain size
n = 1000, number of parclusters nJ = 3, ground width wg = 3, counting width w# = 1

passing and query answering show a steeper increase when varying wg than when varying
nJ as expected (exponential versus linear). The increase is again mirrored by LVE with a
higher runtime than message passing but a similar shape of the curve. Figure 6.1d show
runtimes on a log-scaled y-axis for w# varying from 0 to 9. While construction shows
a linear increase in runtime, message passing and query answering, just like LVE, show
a steep increase, leading to memory errors with w# ≥ 2. The reason lies in the count
conversion. Though count conversions allow for lifted computations that would other-
wise mean groundings, w# means w# − 1 count conversions. Each CRV has a range of(

1000+2−1
2−1

)
which is possibly multiplied with other CRVs of the same range to eliminate a

CRV. Thus, memory consumption quickly rises as intermediate parfactors get larger and
operations take longer. Complexity-wise, the increase follows n2w# asymptotically, which
is better than 2n

2w# in the propositional case but may still be prohibitively large for cer-
tain domain sizes. With n = 1000, the effect of n2w# is rather prominent. The effect of
varying wg, though following 2wg asymptotically, is not as prominent as 2wg � 10002w#

for the values tested. Consider Fig. 6.2 which shows the same setting but with n = 10.
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Figure 6.2: Runtimes [ms] for LJT steps; counting width w# ranging from 0 to 9; domain
size n = 10, number of parclusters nJ = 3, ground width wg = 3

Here, LJT completes each run, exhibiting a comparatively moderate increase in runtimes
for message passing and query answering with the domain size not weighing so harshly.
As the step-wise evaluation shows, an implementation allows for producing runtimes

that follow the expected behaviour given the complexity analysis in Chapter 5. Construc-
tion is rather robust against parameter changes. Message passing and query answering
runtimes increase with larger n, nJ , wg, and w#, the last one having the greatest impact
on runtime and memory consumption given our setup, while nJ has the smallest effect.
Next, we evaluate LJT, JT, LVE, VE, and FOKC w.r.t. query answering.

6.2 Query Answering Evaluation

This part of the evaluation focuses on answering queries, supporting the claims that lifting
allows for faster runtimes for LJT compared to JT, that compiling an FO jtree enables
faster QA compared to LVE for repeated inference, and that LJT may provide faster
query answering compared to FOKC, another QA algorithm geared towards repeated
inference. We look at runtimes for answering a single query by again varying (i) the
largest domain size n, (ii) the number of parclusters nJ , and (iii) the lifted width (wg, w#).
LVE and VE answer the query by eliminating all non-query terms of the original model,
VE after grounding the model. LJT and JT answer the query by finding a (par)cluster
and answering the query on a corresponding submodel. FOKC builds a query circuit,
computes a count on this circuit, and divides the count by a precomputed count. We
also consider compile time for LJT and FOKC. The compile time refers to runtime for
preprocessing, which an algorithm has to trade off over multiple queries. Compiling
includes construction, evidence entering, and message passing for LJT and building a
model circuit and computing a count on the model circuit for FOKC.
Figure 6.3 shows runtimes for query answering in milliseconds [ms] on log-scaled y-

axes, averaged over five runs. In each subfigure, hollow marks identify query answering
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Figure 6.3: Runtimes [ms] for query answering for FOKC, JT, LJT, LVE, and VE as
well as compile time for LJT and FOKC; defaults: domain size n = 1000, number of
parclusters nJ = 3, ground width wg = 3, counting width w# = 1

runtimes, filled marks identify compile runtimes for LJT and FOKC. Circles mark LJT,
triangles mark JT. Crosses mark LVE, stars mark VE. Squares mark FOKC.
Figure 6.3a shows runtimes for varying n from 2 to 1000 for all logvars on log-scaled x-

and y-axes. VE has the steepest increase having to eliminate the grounded model almost
completely. JT has the smallest runtimes for domain sizes between 2 and 20, which is due
to small cluster sizes and fast elimination operations. When domain sizes get larger, VE
and JT run into memory problems. LVE exhibits the same increase in runtime that we
witnessed in the previous part of the evaluation as the runtimes are identical. LJT has
runtimes over one order of magnitude faster for query answering starting with n = 200,
exhibiting a similar increase with larger n. The FOKC runtimes show that FOKC is
even less susceptible to varying domain sizes. Still, runtimes of LJT are over one order
of magnitude smaller compared to FOKC for query answering. FOKC has a compile
time similar to query answering. LJT has a compile time that is larger than LVE as it
now includes construction, evidence entering, and message passing, exhibiting the same
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Figure 6.4: Runtimes [ms] for query answering with counting width w# ranging from 0
to 9; domain size n = 10, number of parclusters nJ = 3, ground width wg = 3

increase that LVE does due to message passing, the main contributor to the compile
time. But, the compile time is smaller than the one for FOKC, making it faster during
compilation as well as query answering. Figure 6.3b shows runtimes for nJ varying from
2 to 11. VE and JT do no appear in the figure as they do not produce a result within 5
minutes. FOKC exhibits an increase over nJ rising, going from 207 ms to 812 ms. LVE
shows a slightly lesser increase (177.5 to 304.1). LJT again has runtimes that do not
appear as constant as expected but are still an order of magnitude faster than FOKC
and LVE. Compile times for FOKC almost coincide with runtimes for query answering,
while LJT has a slightly faster compile time, which almost coincide with LVE.
Figure 6.3c shows runtimes for wg varying from 2 to 11. The increase in runtimes is

steeper than before as the effect is exponential (cf. complexity analysis in Section 5.3).
VE and JT only produce a result for the first model. The fastest implementation is the
one of LJT. LJT allows for query answering runtimes of close to two orders of magnitude
faster than FOKC and almost one order of magnitude faster than LVE. Compile times
of LJT show an increase that is much more flat than the increase FOKC compile times
exhibit (56.8 to 159.0 versus 173 to 36,856). Figure 6.3d show runtimes for w# varying
from 0 to 9. Again, VE and JT only produce results for the first model, while LVE and
LJT produce results for the first two models as discussed before. In this setting, FOKC
shines as it treats scenarios in which LVE counts logvars in a less time- and memory-
consuming way. Runtimes increase from 89 ms to 9046 ms over w# rising, with compile
times exhibiting a similar behaviour. But, FOKC at least produces a result compared to
the other implementations.
Consider Fig. 6.4, which shows the same setup for n = 10. As count conversions

are much more manageable for LVE, both LVE and LJT finish their runs and exhibit
runtimes that are faster than the FOKC runtimes. LJT is again two orders of magnitude
faster than FOKC for query answering. Here, VE and JT are able to produce some
results, with JT running into memory problems earlier than VE.
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6.3 Tradeoff Evaluation

Evaluating query answering runtimes has shown that LJT provides the fastest runtimes
for individual queries for all setups except varying w#. For an increasing w# combined
with a large domain size n = 1000, FOKC has an advantage. With smaller n, the roles
reverse again and LJT provides answers fastest for w# ≥ 1.

6.3 Tradeoff Evaluation

This part of the evaluation considers the tradeoff between compiling a helper structure
and faster answering of individual queries. We look at the following two ratios α and β,
which appear frequently when evaluating KC algorithms

α =
tq,cpl
tq,uncpl

β =
tc,cpl

tq,uncpl − tq,cpl

where tc,cpl is the compile runtime of an algorithm using compilation, tq,cpl is the runtime
for answering a single query with such an algorithm, and tq,uncpl is the runtime for
answering a single query with an algorithm without compilation. If α < 1, α indicates
how much faster the compiled version is compared to the uncompiled one. If α < 1,
dβe provides the number of queries needed to trade off compile time. β < 1 is the rare
case that compilation pays off with the first query. We look at α and β for LJT and
FOKC with LVE as the uncompiled QA algorithm. For LJT, tc,cpl includes construction,
evidence entering, and message passing and tq,cpl finding a parcluster and answering a
query on it. For FOKC, tc,cpl includes building a model circuit and computing a WMC
on the model circuit and tq,cpl building a query circuit, computing a WMC on this circuit,
and dividing the count by a precomputed count for FOKC. tq,uncpl includes eliminating
all non-query terms of the original model for LVE. We again vary (i) the largest domain
size n, (ii) the number of parclusters nJ , and (iii) the lifted width (wg, w#).
Figure 6.5 shows α and β values of LJT and FOKC, averaged over five runs. β values

are only given if the corresponding α values are below 1. The thick, black line marks 1,
under which α has to lie for the compiling to pay off. Figure 6.5a shows α and β values
for n varying from 2 to 1000 for all logvars on log-scaled x- and y-axes. LJT α values
are marked by a hollow triangle, while LJT β values are filled triangles. Stars identify
FOKC α values, no β values exist. For each n, each α is below 1 showing that LJT
compilation pays off. The β values approach 1 with increasing n, going down from 3.99
to 1.2, meaning LJT needs 4 down to 2 queries to trade off its overhead.
The remaining figures have α and β values for n = 10 (squares/pluses), n = 100

(circles/crosses), and n = 1000 (triangles/stars) on a log-scaled y-axis. Hollow marks
identify LJT α values, while filled marks identify LJT β values. The plus, cross, and star
mark FOKC, which are boxed or circled if a β value exists. Figure 6.5b shows α and β
values for nJ varying from 2 to 11. FOKC has α values above 1, again exhibiting smaller
values with n = 1000 compared to n = 10 and n = 100. The α values of LJT are below 1
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Figure 6.5: α and β values for LJT and FOKC (β only if α > 1); domain size n as stated;
defaults: number of parclusters nJ = 3, ground width wg = 3, counting width w# = 1

for each n, with n = 1000 providing the lowest α values, which mirrors the observations
in Fig. 6.3a. LJT β values decrease with rising nJ , so far that for n = 1000, LJT is faster
than LVE with the first query. Figure 6.5c shows α and β values for wg varying from
2 to 11. FOKC only has α values, which increase noticeably with rising wg as FOKC
runtimes increase more than the LVE runtimes. LJT has α values that are similar given
the different n, but with the β values decreasing. LJT reaches for all three n a point
where it is faster than LVE with the first query. Figure 6.5d show α and β values for
w# varying from 0 to 9. Again, as count conversions lead to memory errors with large
n, LJT only completes runs for n = 10 or small enough w#. For n = 1000, only values
for the first two models exist for LVE and LJT, which also means one can only compute
α and β values for FOKC for these two models, even though FOKC completed all runs.
For n = 100, the first four models are completed, yielding β values for LJT between 1
and 10 and for FOKC well below 1 for w# = 2 and w# = 3. For n = 10, LVE, LJT,
and FOKC complete their runs. FOKC again has α values above 1, whereas LJT has α
values below 1, leading to β values below 1 with w# ≥ 3.
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Evaluating the tradeoff between compile time and faster QA shows that FOKC does
not provide a speed-up with the given setups except for a combination of large domain
sizes and high counting width compared to LVE. LJT provides a speed-up of up to
two orders of magnitude by building an FO jtree and preparing messages for fast QA.
Especially with larger models and domain sizes, the overhead of compilation pays off for
LJT with the second or even the first query. At this point, we have shown that it is
possible to implement LJT to achieve the theoretically possible speed-up for QA given
models with various domain sizes, numbers of parclusters, and lifted widths. But, so far
we have not considered evidence and its effect on LJT, which we look at next.

6.4 Evidence Coverage

This part of the evaluation investigates how evidence affects LJT step-wise and in terms
of the tradeoff between compiling and QA. The runtimes have been collected on the
basic model from the beginning with boolean ranges, nJ = 3, wg = 3, w# = 1, and one
query. We add evidence for 1-logvar PRVs, from 0% to 100% evidence in 10% steps,
excluding the query term Sick(x1). We also vary the domain sizes, setting n to 10, 100,
and 1000. We do not compare against JT as the evaluation so far showed the power of
lifting compared to ground computations. We do not add evidence for 2-logvar PRVs
as the LVE implementation does not handle evidence for 2-logvar PRVs in a lifted way,
instead grounding one of the two logvars in the evidence. We also do not consider FOKC
as the implementation provided deals with each observation in a grounded fashion.
With evidence, we expect the runtimes of evidence entering, message passing, and

query answering to go up as the number of parfactors basically doubles. With higher
evidence coverage, we expect the runtimes of message passing and query answering to go
down slightly as a higher ratio of instances is assigned a value. With 100% evidence, we
expect runtimes to drop as evidence applies to whole parfactors and leads to a dimension
reduction after absorption, which decreases the complexity of LJT.
Figure 6.6 shows results averaged over five runs with evidence coverage ranging from

0% to 100%. Figures 6.6a to 6.6c display runtimes on a log-scaled y-axis for each LJT
step as well as answering the given query with LVE in milliseconds [ms] for n = 10,
n = 100, and n = 1000 respectively. Triangles mark construction runtimes, diamonds
mark evidence entering runtimes, squares mark message passing runtimes, circles mark
query answering runtimes with LJT, and crosses mark query answering runtimes with
LVE. Construction appears nearly constant through each variation, with the runtime
clocking in around 56 ms. Evidence entering shows the expected jump, going from 0%
to 10% evidence, for all three domain sizes. After the initial jump, runtimes decline,
with n = 1000 showing the largest decline from 0.86 ms to 0.31 ms (64.0% down) and
n = 10 the smallest from 0.32 ms to 0.28 ms (12.5% down). Message passing mirrors
LVE again with similar computations carried out. The initial jump in runtimes also
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Figure 6.6: Evidence coverage ranging from 0% to 100% for 1-logvar PRVs; domain size
n as stated, number of parclusters nJ = 3, ground width wg = 3, counting width w# = 1

appears here, followed by a decline over the course of more evidence, most prominent
for n = 1000 again. Query answering exhibits a slow increase in runtimes until runtimes
start to decline after a peak at 70% evidence. Due to the additional splits for the query
term, the decline in runtime gets visible later compared to message passing.
Figure 6.6d shows α and β values of LJT with LVE as the algorithm for uncompiled

QA. The thick, black line marks 1, under which α has to lie for the compiling to pay off.
For each domain size and evidence set, α lies below 1. As the difference between LVE
runtimes and LJT query answering runtimes is largest with 10% evidence, α is smallest
at this point, with a value of 0.0002 for n = 1000. The β values are between 0.8 and
1.8 for all setups except for 0% evidence with n = 10 and n = 100. For these two
settings, LJT needs four and three queries respectively for compiling to pay off. For all
other settings, LJT needs one to two queries. Overall, we conclude that lifted evidence
handling pays off. It does add runtime for all steps except construction, more so with
larger domain sizes, comparing the three graphs for n = 10, n = 100, and n = 1000. But,
again, answering queries after incorporating observed events is faster with LJT compared
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to LVE. Considering all parameters influencing LJT, we expect the results for evidence
entering in the basic model to translate to other setups with varying nJ or (wg, w#).
Runtimes for evidence entering, message passing, and query answering initially will rise
but decline again with more evidence. With the same behaviour expected for LVE, the
speed-up for repeated inference continues to hold for LJT. The last aspect to look at
concerns unnecessary groundings and fusion.

6.5 Fusion Effect

This part of the evaluation looks at the effect of unnecessary groundings on the runtimes
of LJT steps as well as fusion as a means to avoid groundings. The evaluation is based
on a model that is a modification of the base model with four parcluster, i.e., nJ = 4,
with one message leading to groundings. Thus, fusion merges two parclusters leading to
an FO jtree with three parclusters and a ground width wg = 5. LVE computes a solution
in a purely lifted way. To illustrate the effect of the groundings, the domain size n varies
from 2 to 1000. We do not consider evidence. We test LJT without fusion, LVE, FOKC,
and LJT with fusion. For the smaller domain sizes (n ≤ 20), we also test JT.
Figure 6.7 shows results averaged over five runs with the domain size ranging from 2

to 1000. Fig. 6.7a shows runtimes of the steps of LJT and JT in milliseconds [ms] on a
log-scaled y-axis for domain sizes n ≤ 20. Triangles mark construction runtimes, squares
mark message passing runtimes, and circles mark query answering runtimes. Hollow
marks identify LJT runtimes, while filled marks identify JT runtimes. LVE occurs as a
baseline, marked by crosses. LVE exhibits a slight linear increase over the rising domain
sizes, going from 25.0 ms to 28.0 ms. LJT construction is nearly constant, around 56
ms, as expected since the groundings only appear with message passing. JT construction
already shows an exponential increase as the number of instances rises. Message passing
shows a similar exponential increase over rising domain sizes for both LJT and JT, the
unnecessary groundings being noticeable in the runtimes. Query answering itself is faster
with both LVE and LJT for smaller domain sizes but with rising runtimes for message
passing, both algorithms will not be able to amortise compile times. With larger domain
sizes, neither the LJT nor JT implementations complete their runs. Thus, we look at
step-wise runtimes of LJT with fusion, which avoids unnecessary groundings.
Fig. 6.7b shows runtimes for each LJT step including fusion as well as answering

the given query with LVE in milliseconds [ms], both axes log-scaled. Triangles mark
construction runtimes, diamonds mark fusion runtimes, squares mark message passing
runtimes, circles mark query answering runtimes with LJT, and crosses mark query an-
swering runtimes with LVE. The filled diamond identifies fusion runtimes on the basic
model, essentially providing the overhead that fusion generates when no groundings oc-
cur. Construction again appears constant as neither domain size nor groundings affect
construction. Both fusion runtimes have a minor increase, with runtimes where fusion

75



Chapter 6 Empirical Evaluation of LJT

10−1

100

101

102

103

104

105

0 5 10 15 20

Construction
LJT
JT
Message passing
LJT
JT

Query answering
LJT
JT
LVE

(a) Runtimes [ms] step-wise, n ≤ 20, no fusion

10−1

100

101

102

103

104

105

100 101 102 103

Construction
Fusion
Fusion (overhead)
Message passing
Query answering (LJT+fusion)
Query answering (LVE)

(b) Runtimes [ms] step-wise with fusion

10−1

100

101

102

103

104

105

100 101 102 103

LJT
LVE
FOKC
LJT+fusion

LJT compile
FOKC compile
LJT+fusion compile

(c) Runtimes [ms] for query answering

10−2

10−1

100

101

102

103

100 101 102 103

α LJT
β LJT
α FOKC
α LJT+fusion
β LJT+fusion

(d) α and β values

Figure 6.7: Fusion with domain size n ranging from 2 to 1000; number of parclusters
nJ = 4 (3 after fusion), ground width wg = 3 (5 after fusion), counting width w# = 1

has an effect being slightly higher. Fusion adds runtime to the overall runtime but for the
case where fusion avoids groundings, message passing is able to significantly save run-
time. Message passing then shows a linear increase consistent with LVE and no longer
the exponential surge without fusion. Query answering then exhibits a similar increase at
a smaller scale with rising domain sizes. Overall, the added overhead without groundings
is minimal, while the gain is extensive if fusion leads to avoiding groundings.
Figure 6.7c shows runtimes for query answering in milliseconds [ms] on log-scaled x- and

y-axes. Hollow marks identify query answering runtimes, filled marks identify compile
runtimes for LJT with and without fusion as well as FOKC. Circles mark LJT without
fusion. Crosses mark LVE. Squares mark FOKC. Diamonds mark LJT with fusion. LVE
runtimes are identical to Fig. 6.7b, exhibiting a linear increase over rising domain sizes.
LJT with fusion runtimes are identical to query answering runtimes in Fig. 6.7b, being
around one order of magnitude faster compared to LVE. FOKC again shows that it is
less susceptible to varying domain sizes but still slower than LVE and LJT with fusion.
LJT with fusion is close to two orders of magnitude faster despite the fusion overhead.
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Compile times show a similar behaviour already encountered during the second part
of this evaluation. FOKC has a compile time similar to query answering. LJT has a
compile time that is larger than LVE as it now includes construction, evidence entering,
and message passing, exhibiting the same increase that LVE does due to message passing,
the main contributor to the compile time. But, LJT compile time is smaller than the
one for FOKC, making it faster during compilation as well as query answering.
Overall, we have shown that it is possible to implement LJT such that the theoretical

gain of faster QA for efficient repeated inference is realisable. Except for the combination
of large domain sizes and high counting width, LJT shows a promising performance,
surpassing LVE and JT as well as even FOKC, a prominent representative for repeated
inference, by providing faster query answering.
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Chapter 7

Part I: Interim Conclusion

This part has presented LJT to answer multiple queries efficiently in the presence of
symmetries in a model. LJT builds on the propositional junction tree algorithm and
LVE as a lifted QA algorithm, applying the idea of lifting to jtrees, introducing FO
jtrees. LJT avoids duplicate nodes in jtrees by parameterising the cluster nodes, which
allows for using LVE in its calculations, avoiding duplicate calculations for messages
and queries. This part includes a comprehensive theoretical analysis of LJT with all its
steps as well as an empirical evaluation. The theoretical analysis contains proofs of the
soundness of the overall algorithm, its completeness w.r.t. two classes of models, and
shows the complexity of LJT in terms of its lifted width. Whereas existing methods
have not focussed on exact repeated inference, accumulating unnecessary repetition, or
have not fully exploited relational aspects, LJT allows for exact repeated inference in
relational probabilistic models for a variety of models efficiently.

There exist many possible roads for further work on optimising LJT. One interest-
ing algorithm optimisation is parallelisation, for which message passing is predestined.
Whenever Condition (1) of message passing triggers, a thread could start calculating a
message to the remaining neighbour. Whenever Condition (2) triggers, a set of threads
could start calculating messages to neighbours. One could also set up message passing
within the MapReduce framework like Ahmadi et al. (2013) do for LBP. LJT adopted a
message passing based on a scheme by Shafer and Shenoy (1990). In the propositional
setting, Jensen et al. (1990) also provide a well known PP scheme, Hugin. As discussed
before, the Hugin scheme by Jensen et al. (1990) is not as suitable for the first-order
setting as the Shafer-Shenoy scheme. But, nonetheless, one could investigate whether
the theoretical drawbacks of the Hugin scheme regarding divisions of parfactors and a
blowup through count conversions come into play in actual FO jtrees.
Another optimisation, which is quasi orthogonal to parallelising message passing and

also deals with optimising message calculation, regards caching to reuse calculations
for messages. Kazemi and Poole (2016a) use a cache to optimise KC. In LJT, when
calculating messages, a PRV that does not appear in any separator is eliminated first
for each message. Using caching, the elimination operation does not have to be carried
out multiple times. A challenge would be to set up a procedure that is fast in detecting
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whether a result to an elimination already exists, e.g., through a hash function to check
if a result to a computation exists and access said result.
Regarding construction, one could turn to hypergraph partitioning. A hypergraph is

a graph whose edges can connect more than two nodes (hyperedges). Considering a
parfactor graph, transforming factor nodes and their edges into hyperedges leads to a
hypergraph. A k-way hypergraph partitioning is another method to construct a proposi-
tional jtree by partitioning the nodes of a hypergraph into k partitions of approximately
equal size (Papa and Markov, 2007).
Additionally, one could look into exploiting local symmetries. Local symmetries in a

factor are characterised by various input valuations mapping to the same real number.
Chavira and Darwiche (2007) specify factors through algebraic decision diagrams (ADDs)
instead of a list or table and thus, encode local symmetries explicitly. Then, they define
the VE operations of multiplying and summing out for ADDs, which allow for fast
inference given many local symmetries. An interesting avenue would be to investigate
whether LVE with ADDs is feasible.

At the end of this first part, we have covered the first three contributions of this
dissertation, (1) lifting of jtrees, (2) lifted QA on FO jtrees incorporating LVE, and
(3) completeness and complexity results for LJT. But, so far, queries concern either a
marginal (conditional) distribution with only a single randvar in the margin. A prob-
lem that the next part tackles regards repeated inference for various types of queries,
ranging from a probability of a set of randvars (conjunctive query) to the most probable
assignment of a subset of model randvars (MAP query).
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Extending the Query Language





Chapter 8

Conjunctive Queries

The second part of this dissertation is devoted to extending the query language of LJT
from allowing queries with single query terms to allowing a set of parameterised query
terms in a query for retrieving probability distributions as well as MAP assignments from
a model. This first chapter of Part II extends the query language to conjunctive queries.
In many scenarios, one is not only interested in one query term, but rather multiple

query terms at a time, e.g., what is the probability of a person travelling and being sick.
Such a query is a conjunctive query. Given a conjunctive query, LVE still follows its
imperative of eliminating all non-query terms. However, conjunctive queries necessitate
changes for LJT as query terms may no longer occur in one parcluster. The changes occur
in the query answering step. It now involves finding a subtree whose clusters cover the
query terms, extracting a submodel from this subtree, and answering the query on the
submodel. Answering a conjunctive query in such a way follows the idea of out-of-clique
inference for a variant of JT by Koller and Friedman (2009), with cliques being another
name for clusters. The following paper presented LJT for conjunctive queries:

Tanya Braun and Ralf Möller. Counting and Conjunctive Queries in the
Lifted Junction Tree Algorithm - Extended. In Postproceedings of the 5th
International Workshop on Graph Structures for Knowledge Representation
and Reasoning at the 26th International Joint Conference on Artificial Intel-
ligence, pages 54–72. Springer, 2018

The remainder of this chapter is structured as follows. Section 8.1 presents LJT for
conjunctive queries in detail, which contains Contribution (4a) regarding lifted QA for
conjunctive queries on FO jtrees. Sections 8.2 and 8.3 contribute a theoretical analysis
and an empirical evaluation respectively, which partly covers Contribution (4c) about
completeness and complexity results for complex queries. A conclusion wraps up this
first chapter of the second part before moving on to parameterised queries.

8.1 LJT for Conjunctive Queries

Before looking into query answering, we adapt the definition of the query language to
allow for representing conjunctive queries.
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Definition 8.1.1 (Query). A query P (Q|{Ej = ej}mj=1) consists of a set of query terms
Q and a set of events {Ej = ej}mj=1, with Q ⊆ rv(G) and Ej ∈ rv(G) being grounded
PRVs or propositional randvars. If |Q| = 1, the query is called a singleton query.

Example 8.1.1 (Conjunctive query). A query asking for the conditional distribution
of Travel(eve) and Treat(eve, injection) given the event Sick(eve) = true is given by
the expression P (Travel(eve), T reat(eve, injection)|sick(eve)). The query from Exam-
ple 3.1.5, P (Treat(eve, injection)), is a singleton query without evidence.

Based on the updated query definition, LJT now takes a model G, a set of conjunctive
query terms {Qk}mk=1, and evidence E. Algorithm 4 shows LJT for answering the queries
P (Qk|E), k ∈ {1, . . . ,m}. The first three steps (construction, evidence entering, message
passing) remain the same: LJT constructs an FO jtree J for G, enters evidence into J ,
and passes messages on J . Conjunctive queries lead to changes in the last step of LJT
(query answering): For each query Qk, LJT finds a subtree of J that covers all query
terms Qk. From the parclusters in the subtree, LJT extracts a submodel to answer Qk

with LVE. The upcoming paragraphs provide more details on each task.

Subtree Identification The goal is to find a subtree J ′ of the FO jtree J in which the
subtree parclusters contain all query terms Q, i.e., Q ⊆ rv(J ′). Since J ′ is the basis
for model extraction, and the number of PRVs determines the worst-case complexity, J ′

should be of such form that the number of PRVs in J ′ is minimal. Formally, one needs
to solve the following minimisation problem:

arg min
J ′

|rv(J ′)|, (8.1)

s.t. Qk ⊆ rv(J ′) (8.2)

Solving Expression (8.1) under the constraint in Expression (8.2) means trading off find-
ing a subtree with a minimum number of PRVs and finding a subtree fast. The search
space for the problem consists of all possible subtrees that fulfil Expression (8.2).

Algorithm 4 Lifted Junction Tree Algorithm with Conjunctive Queries
procedure LJT(Model G, Query terms {Qk}mk=1, Evidence E)

Construct an FO jtree J = (V,E) for G
Enter E into J
Pass messages on J . LVE as subroutine
for each Qk ∈ {Qk}mk=1 do

Find a subtree J ′ s.t. Qk ⊆ rv(J ′)
Extract a submodel G′ from J ′

LVE(G′, Qk, ∅) . Output or store result
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A straightforward method to identifying a subtree J ′ starts with finding a parcluster
Ci that covers at least parts of Q and using Ci as the first node in J ′. Then, LJT finds
further parclusters Cj that cover still missing query terms and adds to J ′ all parclusters
that lie on the path from a parcluster in J ′ to Cj , including Cj . A simple heuristics is
doing a breadth first search from the current J ′ to add parclusters that contain missing
query terms. Future work includes developing a heuristics for finding a subtree with a
close to optimal number of PRVs and a reasonable runtime. For singleton queries and
conjunctive queries whose query terms appear in one parcluster, the subtree contains
a single parcluster. Here, the minimisation problem means finding the one parcluster
covering the query term(s) that has the minimum number of PRVs. From the subtree
covering the query terms, LJT needs to extract a model to answer the query.

Model Extraction LJT builds a submodel G′ from subtree J ′. J ′ should be independent
from the model parts in J that are outside of J ′. Therefore, G′ consists of the local models
of the parclusters in J ′ and the messages that the parclusters at the borders of J ′ received
from outside J ′. The border messages combine all parfactors from outside the subtree,
making the PRVs in G′ independent from the remaining model PRVs.
Given J ′ for a singleton query or a query whose query terms appear in one parcluster,

the submodelG′ is the local model of the one parcluster in J ′ and all its received messages,
which coincides exactly with the submodel definition of the original LJT.

Conjunctive Query Answering Using the model G′ built during model extraction,
LJT uses LVE to answer a query over the randvars Qk. Though LVE as described
by (Taghipour et al., 2013c) does not explicitly mention conjunctive queries, the formal-
ism allows for multiple query terms. Answering a conjunctive query with LVE follows the
same procedure as described in Alg. 1, now with conjunctive query terms Q as second
input. Shattering G′ on Q works as before, splitting parfactors based on the terms in Q.
However, multiple query terms mean a finer granularity in the model after shattering,
which is an unavoidable consequence of dealing with conjunctive queries. After shatter-
ing, LVE eliminates all non-query terms and normalises the result. Given a singleton
query and the respective submodel, LVE works as before, shattering the submodel on a
single query term, eliminating all non-query terms, and normalising the result.
Next, we look at the query P (Travel(eve), T reat(eve, injection)|sick(eve)) with query

terms Q = {Travel(eve), T reat(eve, injection)} as well as evidence sick(eve) in Gex.
In Examples 4.2.1, 4.3.3 and 4.3.4, we have looked at an FO jtree J for Gex, entered
sick(eve) as evidence into J , and passed messages on J . Thus, we can reuse J with its
local models and messages for the query above as model and evidence are the same.

Example 8.1.2. A subtree of parclusters C2 and C3 covers Q. The extracted model
G′ consists of the local models G2 and G3, shown in Figs. 4.3b and 4.3c, as well as the
message from outside, m12, from parcluster C1, shown in Fig. 4.4a. LJT uses LVE to
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Figure 8.1: Parfactor graph of G′ = G2 ∪G3 ∪m12

eliminate all non-query terms from G′: LVE begins with shattering G′ on Q, the result
being shown in Fig. 8.1a. Proceeding with an increasing size of intermediate results,
LVE sums out Treat(eve, tablet) from ger3 , resulting in ger′3 = φ′3(Epid), Travel(X)
from gr2, resulting in gr′2 = φ′′2(Epid, Sick(X)), and Treat(X,M) from gr3, resulting in
gr′3 = φ′′3(Epid, Sick(X)). Fig. 8.1b shows the remaining model after performing the three
sum-out operations. From the product of gr′2 and gr′3 , LVE sums out Sick(X), resulting
in a parfactor gr′23 with argument Epid. To sum out Epid, LVE multiplies all parfactors
into one. Then, LVE sums out Epid, resulting in a parfactor with arguments Travel(eve)
and Treat(eve, injection), which holds the queried distribution after normalising.
Given singleton query P (Treat(eve, injection)|sick(eve)), query answering proceeds

as shown in Example 4.3.5: Submodel G′ is the union of G3 and message m23 and LJT
uses LVE to eliminate all terms that are not Treat(eve, injection) from G′.

With the adapted query answering step, LJT is now able to answer conjunctive queries
reusing the local models and messages in a given FO jtree as long as model and evidence
do not change. At the same time, singleton queries are still as efficient to answer as
before. Next, we look into a theoretical discussion of LJT for conjunctive queries as well
as a discussion of answering conjunctive queries in cluster representations.

8.2 Theoretical Discussion

This section looks at soundness, completeness, and complexity aspects given the extended
query language for LJT. First, we show that LJT for conjunctive queries is sound. Then,
we present completeness and complexity results for LJT for conjunctive queries. Last,
we discuss other approaches for answering conjunctive queries in cluster representations
in relation to the out-of-clique based approach of LJT.

Theorem 8.2.1. Let G be a model, {Qk}mk=1 a set of queries, and E evidence. Then,
LJT is sound, i.e., computes a correct answer for each Qk ∈ {Qk}mk=1 given G and E.
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Proof. We assume LVE in the form of the LVE operator suite (Taghipour et al., 2013c)
to be sound. The original LJT is sound as shown in Section 5.1. LJT for conjunctive
queries is identical to the original LJT in the first three steps. Thus, LJT constructs for
model G a valid FO jtree J , which fulfils the three FO jtree properties. The local models
in J partition G. A valid FO jtree allows for local computations based on local models
and received messages. Given that LVE is sound, evidence entering and message passing
is sound. After message passing, each parcluster contains parfactors in its local models
and messages that render it independent from the remaining model. The valid FO jtree
allowing for local computations also allows for answering queries locally.
By way of constructing the submodel G′ for the query terms Qk in a query, LJT

combines all necessary parfactors without duplicates. The local models do not contain
duplicates as they partition G. By only considering messages from outside the subtree
J ′, on which G′ is based, still missing parfactor parts from outside J ′ are added to G′,
making the PRVs in G′ independent from the outside PRVs. Ignoring the messages within
J ′ avoids duplicating any part of any parfactor in the local models and outside messages.
Thus, again given that LVE is sound, LJT computes a correct answer for a query on the
extracted submodel.

Completeness The completeness results presented in Section 5.2 hold for the class of
singleton queries Q as well as evidence E that does not cause groundings. I.e., the
algorithms have a complexity that is in polynomial time depending on the model only.
That is the results regard model complexity. With conjunctive queries, an algorithm
runtime no longer only depends on the input model only but the query terms appearing
in the query, meaning that a combined complexity is relevant. For the class CQ of all
ground conjunctive queries, the following negative result holds.

Theorem 8.2.2. LVE and LJT are not complete for the class CQ of all ground conjunc-
tive queries and all model classes that contain at least one logvar.

Proof. Consider a conjunctive query P (Sick(alice), Sick(eve), Sick(bob)) for model Gex.
Assume LVE and LJT are complete. After passing messages in the FO jtree in Fig. 4.1b
without evidence, LJT uses C3 and passes on to LVE a submodel G′, which contains
the local model G3 and a message m23. Shattering G′ on the query terms Sick(alice),
Sick(eve), and Sick(bob) leads to grounding X in g3 and m23, no longer permitting a
lifted solution to the query s.t. the runtime is no longer in polynomial time in |D(X)|.

Even with on-demand shattering, i.e., shattering a model on query terms as late as
possible, the problem is only delayed. But, even though the completeness results no longer
hold for all conjunctive queries, we are able to state completeness results if restricting
the set of queries to ones that then allow LVE and LJT to run in polynomial time.

Lemma 8.2.1. LVE and LJT are domain-lifted given a liftable model G, query terms Q
containing at most one constant of each logvar in lv(G), and liftable evidence E.
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Proof. LVE and LJT are domain-lifted given a liftable model G, liftable evidence E, and
a single ground query term. What remains to be shown is that query terms Q with at
most one constant of each logvar do not lead to a runtime depending on domain sizes.
Given Q, LVE shatters the input model w.r.t. Q. Given a PRV, the splitting procedure

defined by Taghipour et al. (2013c) splits any parfactor into at most two parts. With at
most one constant per logvar in Q, a parfactor is split into at most two parfactors for
each constant in a query term covered by its arguments: In a parfactor affected by some
query terms Q′ ⊆ Q, those query terms in Q′ with the same logvar constant lead to one
split. Query terms in Q′ of PRVs with l different logvars lead to a split for each logvar,
resulting in 2l splits at most. With a bounded number of splits not being dependent on
domain sizes, but on the number of logvars, Q does not lead to groundings and thus,
runtimes depending on domain sizes. I.e., LVE and LJT are domain-lifted given query
terms Q, model G, and evidence E.

The query terms in query P (Sick(alice), Sick(eve), Sick(bob)) contain more than one
constant for logvar X. However, queries may reference PRV instances with the same
constant, e.g., P (Sick(eve), T ravel(eve)), which uses constant eve for X in Sick(X)
and Travel(X). Other liftable queries are P (Travel(eve), T reat(eve, injection)) and
P (Nat(flood),Man(virus)). Limiting constants, completeness results are salvageable.

Definition 8.2.1. Query class CQlift refers to query terms with at most one constant
of each logvar.

Theorem 8.2.3. Completeness results of LVE and LJT hold for query class CQlift.

Proof. Directly from Lemma 8.2.1, it follows that the queries in CQlift do not lead to
runtimes depending on domain sizes. Thus, the completeness results hold.

In summary, for general conjunctive queries, positive completeness results cannot be
obtained. But, by restricting conjunctive queries to CQlift, we are able to salvage previous
completeness results for LVE and LJT. Next, we look at complexity results.

Complexity For conjunctive queries, we investigate combined complexity. To acquire
complexity results different from JT, we require a liftable model as well as a liftable
query, as otherwise LJT may revert to propositional inference.
LJT for conjunctive queries is identical to the original LJT in the first three steps.

Therefore, the complexity results up until query answering still hold, mounting up to
a complexity as in Expression (5.4). The adapted query answering step consists of the
tasks subtree identification, model extraction, and conjunctive query answering.
Subtree identification assembles a subtree J ′ with n′J parclusters. In a worst case, a

conjunctive query requires a subtree that coincides with the original FO jtree, i.e., n′J =
nJ . Considering the approach based on breadth-first search, the complexity depends on
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the number of nodes and edges being visited. The complexity of breadth-first search is
|V |+ |E|, with V being the set of nodes and E the set of edges. As there are nJ nodes
and nJ − 1 edges, the complexity of subtree identification can be summarised by O(nJ).
The result of subtree identification is a subtree J ′ with n′J parclusters, which is equal to
nJ in a worst case based on the query.
Model extraction walks over the subtree with n′J parclusters to collect the local models

and messages without manipulating any factors. Thus, the complexity of model extrac-
tion is O(n′J). Of course, as n′J = nJ in the worst case, O(nJ) would also be correct
but to distinguish between cases where nJ holds irregardless of a query, e.g., in message
passing, and cases where nJ depends on the query, we use n′J . The result of model
extraction is a submodel G′ that covers the query terms of a liftable conjunctive query.
Conjunctive query answering follows model extraction and manipulates factors in G′.

Of course, given a conjunctive query Q with q = |Q| query terms, the result has a size
exponential in q. But as q is a fixed, small number, which is outweighed by the complexity
of the lifted computations in the remaining model after shattering the submodel on the
query terms, we can neglect q (fixed parameter tractability in the liftable case).
The question is how large a factor gets in a worst case when computing Q on G′.

G′ implicitly contains the n′J parclusters with factors that have a worst case size of
rwg ·nw#·r#

# . Parclusters encode an elimination order, in which LVE can eliminate PRVs.
From the periphery of the underlying J ′ inward, LVE eliminates non-separator PRVs,
resulting in factors that are smaller than before. LVE multiplies the resulting factors
into the factor at the inward neighbours, which keeps the factor at the neighbours at the
worst case size. At the inward neighbours, LVE eliminates non-separator PRVs again and
multiplies the result into the new inward neighbour, keeping the factor at the worst case
size. At some central node, LVE eliminates the remaining PRVs from a factor of worst
case size. Thus, the worst case size of a factor remains rwg · nw#·r#

# , which bounds the
number of summations. As there are n′J parclusters in the underlying subtree where LVE
eliminates PRVs, the overall complexity is then bound by O(n′J · log2(n) · rwg · nw#·r#

# ),
which outweighs the complexities O(nJ) and O(n′J) of the two previous tasks. Thus, the
following overall complexity arises for answering a liftable conjunctive query.

Lemma 8.2.2. The complexity of answering a liftable conjunctive query is

O(n′J · log2(n) · rwg · nw#·r#
# ). (8.3)

If n′J = nJ , Expression (8.3) becomes O(nJ · log2(n) · rwg · nw#·r#
# ) which coincides

with the complexity of LVE for a single query. The result is reasonable as in the worst
case, the extracted submodel coincides with the original input model G, on which LJT
performs LVE. If n′J = 1, i.e., a given query can be answered on a single parcluster,
Expression (8.3) becomes O(log2(n) · rwg · nw#·r#

# ) which coincides with the complexity
of query answering in the original LJT. Combining the complexity results of the steps of
LJT in Expressions (5.4) and (8.3) leads to the following asymptotic complexity.
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Theorem 8.2.4. The complexity of LJT given a set of liftable queries {Qk}mk=1 is

O((nJ +m · n′J) · log2(n) · rwg · nw#·r#
# ). (8.4)

Comparing the complexity of the original LJT in Expression (5.6) and the complexity
of LJT for conjunctive queries in Expression (8.4) shows that a factor of n′J occurs in
the query answering portion. This factor varies from query to query, which the empirical
evaluation in Section 8.3 reflects. Given a set of liftable conjunctive queries, LJT is
able to trade off runtimes for queries with larger subtrees with runtimes for queries with
smaller subtrees, preserving its runtime advantage over LVE.

Approaches towards Conjunctive Queries LJT for conjunctive queries is based on the
out-of-clique idea by Koller and Friedman (2009), which uses local models and messages
present after preprocessing. LJT extracts a submodel from a subtree to perform LVE on.
To bypass the problem of query terms over multiple parclusters, one could set up an

FO jtree that contains a parcluster with all query terms of a given query, an approach
discussed by Koller and Friedman (2009) as well. For LJT to build such an FO jtree, it
would require adding a parfactor with the query terms as arguments to the input model
(with potentials of 1). Consequently, LJT may need to rebuild an FO jtree for a new
query, making this approach inefficient for repeated inference.
Another approach to answering conjunctive queries solves the problem by performing

a message pass adapted to a query. When calculating a message, LJT normally elimi-
nates all PRVs that do not appear in the separator. For query-induced messages, LJT
eliminates all PRVs that do not appear in the separator and the query, basically adding
the query terms to each separator. Once the query-induced message pass is finished,
any parcluster may output an answer by eliminating the non-query terms from the cor-
responding submodel. While the approach is correct, two main disadvantages are that
(i) messages become larger, with the query terms leading to a shattering for message
calculation, and (ii) messages require recalculation with a subsequent query. The first
disadvantage might be slightly mitigated by adding the PRVs behind the query terms to
a message. But given the preconditions for lifted summing out, the new PRVs may cause
groundings and thus require additional PRVs in the message to avoid grounding. This
kind of mitigation easily leads to a model for query answering that is identical to the
submodel LJT extracts. The second disadvantage might be mitigated by storing original
messages to reuse for other queries, which requires additional memory, however.
In summary, LJT for conjunctive queries, based on out-of-clique inference by Koller

and Friedman (2009), requires the least amount of changes to the overall procedure of
LJT. Construction, evidence entering, and message passing remain the same. Query
answering still assembles a submodel and answers the query on the submodel, with the
assembly of the submodel taking slightly more effort. The result of the first three steps
is reused as much as possible during the adapted query answering step, allowing LJT to
answer singleton queries as efficiently as before, without requiring additional memory.
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8.3 Empirical Evaluation

This section presents an empirical evaluation regarding conjunctive queries. As LJT for
conjunctive queries is identical to the original LJT w.r.t. construction, evidence enter-
ing, and message passing, we focus on how conjunctive queries influence LJT. Based
on the results of our theoretical discussion, we look at liftable and grounding queries,
specifically, (i) the influence of the subtree size on query answering given a liftable query
and (ii) the effect of a grounding query, including preemptive as well as on-demand
shattering. As a baseline, we use LVE for conjunctive queries. We do not include
the propositional versions of LJT and LVE as the lifted versions easily outperform the
propositional ones as shown in Chapter 6. We have implemented LJT for conjunc-
tive queries and extended the LVE implementation by Taghipour (available at https:
//dtai.cs.kuleuven.be/software/gcfove). The programs are run on a virtual ma-
chine with 16GB working memory. We do not compare against FOKC as the implementa-
tion by Van den Broeck (available at https://dtai.cs.kuleuven.be/software/wfomc)
does not allow for conjunctive queries. The input model has an FO jtree with nJ = 10
parclusters and a lifted width of (3, 1). We do not consider evidence as evidence does
not have a specific effect on conjunctive queries.

Subtree Size Based on the complexity analysis, the subtree size has a linear influence
on the overall runtime for answering a liftable conjunctive query. Compilation, i.e., steps
one to three of LJT, does not depend on specific queries. We use ten liftable queries with
a subtree size of n′J ranging from 1 to 10 = nJ . Each individual query consists of n′J
query terms. Each query term falls into one parcluster.
We look at the following aspects, (i) runtimes for query answering without compilation

and (ii) tradeoff between FO jtree compilation runtime and query answering runtime (α,
β). Aspect (i) highlights how subtree sizes have an influence on the LJT steps. Aspect (ii)
showcases how LJT still trades off its static overhead.
Figure 8.2 shows the results for LJT and LVE answering the ten queries of various size.

The x-axes show the increasing subtree size. Figure 8.2a depicts runtimes in milliseconds
[ms] on a log scale for the last step of LJT, query answering, abbreviated QA, and query
answering with LVE for three different domain sizes n ∈ {10, 100, 1000} of all logvars
in the input model. The figure also shows compile times for LJT (black crosses/stars),
which do not depend on the subtree size. Even though compile times are plotted over
all queries, LJT could have constructed an FO jtree once and then had been able to
reuse its messages for each query. With a larger domain size, QA runtimes are higher as
expected from the complexity analysis. But in all three cases, behaviours w.r.t. subtree
size mirror each other, with LVE expectedly taking longer than LJT. Runtimes show
an increase with rising subtree sizes. For LVE (filled symbols), the increase is steady
over all subtree sizes, except for crossing from n′J = 2 to n′J = 3. The reason for
the larger jump in runtimes at this point lies in one query term causing a split in a
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Figure 8.2: Subtree size n′J ranging from 1 to 10; domain size n as stated

parfactor that requires a count conversion, which means that from this point on, query
answering requires two count conversions. Runtimes of LJT (hollow symbols) show a
similar behaviour. There is a larger increase between n′J = 2 and n′J = 3 as from n′J
onwards, the local models contain one parfactor that requires a count conversion, which
was not necessary before as the count conversion and subsequent elimination had been
done during message passing. Over all ten settings, LJT runtimes are smaller than LVE
runtimes, although the LJT runtimes approach LVE runtimes with larger subtree sizes
as expected. Thus, LJT leverages most of its potential with small queries.
We consider α and β to see how subtree sizes influence the capacity of LJT to tradeoff

its static overhead. Figure 8.2b shows α (hollow symbols) and β (filled symbols) values
on a log scale for LJT compared to LVE with increasing subtree size and the three
domain sizes n ∈ {10, 100, 1000}. For all three domain sizes, α is below 1, meaning that
compilation pays off. The plot also shows that with increasing subtree size, α gets closer
to 1 as LJT saves less runtime w.r.t. LVE than with smaller queries. Overall, the β
values lie between 1.7 and 5.4, meaning two to six queries are necessary to trade off the
compilation overhead given queries of size n′J . Though it takes more queries, LJT is able
to trade off its overhead even with large queries. Two small queries are enough to trade
off its overhead. With each additional query, LJT increasingly outperforms LVE.
The queries considered so far are liftable conjunctive queries over different subtrees.

Next, we consider a grounding query within one parcluster.

Groundings In this part of the evaluation, we look at the effect of a grounding query on
the runtime of LJT. We increase domain sizes and with it the number of grounding query
terms, i.e., Q =

⋃
x∈gr(X){R(x)} for some PRV R(X) in the input model. A grounding

query affects LVE and LJT alike, although the consequences for LVE may be more serious
as more PRVs may get grounded in the input model compared to the smaller submodel
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Figure 8.3: Runtimes [ms] for query answering for LJT and LVE as well as compile time
for LJT w.r.t. domain size n ranging from 2 to 1000; subtree size n′J = 1

that LJT uses for query answering. We compare the runtime behaviour of LJT and LVE
during query answering with runtime behaviour for a singleton query, i.e., R(x), as well
as runtime behaviour using on-demand shattering instead of preemptive shattering.
Figure 8.3 shows runtimes in milliseconds [ms] on a log scale for query answering with

LJT (hollow symbols) and LVE (filled symbols) for the grounding query with preemp-
tive shattering (squares, “ground”), for the grounding query with on-demand shattering
(circles, “ondem.”), and the singleton query (triangles, “single”). The x-axis plots the
increasing domain size for model logvars, ranging from 2 to 1000, on a log scale. The
singleton query runtimes show the polynomial increase with rising domain sizes that we
expect from the runtime complexity. This query is the only query that allows both LVE
and LJT to complete its computations for all domain sizes. In both setups with the
grounding query, LVE and LJT compute an answer to the query up to a domain size
of 20, exhibiting a sharp increase with rising domain sizes. With a domain size of 50,
both programs do not generate an answer within twenty minutes. Even though runtimes
with on-demand shattering are usually lower than runtimes with preemptive shattering,
the gain is not significant. The corresponding compile runtime of LJT (black crosses)
displays an expected polynomial increase given larger domain sizes as message passing
depends on domain sizes polynomially.
The empirical evaluation shows that LJT is able to trade off its overhead even with

larger queries in an implementation given a set of queries. At the same time, implementa-
tions get into difficulties if queries force a grounding. Overall, LJT for conjunctive queries
is able to leverage its cluster representation, saving runtime during query answering.

8.4 Interim Conclusion: A Set of Conjunctive Queries

Conjunctive queries allow for querying for more complex events and distributions. Han-
dling them efficiently is of great importance. LJT for conjunctive queries permits posing
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conjunctive queries without compromising its performance for singleton queries. The first
three steps of LJT remain the same, only query answering sees changes in assembling
a submodel for a given query based on a subtree that covers the query terms. Then,
LJT uses LVE for answering the query. The whole procedure is inspired by out-of-clique
inference by Koller and Friedman (2009). In a worst case, LJT and LVE have the same
runtime for answering a query, with the submodel identical to the input model. But,
in all other cases, LJT maintains its advantage compared to LVE, working on smaller
submodels, thus, providing answers faster. While arbitrary conjunctive queries can lead
a lifted algorithm to ground, conjunctive queries that use only a restricted set of logvar
constants still allow for algorithm runs with lifted calculations only.

This chapter has covered Contribution (4a), lifted QA for conjunctive queries on FO
jtrees, and partially covered Contribution (4c), combined completeness and complexity
results for complex queries. As mentioned before, developing heuristics for finding a
minimal submodel given a conjunctive query is one possible road for research in the
future. One avenue of work that came out of looking at conjunctive queries concerns a
specific subset of those conjunctive queries leading to groundings, namely queries with
interchangeable query terms like P (Sick(alice), Sick(eve), Sick(bob)). One is able to
establish lifted algorithm runs by applying lifting to a query as well, which the next
chapter delves into, extending our query language even further.
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Lifting for Queries

Though LVE and LJT realise lifted inference using logvars as parameters to represent
sets of interchangeable objects, queries concern query terms that are instances. As we
have seen in the previous section, a set of query terms can lead to groundings in a
model if, e.g., query terms reference a majority of some logvar domain. Consider the
epidemic example. One might not only be interested in the probability of one individual
but a specific fraction of people being sick or even in a distribution over all possible
fractions from none to all. Posing a query within the query definition so far would require
explicitly listing instances of Sick(X) to form a conjunctive query, those instances being
interchangeable given a model. The following shattering of a model on a query leads to
a grounding of the affected logvars. The result also shows potential for more compact
encoding: Given interchangeable query terms, it does not matter in a result in which
half the query terms are assigned the value true and half of them are assigned the value
false, which explicit query instances are true and which are false.
Therefore, to avoid groundings that a query induces, we have presented the notion of

parameterised queries, introducing logvars in queries. With parameterised queries, we
compute answers more efficiently and provide compact representations for queries and
answers. We first presented parameterised queries in the following paper:

Tanya Braun and Ralf Möller. Parameterised Queries and Lifted Query An-
swering. In IJCAI-18 Proceedings of the 27th International Joint Conference
on Artificial Intelligence, pages 4980–4986. IJCAI Organization, 2018

The remainder of this chapter starts with a closer look at conjunctive queries of inter-
changeable query terms. Then, we present parameterised queries and how LVE handles
such queries, which covers Contribution (4b). We establish the adapted LVE version
in LJT to continue leveraging the advantages of LJT for repeated inference. In the
theoretical discussion, we analyse soundness and correctness of lifted inference with pa-
rameterised queries, characterising which queries allow for lifted runs and which queries
lead to unavoidable groundings, including a comparative discussion of queries with free
variables in probabilistic databases (PDBs). The theoretical discussion makes up the
remaining part of Contribution (4c). We close this chapter with an empirical evaluation
showing the benefit of parameterised queries in terms of runtime and memory.
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9.1 Parameterised Queries

As discussed in the proof of Thm. 8.2.2, a query like P (Sick(alice), Sick(eve), Sick(bob))
leads to grounding a logvar, namelyX, which elicits inefficiencies (i) in a query, (ii) during
QA, and (iii) in a result. Parameterised queries compactly represent queries, which
enables efficient QA with LVE and facilitates a compact representation of the result. We
first look at the inefficiencies and then define parameterised queries.
Consider Sick(X) grounded as interchangeable query terms for Gex. We do not include

evidence at this point for ease of exposition.

Example 9.1.1 (Grounding query). Given a query P (Sick(alice), Sick(eve), Sick(bob))
and the local models and messages from the ongoing example, LJT performs a message
pass because evidence has changed, sending four messages:

• m12 = {g0, g
′
1} as before since the previous evidence had no effect on C1,

• m32 = {g′3}; g′3 is the result of eliminating Treat(X,M) from g3,

• m23 = {g′2, g0, g1}; g′2 is the result of eliminating Travel(X) from g2, and

• m21 = {g′23}; g′23 is the result of eliminating Sick(X) and Travel(X) from g2, g
′
3.

For the query terms Q = {Sick(alice), Sick(eve), Sick(bob)}, LJT can choose parclusters
C2 or C3. Choosing C3, LJT lets LVE shatter G′ = G3 ∪ m23 on Q, which leads to
effectively grounding X, shown in Fig. 9.1a. Next, LVE eliminates the Treat PRVs, each
elimination a copy of the other. To eliminate Epid, LVE multiplies the remaining par-
factors into one parfactor with arguments Epid, Sick(alice), Sick(eve), and Sick(bob),
which means a size of 24 = 16. LVE eliminates Epid from this product and normalises
the result. The resulting parfactor g = φ(Sick(alice), Sick(eve), Sick(bob)) has 23 = 8
mappings from input range values to output real numbers, which is exponential in the
number of query terms. Figure 9.1b shows the mappings in a table, without explicit
potentials as they depend on the concrete potentials in the parfactors in Gex. The po-
tentials exhibit a symmetry that we have already observed when introducing CRVs: Two
times a false value and one time a true value map to v1. It is irrelevant whether alice,
eve, or bob is the one being sick, as long as one has the value true assigned. The same
holds for false being assigned once and true being assigned twice. A CRV #X [Sick(X)]
compactly encodes the same information, with histograms [0, 3], [1, 2], [2, 1], [3, 0] as range
values that map to v0, v1, v2, v3, respectively.

The example exemplifies three issues, (i) a large set of interchangeable query terms,
(ii) inefficiencies during LVE, leading to (partial) groundings w.r.t. the referenced con-
stants, to identical eliminations, and to large intermediate results, and (iii) a large result
representation with symmetries. Parameterising a query allows for using existing lifting
techniques to enable a lifted calculation of queries over interchangeable query terms.
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Epidg′1

g0
g′b2
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Treat(alice,M)

g′a3

(a) G′ = G3 ∪m23 after shattering
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false false true v1

false true false v1

false true true v2

true false false v1

true false true v2

true true false v2

true true true v3

(b) Result

Figure 9.1: Answering query P (Sick(alice), Sick(eve), Sick(bob)) on Gex

A parameterised query contains logvars in query terms to combine interchangeable
query terms, achieving a compact query representation. To still allow for conjunctive
queries, a parameterised query concerns a set of query terms Q, which may contain
PRVs with logvars, making Q a parameterised set. The formal definition follows:

Definition 9.1.1 (Query). A query P (Q|C |{Ej = ej}mj=1) consists of a set of query terms
Q ⊆ rv(G), a constraint C restricting the logvars in Q, thereby, specifying the instances
of the query terms, and a set of events {Ej = ej}mj=1, where Ej ∈ rv(G) are grounded
PRVs or propositional randvars. We omit |C if C = >. P (Q|C |{Ei = ei}) compactly
represents a conjunctive query P (gr(Q|C)|{Ei = ei}) with query terms gr(Q|C).

Example 9.1.2 (Parameterised queries). The expression P (Sick(X)|>) is a parame-
terised query equivalent to the conjunctive query P (Sick(alice), Sick(eve), Sick(bob)),
with a query term Sick(X) and a > constraint. To query for P (Sick(alice), Sick(bob))
with eve excluded, {Sick(X)} requires a constraint C = (X, {(alice), (bob)}).

The definition allows for conjunctive queries as before by explicitly naming instances
of a PRV in the query terms. Next, we present LVE for parameterised queries, which
avoids inefficiencies elicited from shattering a model on interchangeable query terms.

9.2 Lifted Inference Algorithms for Parameterised Queries

LVE for parameterised queries still follows the idea of first eliminating all non-query
terms and second, normalising the result to get a joint distribution over query terms.
The second part is more involved as the elimination result may not be a joint distribution
but rather a set of local distributions that LVE has to transform into a joint distribution.
LJT for parameterised queries including conjunctive queries proceeds as described in
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Algorithm 5 LVE for Parameterised Queries
1: procedure LVE(Model G, Query terms Q, Evidence E)
2: G← Shatter G on Q
3: G← Absorb E in G . Shatters G on E if necessary
4: while G contains non-query PRV do
5: if there exists a PRV A eliminable then
6: G← Sum-out A in G
7: else
8: G← Apply transforming operator applicable in G
9: while lv(G) 6= ∅ do

10: if ∃X ⊆ lv(G) s.t. X is countable then
11: G← Count X in G
12: else
13: G← Apply other transforming operator applicable in G
14: G← Multiply remaining parfactors in G and normalise the result
15: return G . Contains one parfactor

Chapter 8: LJT finds a subtree that covers the (parameterised) query terms, extracts a
submodel G′, and then uses LVE for parameterised queries to answer the query on G′.
Algorithm 5 shows LVE for parameterised queries with input model G, query terms Q,

and evidence E to answer the query P (Q|E). Lines 2 to 8 are identical to the previous
LVE version. LVE shatters G on Q and absorbs E in G. Then, LVE eliminates all non-
query randvars (lines 4 to 8). Lines 9 to 13 contain steps specific to parameterised queries
and materialise remaining logvars in the result. The final step is normalisation, which
also occurs in the previous LVE version and is the step that LJT skips for messages. For
parameterised queries, LVE needs to account for CRVs occurring in the result.
The following paragraphs detail the tasks of eliminating non-query terms, inducing a

joint distribution, and normalising a result. Afterwards, we take a closer look at evidence.

Eliminating Non-query Terms Parameterised queries no longer cause groundings w.r.t.
domain values appearing in a query during shattering, thus, allowing for more lifted
eliminations. Of course, shattering may still result in many parfactors to be split given
multiple query PRVs with logvars using subdomains of model logvars. During elimination,
a parameterised query works as a compact representation of the terms not to eliminate.
The application of LVE operators is not affected, still aimed at eliminating non-query
terms. Let us look at eliminating non-query terms for the query P (Sick(X)|>).

Example 9.2.1 (Elimination). The query term is Sick(X). Using parcluster C3 with
messages as in Example 9.1.1, the submodel is G′ = G3 ∪ m23 = {g3, g

′
2, g0, g

′
1}. LJT

uses LVE to answer the query, passing along G′, {Sick(X)}, and ∅ as inputs. Shattering
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(a)
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#X [Sick(X)] φ
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[2, 1] v2
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(d)

Figure 9.2: Evolution of G′ while answering P (Sick(X)|>) and the result in a table

G′ on the query term Sick(X) does not change G′ as the query constraint coincides
with the constraints regarding X in the model. As there is no evidence to absorb, LVE
eliminates Treat(X,M) from g3, resulting in g′3 with arguments Sick(X) and Epid as
shown in Fig. 9.2a. To eliminate Epid, all occurrences of Epid need to be combined
into one parfactor: LVE multiplies g0 and g′1 into g01 and g′2 and g′3 into g23. Since g23

stands for n = 3 factors for each instance of g01 due to X with its three constants, when
multiplying g01 and g23, LVE needs to rescale the potentials from g01 by taking the n-th
root with n = 3. The result is a parfactor g′ with arguments Epid and Sick(X). In
g′, LVE cannot eliminate Epid as Epid does not contain X. To enable the elimination,
LVE counts X in g′. Figure 9.2b shows a parfactor representation of the result. Now,
LVE eliminates Epid. The end result is a parfactor φ(#X [Sick(X)]), which no longer
contains non-query terms, depicted in Fig. 9.2c.

The example query uses the same logvar and domain as the logvar in the model for
readability. A query term referencing a subdomain of X would be {Sick(Y )}|C with
C = (Y, {(alice), (bob)}). In this case, LJT still extracts G′ as a submodel. Shattering
leads to two versions of g3 and g′2, one for Sick(Y ) under C and one for eve. Elimination
works as before with a result parfactor φ(#Y [Sick(Y )|C ]) in which #Y [Sick(Y )|C ] has
the range values [0, 2], [1, 1], [2, 0]. LVE for parameterised queries shares similarities with
LVE that uses on-demand shattering. On-demand shattering shatters a model only when
non-query terms are no longer eliminable. Given a query over interchangeable query
terms, on-demand shattering saves the shattering effort at the beginning and salvages
lifted computations as well. But, eventually, shattering occurs, possibly grounding the
remaining model and yielding an overblown result representation. LVE for parameterised
queries also saves the shattering effort at the beginning. But, LVE only performs a
grounding if preconditions enforce it.

Inducing a Joint Distribution After eliminating all non-query terms, G may still be a
set of parfactors. Each parfactor may contain logvars and thus, represent a set of local
factors and not a joint distribution over query terms. Count conversions for the remaining
logvars inGmaterialise the query terms in the result to encode a joint distribution instead
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of local distributions. Forming CRVs of the remaining PRVs also enables a compact result
representation. But, count conversions have preconditions as well. If the logvars are not
countable, LVE applies one of the remaining operators to enable a count conversion in
contrast to enabling a lifted summing out, which no longer applies. In a worst case, LVE
has to ground to ensure a joint distribution over all query terms.

Example 9.2.2 (Joint distribution). At the end of Example 9.2.1, LVE has produced a
single parfactor g = φ(#X [Sick(X)]) for the query P (Sick(X)). The parfactor also no
longer contains any logvars since logvar X has already been counted during the elimina-
tion of non-query terms. Thus, no further operations are required.
Assume elimination outputs a parfactor φ(Sick(X))|C with the mappings true 7→ t1

and false 7→ t2. The mappings hold for each x ∈ gr(X|C). To build a joint distribution,
one could ground X, multiply the grounded factors, and would come to a similar result
as seen in Fig. 9.1b. To avoid the blowup, LVE aims at applying count conversions to
build CRVs for the query terms. With X as the single logvar in a single PRV, X is
trivially countable. Counting X, LVE produces a parfactor φ(#X [Sick(X)]).

A parameterised query does not necessarily yield a result containing CRVs for exactly
the PRVs and constraint in the query. While eliminating all non-query PRVs as well as
inducing a joint distribution, the query PRVs in the model may be affected by operators
rewriting constraints (splits, groundings). They may appear fully grounded in the result
simply through the application of operators to compute a correct result. The LVE op-
erators that usually enable a lifted summing out can have the following effects visible in
the result if applied to a PRV or logvar that is (partially) covered by a query term:

• Count conversion: enable a compact result representation (as in Example 9.2.1)

• Splitting, expansion (i.e., splitting for CRVs): may lead to groups in the result (see
next paragraph for an example w.r.t. evidence)

• Grounding: leads to grounded query terms in the result

Though the LVE operators may be applied because the model demands an application,
some parameterised queries ultimately lead to groundings, which means LVE produces a
result for the parameterised query grounded out. We further discuss such query-induced
groundings during the completeness analysis in Section 9.3.
Parameterised queries already appear in LJT in a certain way. For a message, LJT

performs LVE with the local model plus other messages as the input model and the
separator as the (parameterised) query. Inducing a joint distribution is the difference
between a parameterised query and a message. For a message, LJT does not count
or ground logvars but keeps the information as is, i.e., LJT does not establish a joint
distribution. As messages are specified over PRVs with the same constraints in the
parcluster and the separator (due to construction), shattering does not occur during
message calculation and logvars of the same name refer to the same restricted domain.
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Normalising the Result The result after eliminating non-query terms and building a
joint distribution is not yet normalised. To normalise the resulting parfactor, LVE cannot
simply divide the potentials by the sum of all potentials if CRVs are involved. A histogram
h stands for Mul(h) assignments, with Mul(h) referring to a multinomial coefficient as
defined in Eq. (3.1). Thus, normalising a potential wi in a mapping hi 7→ wi with m
overall mappings results in a normalised potential vi as follows

vi =
wi∑m−1

i=0 Mul(hi)wi
(9.1)

The resulting vi only add up to 1 if multiplying Mul(hi) with vi. To illustrate normali-
sation, let us continue our example of answering P (Sick(X)).

Example 9.2.3 (Normalisation). At the end of Example 9.2.1, LVE has produced a sin-
gle parfactor g = φ(#X [Sick(X)]), with mappings of the form [0, 3] 7→ w0, [1, 2] 7→
w1, [2, 1] 7→ w2, and [3, 0] 7→ w3, in which the histograms [1, 2] and [2, 1] stand
for (1+2)!

1!·2! = (2+1)!
2!·1! = 3 assignments. Thus, the normalised potentials are given by

wi/(w0 + 3 · w1 + 3 · w2 + w3) which is then equal to the vi given in Fig. 9.2d. Assuming
that w0 = 1, w1 = 2, w2 = 3, and w3 = 4, the divisor is given by

Mul([0, 3]) · 1+Mul([1, 2]) · 2+Mul([2, 1]) · 3+Mul([3, 0]) · 4
= 1 · 1+ 3 · 2+ 3 · 3+ 1 · 4 =20

The normalised potentials follow by dividing the wi by 20, e.g., [0, 3] maps to 1
20 = 0.05:

[0, 3] 7→ 0.05, [1, 2] 7→ 0.1, [2, 1] 7→ 0.15, [3, 0] 7→ 0.2

E.g., [1, 2] 7→ 0.1 provides a probability (0.1) for each of the three assignments behind
[1, 2]. All three assignments together have a probability of 0.3. After multiplying the
multinomial coefficients with the potentials, the sum is 1:

Mul([0, 3]) · 0.05+Mul([1, 2]) · 0.1+Mul([2, 1]) · 0.15+Mul([3, 0]) · 0.2
= 1 · 0.05+ 3 · 0.1+ 3 · 0.15+ 1 · 0.2 =1

Normalisation concludes LVE for parameterised queries. Next, we discuss evidence
and its effect on a result parfactor, before moving on to a theoretical discussion of pa-
rameterised queries.

Evidence Evidence may lead to groups of constants in a model, e.g., when observations
exist for some of the constants of a logvar domain, leading to groups in a model through
splits. The groups may surface in a result. We consider the following cases for query
terms Q|C and evidence PRV E(X)|CE

.
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(i) Q|C ∩ E(X)|CE
6= ∅

(ii) Q|C ∩ E(X)|CE
= ∅ ∧ gr(πX(C)) ∩ gr(CE) 6= ∅

(iii) Q|C ∩ E(X)|CE
= ∅ ∧ πX(C) ∩ gr(CE) = ∅

In the first case, instances of the evidence PRV appear in a parameterised query. The
posterior probability of the instances of E(X)|CE

is 1. LVE absorbs evidence in a par-
factor by eliminating all mappings in which the range value of E(X)|CE

is unequal to
the observed value and dropping E(X)|CE

from the parfactor arguments. Thus, the in-
stances of E(X)|CE

appearing in Q|C do not appear in the result since LVE drops them
during lifted absorption. Let us look at query P (Sick(X)|sick(eve)), which contains the
evidence previously used in the running example and Sick(X) as a query term.

Example 9.2.4 (Evidence in Query Terms). The query term Sick(X) covers the ev-
idence term sick(eve) under the > constraint. The evidence leads to splits (results
for local models as given Fig. 4.3), with message passing proceeding as described in
Chapter 4. Eliminating non-query terms from G3 ∪m23 results in a parfactor with ar-
gument #X [Sick(X)] under a constraint (X, {(alice), (bob)}), mapping the histograms
[0, 2], [1, 1], and [2, 0] to unnormalised potentials, which LVE then normalises:

[0, 2] 7→ v0, [1, 1] 7→ v1, [2, 0] 7→ v2. (9.2)

One could artificially insert sick(eve) into the result (or keep it during absorption with
potentials set to 0) and have the following result for arguments sick(eve),#X [Sick(X)]:

(¬sick(eve), [0, 2]) 7→ 0, (¬sick(eve), [1, 1]) 7→ 0, (¬sick(eve), [2, 0]) 7→ 0

(sick(eve), [0, 2]) 7→ v0, (sick(eve), [1, 1]) 7→ v1, (sick(eve), [2, 0]) 7→ v2.

The first line with ¬sick(eve) has mappings to potentials of 0. The second line has map-
pings for the original potentials, the inputs extended by sick(eve) as in the evidence. Both
lines together hold the same information as Expression (9.2). Summing out #X [Sick(X)]
leads to a posterior probability of 1 for sick(eve). I.e., P (Sick(X)|sick(eve)) and
P (Sick(Y )|C |sick(eve)) with constraint C = (Y, {(alice), (bob)}) have the same result.

The second case involves constants of an evidence PRV appearing in query terms that
reference PRVs without evidence. Given such a setup, the result has groups, one for
constants that also appear in evidence and one for the constants that do not appear in
evidence, which is a consequence of the splitting due to evidence. Let us look at query
P (Travel(X)|sick(eve)) with evidence sick(eve) and query term Travel(X).

Example 9.2.5 (Evidence constants in a query). While query term and evidence ref-
erence different PRVs, their constants overlap in the form of {eve}. Travel(X) occurs
in parcluster C2, in the form of Travel(eve) and Travel(X) with a constraint C =
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(X, {(alice), (bob)}). LVE eliminates all non-query terms from submodel G2∪m12∪m32.
The result is a parfactor with arguments Travel(eve) and #X [Travel(X)], constraint C,
and mappings of the form

(¬travel(eve), [0, 2]) 7→ v0,(¬travel(eve), [1, 1]) 7→ v1,(¬travel(eve), [2, 0]) 7→ v2

(travel(eve), [0, 2]) 7→ v3, (travel(eve), [1, 1]) 7→ v4, (travel(eve), [2, 0]) 7→ v5.

The result has a “group” for eve and a group for alice and bob. With larger domains,
the result has two groups as well. Assume 100 constants for X and the observations
{Sick(xi) = true}10

i=1 stored in an evidence parfactor φe(Sick(X ′))|Ce
. Constraint Ce

holds thatX ′ is restricted to the constants x1, . . . , x10 as in Example 3.1.6. The submodel
has the same structure as before but with Travel(X) appearing as Travel(X ′)|Ce

and
Travel(X)|C , where C restricts X to the remaining constants x11, . . . , x100. The result of
eliminating all non-query terms is a parfactor φ(#X′ [Travel(X

′)],#X [Travel(X)])|CeonC ,
which explicitly shows the two groups emerging from evidence.

In the last case, evidence PRVs and constants have no connection to PRVs or con-
stants in a query. The effect of evidence is hidden in calculations. Consider the query
P (Nat(D)|sick(eve)) with evidence sick(eve) and query term Nat(D).

Example 9.2.6 (Hidden evidence). Given a query term Nat(D), LVE uses parcluster
C1 to compute a result parfactor with argument #D[Nat(D)]. The evidence is already
hidden from C1 as Sick(eve) does not appear in C1 and the separator with neighbour C2

does not contain logvar X. Thus, the evidence does not influence the result’s structure,
but possibly the potentials only, and thus, the effect of sick(eve) is hidden.

The effects of evidence can also be observed in messages: Evidence PRVs may disappear
or groups may appear because of evidence covered by a separator. A result allows for
some immediate interpretation regarding groups in a model and, e.g., their most likely
assignment. Next, we argue why LVE for parameterised queries is sound and we analyse
the consequences that parameterised queries have for completeness and complexity.

9.3 Theoretical Discussion

This discussion considers correctness and complexity aspects of LVE and LJT for pa-
rameterised queries. It builds on the results of the theoretical analysis in Section 8.2.
First, we show that LVE as extended in this chapter is sound, which makes LJT using
the extended LVE version sound. Then, we discuss completeness w.r.t. parameterised
queries, characterising a new set of liftable queries as well as grounding queries. Last, we
consider the effect of parameterised queries on runtime complexity.

Theorem 9.3.1. LVE is sound given a query with parameterised query terms Q|C , i.e.,
computes a result equivalent to a query with query terms gr(Q|C).
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Proof. We assume that the original LVE in the form of the operator suite defined by
Taghipour et al. (2013c) is sound. A parameterised query Q|C consists of PRVs Q and
a constraint C. It correctly represents a query over interchangeable objects since con-
straints allow for representing instances of a PRV. With the same syntactical constructs
for query terms as for models, LVE is able to interpret Q|C and eliminate all randvars
not occurring in Q|C . The remaining steps until normalisation consist of applying sound
LVE operators. Thus, the results of shattering, non-query term elimination, and joint
distribution induction are correct. The final result parfactor over Q|C consists of CRVs
for parameterised query terms or grounded query terms. As Mul(h) correctly represents
the number of assignments of a histogram h (Taghipour et al., 2013c), the normalisation
correctly incorporates multiple assignments of a histogram for its normalisation as defined
in Expression (9.1), leading to a correct joint probability distribution. Grounding out
the CRVs in the result leads to an answer equivalent to one computed for gr(Q|C).

Completeness If an algorithm is complete w.r.t. a class of models, a lifted algorithm
run is possible given any model from that class. A run is lifted if a runtime depends
polynomially on the domain sizes of the model logvars. LVE and LJT are complete for
two-logvar modelsM2lv and models of one-logvar PRVsMprv1 given the query class Q
of single ground query terms as well as the query class CQlift of query terms with at most
one constant of each logvar. The query class PCQ contains all parameterised conjunctive
queries. Though parameterised queries aim at making queries with interchangeable query
terms liftable, completeness results for PCQ are negative as a query may still induce
groundings by blocking a reasonable elimination order or by having a constraint that
causes groundings. The following theorem formulates the negative result.

Theorem 9.3.2. LVE and LJT are not complete for the query class PCQ of parame-
terised conjunctive query terms and all model classes that contain at least one logvar.

Proof by counterexample. Assume both algorithms are complete, i.e., have runtimes poly-
nomial in domain sizes for all possible models with at least one logvar. Consider param-
eterised conjunctive query P (Sick(X1)|C1

, T ravel(X2)|C2
), C1 = ((X1), {(alice), (eve)})

and C2 = ((X2), {(eve), (bob)}). LJT answers the query using parcluster C2 of the FO
jtree for Gex and passes Q = {Sick(X1), T ravel(X2)}|C1onC2

and G′ = G2∪m12∪m32 to
LVE. Shattering G′ on Q leads to splitting off bob and then alice in g2 and m32, which
grounds X, no longer permitting a lifted solution to the query. Therefore, LVE and LJT
are not complete for PCQ and models with at least one logvar.

The results of such grounding queries are still correct. Only, query PRVs may be
grounded in the result. The counterexample of the proof works with constraints to induce
a grounding. ForM2lv, there is a counterexample using logvars to induce a grounding.
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Example 9.3.1. Consider a model {φ(Q(X,Y ), R(X), S(Y ))} ∈ M2lv and a query term
{Q(X,Y )} ∈ PCQ. LVE needs to eliminate R(X) and S(Y ) but neither PRV contains
both logvars. Additionally, neither X nor Y are countable as they appear twice in the
arguments of φ. So, LVE groundsX or Y and thus, does not run in time polynomial in the
domain size of one of the two logvars. The reason lies in a precondition for lifted summing
out of a PRV A: A has to contain all logvars in a parfactor. If PRVs to eliminate contain
fewer logvars than a query PRV and no count conversion applies, LVE grounds a logvar.
The same applies to a conjunctive query with query terms {Q(X,Y ), R(X), S(Y )}. Here,
LVE grounds a logvar when inducing a joint distribution.

The example model allows for a lifted run given a liftable query Q(x1, y1) as LVE
eliminates Q(X,Y ) after splitting off Q(x1, y1) before eliminating R(X) and S(Y ). Note
that both R(X) and S(Y ) as a query term allow for a lifted run since LVE eliminates
Q(X,Y ) first, then counts the logvar of the PRV in the query, and lastly, eliminates the
remaining non-query PRV. In fact, positive completeness results are possible if restricting
query terms to containing one logvar per PRV and one set of constants per logvar. The
example uses two logvars in one PRV and the counterexample from the proof uses two
sets of constants for logvar X ∈ lv(G′).

Definition 9.3.1. Query class PCQlift refers to query terms with one logvar per PRV
and one set of constants per logvar.

Theorem 9.3.3. LVE and LJT are complete for the query class PCQlift and the model
classesM2lv andMprv1.

Proof. To show that LVE is complete for the query class PCQlift, we need to show that
LVE is domain-lifted for all queries in PCQlift.
When LVE preemptively shatters a model on a parameterised query, each query term

appearing in a parfactor leads to at most one split, without any groundings. After shat-
tering, LVE eliminates all non-query terms with two logvars first since PCQlift does
not contain query terms with two logvars. Eliminating two-logvar PRVs either uses
standard lifted summing out or involves an operator called group inversion, defined by
Taghipour et al. (2013d), which allows for eliminating two-logvar PRVs from a parfactor
with an inequality constraint such as φ(Friends(X,Y ), F riends(Y,X))|C , where C en-
codes X 6= Y . After eliminating all two-logvar PRVs, the model contains only one-logvar
PRVs and ground randvars. Such a model falls intoMprv1.
The remainder of this proof is based on the proof of the completeness results of LVE

forMprv1 by Taghipour (2013). One is able to count all logvars in a model consisting of
only one-logvar PRVs given the generalised count conversions and elimination procedures
by Taghipour and Davis (2012). We already mentioned the generalisations in Section 5.2.
For full definitions and examples, refer to the work by Taghipour and Davis (2012). To
briefly summarise, the generalisations allow for

105



Chapter 9 Lifting for Queries

• counting logvars that appear in more than one PRV,
e.g., logvars X and Y in parfactor φ(Q(X), R(X), S(Y ), T (Y )),
resulting in a parfactor φ(#X [Q(X), R(X)], S(Y ), T (Y )) after counting X,

• merging CRVs with counted logvars of the same domain into one CRV,
e.g., the CRVs in parfactor φ(#X [Q(X), R(X)],#Y [Q(Y ), R(Y )]), D(X) = D(Y ),
yielding a parfactor φ(#X [Q(X), R(X)]) after merging, and

• merge-counting a PRV and a CRV with an inequality constraint into one CRV,
e.g., CRV #X [Q(X)] and PRV R(Y ), X 6= Y , in a parfactor φ(#X [Q(X)], R(Y )),
leading to a parfactor φ(#X [Q(X), R(X)]).

For a CRV over multiple PRVs, an operator exist to eliminate individual PRVs, meaning,
it is possible to eliminate PRV Q(X) or R(X) from a CRV #X [Q(X), R(X)]. The gen-
eralised count conversions preserve original PRVs within a CRV, apart from a renaming
of a logvar, allowing for identifying them as a query term.
Using generalised counting, LVE counts all logvars, multiplies the resulting parfactors

into one, and merges CRVs with counted logvars of the same domain. The result is one
parfactor with CRVs as arguments and counted logvars of disjoint domains,

φ(#X1 [R1,1(X1), . . . , R1,k1(X1)], . . . ,#Xm [Rm,1(Xm), . . . , R1,km(Xm)],A0)

where D(Xi) 6= D(Xi) and A0 contains ground randvars. Since all logvars are counted,
LVE can eliminate CRVs, PRVs within CRVs, and ground randvars alike. Elimination re-
sults in a parfactor φ, which, containing only CRVs for the query terms, represents a joint
distribution. The remaining task is normalisation, which only manipulates potentials.
As LJT performs LVE for query answering, the result extends to LJT as well.

The proof shows that once a model contains PRVs with at most one logvar, LVE is
domain-lifted given any query regarding the remaining PRVs. We can use the results so
far to identify grounding queries as well as liftable queries for any model.
A query in itself can cause a problem if query terms share some but not all logvars and

co-occur in a parfactor before their logvars are counted, inhibiting a count conversion.

Proposition 9.3.1. If ∃Q1, Q2 ∈ Q and ∃g ∈ G with Q1, Q2 ∈ rv(g) s.t.

(lv(Q1) ∩ lv(Q2) 6= ∅) ∧ ((lv(Q1) ∩ lv(Q2)) ⊂ lv(Q1) ∨ (lv(Q1) ∩ lv(Q2)) ⊂ lv(Q2)) ,
(9.3)

then Q1 and Q2 cause groundings during inducing a joint distribution.

Expression (9.3) formalises that query terms such as {Q(X,Y ), R(X)} cause ground-
ings in combination with a parfactor φ(Q(X,Y ), R(X), S(X)). With Q1 = Q(X,Y ),
lv(Q1) = {X,Y }, and Q2 = R(X), lv(Q2) = {X}, both conjuncts are true as {X} ∩
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{X,Y } = {X} 6= ∅ and {X} ⊂ {X,Y }. Given Q1 = R(X), LVE would count logvar Y ,
eliminate S(X), and then start inducing a joint distribution in φ(#Y [Q(X,Y )], R(X)).
Logvar X appears twice, preventing a classical count conversion. Generalised counting is
also not possible as the generalised version requires that no other counted logvar exists
in the PRVs that are converted into a combined CRV. Here, Y is counted, inhibiting a
count conversion and thus leading to a grounding of X. The same holds with Q2 = S(X).
Therefore, a combination of Q(X,Y ) with any of the other two PRVs causes groundings.
For a grounding query within a model, groundings occur if a query term occurs with

a specific constellation of logvars in the model as seen in Example 9.3.1.

Proposition 9.3.2. If ∃Q ∈ Q,∃g ∈ G,Q ∈ rv(g),∃A,B ∈ rv(g),XA := lv(A) ∩
lv(Q),XB := lv(B) ∩ lv(Q) s.t. XA 6= ∅ ∧ XB 6= ∅ ∧ XA 6⊆ XB ∧ XB 6⊆ XA, then Q
causes groundings.

Groundings occur if a query term Q has more logvars than two non-query PRVs A,B
that co-occur with Q and contain different logvars from Q. To eliminate A (B), a count
conversion of the query logvars not in A (B) is necessary. But, B (A) contains at least
one of those query logvars, meaning the double occurrence (in Q and B/A) prohibits
the count conversion. For φ(Q(X,Y ), R(X), S(Y )) and {Q(X,Y )}, the condition in
Proposition 9.3.2 is true as {X} is not subset of {Y } and vice versa.
If either condition in Propositions 9.3.1 and 9.3.2 is true for an input model and a query,

we know the query induces groundings before LVE has even started. If the condition is
not true for an input model, it may become true for intermediate factors during LVE,
i.e., the query still induces groundings. However, the groundings occur later than during
shattering on a grounded query, salvaging as many lifted computations as possible.
Inverting and generalising Proposition 9.3.1 characterises liftable queries. (Groundings

may still occur due to the model itself.)

Proposition 9.3.3. If ∀Q1, Q2 ∈ Q with L = lv(Q1)∩ lv(Q2) and ∀g ∈ G with Q1, Q2 ∈
rv(g) holds (L = ∅) ∨ (lv(Q1) = lv(Q2)), then Q does not cause groundings in itself.

The logvars of query terms need to be either identical or disjoint. Given a parfac-
tor φ(Q(X,Y ), R(X), S(Y )), the query terms R(X), S(Y ) with disjoint logvars do not
cause groundings, allowing LVE to eliminate Q(X,Y ) and count both logvars. Given a
parfactor φ(Q(X,Y ), R(X), S(X)), containing S(X) instead of S(Y ), the query terms
R(X), S(X) do not cause groundings, either. One only has to bear in mind that even
though queries over Q(X,Y ), R(X,Y ) conform with the given condition, the existing
count conversions do not handle counting multiple logvars at once.
The condition in Proposition 9.3.2 inverted postulates for all query terms Q ∈ Q that

for all PRVs A,B co-occurring with Q, the logvars from Q in A,B need to be subsets of
each other to not cause groundings in a model or intermediate factors. For the following
proposition, we consider all PRVs in a model and not just PRVs co-occurring with a
query term due to possible co-occurrences in an intermediate factor.
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Proposition 9.3.4. If ∀Q ∈ Q, ∀A,B ∈ rv(G),XA := lv(A)∩lv(Q),XB := lv(B)∩lv(Q)
holds XA ⊆ XB ∨XB ⊆ XA, then Q does not cause groundings in G.

The condition in Proposition 9.3.4 is true for query terms with no logvar as XA =
XB = ∅. Query terms with one logvar also fulfil the condition as XA and XB are either
empty or contain the one query logvar, which means either both sets are equal or an
empty set is a subset of the other set. The following is a more elaborate example.

Example 9.3.2. Consider a model with a single parfactor φ(Q(X), R(X,Y ), S(X,Y, Z))
and a query term {S(X,Y, Z)}. PRVs A = Q(X) and B = R(X,Y ) share logvars
with Q = S(X,Y, Z), with XA = {X} and XB = {X,Y }. As {X} ⊂ {X,Y }, the
condition in Proposition 9.3.4 holds. Assume that Z fulfils the preconditions of a count
conversion w.r.t. {X,Y }. LVE counts Z, converting S(X,Y, Z) into #Z [S(X,Y, Z)], to
first eliminate R(X,Y ) and then Q(X) in φ′(Q(X), R(X,Y ),#Z [S(X,Y, Z)]), yielding
φ′′(#Z [S(X,Y, Z)]). LVE countsX and Y and normalises the result, providing a compact
answer without groundings. The example also works with additional logvars in A and
B, e.g., φ̂(Q(X,W ), R(X,Y,W ), S(X,Y, Z)).

Proposition 9.3.4 covers all PRVs in G. But, one does not need to be as exhaustive.
One only needs to consider the PRVs in the submodel for a query. With singleton
queries, Proposition 9.3.4 regards a single parcluster Ci instead of rv(G). Parclusters
and separators may also help to assess possible groundings. Given a query over terms
Q(X,Y ) and R(X) and both query terms appearing in different parclusters, such a query
might be liftable as a count conversion may be applicable for X and Y in one parcluster
while X is countable in the other, which may allow LVE to avoid grounding.
As a side effect, a lifted run yields a compact result representation through CRVs. A

blowup of the result occurs whenever LVE has to ground a logvar. Given a lifted run, no
grounding is necessary while eliminating non-query terms, and the result is compactly
represented through CRVs, which have a size polynomial in the domain size of the logvars
in the query. We formulate the observation as a secondary result:

Corollary 9.3.1. The result of a parameterised query with a lifted solution has a size
polynomial in the domain sizes of the query logvars.

After characterising grounding as well as liftable queries, we turn to discuss the effects
of parameterised queries on complexity.

Complexity For single ground query terms, which requires a single parcluster for query
answering with LJT and a bounded number of splits for LVE, the runtime complexity
of LJT given a model G with an FO jtree J is O(log2(n) · rwg · nw#·r#

# ) with (wg, w#)
being the lifted width of J , n the largest domain size in lv(J), r the largest range size
among the PRVs in J , n# the largest domain size among the counted logvars, and r#
the largest range size among the PRVs in the CRVs. In Section 8.2, we have shown
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that the combined complexity of answering a conjunctive query from CQlift with LJT is
O(n′J · log2(n) · rwg · nw#·r#

# ) where n′J is the number of parclusters in the correspond-
ing subtree of the submodel to answer a particular query. With parameterised queries,
queries are conjunctions of parameterised query terms. Regarding conjunctions, the
result from Section 8.2 still holds since the number of parclusters combined into a sub-
model influences the complexity of answering a single query as before. When answering a
query, LVE for parameterised queries eliminates non-query terms followed by inducing a
joint distribution, which means the application of count conversions as we only consider
liftable queries. A lifted summing out and a count conversion have the same complexity
(Taghipour, 2013), i.e., O(log2(n) · rwg ·nw#·r#

# ). A PRV appearing in a query leads LVE
to not eliminate such a term but to count-convert it, which exchanges one operation
with another of the same complexity. Thus, the overall complexity as shown for liftable
conjunctive queries still holds.
Comparing a conjunctive query over k interchangeable query terms to an equiva-

lent parameterised query, one can see the positive effect of parameterised queries. The
complexity of QA for the ground query is exponential in k as LVE grounds a logvar
with k constants whereas the complexity of QA for the parameterised query lies in
O(log2(n) · rwg · nw#·r#

# ) as n′J = 1, a fact which can transfer into a runtime being
multiple orders of magnitude smaller. To illustrate the effect, consider the query term
{Sick(X)|>} as well as its grounding {Sick(alice), Sick(eve), Sick(bob)} in Gex.

Example 9.3.3. In Gex, k = n = 3, n# = 2, and r# = 2. To answer the given query,
LJT chooses parcluster C3, which means n′J = 1, wg = 3, and w# = 0. For the ground
version, we have a worst-case scenario of

2(k−1)+wg = 2(3−1)+3,

which shows that k outweighs wg for larger domains. The parameterised version bypasses
k as an exponent, leading to a worst-case scenario of

log2(n) · 2wg = log2 3 · 23.

The actual largest size of a parfactor during LVE is 16 for the ground version and 8 for
the parameterised version.

Intermezzo: Queries in PDBs Queries like {Q(X,Y )} or {Q(X,Y ), R(X), S(Y )} on
a parfactor φ(Q(X,Y ), R(X), S(Y )) cause LVE to ground. The latter query matches a
non-hierarchical PDB query. Dalvi and Suciu (2012) show that such “forbidden queries”
over PDBs are #P-hard. Overlapping logvars in a parameterised query or its affected
parfactors make a query in our context hard in a similar vein.
PDBs enable us to answer queries such as Treat(eve,m) with m as a free vari-

able, using a set of rules and a PDB as a source for basic facts, creating facts like
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Treat(eve, injection) and Treat(eve, tablet) with inferred probabilities. Rewriting rules
into a parameterised model and entering facts as evidence, we use parameterised queries
to answer corresponding queries, e.g., {Treat(eve,M)}. If facts lead to different proba-
bilities for some m, the result mirrors the difference, distinguishing Treat(eve, injection)
and Treat(eve, tablet). While the PDB scenario infers facts based on the entries in the
PDB, parameterised models include domain information. Assuming |D(M)| = 5 and
PDB facts about injection and tablet, all five medicines influence the result.
To completely model basic facts in a PDB that have a probability < 1.0 as evidence, we

need a straightforward extension of evidence parfactors, which usually assign a probabil-
ity of 1 to an observed value and 0 to the remaining values, by assigning some probability
distribution. Absorbing evidence would change potentials according to the given distri-
bution. Gehrke et al. (2019d) provides a formal definition. Extending evidence with a
random distribution is a reasonable step for other scenarios as well, considering noisy
channels, measurement errors, or other influences that make an observation less reliable.
From uncertain evidence, we go back to the topic of this chapter and take a look at

an empirical evaluation of parameterised queries, including certain evidence.

9.4 Empirical Evaluation

We pick up the previous evaluation regarding grounding queries and show how parame-
terising queries allows for speeding up runtimes. Additionally, we look at the influence
of evidence. We have extended the LVE implementation by Taghipour to answer pa-
rameterised queries and adapted the LJT implementation to incorporate the extended
LVE implementation. The FOKC implementation by Van den Broeck does not allow
for parameterised queries. Therefore, FOKC is not part of this evaluation. The input
model is identical to the one used in the previous evaluation, which has an FO jtree with
nJ = 10 parclusters and a lifted width of (3, 1).

Parameterised Query The evaluation in Section 8.3 regarding grounding conjunctive
queries concerns runtime behaviour of a query Q =

⋃
x∈gr(X){R(x)} for some PRV R(X)

in the input model. This part of the evaluation introduces R(X) as the parameterised
equivalent to the grounding query. The parameterised query promises a runtime polyno-
mial in the domain size in contrast to the runtime exponential in the domain size of the
grounding query. We also compare the parameterised query against a singleton ground
query R(x), x ∈ gr(X) to see how much more effort a parameterised query really brings.
Therefore, we look at runtimes w.r.t. increasing domain sizes, comparing runtimes of the
different query types and shattering modes.
Figure 9.3 shows runtimes in milliseconds [ms] on a log scale for QA with LJT (hollow

symbols) and LVE (filled symbols) for the grounding query with preemptive shatter-
ing (squares, “ground”), the grounding query with on-demand shattering (circles, “on-
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Figure 9.3: Runtimes [ms] for query answering for LJT and LVE as well as compile time
for LJT w.r.t. domain size n ranging from 2 to 1000; subtree size n′J = 1

dem.”), the singleton query (triangles, “single”), and the parameterised query (diamonds,
“param.”). The x-axis plots the increasing domain size for model logvars, ranging from 2
to 1000, on a log scale. As in Fig. 8.3, the grounding queries lead LVE and LJT to have
a sharp increase in runtime with rising domain sizes, while the singleton query exhibits a
polynomial increase in runtimes. The parameterised query displays a similar behaviour,
with runtimes being very close to the runtimes of the singleton query.
As expected, LJT runtimes are lower than LVE runtimes with compile time of LJT

(black crosses) being slightly longer than for answering a single query with LVE. Runtimes
for the parameterised query are at times lower than runtimes for the singleton query,
even though the result of the parameterised query is larger. The reason lies in the
parameterised query having a > constraint, which means that LVE does not need to split
its input model on the query term. With a constraint that restricts a logvar to a subset
of constants, the parameterised query requires a split as well. Overall, a parameterised
singleton query allows for runtimes similar to ground singleton query.

Evidence As previously discussed, evidence can have an influence on the result rep-
resentation. There are three possible cases: (i) Instances of evidence PRVs appear in
query terms. (ii) Constants of evidence PRVs appear in query terms, referring to differ-
ent PRVs. (iii) Neither instances nor constants of evidence PRVs appear in query terms.
Based on these cases, we set up an evaluation. We consider evidence for a one-logvar
PRV R(X) that appears in one parcluster together with another PRV S(X) with the
same logvar X, varying the coverage of evidence from 0% to 100% for the instances of
R(X). We then pose three queries, one for R(X), one for S(X), and one for some PRV
Q(Y ) in another parcluster without X in its logvars, referred to as the “covered” query,
the “groups” query, and the “hidden” query respectively.
Figure 9.4a depicts runtimes in milliseconds [ms] on a log scale for QA with LJT (hol-

low symbols) and LVE (filled symbols), both answering the “covered” query (squares),
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(a) Runtimes [ms] for query answering for LJT
and LVE plus compile time for LJT; n = 1000

10−2

10−1

100

101

0 20 40 60 80 100

 n=10
 n=100
 n=1000

α β

(b) α and β values for LJT compared to LVE
using “groups” runtimes (worst query)

Figure 9.4: Interplay of parameterised queries and evidence with evidence coverage rang-
ing from 0% to 100% for a 1-logvar PRV

the “groups” query (triangles), and the “hidden” query (diamonds) for a domain size of
n = 1000. The x-axis shows the increasing evidence coverage. LVE runtimes for all three
queries mirror each other over the different evidence sets. After introducing evidence,
runtimes increase as evidence needs to be handled. With more evidence, runtimes go
down again and reach a low with 100% evidence coverage as evidence completely elim-
inates one PRV. The runtimes are within the same order of magnitude. The “groups”
query leads to largest runtimes, while in most cases the “hidden” query leads to the short-
est runtimes. For the corner cases, the “covered” query leads to slightly faster runtimes.
For all three queries, LJT exhibits shorter runtimes than LVE as expected. The “cov-

ered” query and the “groups” query also show an increase and decrease in runtime as
LVE. The LJT runtimes for the “groups” query mirror the LVE behaviour the closest.
For the “covered” query with 100% evidence, LJT exhibits a sharp decrease in runtime
as the submodel becomes very small after evidence absorption. The “hidden” query leads
to slightly different runtime behaviour of LJT. The reason lies in evidence not only being
hidden from the query but also the used parcluster, i.e., the local model and messages
do not change structurally given different evidence coverage; only concrete potentials
change. Thus, evidence coverage does not particularly influence runtimes for this query.
Figure 9.4b depicts α and β values for LJT compared to LVE for domain sizes n ∈
{10, 100, 1000} using the runtimes of the “groups” query, which has higher α values than
the other two queries. For all three domain sizes, α values are below 1, meaning LJT is
able to trade off its static overhead over multiple queries. β values show that LJT needs
one to three queries to actually trade off its overhead. With n = 1000, LJT achieves its
tradeoff the fastest, where compiling a helper structure pays off with the first query.
In general, LJT and LVE for parameterised queries allow for efficient answering of

queries with interchangeable query terms, with LJT being able to leverage its cluster
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representation for faster query answering. Yet, evidence is easily manageable by both
algorithms in combination with parameterised queries. LJT even benefits from its helper
structure for certain queries where evidence is hidden from a parcluster and thus does
not lead to larger runtimes.

9.5 Interim Conclusion: Parameterised Queries

In this chapter, we apply lifting to queries, parameterising query terms as we have param-
eterised randvars and consequently, factors. Parameterised queries allow for a compact
representation of queries with interchangeable query terms by introducing logvars to
queries. LVE for parameterised queries provides a lifted run if possible. It shatters a
model on a parameterised query, avoiding the initial grounding w.r.t. constants appearing
in a query. Then, it eliminates non-query terms, which allows for a form of on-demand
shattering if groundings are unavoidable. After eliminating all non-query terms, LVE
induces a joint distribution. Doing so, LVE uses count conversions to provide a compact
result representation through CRVs. Normalisation incorporates CRVs in a result.

As mentioned during the evaluation, parameterised queries do not occur in this form
in the implementation of FOKC. An interesting path regarding future work would be
to look at other lifted inference algorithms to see whether one can implement parame-
terised queries in them. Additionally, one can further investigate the connection between
parameterised queries and forbidden queries as well as the query classes Van den Broeck
(2013) investigates w.r.t. completeness of FOKC.

In conclusion, we have introduced parameterised queries, which provide an efficient
means to answering queries about distributions, e.g., over different fractions of people
being sick given an epidemic. This chapter holds Contribution (4b), lifted QA by lifting
of queries, and part of Contribution (4c), combined completeness and complexity results
for complex queries. In our quest for an extended query language, we now leave queries
for probability distributions behind and turn to queries for most probable assignments.
Speaking in the terms of our running example, we are interested in the most likely subset
of sick people and their treatments.
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Most Probable Assignments

So far, queries concern marginal and conditional probability distributions over sets of
randvars, parameterised or instantiated. We call these types of queries probability
queries. Another important inference task is abduction, in graphical models often for-
malised as computing the most probable assignment to some randvars in a model without
evidence. Asking for the most probable assignment to all randvars without evidence is
known as an MPE query (total abduction). Within the VE formalisation, switching
from a probability query to an MPE query requires replacing the sum-out operations
with arg max operations. The generalisation is a maximum a posteriori, MAP, query for
the most probable assignment to a subset of model randvars (partial abduction). An
MAP query requires summing out those randvars not in the query before maxing out the
randvars in the query. With sum-out and max-out operations not being commutative,
MAP queries can impose elimination orders that fast lead to prohibitively large interme-
diate results (Dechter, 1999). We call MPE and MAP queries assignment queries.1

Pearl (1988) introduces the idea of MPEs and a propagation algorithm for singly-
connected networks. Dawid (1992) presents an algorithm to compute an MPE on jtrees.
Dechter (1999) formalises computing MPEs as a form of VE, replacing sum-out with
max-out operations to eliminate randvars. While these methods are based on the idea of
VE, other methods for solving an MPE problem have been developed based on different
formalisms. Park (2002) reduces the MPE task to the weighted MAX-SAT problem.
Analogously to VE, Darwiche (2009) replaces sum operations with max operations in
KC to compute an MPE query with a circuit. Kimmig et al. (2017) extend WMC to
algebraic model counting and use KC to solve an algebraic model counting problem for an
MPE query. ProbLog (De Raedt et al., 2007), initially focused on answering probability
queries by reducing the task to WMC, handles MPE tasks by reducing the problem
to weighted MAX-SAT (Fierens et al., 2015). Kimmig et al. (2011) extend ProbLog,
introducing algebraic ProbLog for semi-rings, and define how to compute an MPE with
it. Shterionov et al. (2015) extend ProbLog with a new encoding for solving the MPE
task. Bach et al. (2017) present probabilistic soft logic to deal with continuous domains
and MPE. A related problem is finding a most probable database or most probable
hypotheses given a PDB. Ceylan et al. (2017) show the complexity of computing most

1In the literature, MPE is also known as MAP and MAP is known as partial/marginal MAP.
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probable databases and hypotheses, jumping off the work by Gribkoff et al. (2014) on
most probable databases. Lüdtke et al. (2018) study most probable state sequences based
on sampling using the lifting idea for a sparse encoding.
While most of these frameworks allow for modelling relations, objects, and uncertainty,

they do not focus on lifted inference. For solving MPE problems, the first lifted solution
comes from de Salvo Braz et al. (2006), who adapt an earlier version of LVE, which does
not lift all calculations that are possible to lift with generalised counting. For solving
an MPE query, Apsel and Brafman (2012a) simplify a model by eliminating logvars
under a uniform assignment condition, which we could incorporate as a preprocessing
step into the upcoming inference algorithm. Sarkhel et al. (2014) define the MPE task
for Markov logic networks that only contain formulas with atoms that do not share
logvars, highly restricting the type of models one can express. Sharma et al. (2018)
focus on MAP queries, introducing a new lifting rule, which uses specific occurrences of
logvars to simplify a model. Apsel et al. (2012) and Mladenov et al. (2014) use lifting
for linear programs to find an approximate solution for an MPE task. None of the above
concentrate on providing a complete algorithm for solving the MPE problem exactly for
probabilistic relational models in the light of the latest advances in LVE, which means
that so far there is no lifted algorithm that is complete for the same models as LVE.
Therefore, we use the LVE operator suite by Taghipour et al. (2013c) to define an

MPE-LVE algorithm for solving MPE problems, transferring the ideas of Dawid and
Dechter to the lifting scenario and thus, fully leveraging relational aspects of a model.
We first presented the LVE operators redefined for MPE in the following paper:

Tanya Braun and Ralf Möller. Lifted Most Probable Explanation. In Proceed-
ings of the International Conference on Conceptual Structures, pages 39–54.
Springer, 2018

This chapter also includes the generalised counting operators (Taghipour and Davis,
2012) redefined for MPE as well as algorithms combining LVE, LJT, and MPE-LVE for
answering MAP queries. To the best of our knowledge, the chapter provides the first
thorough theoretical analysis of MPE and MAP in the context of lifted inference.
In this last chapter of Part II, we present lifted algorithms for solving MPE and MAP

problems based on the LVE operator suite, covering Contributions (5a) and (5b). We
first present MPE versions of LVE and LJT, including redefined LVE operators. Then,
we consider MAP queries, which allow LJT to leverage its strength regarding multiple
queries. Last, we introduce an algorithm that answers a set of queries of varying type,
fusing all algorithms that have occurred up to this point into one large algorithm. Next,
we dive into a theoretical analysis, which is Contribution (5c), for all algorithms presented
in this chapter. We end this chapter with an empirical evaluation.
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10.1 Lifted Algorithms for Most Probable Explanations

We adapt LVE and LJT for MPE queries by rewriting operators for MPE-LVE and by
introducing MPE-LVE into LJT and adapting message passing for MPE-LJT. But first,
we define preliminaries including MPE and MAP problems and extend the definition of
a parfactor for storing assignments next to potentials.

Preliminaries We define MPE and MAP problems as follows and extend the definition
of parfactors as a consequence of dealing with assignment queries.

Definition 10.1.1 (MPE/MAP query/problem). Let G be a model with a full joint
distribution PG, {Ej = ej}mj=1 a set of events (evidence), where Ej ∈ rv(G) are grounded
PRVs or propositional randvars, and V|C = rv(G) \ {Ej}mj=1 the set of randvars without
evidence in G. We denote a set of events by A = a. An MPE problem refers to the
problem of finding an assignment for V with the highest probability w.r.t. PG, i.e.,

MPEG = arg max
v

P ((V = v)|C |E = e). (10.1)

Given a set U|C′ ⊆ V|C , an MAP problem refers to the problem of finding an assignment
for U|C′ with the highest probability w.r.t. PG, i.e., given T|C′′ = V|C \U|C′ :

MAPG = arg max
u

P ((U = u)|C′ |E = e) = arg max
u

∑
t∈T|C′′

P ((U = u)|C′ , (T = t)|C′′ |E = e)

(10.2)

We refer to an MPE query by MPE(E = e) and to an MAP query by MAP(U|C′ |E = e).
If U|C′ = V|C′′ , i.e., T = ∅, then MAP(U|C′ |E = e) = MPE(E = e).

Example 10.1.1 (MPE and MAP queries). Consider Gex and evidence sick(eve). An
MPE query MPE(sick(eve)) asks for the most probable assignments to all randvars
in rv(Gex) \ {Sick(eve)}. Solving the MPE problem behind the MPE query requires
computing assignments for rv(Gex) \ {Sick(eve)} that lead to maximum potentials in
PGex given sick(eve). An MAP query MAP(Sick(X)|>|sick(eve)) asks for the most
probable assignment to {Sick(X)}|> \ {Sick(eve)}, which means {Sick(X)}|C , C =
((X), {(alice), (bob)}). Solving the MAP problem behind the MAP query requires elim-
inating rv(Gex) \ {Sick(eve)} \ {Sick(X)}|>, solving MPE(Sick(X)|C) in the result.

To define the new operators in MPE-LVE, we need formal definitions of a count func-
tion and of count normalisation.

Definition 10.1.2 (Count, count-normalised). Given a constraint C = (X, CX), for any
Y ⊆ X and Z ⊆ X \Y, the function countY|Z : CX → N is defined by

countY|Z(t) = |πY(CX ./Z πZ({t}))|.
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We define countY|Z(t) = 1 for Y = ∅. Y is called count-normalised w.r.t. Z in C iff
∃n ∈ N : ∀t ∈ CX : countY|Z(t) = n. We call such an n the conditional count of Y
given Z in C, denoted by ncountY|Z(C).

Example 10.1.2. Consider constraint C = ((X,M), {(eve, tablet), (alice, injection),
(alice, tablet), (bob, injection), (bob, tablet)}) from Example 3.2.3, which is the result
from shattering parfactor g3 on the query term Treat(eve, injection). With X =
{X,M}, Y = {M}, and Z = {X}, the count function calculates the following for
tuple (eve, tablet): First, it projects (eve, tablet) onto {X}, which leaves (eve). Then,
it joins the tuples from the second component of C with {(eve)} over {X}, yielding
{(eve, tablet)}, and projects the tuples onto {M}, which results in a set with one element,
namely (tablet). Last, it returns the cardinality of the set, here 1. For (alice, injection),
the inner projection yields {(alice)}, the join results in {(alice, injection), (alice, tablet)},
and the outer projection leads to {(injection), (tablet)}, yielding a cardinality of 2. The
same holds for the remaining tuples in C. Thus, there does not exist a unique n for all
tuples in C, that is, M is not count-normalised w.r.t. X in this case.
After shattering Gex on evidence sick(eve) as in Example 3.2.4, parfactor gr3 has a con-

straint C ′ = ((X,M), {(alice, injection), (alice, tablet), (bob, injection), (bob, tablet)}).
Here, each tuple leads to a count of 2 given X = {X,M}, Y = {M}, and Z = {X}
and thus, M is count-normalised w.r.t. X in C ′. The conditional count of M given X in
C ′ is 2 and has been used in Example 3.2.5 where LVE eliminates Treat(X,M).

The main difference between LVE and MPE-LVE is the change from lifted summing
out to lifted maxing out. Lifted maxing out picks a maximum potential for a representa-
tive and then stores the argument values that lead to this potential for all interchangeable
randvars. Later this section, we consider preconditions to ensure that randvars are in-
terchangeable for this operation.
In the propositional case, an input valuation leads to one particular assignment. The

same holds in the lifting case if all instances of a logvar lead to one particular, i.e.,
uniform, assignment. Then, a factor simply has to store this uniform assignment value.
But, with CRVs and count conversions, an input valuation may include a histogram,
which may stand for different input valuations, e.g., (true, [2, 1]) stands for two times
(true, true) and one time (true, false), which can map to different arg max assignments,
e.g., true and false. Thus, an input valuation may lead to multiple assignments. As
the valuations behind [2, 1] appear simultaneously, the arg max assignments also appear
simultaneously, which one can record in another histogram, [2, 1], storing the assignment
information in a compact way. Such an encoding also has the advantage that we do not
need to store individual mapping rules for various mappings behind a histogram.
When computing an MPE solution, the algorithm has to store not only assignments

but has to continue to store potentials, even though the ultimate output is a string of
assignments. To this end, we extend the notion of a parfactor to map arguments to
potentials as well as range values for maxed out PRVs, which are stored in histograms.
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Definition 10.1.3 (Parfactor). Assume a sequence of maxed out PRVs B = (B1, . . . , Bl)
with lv(B) = Y, in which each PRV B ∈ B has a range of possible histograms. Let
A = (A1, . . . , Ak) be a sequence of P(C)RVs with lv(A) ⊆ X and C = (X ◦ Y, CX◦Y) be
a constraint on X and Y. Let πX(C) denote the projection of the second component of
C onto X. A parfactor g is given by ∀x ∈ πX(C) : φ(A)B|C , where φ is a function

φ : ×ki=1R(Ai) 7→ (R+,×lj=1R(Bj))

which maps a particular input a ∈ ×ki=1R(Ai) to a potential p ∈ R+ and a sequence of
histograms (h1, . . . , hl), where hj ∈ R(Bj) is a histogram. We refer to the potential by
φP (potential) and to the sequence by φA (assignment). φAB refers to the assignment of
B in φA. For short, we write φ(A)B|C . We omit |C if C = > and B if B = ().

The sequence of maxed out PRVs does not influence the terms rv(g), lv(g), and gr(g).
They are still based on the logvars X, arguments A, and constraint C of g. The his-
tograms of maxed out PRVs depend on the logvars maxed out along with PRVs as well as
count conversions applied. A histogram explicitly encodes how many instances a maxed
out PRV stands for in relation to the remaining logvars. Let us look at the following
example to further clarify the new parfactor definition and the use of histograms.

Example 10.1.3. Consider the PRVs Epid, Sick(X), and Treat(X,M) and constraint
C ′ = ((X,M), {(alice,injection), (alice,tablet), (bob,injection), (bob,tablet)}) as given in
the previous example. For a parfactor φ(Epid, Sick(X))B|C′ with B = (Treat(X,M)),
Table 10.1a depicts possible input-output pairs of φ. Each valuation of Epid and Sick(X)
maps to a tuple (φP , φA) of a potential φP , here numbers between 1 and 16, as well as a
sequence of histograms φA. In the histograms, the first position refers to the number of
instances of Treat(X,M) with the assignment true, the second to the number of instances
with the assignment false. The maxed out PRV Treat(X,M) has an additional logvar,
M , compared to arguments Epid and Sick(X). In C ′, there exist two constants of M ,
namely, injection and tablet, for each constant of X, alice and bob. Therefore, the counts
in the histograms add up to 2. E.g., the valuation (false, false) maps to a potential of 4
and a histogram [2, 0], which means two instances of Treat(X,M) have the value true in
relation to each X constant in C ′. Even though the histograms in the example are peak-
shaped, i.e., have only one range value with a non-zero count, through count conversions,
other histogram shapes occur. At the end of an assignment calculation, each logvar will
be accounted for and thereby, the histograms explicitly encode how many instances of a
PRV have a specific value, e.g., as seen in Table 10.1b. At the beginning of an assignment
calculation, the set of histograms is empty, e.g., as shown in Table 10.1c.

Making assignments part of the output of parfactors allows for automatically dropping
assignments along with potentials that are not maximum. Additionally, histograms allow
for directly reading off how many instances take which value at the end. Next, we define
the new max-out operator to implement the maxing out operation in a given parfactor.
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Table 10.1: Parfactors and maxed out PRVs

(a) Parfactor with a maxed-out PRV

Epid Sick(X) φ(Epid, Sick(X))(Treat(X,M))

false false (4, ([0, 2]))
false true (9, ([2, 0]))
true false (1, ([2, 0]))
true true (16, ([2, 0]))

(b) Parfactor without arguments left

() φ()(Epid,Sick(X),T reat(X,M))

. (256, ([1, 0], [2, 0], [4, 0]))

(c) Parfactor without any maxed-out PRVs

Epid Sick(X) Treat(X,M) φ(Epid, Sick(X), T reat(X,M))

false false false (2, ())
false false true (1, ())
false true false (2, ())
false true true (3, ())
true false false (0, ())
true false true (1, ())
true true false (2, ())
true true true (4, ())

Elimination by Maxing Out Operator 1 defines lifted maxing out, which takes the role
of eliminating PRVs in MPE-LVE. The symbol ◦ denotes concatenating sequences. The
inputs are a parfactor g = φ(A)B|C and a PRV Ai to eliminate from g. The preconditions
of max-out are identical to sum-out, ensuring that (i) all occurrences of Ai are maxed
out, (ii) each instance of Ai occurs in exactly one separate ground factor, and (iii) there
is a unique exponent for exponentiation. Together, the conditions ensure that max-out
eliminates a set of instances where the ground calculations would be copies of each other.

The output of Operator 1 is a parfactor φ′(A′)B′|C . The new argument sequence A′ is
the old sequence A minus Ai. The sequence of maxed out PRVs B is extended by Ai.
Constraint C is unchanged, which is different compared to lifted summing out where the
operator projects the constraint onto the remaining logvars. The projection is reasonable
for lifted summing out as the instances of an eliminated logvar no longer hold relevant
information. But, since we are interested in assignments, the instances play a role for
the final result. Thus, we keep the constraint as is to keep track of all instances covered
by an assignment. The main part of Operator 1 is dedicated to determining the new
mappings for φ′. For a valuation a′ = (. . . , ai−1, ai+1, . . . ) of A′, φ′ maps a′ to a tuple of
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Operator 1 Lifted Maxing-out
Operator max-out
Inputs:
(1) g = ∀x ∈ πX(C) : φ(A)B|C , g ∈ G
(2) Ai ∈ A, to be maxed out from g
Preconditions:
(1) For all g′ ∈ G, g′ 6= g : rv(g′) ∩ {Ai|C} = ∅.
(2) Ai contains all the logvars X ∈ lv(A) for which πX(C) is not singleton.
(3) Xexcl = lv(Ai) \ lv(A\Ai) count-normalised w.r.t. Xcom = lv(Ai) ∩ lv(A\Ai) in

πX(C).
Output: ∀x ∈ πX\Xexcl(C) : φ′(A′)B′|C such that
(1) A′ = (A1, . . . , Ai−1) ◦ (Ai+1, . . . , An),
(2) B′ = (Ai) ◦ B, and
(3) for each valuation a′ = (. . . , ai−1, ai+1, . . . ) of A′,

φ′(a′) =

(
prmax, (r · hAi) ◦ ©

hB∈φA(...,ai−1,amax,ai+1,... )

rB · hB

)
,

• pmax = maxai∈R(Ai) φ
P (. . . , ai−1, ai, ai+1, . . . ),

• amax = arg maxai∈R(Ai) φ
P (. . . , ai−1, ai, ai+1, . . . ),

• r = ncountXexcl|Xcom(πX(C)),

• hAi =


amax if Ai (P)CRV,

{(ai, ni)}|R(Ai)|
i=1 , ni =

{
1 if ai = amax,

0 otherwise.
otherwise.

• rB = ncountXexcl∩lv(B)|Xcom(πX(C)).
Postcondition: MPEG\{g}∪{max-out(g,Ai)} = arg maxAi|C=ai PG

a potential and an extended and adapted sequence of assignments, i.e.,(
prmax, (r · hAi) ◦ ©

hB∈φA(...,ai−1,amax,ai+1,... )

rB · hB

)
.

The new potential pmax is the maximum potential among the potentials to which a′

together with an ai ∈ R(Ai) maps. The exponent r denotes the conditional count
of Xexcl given Xcom in C and accounts for multiple logvar instances eliminated w.r.t.
the instances represented by the remaining logvars. r is greater than 1 if maxing out
eliminates a logvar along with a PRV, i.e., |Xexcl| > 0. In the histogram hAi , the operator
stores the arg max assignment amax that leads to pmax. If Ai is a PCRV, amax already
is a histogram. Otherwise, Operator 1 forms a new histogram with tuples (amax, 1) and

121



Chapter 10 Most Probable Assignments

(ai, 0) for ai ∈ R(Ai), ai 6= amax. The histogram hAi is multiplied by r. If maxing out Ai
does not eliminate a logvar from g, i.e., |Xexcl| = 0 and r = 1, the histogram remains the
same. If maxing out Ai eliminates logvars from g, the operator materialises the number
of instances eliminated w.r.t. the instances represented by the remaining logvars, i.e.,
r, by multiplying hAi with r. In the same vain, if maxing out Ai eliminates a logvar
that appears in a maxed out PRV B with histograms hB, the operator needs to multiply
hB with a conditional count of Xexcl ∩ lv(B) given Xcom in C. Adapting the count
conversion operator to assignments demonstrates the necessity of histograms as well as
the multiplication with r to keep the histograms consistent.
The postcondition in Operator 1 reflects the max-out operation. Before moving on to

the other operators, let us have a look at an example, maxing out Treat(X,M) in Gex,
analogous to Example 3.2.1, which illustrates LVE summing out Treat(X,M) in Gex.

Example 10.1.4 (Lifted maxing out). Only g3 = φ3(Epid, Sick(X), T reat(X,M)) con-
tains Treat(X,M), which fulfils the first precondition. Treat(X,M) also contains all
logvars in g3, with Xexcl = {M} and Xcom = {X}. The constraint in g3 is >, i.e., each
combination of constants from D(X) and D(M) exist. For each constant of X, there ap-
pear |D(M)| = 2 constants of M , meaning M is count-normalised w.r.t. X with a count
of r = 2. Thus, all three preconditions are fulfilled. To form the output, MPE-LVE needs
a concrete mapping for g3. Assume a function specification as given in Table 10.1c. The
output parfactor φ′ has the arguments Epid and Sick(X) and a > constraint. For each
remaining valuation of Epid and Sick(X), MPE-LVE needs to store a tuple of a max
potential and the corresponding arg max assignment for Treat(X,M). Consider the val-
uation (false, false). MPE-LVE iterates over the range values of Treat(X,M), i.e.,
false and true, and picks the larger potential mapped to by (false, false) together with
(false) and (false, false) together with (true). Looking into Table 10.1c, the valuation
(false, false, false) leads to a potential of 2 and the valuation (false, false, true) leads
to a potential of 1. With (false, false, false) yielding the larger potential, pmax = 2 and
amax = false. MPE-LVE builds the new tuple by setting prmax as the first component
φP . For the second component φA, MPE-LVE has to build a histogram h for amax. With
Treat(X,M) being boolean, h has two tuples (true, n1) and (false, n2) where n1 = 0
and n2 = 1 as amax = false. To incorporate that maxing out Treat(X,M) eliminates
M , MPE-LVE multiplies h with r, leading to a histogram [0, 2] in shorthand notation. As
φA(false, false, false) is empty, no further histograms need to adapt to M being elimi-
nated. MPE-LVE repeats these steps for the other valuations (false, true), (true, false),
and (true, true), resulting in a parfactor as depicted in Table 10.1a.

Next, we adapt the other LVE operators to incorporate the reworked parfactors and
treat assignments appropriately.

LVE Operators for MPE The remaining LVE operators are absorb, multiply, count-
convert, split, expand, count-normalise, and ground-logvar. We need to ensure that each
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operator incorporates the stored assignments φA if necessary. The operator absorb han-
dles lifted absorption of evidence, which only happens at the beginning before any changes
occur due to maxing out instead of summing out. Thus, B = () and φA = () throughout
the application of absorb. The other LVE operators transform a part of a model to enable
lifted eliminations. Most of the changes occur in multiply and count-convert.
The operator multiply implements multiplying two parfactors, which may establish

the first precondition of max-out. The LVE operator assumes that the logvars in both
parfactors do not share names and that an alignment then renames logvars in one of
the parfactors to ensure that only those PRVs and logvars map that should map when
merging both constraints during multiplication. The definition of an alignment, which is
based on a substitution, follows.

Definition 10.1.4 (Alignment). An alignment θ of parfactors φ1(A1)|C1
and φ2(A2)|C2

is a one-to-one substitution {X1 → X2} with X1 ⊆ lv(A1) and X2 ⊆ lv(A2) s.t.

(πX1(C1))θ = πX2(C2).

Operator 2 shows how to multiply two parfactors. The inputs are two parfactors
φ1(A1)B1|C1

and φ2(A2)B2|C2
to multiply and an alignment θ that aligns a subset of logvars

Z1 from lv(A1) with a subset of logvars Z2 from lv(A2).

Operator 2 Lifted Multiplication
Operator multiply
Inputs:
(1) g1 = ∀x1 ∈ πX1(C1) : φ1(A1)B1|C1

, g1 ∈ G
(2) g2 = ∀x2 ∈ πX2(C2) : φ2(A2)B2|C2

, g2 ∈ G
(3) θ = {Z1 → Z2}, an alignment between g1 and g2

Preconditions:
(1) for i = 1, 2 : Yi = lv(Ai) \ Zi is count-normalised w.r.t. Zi in πXi(Ci)
(2) rv(B2) ∩ rv(B2) = ∅
Output: ∀x ∈ πX1θ∪X2(C) : φ(A)B|C such that
(1) A = σrv(A1θ)\rv(A2)(A1θ) ◦ A2,
(2) B = B1θ ◦ B2,
(3) C = C1θ onZ2 C2, and
(4) for each valuation a of A, with a1 = πA1θ(a) and a2 = πA2(a),

φ(a) =
(
φP1 (a1)

1
r2 · φP2 (a2)

1
r1 , φA1 (a1) ◦ φA2 (a2)

)
where ri = ncountYi|Zi

(πXi(Ci)).
Postcondition: G ≡ G \ {g1, g2} ∪ {multiply(g1, g2, θ)}
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The operator has two preconditions: (i) The logvars outside the alignment in each
parfactor are count-normalised w.r.t. the logvars in the alignment. (ii) The maxed out
PRVs do not intersect. The first condition also appears in lifted multiplication of LVE. It
ensures a unique conditional count for the exponents in the output. The second condition
is specific to MPE-LVE, ensuring that the parfactors do not share maxed out PRVs, which
is true for an algorithm run starting with empty assignment sequences. A maxed out
PRV occurs after applying the max-out operator to a PRV A. One of its preconditions
ensures that it can only max out A if A occurs only in a given parfactor. Thus, maxed
out PRVs from different parfactors are distinct. Otherwise, the parfactors would have
been multiplied before maxing out A.
The output of Operator 2 is a parfactor φ(A)B|C . The new argument sequence A merges

the old sequences A1 and A2, keeping only one version of shared PRVs. The new sequence
of maxed out PRVs B is a concatenation of B1θ and B2, which is enabled by the second
precondition. The new constraint is a join of C1θ and C2 with the common logvars Z2.
For a valuation a of A, φ maps a to a potential and a sequence of assignments, i.e.,(

φP1 (a1)
1
r2 · φP2 (a2)

1
r1 , φA1 (a1) ◦ φA2 (a2)

)
.

The assembly of the potential coincides with the LVE version of the operator. The new
input a is projected onto the original argument sequences to get the corresponding inputs
a1 and a2. The potentials that a1 and a2 each map to are scaled accordingly and then
multiplied. The scaling is necessary if parfactors represent a different number of ground
factors. See Taghipour et al. (2013c) for details and examples. The second precondition
allows for concatenating the assignments that a1 and a2 map to. The postcondition
records that applying Operator 2 with inputs g1, g2, and θ in G, which removes g1 and
g2 from G and adds the output parfactor to G, results in a model equivalent to G.
Operator 3, count-convert, implements counting a logvar X in a parfactor, which ex-

cludes X from the set of regular logvars and thus, may enable another PRV to be elim-
inated by max-out. The inputs are a parfactor g = φ(A)B|C and a logvar X in g. The
operator has four preconditions: (i) Only one input Ai ∈ A contains X. (ii) X is count-
normalised w.r.t. X\{X}. (iii) No inequality constraint exists between X and any other
counted logvar in g. (iv) Ai|C does not overlap with a PRV in any other parfactor in G.
The first three conditions are identical to count conversion in LVE. The forth condition
is new. When counting X, the operator combines histograms of maxed out PRVs, after
which it may no longer be possible to trace which valuations map to a particular assign-
ment. Thus, if, e.g., grounding a counted logvar becomes necessary, which uses the expand
operator, it may not be possible to reconstruct which instance leads to which assignment.
The same holds for splitting a CRV through the expand operator as a more general case.
The forth precondition ensures that the PRV that becomes the (P)CRV does not occur
in another part in the model and thus does not need to be split or grounded because
of the other occurrences. The operator multiply introduced above could establish this
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Operator 3 Count Conversion
Operator count-convert
Inputs:
(1) g = ∀x ∈ πX(C) : φ(A)B|C , g ∈ G
(2) X ∈ lv(A), to count in g
Preconditions:
(1) There is exactly one atom Ai ∈ A with X ∈ lv(Ai).
(2) X is count-normalised w.r.t. Z = lv(A) \ {X} in πX(C).
(3) For all counted logvars X# in g: πX,X#(C) = πX(πX(C))× πX#(πX(C)).
(4) For all g′ ∈ G, g′ 6= g : rv(Ai|C ∩ rv(g) = ∅.
Output: ∀x′ ∈ πX\{X}(C) : φ′(A′)B|C such that
(1) A′ = (A1, . . . , Ai−1) ◦A′i ◦ (Ai+1, . . . , An), A′i = #X [Ai], and
(2) for each valuation a′ to A′ with a′i = h,

φ′(. . . , ai−1, h, ai+1, . . . ) =

 ∏
ai∈R(Ai)

φP (. . . , ai−1, ai, ai+1, . . . )
h(ai),

©
B∈B

1

rB
·
∑

ai∈R(Ai)

h(ai) · φAB(. . . , ai−1, ai, ai+1, . . . )


• h = {(ai, ni)}mi=1, m = |R(Ai)|, ai ∈ R(Ai), ni ∈ N, and

∑
ai∈R(Ai)

h(ai) = r,
• r = ncountX|Z(πX(C)),

• rB =

{
1 if X ∈ lv(B)

r otherwise
Postcondition: G ≡ G \ {g} ∪ {count-convert(g,X)}

precondition for a PRV. Combining all occurrences of Ai in g does not limit MPE-LVE
because eliminating Ai requires all occurrences in one parfactor anyway. Doing so before
count conversion even prevents counting a logvar several times in different parfactors.
The output of Operator 3 is a parfactor φ′(A′)B|C where C and B are identical to the

input parfactor. For A′, the operator replaces Ai with a (P)CRV #X [Ai]. The range of
#X [Ai] is a set of histograms, each histogram h = {(ai, ni)}mi=1 fulfilling that

∑m
i=1 ni =

r = ncountX|Z(πX(C)), Z = lv(A) \ {X}. For a valuation a′ = (. . . , ai−1, h, ai+1, . . . )
of A′, φ maps a′ to a tuple of a potential and a sequence of assignments, i.e., ∏

ai∈R(Ai)

φP (. . . , ai−1, ai, ai+1, . . . )
h(ai), ©

B∈B

1

rB
·
∑

ai∈R(Ai)

h(ai) · φAB(. . . , ai−1, ai, ai+1, . . . )


where the calculation of the new potential is identical to count conversion in LVE. The
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operator multiplies all potentials that the different ai ∈ R(Ai) in (. . . , ai−1, ai, ai+1, . . . )
map to, raising each potential to the power of h(ai) = ni as ni reveals how many times
φ(. . . , ai−1, ai, ai+1, . . . ) occurs.
As a histogram such as [1, 1] combines instances with different range values, the original

φ may map to two different assignments. Therefore, the operator combines histograms
for the maxed out PRVs in B by summing over the range of Ai and adding corresponding
histograms for a maxed out PRV B. If X ∈ lv(B), B has been eliminated from g
at one point and as such contains all logvars that are not yet eliminated including X.
The operator makes the number of instances of X, of which there are r in relation to
the remaining logvars, explicit in B: It adds h(ai) times the histograms mapped to by
φ(. . . , ai−1, ai, ai+1, . . . ) for each ai. The sum over the range values combined with the
different h(ai) counts leads to r histograms being combined and materialises X in B.
If X 6∈ lv(B), the summation makes the counts inconsistent. As mentioned above, the
histograms show how many instances of a maxed out PRV B have a particular value
in relation to the remaining logvars. Adding the histograms duplicates the number of
instances of B by r, though B does not stand for r instances in relation to X. If
X 6∈ lv(B), then a parfactor has been multiplied into g that has B as a maxed out PRV
and the shared PRVs during multiplication did not include Ai. Thus, the histograms
that the different ai ∈ R(Ai) map to are identical. The summation yields r · h, which,
multiplied with 1

r , leads to h again.
The postcondition asserts that applying Operator 3 with inputs g and X in G, which

removes g from G and adds the output parfactor to G, results in an equivalent model
compared to G. Next, we look at an example to illustrate the count-convert operator.

Example 10.1.5 (Count conversion). Consider g1 = φ1(Epid,Nat(D),Man(W ))B1 ,
B1 = (). Assume another parfactor gr = φr(Nat(D),Man(W ), R(D,W ))B, B = (),
which contains Nat(D), Man(W ), and a new PRV R(D,W ) as arguments. The new
PRV carries no purpose other than to illustrate the effect of counting a logvar that
appears in a maxed out PRV within the running example. In this example, we will
compute a solution to the MPE problem for a model of g1 and g. Assume a function
specification as given in Tables 10.3a and 10.3b. The first operator to apply is max-out
to eliminate R(D,W ) from g. R(D,W ) fulfils all three preconditions in g. The result is
a new parfactor g′r = φ′r(Nat(D),Man(W ))B, B = (R(D,W )) as shown in Table 10.3c.
g is compiled as described in Example 10.1.4 by choosing the maximum potential and its
corresponding assignment for each remaining valuation. As no logvar is eliminated, the
resulting histograms are multiplied by 1

r , r = 1.
In g1 and g′r, no other PRV is eliminable as no PRV contains all logvars and additionally,

Nat(D) as well as Man(W ) do not appear in a single parfactor. A count conversion
requires a PRV to occur in a single parfactor. The next operation is a multiplication of
g′r and g1. Both parfactors represent the same number of ground factors, meaning, the ri
counts in the output are both 1 and the exponent is 1. The shared PRVs are Nat(D) and
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Table 10.3: Parfactor specifications and intermediate results for Example 10.1.5
(a) g1 = φ1(Epid,Nat(D),Man(W ))

Epid Nat(D) Man(W ) φ

false false false (4, ())
false false true (3, ())
false true false (2, ())
false true true (1, ())
true false false (1, ())
true false true (2, ())
true true false (3, ())
true true true (4, ())

(b) gr = φr(Nat(D),Man(W ), R(D,W ))

Nat(D) Man(W ) R(D,W ) φ

false false false (1, ())
false false true (4, ())
false true false (3, ())
false true true (2, ())
true false false (4, ())
true false true (3, ())
true true false (2, ())
true true true (1, ())

(c) g′r = φ′r(Nat(D),Man(W ))(R(D,W ))

Nat(D) Man(W ) φ′r

false false (4, ([1, 0]))
false true (3, ([0, 1]))
true false (4, ([0, 1]))
true true (2, ([0, 1]))

(d) g′1r = φ′1r(Epid,Nat(D),Man(W ))(R(D,W ))

Epid Nat(D) Man(W ) φ′1r

false false false (4 · 4, ([1, 0]))
false false true (3 · 3, ([1, 0]))
false true false (2 · 4, ([0, 1]))
false true true (1 · 2, ([0, 1]))
true false false (1 · 4, ([0, 1]))
true false true (2 · 3, ([0, 1]))
true true false (3 · 4, ([0, 1]))
true true true (4 · 2, ([0, 1]))

Man(W ). As we do not have standardised apart logvars, the alignment mapsD to D and
W to W . The new parfactor g′1r = φ′1r(Epid,Nat(D),Man(W ))B, B = (R(D,W )) is
shown in Table 10.3d. The new argument sequence is equal to the one from g1 as g′r does
not carry any additional PRVs. To compile a tuple (φP , φA) for a particular valuation,
e.g., a = (false, false, false), multiply looks up the tuple for (false, false, false) in g1

and the tuple for (false, false), the last two entries in a, in g′r. The tuple from g1 is
(4, ()) and from g′r is 4, ([1, 0]). Thus, the tuple for a in g′1r has the potential 4 · 4 and
the assignment sequence () ◦ ([1, 0]). For valuation a = (false, false, true), the operator
looks up the tuple for (false, false, true) in g1 and the tuple for (false, true) in g′r.
With (3, ()) and (3, ([0, 1])), the new tuple for a to map to consists of 3 ·3 and ()◦ ([0, 1]).
The operator assembles the tuples for the remaining valuations in the same way.
Given g′1r, a count conversion of D or W is possible (intermediate result of size 12).

The operator count-convert counts, e.g., D in g′1r with r = 2, yielding a parfactor g′′ =
φ′′(Epid,#D[Nat(D)],Man(W ))B|>, B = (R(D,W )) as shown in Table 10.5a. The new
CRV #D[Nat(D)] has histograms of the form [0, 2], [1, 1], and [2, 0], with the first position
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Table 10.5: Intermediate results for Example 10.1.5 continued
(a) φ′′(Epid,#D[Nat(D)],Man(W ))(R(D,W ))

Epid #D[Nat(D)] Man(W ) φ′′

false [0, 2] false (80 · 162, (0 · [0, 1] + 2 · [1, 0])) = (256, ([2, 0]))
false [0, 2] true (20 · 92, (0 · [0, 1] + 2 · [1, 0])) = (81, ([2, 0]))
false [1, 1] false (81 · 161, (1 · [1, 0] + 1 · [0, 1])) = (128, ([1, 1]))
false [1, 1] true (21 · 91, (1 · [0, 1] + 1 · [1, 0])) = (18, ([1, 1]))
false [2, 0] false (82 · 160, (2 · [0, 1] + 0 · [1, 0])) = (64, ([0, 2]))
false [2, 0] true (22 · 90, (2 · [0, 1] + 0 · [1, 0])) = (4, ([0, 2]))
true [0, 2] false (120 · 42, (0 · [0, 1] + 2 · [0, 1])) = (16, ([0, 2]))
true [0, 2] true (80 · 62, (0 · [0, 1] + 2 · [0, 1])) = (36, ([0, 2]))
true [1, 1] false (121 · 41, (1 · [0, 1] + 1 · [0, 1])) = (48, ([0, 2]))
true [1, 1] true (81 · 81, (1 · [0, 1] + 1 · [0, 1])) = (64, ([0, 2]))
true [2, 0] false (122 · 40, (2 · [0, 1] + 0 · [0, 1])) = (144, ([0, 2]))
true [2, 0] true (82 · 60, (2 · [0, 1] + 0 · [0, 1])) = (64, ([0, 2]))

(b) φ′′′(Epid,#D[Nat(D)])(Man(W ),R(D,W ))

Epid #D[Nat(D)] φ′′′

false [0, 2] (2562, (2 · [0, 1], 2 · [2, 0]))
false [1, 1] (1282, (2 · [0, 1], 2 · [1, 1]))
false [2, 0] (642, (2 · [0, 1], 2 · [0, 2]))
true [0, 2] (362, (2 · [1, 0], 2 · [0, 2]))
true [1, 1] (642, (2 · [1, 0], 2 · [0, 2]))
true [2, 0] (1442, (2 · [1, 0], 2 · [0, 2]))

(c) φ(Epid)(#D[Nat(D)],Man(W ),R(D,W ))

Epid φ

false (65536, ([0, 2],[0, 2],[4, 0]))
true (20736, ([2, 0],[2, 0],[0, 4]))

referring to Nat(D) = true and the second position to Nat(D) = false. Let us look
at the valuation (false, [0, 2], false) as an example for how the output is assembled. To
get the tuple for this valuation, the operator inserts the range values of Nat(D) into the
position of [0, 2], leading to the valuations (false, true, false) and (false, false, false)
for g′1r. In g′1r, the operator looks up the tuples for both valuation, i.e., (8, ([0, 1])) and
(16, ([1, 0])). To assemble the new potential, the operator multiplies 80 and 162, each
raised to the power of the respective count in [0, 2]. To assemble the assignments, the
operator adds the histograms multiplied with the histogram counts, i.e., 0 · [0, 1]+2 · [1, 0].
The rationale behind both assemblies is that given a histogram of [0, 2], the operator has
to incorporate two times the valuation of false for Nat(D) and the valuation of true
not at all. Consider the valuation (false, [1, 1], false). Here, the tuples to combine from
g′1r are again (8, ([0, 1])) and (16, ([1, 0])). But, the histogram counts are now different,
which leads to 81 ·161 for the new potential and 1 · [0, 1]+1 · [1, 0] for the new assignment.
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Valuation (false, [1, 1], false) reveals why histograms encode assignments. Behind
(false, [1, 1], false), there are two valuations, (false,true,false) and (false,false,false)
for the two Nat(D) instances. The first valuation maps to [0, 1], i.e., R(D,W ) = false,
the second maps to [1, 0], i.e., R(D,W ) = true. Thus, the operator stores a histogram
[1, 1] to encode that both assignments occur given that Epid = false, Man(W ) = false
and one instance of Nat(D) has the value true and the other the value false.
In g′′, Man(W ) is eliminable. Maxing out Man(W ) eliminates W , which means the

histograms in the result are multiplied by r = 2. The result φ′′′(Epid,#D[Nat(D)])B|>,
B = (Man(W ), R(D,W )) is depicted in Table 10.5b. Next, #D[Nat(D)] is eliminable,
yielding a parfactor with Epid as argument (Table 10.5c). For #D[Nat(D)], each amax
already is a histogram. Eliminating Epid leads to a final result of an MPE for a model
of g1 and g, which is the line marked in gray in Table 10.5c. The assignment sequence
([0, 1], [0, 2], [0, 1], [2, 0]) for (Epid,#D[Nat(D)],Man(W ), R(D,W )) contains only peak-
shaped histograms, that is each PRV has a uniform assignment for all its instances, i.e.,

Epid = false ∧ ∀D,W : Nat(D) = false ∧Man(W ) = false ∧R(D,W ) = true

As mentioned before, there exist three generalised counting operators, count-convert,
merge, and merge-count (Taghipour and Davis, 2012), which (i) count-convert a logvar
that appears in more than one PRV, (ii) merge CRVs with counted logvars of the same
domain into one CRV, and (iii) merge-count a PRV into an existing CRV with an in-
equality constraint between their logvars. The first operator is a generalisation of the
LVE count conversion as introduced in Section 3.2, which in its basic workflow works as
count conversion, forming histograms for a set of PRVs instead of one PRV. The second
operator combines histograms of two CRVs accordingly without any manipulation of po-
tentials, while the third operator merges a given histogram of a CRV with range values
of the PRV to merge into the CRV. The first and third operators follow the same idea as
Operator 3 when incorporating assignments, while the second operator has no influence
on potentials and assignments alike. See Appendix A.4 for full specifications.
The operators split, expand, count-normalise, and ground-logvar proceed as before,

duplicating a parfactor and partitioning constraints. The operators split and expand,
which implements splitting for (P)CRVs, establish non-overlapping PRVs, e.g., to ensure
the first precondition of max-out. When splitting a parfactor on a PRV that refers to a
subset of the constants in the parfactor, split partitions a constraint into two parts, one
for the subset of constants and one for the remaining part. Splitting involves logvars,
which may occur in a maxed out PRV B. However, the split has no consequence for
B and its histograms as a histogram specifies counts for each instance of the remaining
logvars, not for the overall number of instances, which changes with split.
(P)CRVs are split by applying expand to preserve the count normalisation of the

counted logvar. Expanding a (P)CRV #X [R(X)]|C on a PRV R(X)|C′ or (P)CRV
#X [R(X)]|C′ entails in part splitting histograms accordingly. The result contains one

129



Chapter 10 Most Probable Assignments

parfactor in which X is replaced by two new logvars, one for the X instances in C ′ and
one for the remaining X instances and #X [R(X)]|C is replaced by two new (P)CRVs.
For MPE, expand has a new precondition. If X appears in a maxed out PRV B, the
histograms of B have already incorporated X when X was counted. After applying a
sequence of LVE operators, it may no longer be possible to reconstruct how R(X) influ-
ences the assignments of B and split the histograms of B accordingly. Therefore, X must
not appear in any maxed out PRV. The precondition has also led to the new precondition
of count-convert. As a (P)CRV can no longer be expanded if a maxed out PRV contains
its counted logvar, the new precondition ensures that all instances of the underlying PRV
are combined in a single parfactor. If a PRV no longer appears in any other parfactor,
it cannot cause an expansion of the (P)CRV.
The operator count-normalise duplicates a parfactor and partitions constraints to

count-normalise a set of logvars w.r.t. another set of logvars, e.g., to ensure the third
precondition of max-out. The operator ground-logvar implements grounding a (non-
counted) logvar X in the arguments of a parfactor through duplication and partitioning
as well (one partition for each instance of X). The same argument as for split applies
for both count-normalise and ground-logvar w.r.t. the histograms remaining consistent.
See Appendix A.2 for full specifications. Next, we set up MPE-LVE.

MPE-LVE The MPE version of LVE computes a most likely assignment for each model
PRV without evidence. The algorithm has the same workflow as the original LVE but
applies the operators specified in the previous paragraphs. Algorithm 6 shows MPE-LVE
with model G and evidence E as inputs to answer MPE(E).
At the beginning of an algorithm run, each parfactor in G maps to an empty sequence

of histograms. Having absorbed E in G, Alg. 6 maxes out all PRVs in G, applying
transforming operators if necessary. The heuristics for choosing the next operator is still
based on the expected size of the intermediate result. Eliminating all PRVs in G leads
to a set of parfactors with no arguments, which are multiplied into one parfactor φ()B|C

Algorithm 6 MPE-LVE
procedure MPE-LVE(Model G, Evidence E)

G← Absorb E in G . Shatters G on E if necessary
while G contains not maxed out PRVs do

if there exists a PRV A eliminable then
G← Max out A in G

else
G← Apply transforming operator applicable in G

G← Multiply remaining parfactors in G
return G . Contains one parfactor
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to combine the assignments in one parfactor and get the (unnormalised) potential of the
MPE assignment. φA() holds how many instances have a specific value for each PRV in
B = rv(G)\rv(E). One could output G without multiplying parfactors if only interested
in the assignments. Next, we look at an MPE query MPE(sick(eve)) for Gex.

Example 10.1.6 (MPE-LVE). Answering MPE(sick(eve)) starts with absorbing evi-
dence sick(eve) in Gex, which proceeds as with LVE, leading to splits in g2 and g3.
Figure 10.1a shows Gex as a parfactor graph after absorbing evidence. Proceeding with
increasing size of intermediate results, MPE-LVE maxes out

• Travel(eve) in ge2, resulting in ge2 = φ′2(Epid)(Travel(eve)),

• Treat(eve,M) in ge3, resulting in ge3 = φ′3(Epid)(Treat(eve,M)),

• Travel(X) in gr2, resulting in gr2 = φ′′2(Epid, Sick(X))
(Travel(X))
|Cr

2
, and

• Treat(X,M) in gr3, resulting in gr3 = φ′′3(Epid, Sick(X))
(Treat(X,M))
|C′3

.

Figure 10.1b shows the remaining model after performing the four max-out operations.
As with LVE and Example 3.2.5, no further maxing out is possible. Next to grounding
each logvar (8 to 16 mappings), MPE-LVE can count either D or W (each 12 map-
pings), and multiply gr2 and gr3 (4 mappings). Thus, MPE-LVE multiplies gr2 and gr3
into g23 = φ23(Epid, Sick(X))BC′3

, B = (Travel(X), T reat(X,M)), concatenating the
assignments for Travel(X) and Treat(X,M). LVE-MPE can now eliminate Sick(X),
resulting into g′23 = φ′23(Epid)BC′3

, B = (Sick(X), T ravel(X), T reat(X,M)), adding his-
tograms for Sick(X). Maxing out Sick(X) eliminates X from g23, i.e., r = 2, lead-
ing to a multiplication of all histograms of (Sick(X), T ravel(X), T reat(X,M)) with 2,
as each PRV contains X. Next, MPE-LVE randomly chooses to count D, resulting
in g#

1 = φ#
1 (Epid,#D[Nat(D)],Man(W ))(). As no maxed out PRV exists in g1, the

count conversion coincides with a count conversion in LVE. In g#
1 , Man(W ) contains

all (non-counted) logvars and appears only in this parfactor, and W is count-normalised
(r = 2). So, MPE-LVE eliminates Man(W ), followed by eliminating #D[Nat(D)],

Epid

ge2 ge3

Travel(eve) Treat(eve,M)

g1

Nat(D)

Man(W )

g0
gr2

Sick(X)

Travel(X)

Treat(X,M)gr3

(a) After absorbing evidence

Epid

ge2 ge3

g1

Nat(D)

Man(W )

g0
gr2

Sick(X)

grr3

(b) After four max-out operations

Figure 10.1: Parfactor graph of Gex for Example 10.1.6

131



Chapter 10 Most Probable Assignments

resulting in g′1 = φ′1(Epid)B, B = (#D[Nat(D)],Man(W )). The remaining rand-
var is Epid. LVE multiplies all remaining parfactors (ge2, ge3, g′23, g′1, g0) into one
parfactor g = φ(Epid)BC′3×C1

, B = (Travel(eve), Treat(eve,M), Sick(X),Travel(X),
Treat(X,M), #D[Nat(D)], Man(W )) to max out Epid. The result is an assignment,
which could have the following form after rewriting peak-shaped histograms, given con-
crete specifications for the potential functions:

Epid = false ∧ Travel(eve) = false ∧ ∀M : (Treat(eve,M) = true)

∧ ∀X : (Sick(X) = false ∧ Travel(X) = true ∧ ∀M : (Treat(X,M) = false))

∧ ∀D,W : (Nat(D) = false ∧Man(W ) = false)

The above example has uniform assignments for all PRVs. Assignments where his-
tograms have counts in at least two positions may occur if a (P)CRV is part of the model
specification where a histogram that is not uniform is chosen as for a maximum assign-
ment. Another case of histograms without uniform assignments occurs with parfactors
where a constraint encodes X 6= Y . The following example shows such an MPE.

Example 10.1.7. De Salvo Braz et al. (2006) present an example about business compa-
nies B being in a partnership around a certain product P and whether those companies
are retailers. There are 15 companies and an un-disclosed number of products in their
example. We choose 3 companies and 1 product for this example to keep the numbers
small. The parfactors are

φ(Prtnrs(P,B1, B2))
()
|C φ(Prtnrs(P,B1, B2), Rtl(B1), Rtl(B2))

()
|C

in which the PRVs are boolean and the constraints encode B1 6= B2. Multiplying
both parfactors and then maxing out the PRV Prtnrs(P,B1, B2) yields a parfactor
φ(Rtl(B1), Rtl(B2))B|C , B = (Prtnrs(P,B1, B2)). Let the specification in Table 10.7a be
the result. Counting B1 yields φ(#B1 [Rtl(B1)], Rtl(B2))B|C , the count conversion pro-
ceeding as with LVE. The result is depicted in Table 10.7b. But, the result does not
allow to eliminate Retail(B2) as it overlaps with Retail(B1) in the CRV. Following the
operator given in Appendix A.4, merge-counting procures a joint CRV for both entries,
shown in Table 10.7c. The assignment for #B1 [Rtl(B1)] with maximum potential is
[1, 2] (and [2, 1]) with an assignment of [4, 2] (and [2, 4]) for Prtnrs(P,B1, B2). The
histograms are not peak-shaped. In other words, the result says that there exists one
retail company and two non-retail companies (two retail and one non-retail) and of the
six possible partnerships, four exist and two do not (two and four).

MPE-LVE allows for computing a lifted solution to an MPE problem, leveraging the
relational structure of the underlying model. Next, we present how to compute a solution
to an MPE query with MPE-LJT, leveraging the cluster representation of FO jtrees.
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Table 10.7: Example parfactor for merge-counting

(a) φ(Rtl(B1), Rtl(B2))
(Prtnrs(P,B1,B2))
|C

Rtl(B1) Rtl(B2) φ

false false (1, ([1, 0]))
false true (2, ([1, 0]))
true false (3, ([0, 1]))
true true (1, ([0, 1]))

(b) φ(#B1 [Rtl(B1)], Rtl(B2))
(Prtnrs(P,B1,B2))
|C

#B1 [Rtl(B1)] Rtl(B2) φ

[0, 2] false (12, ([2, 0]))
[0, 2] true (22, ([2, 0]))
[1, 1] false (3 · 1, ([1, 1]))
[1, 1] true (1 · 2, ([1, 1]))
[2, 0] false (32, ([0, 2]))
[2, 0] true (12, ([0, 2]))

(c) φ(#B1
[Rtl(B1)])

(Prtnrs(P,B1,B2))
|C

#B1 [Rtl(B1)] φ

[0, 3] (13, (3 · [2, 0])) = (1, ([6, 0]))
[1, 2] (4 · 32, (1 · [2, 0] + 2 · [1, 1])) = (36, ([4, 2]))
[2, 1] (22 · 9, (2 · [1, 1] + 1 · [0, 2])) = (36, ([2, 4]))
[3, 0] (13, (3 · [0, 2])) = (1, ([0, 6]))

MPE-LJT Using LJT to compute a solution to an MPE problem has the advantage
of a reduced space to search for the next PRV to max out. We adapt LJT to compute
an MPE by calculating messages using MPE-LVE. Algorithm 7 shows MPE-LJT with
model G and evidence E as input to answer MPE(E). MPE-LJT constructs an FO jtree
J for G, enters evidence E into J , and passes messages in J , which only needs an inward
pass. At the innermost node, MPE-LJT maxes out the remaining PRVs and returns a
most likely assignment for rv(G) \ rv(E).
The first two steps are identical to LJT, while message passing changes. Messages

carry over the assignments of maxed out PRVs to some innermost parcluster, at which

Algorithm 7 MPE-LJT
procedure MPE-LJT(Model G, Evidence E)

Construct an FO jtree J = (V,E) for G
Enter E into J
Pass messages on J based on Condition (1) . MPE-LVE as subroutine
Get Ci ∈ V where Condition (2) triggers
G′ ← Gi ∪

⋃
j∈nbs(i)mji

return MPE-LVE(G′, ∅)
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the remaining PRVs are maxed out. A message mij from parcluster Ci with local model
Gi to parcluster Cj is still a set of parfactors, each with a subset of Sij as arguments.
MPE-LJT computes mij by passing to MPE-LVE a query over Sij and a model G′ =
Gi ∪

⋃
k∈nbs(i),k 6=jmki, i.e., MPE-LVE(G′, Sij , ∅). MPE-LVE then eliminates Ci \ Sij

from G′, skipping again the last step before returning the result. As G′ may contain
messages, the parfactors in G′ may contain already maxed out PRVs in contrast to the
example run of MPE-LVE before. Since maxed out PRVs in messages do not interfere
with the elimination order of the next parcluster due the FO jtree properties, the maxed
out PRVs do not pose any challenges to a lifted computation. The original LJT message
passing has had two conditions based on which messages flow at a parcluster Ci:

(1) Ci has received messages from all neighbours but Cj : Ci sends a message to Cj .

(2) Ci has received a message from its remaining neighbour Cj : Ci sends messages to
all other neighbours.

In MPE-LJT, messages flow based on Condition (1). When Condition (2) first triggers
at a parcluster Ci, it indicates to MPE-LJT to use Ci to finish answering an MPE query,
maxing out the PRVs in Ci from its local model and received messages. Combined with
the assignments carried over through the messages, maxing out the remaining PRVs leads
to the complete MPE w.r.t. G and E. For the last step of maxing out, MPE-LJT uses
MPE-LVE as specified in Alg. 6. Let us consider MPE(sick(eve)) for Gex again.

Example 10.1.8 (MPE-LJT). Computing an MPE for Gex starts with constructing
an FO jtree J as seen in Fig. 4.1b with parclusters C1, C2, and C3 and local models
G1 = {g0, g1}, G2 = {g2}, and G3 = {g3}.
Entering sick(eve) as evidence into J causes changes in G2 and G3, leading to G2 =
{ge2, gr2} and G3 = {ge3, gr3}, depicted in Fig. 4.3, where the constraints in gr2 and gr3
restrict X to alice and bob. Message passing commences. C1 and C3 prepare a message
for C2. At C1, logvar D is counted to allow for maxing out Man(W ) before maxing out
#D[Nat(D)]. Message m12 consists of

g0 = φ0(Epid) and

g′′1 = φ′′1(Epid)B1 ,B1 = (#D[Nat(D)],Man(W )).

At C3, Treat(eve,M) is maxed out from ge3 and Treat(X,M) from gr3. Message m32

contains the results of these two max-out operations,

ge′3 = φ′3(Epid)B
e
3 , Be3 = (Treat(eve,M)) and

gr′3 = φ′3(Epid, Sick(X))
Br3
|C3
,Br3 = (Treat(X,M))

C2 receives both messages, which triggers Condition (2), and LJT uses MPE-LVE to
max out the PRVs in C2 to complete the MPE solution. Maxing out Travel(eve) in ge2
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and Travel(X) in gr2 yields

ge′2 = φ′2(Epid)B
e
2 , Be2 = (Travel(eve)) and

gr′2 = φ′2(Epid, Sick(X))
Br2
|C2
,Br2 = (Travel(X)).

MPE-LVE multiplies gr′2 and gr′3 from m32 to max out Sick(X). The result is a parfactor

g′23 = φ′23(Epid)B23|C3
,B23 = (Sick(X), T ravel(X), T reat(X,M)).

The last randvar to max out is Epid, for which MPE-LVE multiplies the remaining par-
factors g0, g′′1 , ge′2 , g′23, and ge′3 into one, combining all assignments in one parfactor. After
maxing out Epid, MPE-LVE outputs the resulting parfactor containing the assignments
for all model PRVs, which coincides with the assignment MPE-LVE produces on Gex.

With MPE-LJT, we have an inference algorithm for solving an MPE problem that
leverages the relational structures of a model through lifting and speeds up its inference
by using its FO jtree, which exploits the sparseness of a model. Next, we take a closer
look at queries for more general MAP assignments, where we further exploit the cluster
representation of LJT to determine liftable MAP queries.

10.2 Lifted Algorithms for MAP Assignments

MPE-LVE and MPE-LJT provide efficient means to compute solutions to MPE queries,
which ask for a maximum a posteriori assignment to all model PRVs without evidence
assigned. An MAP query MAP(U|E = e) asks for a maximum a posteriori assignment
to U, a subset of model PRVs for which there is no evidence assigned. An algorithm
has to sum out non-query terms and then max out the query terms U. In the following
paragraphs, we present MAP-LVE and MAP-LJT for such MAP queries.

MAP-LVE LVE for MAP queries works according to the semantics of MAP queries.
Algorithm 8 shows MAP-LVE with model G, query terms U, and evidence E as inputs
to answer MAP(U|E). MAP-LVE begins like LVE: It shatters G on U, absorbs E in
G, and then eliminates all non-query terms rv(G) \U using the original LVE operators
(lines 4–8). After having eliminated all non-query terms, MAP-LVE eliminates all query
terms in U using the MPE-LVE operators (lines 9–13).
In the style of parameterised queries, the query termsU can be parameterised to denote

a whole set of instances of a PRV. With arbitrary subsets U, the computation may lead
to prohibitively large intermediate results as well as groundings due to logvars in U, both
problems stemming from the enforced elimination order of first eliminating rv(G) \ U
and then U. Consider the MAP query MAP({Travel(X), T reat(X,M)}|>|sick(eve))
with query terms {Travel(X), T reat(X,M)}|> and evidence sick(eve) for Gex.
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Algorithm 8 MAP-LVE
1: procedure MAP-LVE(Model G, Query terms U, Evidence E)
2: G← Shatter G on U
3: G← Absorb E in G . Shatters G on E if necessary
4: while G contains non-query PRV do . LVE like
5: if there exists a PRV A eliminable then
6: G← Sum out A in G
7: else
8: G← Apply transforming operator applicable in G
9: while G contains query PRV do . MPE-LVE like

10: if there exists a PRV A eliminable then
11: G← Max out A in G
12: else
13: G← Apply transforming operator applicable in G
14: G← Multiply remaining parfactors in G
15: return G . Contains one parfactor

Example 10.2.1 (MAP-LVE). Given MAP(Travel(X), T reat(X,M)|sick(eve)), shat-
tering Gex on {Travel(X), T reat(X,M)}|> does not change Gex. Absorbing evidence
results in ge2, gr2, ge3, and gr3, with the new Gex as shown in Fig. 10.1a. MAP-LVE has to
eliminate the PRVs Nat(D), Man(W ), Sick(X), and Epid with LVE.
Eliminating Nat(D) and Man(W ) follows the same steps as before, counting logvar

D, summing out Man(W ), followed by summing out #D[Nat(D)], yielding a parfactor
φ′′1(Epid). To sum out Sick(X), MAP-LVE has to multiply gr2 and gr3 into a parfactor
g23 = φ23(Epid, Sick(X), T ravel(X), T reat(X,M)), which has 24 = 16 possible valua-
tions, which is already larger than the largest parfactor during answering an MPE query
with MPE-LVE. In g23, Sick(X) does not contain all logvars. Thus, MAP-LVE countsM
in g23, leading to a parfactor g′23 = φ′23(Epid, Sick(X), T ravel(X),#M [Treat(X,M)])
with 23 · 3 = 24 possible valuations. From g′23, MAP-LVE eliminates Sick(X). The re-
maining randvar to sum out is Epid, which requires MAP-LVE to multiply all parfactors
into one and count M of Treat(eve,M). The result is a parfactor with arguments Epid,
Travel(eve), #M [Treat(eve,M)], Travel(X), and #M [Treat(X,M)]) with 23 · 32 = 72
possible valuations. Eliminating Epid yields the following parfactor, which no longer
contains non-query terms and represents the starting point for max-out operations:

φ′(Travel(eve),#M [Treat(eve,M)], T ravel(X),#M [Treat(X,M)]) (10.3)

MAP-LVE maxes out #M [Treat(X,M)], which leads to a smaller intermediate result
than maxing out Travel(X). Afterwards, MAP-LVE maxes out Travel(X), which elim-
inates X as well, followed by maxing out #M [Treat(eve,M)] and Travel(eve), the last
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Algorithm 9 MAP-LJT
procedure MAP-LJT(Model G, Query terms {Uk}mk=1, Evidence E)

Construct an FO jtree J = (V,E) for G
Enter E into J
Pass messages on J . LVE as subroutine
for each Uk ∈ {Uk}mk=1 do

Find a subtree J ′ s.t. Uk ⊆ rv(J ′)
Extract a submodel G′ from J ′

MAP-LVE(G′, Uk, ∅) . Output or store result

two PRVs no longer containing uncounted logvars. The result are assignments for PRVs
Travel(eve), #M [Treat(eve,M)], Travel(X), and #M [Treat(X,M)], which fall under
{Travel(X), T reat(X,M)}|>.

The result exhibits how evidence affects the result representation given an MAP query
similar to parameterised queries. The given example also shows how intermediate results
can become very large. Assuming Epid appears in U as well, the above example would
not have required multiplying all parfactor into one parfactor so early, which would also
avoid the second count conversion of M . An FO jtree allows for an easy check of liftable
MAP queries that do not produce larger intermediate results than the MPE versions.

MAP-LJT Similar to MAP-LVE starting as LVE, MAP-LJT begins like LJT for pa-
rameterised (conjunctive) queries, passing messages using LVE and then, extracting a
submodel G′ that covers the query terms. For MAP queries though, MAP-LJT passes
on G′ and the query terms to MAP-LVE instead of LVE. MAP-LVE sums out the re-
maining non-query terms and finishes with maxing out the query terms. In true LJT
fashion, Alg. 9 shows MAP-LJT with a model G, a set of MAP query terms {Uk}mk=1,
and evidence E as input to answer a set of MAP queries MAP(Uk|E). Let us consider
MAP({Travel(X), T reat(X,M)}|>|sick(eve)) in Gex again.

Example 10.2.2 (MAP-LJT). For an MAP query with {Travel(X), T reat(X,M)}|>
as query terms and sick(eve)) as evidence in Gex, MAP-LVE constructs an FO jtree and
enters evidence as in Example 10.1.8. Messages flow from parclusters C1 and C3 to par-
clusterC2 and back as shown in Example 4.3.4. Afterwards, MAP-LJT finds a subtree for
{Travel(X), T reat(X,M)}|>, which consists ofC2 andC3 and extracts a submodel G′ of
local models G2 and G3 as well as message m12 from outside the subtree, which coincides
with Example 8.1.2 about answering P (Travel(eve), T reat(eve, injection)|sick(eve)).
To answer the MAP query, MAP-LJT now has to eliminate Sick(X) and Epid by sum-
ming out and Travel(X) and Treat(X,M) by maxing out, for which it uses MAP-LVE
with {Travel(X), T reat(X,M)}|> as the query terms and G′ as the model. Evidence
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Algorithm 10 J-MPE-LJT with an FO jtree as input for MPE-LJT
procedure J-MPE-LJT(FO jtree J)

Pass messages on J based on Condition (1) . MPE-LVE as subroutine
Get Ci ∈ V where Condition (2) triggers
G′ ← Gi ∪

⋃
j∈nbs(i)mji

return MPE-LVE(G′, ∅)

is empty. MAP-LVE counts M in the product of gr2 and gr3 and eliminates Sick(X)
from the result as seen in Example 10.2.1. To eliminate Epid, MAP-LVE multiplies all
remaining parfactors into one, counts the second M logvar, and sums out Epid, leading
again to a parfactor as in Expression (10.3) from the MAP-LVE example calculation with
arguments Travel(eve), #M [Treat(eve,M)], Travel(X), and #M [Treat(X,M)]. From
this parfactor, MAP-LVE maxes out the remaining PRVs and returns the result.

The example still leads to the same large intermediate parfactor as before. But, MAP-
LJT allows for reusing messages, avoiding repeated eliminations. In the example, MAP-
LJT avoids eliminating Nat(D) and Man(W ) again.

Bounded MAP Queries FO jtrees allow for identifying bounded MAP queries, i.e.,
MAP queries without a blowup of intermediate parfactor sizes. Such MAP queries cover
complete separators or subtrees of an FO jtree, where outside PRVs are eliminable during
message passing with LVE and inner PRVs are maxed out with MPE-LVE or MPE-LJT.
Consider a query MAP({Treat(X,M), Sick(X), Epid}|>|sick(eve)), which asks for an
assignment to all PRVs in parcluster C3. LJT can use MPE-LVE with local model G3

and message m23 as input to efficiently answer the MAP query. With an MAP query
over a subtree, MAP-LJT can use MPE-LJT to further leverage the FO jtree.
Algorithm 10 formalises MPE-LJT for a subtree of an FO jtree, named J-MPE-LJT.

J-MPE-LJT takes an FO jtree J as input, which is assumed to be a subtree of a larger
FO jtree Ĵ . J-MPE-LJT answers an MPE query MPE(rv(J)), which is an MAP query
MAP(rv(J)) in Ĵ . Evidence is not part of the algorithm as evidence is handled in Ĵ .
On J , J-MPE-LJT proceeds as MPE-LJT, sending messages inward and completing the
assignment computation with MPE-LVE at a central parcluster. The upcoming section
presents a combined LJT version for probability as well as assignment queries that reuses
an FO jtree and messages as much as possible for a set of queries of varying types.

10.3 A Variety of Queries

For a set of probability and assignment queries, LJT shows its particular strength as
it is able to reuse an FO jtree and messages between various queries of different types.
Whereas the LVE versions compute answers to corresponding queries starting from the
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Algorithm 11 Com-LJT
procedure Com-LJT(Model G, Query terms and types {(Qk, tk)}mk=1, Evidence E)

Construct an FO jtree J for G
Enter E into J
Pass messages on J . LVE as subroutine
for each (Qk, tk) ∈ {(Qk, tk)}mk=1 do

if tk = MPE then . Qk = ∅
J-MPE-LJT(J) . Output or store result

else
Find a subtree J ′ s.t. Qk ⊆ rv(J ′)
if tk = MAP ∧ Qk = rv(J ′) then

J-MPE-LJT(J ′) . Output or store result
else

Extract a submodel G′ from J ′

if tk = MAP then . Qk ⊂ rv(J ′)
MAP-LVE(G′, Qk, ∅) . Output or store result

else
LVE(G′, Qk, ∅) . Output or store result

original model, we can set up an LJT algorithm that combines the different LVE and
LJT versions in one framework, called Com-LJT. Com-LJT constructs an FO jtree for
the input model, enters evidence, and passes messages with LVE. Afterwards, Com-LJT
can answer all probability and MAP queries. If an MAP query is over complete subtrees,
Com-LJT can use J-MPE-LJT. If an MPE query occurs, Com-LJT does a message pass
with MPE-LVE, which is identical to passing a complete FO jtree to J-MPE-LJT.
Algorithm 11 shows the combined algorithm with a model G, a set of query terms

paired with its query type {(Qk, tk)}mk=1, tk ∈ {MPE,MAP, P}, and evidence E as input.
If tk = P , Com-LJT answers P (Qk|E). If tk = MAP, Com-LJT answers MAP(Qk|E). If
tk = MPE, which means Qk = ∅, Com-LJT answers MPE(E). Com-LJT constructs an
FO jtree J for G, enters evidence, and passes messages like any other LJT version. Then,
Com-LJT goes through the set of queries. If tk = MPE, Com-LJT uses J-MPE-LJT with
J as input, which saves the effort of building an FO jtree anew. J-MPE-LJT computes
a new set of messages to answer the MPE query. However, Com-LJT keeps the original
messages in J in its query loop to use them for other queries. Caching the messages
takes up more memory but means faster answering of the next query. If tk 6= MPE, the
query is either an MAP query or a probability query with a set of query terms Qk. For
both query types, Com-LJT finds a subtree J ′ covering Qk. If tk = MAP and the query
terms cover a subtree J ′ of J , i.e., rv(J ′) = Qk, Com-LJT uses J-MPE-LJT with J ′

as input, which reuses the messages from outside J ′. The messages contain the result
of summing out non-query PRVs. J-MPE-LJT maxes out the query PRVs to solve the
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posed MAP problem. If rv(J ′) ⊂ Qk or tk = P , Com-LJT extracts a corresponding
submodel G′ from J ′ and, depending on the query type, uses either MAP-LVE or LVE to
answer the query, reusing the messages from outside J ′. To illustrate Com-LJT, consider
the following example with a set of queries for Gex.

Example 10.3.1 (Com-LJT). Assume the following queries with evidence sick(eve):

(1) ({Treat(X,M), Sick(X), Epid}|>,MAP)

(2) ({Sick(X), Epid}|>, P )

(3) (∅,MPE)

(4) ({Treat(eve, injection)}, P )

(5) ({Treat(eve, injection), T ravel(eve)}, P )

Com-LJT constructs an FO jtree for Gex and enters evidence as in the previous exam-
ples. Messages flow from parclusters C1 and C3 to parcluster C2 and back as shown
in Example 4.3.4. The FO jtree is now prepared to answer any query with evidence
sick(eve). For pair (1) with type MAP, Com-LJT finds a subtree J ′ which consists of
C3. As the query terms and the PRVs in C3 are the same, Com-LJT uses J-MPE-LJT
on the subtree. As J ′ consists of only one parcluster, message passing on J ′ terminates
immediately and MPE-LVE maxes out the PRVs Treat(X,M), Treat(eve,M), Sick(X),
and Epid, X restricted to alice and bob.
Pair (2) with type P represents a parameterised conjunctive query. Com-LJT uses

C2 to answer the query, providing LVE with the local model and messages of C2 as
a model and {Sick(X), Epid}|> as the query terms. LVE sums out Treat(X,M) and
Treat(eve,M), countsX, and normalises the result for the terms #X [Sick(X)] and Epid.
For pair (3) with type MPE, Com-LJT takes J and tasks J-MPE-LJT with calculating
an MPE solution, which proceeds with message passing as in Example 10.1.8. After
having procured the MPE solution, Com-LJT proceeds with pair (4) with type P , which
references a simple probability query with a single query term. The subtree consists of
C3. Com-LJT provides LVE with the local model and messages of C3 as a model and
{Treat(eve, injection)} as the query term, which proceeds as in Example 4.3.5. For pair
(5), Com-LJT compiles a subtree of C2 and C3, extracts a submodel of local models and
outside message m12, and uses LVE to compute an answer as in Example 8.1.2.

The example shows how Com-LJT constructs an FO jtree once and reuses it for a
variety of queries. Additionally, the messages calculated with LVE are usable for prob-
ability as well as MAP queries, avoiding repeated computations of identical sum-out
operations. In summary, Com-LJT combines lifting and clustering of relational models
into one algorithm for exact, efficient repeated inference for a query language that allows
for assignment and probability queries alike. Next, we look at correctness and complexity
results to further grasp lifted inference w.r.t. assignment queries.
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10.4 Theoretical Discussion

We consider soundness, completeness, and complexity of the various algorithms proposed
in this section, analysing liftable MAP queries. Based on liftable inputs, we conduct a
complexity analysis of the MPE and MAP versions of LVE and LJT.

Soundness We start with soundness for MPE-LVE and continue with MPE-LJT, fol-
lowed by the MAP versions, before ending with Com-LJT. The proofs rely on the sound-
ness of the LVE operator suite (Taghipour et al., 2013c) and LJT (shown in Chapter 5).

Theorem 10.4.1. Let G be a model and E be evidence. Then, MPE-LVE is sound, i.e.,
computes an MPE for rv(G)\rv(E) equivalent to an MPE computed for gr(rv(G)\rv(E)).

Proof. For a set of interchangeable randvars, the arg max assignment is identical given
each possible valuation of the remaining randvars. As instances of a PRV are interchange-
able, assigning the same value for its instances, as in the max-out operator, is correct.
Storing the assignments in histograms based on counts is a different representation of
the same information. Thus, the postcondition in max-out holds. Let us consider the
other operators. As we do not change computations w.r.t. potentials, these parts of an
operator are still sound. We need to consider assignments stored in each parfactor. The
operator absorb is identical to the LVE operator of the same name applied to parfactors
without maxed out PRVs, which eliminates E from G through appropriate absorption.
The transforming operators split, expand, count-convert, and ground do not manipulate
assignments given their preconditions and thus, work as before with the postcondition
holding. The operators multiply and count-convert manipulate assignments to varying
degree. Operator multiply concatenates assignments of disjoint sets of maxed out PRVs,
thus, keeping the assignments consistent. As argued for count-convert, summing over cor-
responding histograms combines assignments that the instances of a PRV map to, which
are materialised by counting a CRV. Therefore, the transformed model is equivalent to
the model before applying a count conversion. Generalised counting operators keep as-
signments consistent with the same argument. In summary, all MPE-LVE operators are
sound with the individual postconditions holding.
Based on this suite of sound MPE-LVE operators, MPE-LVE translates into the appli-

cation of a sequence of sound MPE-LVE operators to G and E to max out rv(G)\rv(E).
The final parfactor contains assignments for rv(G) \ rv(E), which come from applying
max-out. The postcondition of max-out ensures that each assignment is equivalent to
an assignment for the grounded instances. As replacing

∑
with arg max yields a cor-

rect MPE solution in the ground case (Dechter, 1999) and MPE-LVE computes an MPE
solution equivalent to one computed on a ground level, MPE-LVE is sound.

Theorem 10.4.2. Let G be a model and E be evidence. MPE-LJT is sound, i.e., com-
putes a correct answer to the query MPE(E).
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Proof. The first two steps of MPE-LJT coincide with LJT. Thus, MPE-LJT constructs a
valid FO jtree J forG. A valid FO jtree allows for local computations (Shenoy and Shafer,
1990). Evidence entering and message passing consist of applying sound MPE-LVE
operators, leading to correct results in local models and messages. The message passing
scheme combines all model parts at some parcluster of J , where the final application
of MPE-LVE operators eliminates the remaining PRVs. The result is then a parfactor,
which holds correct assignments for rv(G) \ rv(E).

Next, we consider the MAP versions of LVE and LJT, which apply both LVE and
MPE-LVE operators to answer MAP queries, before analysing J-MPE-LJT for subtrees
of an FO jtree and Com-LJT, which combines algorithms for different types of queries.

Theorem 10.4.3. Let G be a model, U|C be query terms, and E be evidence. Then,
MAP-LVE is sound, i.e., computes a most probable assignment for U|C that is equivalent
to a most probable assignment computed for gr(U|C).

Proof. In the ground case, computing a most probable assignment for a subset of model
randvars U|C requires summing out the randvars not in U|C before maxing out U|C .
MAP-LVE implements the computation by using LVE operators to sum out T = rv(G)\
U|C \rv(E) and then using MPE-LVE operators to max out U|C . LVE computes a result
equivalent to computing a result on the ground level using its LVE operators. Thus, given
the LVE operators are sound, the result of summing out T in G is equivalent to the result
of summing out on the ground level. Next, MAP-LVE uses MPE-LVE operators to max
out U|C . MPE-LVE computes a result equivalent to computing a result on the ground
level using its MPE-LVE operators. Again, given the MPE-LVE operators are sound,
MAP-LVE computes a result equivalent to computing a result on the ground level when
maxing out U|C in G′. The final parfactor contains a most probable assignment for U|C
that is equivalent to one computed on the ground level for gr(U|C).

Theorem 10.4.4. Let G be a model, {U|C,k}mk=1 a set of query terms, and E evidence.
Then, MAP-LJT is sound, i.e., computes a correct answer to each query MAP(U|C,k|E).

Proof. Given a sound LJT, MAP-LJT constructs a valid FO jtree J for G, allowing
for local computations (Shenoy and Shafer, 1990) during evidence entering and message
passing. Evidence entering and message passing consist of applying sound LVE operators,
leading to correct results in local models and messages. Extracting the submodel G′

for query terms U|C,k from the local models and outside messages, LJT combines all
necessary parfactors without duplicates (cf. the proof of Thm. 8.2.1 regarding soundness
of LJT for conjunctive queries). MAP-LJT then presents MAP-LVE with G′ as model
andU|C as query terms, which yields a correct result as shown in the proof of Thm. 10.4.3.
Therefore, MAP-LJT computes a correct answer to each given MAP query.
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Theorem 10.4.5. Let G be a model with an FO jtree J with evidence E entered and
messages passed and U|C be query terms with U|C = rv(J ′) for a subtree J ′ of J . Then,
J-MPE-LJT is sound, i.e., computes a correct answer to the query MAP(U|C |E).

Proof. Given J is a valid FO jtree and LVE Operators are sound, entering evidence
and passing messages leads to correct representations of all model parfactors as well as
evidence in the messages and local models of each parcluster in J . Computing an MAP
query MAP(U|C |E) where U|C = rv(J ′) for some subtree J ′ of J means summing out
T = rv(G) \U|C \ rv(E), which all occur in parclusters outside of J ′, while all PRVs in
U|C \ rv(E) need to be maxed out. Thus, J-MPE-LJT is able to compute MAP(U|C |E)
by using J ′ only. Using the messages from outside J ′, T has already been summed out.
On J ′, J-MPE-LJT follows MPE-LJT and sends messages using MPE-LVE operators
to compute a most probable assignment for all PRVs in J ′. The remaining steps of the
proof follow the same argument as for the soundness of MPE-LJT. J-MPE-LJT passes
messages on a subtree of a valid FO jtree, which allows for local computations (Shenoy
and Shafer, 1990). Given the MPE-LVE operators are sound, J-MPE-LJT computes
correct messages by applying sound operators. At some parcluster in J ′ with MPE
messages from each neighbour, J-MPE-LJT maxes out the remaining PRVs, which yields
a correct assignment for U|C .

Theorem 10.4.6. Let G be a model, {(Q|C,k, tk)}mk=1 a set of queries, and E evidence.
Then, Com-LJT is sound, i.e., computes a correct answer for each (Q|C,k, tk).

Proof. Next to LVE and LJT, we assume MPE-LVE, MAP-LVE, and J-MPE-LJT to
be sound based on Thms. 10.4.1, 10.4.3 and 10.4.5. As construction, evidence entering,
message passing coincide with LJT and LJT is sound given LVE is sound, Com-LJT
constructs a valid FO jtree J , the basis for local computations (Shenoy and Shafer,
1990), and enters evidence and passes messages, leading to correct local models and
messages. Com-LJT can process MPE queries (tk = MPE), MAP queries (tk = MAP),
and probability queries (tk = P ). Given an MPE query, Com-LJT uses J-MPE-LJT on J ,
which produces a correct assignment for rv(J) \ rv(E) = rv(G) \ rv(E). Given an MAP
query over Q|C,k where there exists a subtree J ′ such that rv(J ′) = Q|C,k, Com-LJT
uses J-MPE-LJT on J ′, which produces a correct assignment for rv(J ′) \ rv(E) = Q|C,k.
Given an MAP query over Q|C,k where the subtree J ′ contains more PRVs than in
Q|C,k, Com-LJT uses MAP-LVE to compute a correct assignment for Q|C,k ⊂ rv(J ′).
Given a probability query with query terms Q|C,k, Com-LJT uses LVE for parameterised
conjunctive queries to compute a correct result. In conclusion, Com-LJT uses sound
algorithms to provide correct results to each query.

Completeness This analysis has two parts, one for MPE queries and one for MAP
queries. We start with MPE queries, which do not concern specific query terms, only
models and evidence. The results for MPE-LVE and MPE-LJT coincide with the results
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of LVE and LJT for query class Q of single ground query terms and model classesM2lv of
two-logvar models andMprv1 of models with one-logvar PRVs (given liftable evidence).

Theorem 10.4.7. MPE-LVE and MPE-LJT are complete for the model classes M2lv

andMprv1.

Proof. The completeness results of LVE and LJT hold for the query class Q, which also
includes computing a result for an empty query. An empty query requires no shatter-
ing on query terms and an elimination of all model PRVs. Answering an empty query
corresponds to explicitly computing the normalisation constant Z of a model. LVE and
LJT are able to compute a domain-lifted solution to such an empty query for any model
of the two classes. Computing an answer to an MPE query also requires eliminating all
model PRVs and as such is an analogous task to the empty query for LVE and LJT. As
both the MPE versions of LVE and LJT follow the same workflow as before, we have
to show that the changes made to the operators keep the algorithms domain-lifted. The
steps performed in the operators max-out and sum-out are analogous to each other, sift-
ing through the input parfactor and performing an arithmetic operation on potentials
(addition/maximisation). Thus, this change does not lead to a change in complexity.
At the same time of performing a maximisation, the max-out operator also constructs
a histogram corresponding to the arg max assignment. Constructing such a histogram
can be thought of as performing a count conversion for the PRV that is maxed out. The
complexity of a count conversion is polynomial in the domain sizes of the logvars involved
(Taghipour, 2013). Thus, the overall complexity of max-out remains polynomial in the
domain sizes of the logvars involved.
The operator multiply sifts through its input parfactors as before. Additionally, it con-

catenates histogram sequences, which is a constant operation w.r.t. domain sizes. The
operator count-convert performs for each potential calculation an analogous histogram
calculation, summing and multiplying counts instead of multiplying and exponentiat-
ing potentials. The size of a histogram, i.e., the number of tuples in it, depends on
the range size of the underlying PRV. Thus, the additional work load is bounded by
the same complexity as the original count conversion. The remaining operators do not
have a change in operation, with histograms being copied along, which is an operation
independent of domain sizes. The remaining part to show is that the preconditions of
the operators do not lead to operations depending exponentially on domain sizes, i.e.,
do not lead to groundings. The operators count-convert and expand have additional
preconditions, which as argued during their introduction do not limit MPE-LVE in its
operations. Thus, answering an MPE query with MPE-LVE corresponds to answering
an empty query with LVE with a runtime complexity polynomial in domain sizes and
the arguments for completeness of LVE transfer to MPE-LVE w.r.t. the two classes.
The results for MPE-LVE extend to MPE-LJT: As fusion ensures that message passing

does not induce any additional groundings, the completeness results of MPE-LVE hold
also for MPE-LJT (compare Chapter 5).
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The complexity of the MPE-LVE operators compared to the LVE operators remains
the same. A more detailed complexity analysis follows in the complexity paragraph.
The second part of this completeness analysis concerns MAP queries. Due to the non-
commutativity of summing out and maxing out, answering MAP queries can quickly lead
to prohibitively large intermediate results. In a paradox turn, an algorithm can still be
domain-lifted and complete as long as runtimes are polynomial in the domain sizes of
the model logvars. But, logvars in query terms can cause groundings, making MAP-LVE
and MAP-LJT not complete for two-logvar models.

Theorem 10.4.8. MAP-LVE and MAP-LJT are not complete for the model classM2lv

and the class of all possible MAP queriesMAP.

Proof. Assume both algorithms are complete for all possible two-logvar models. Con-
sider a parfactor φ(Q(X,Y ), R(X), S(Y )) and an MAP query MAP({Q(X,Y )}) without
evidence. MAP-LVE has to sum out R(X) and S(Y ) before maxing out Q(X,Y ). Nei-
ther summing out R(X) nor S(Y ) is possible as neither contains both logvars. As both
logvars are not countable, MAP-LVE has to ground one of them, which means the algo-
rithm run is no longer polynomial in the domain size of the grounded logvar. MAP-LJT
exhibits the same behaviour using MAP-LVE as a subroutine. Therefore, MAP-LVE and
MAP-LJT are not complete w.r.t. the class of two-logvar models.

An MAP query poses a problem to MAP-LVE and MAP-LJT that is similar to the
problem that parameterised conjunctive queries pose to LVE and LJT w.r.t. constraints
and logvars. Therefore, there exists a query classMAP lift that corresponds to PCQlift.

Definition 10.4.1. Query class MAP lift refers to MAP query terms with one logvar
per PRV and one set of constants per logvar.

Theorem 10.4.9. MAP-LVE and MAP-LJT are complete for the query classMAP lift
and the model classesM2lv andMprv1.

Proof. To show that LVE is complete for the query classMAP lift, we need to show that
LVE is domain-lifted for all queries in MAP lift. The proof combines arguments from
Thms. 8.2.3 and 9.3.3 about completeness of liftable (parameterised) conjunctive queries.
Given a query Q ∈ MAP lift, LVE shatters the input model on Q. The splitting

procedure defined by Taghipour et al. (2013c) splits any parfactor into two parts at most
given a PRV. With one set of constants per logvar in Q, a parfactor is split into two
parfactors at most for each query term covered by its arguments. In a parfactor that
covers some query terms Q′ ⊆ Q, query terms in Q′ with the same logvar or constant
lead to one split. Query terms in Q′ with different logvars lead to a split for each logvar,
resulting in 2l splits at most, where l is the number of logvars in Q′. With a bounded
number of splits only depending on the number of logvars (not on the domains), a liftable
MAP query does not lead to groundings during shattering.
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For models inM2lv, LVE eliminates all non-query terms with two logvars asMAP lift
only contains query terms with one logvar. Eliminating two-logvar PRVs either uses
lifted summing out or group inversion (Taghipour et al., 2013d). Afterwards, a model
contains only one-logvar PRVs without any counted logvars and ground randvars, which
is a model ofMprv1. Following the argument from the proof of Thm. 9.3.3, MAP-LVE
is able to count all remaining logvars and eliminate all non-query terms. The remaining
CRVs refer to query terms, which MAP-LVE maxes out, yielding an assignment for Q.
Thus, MAP-LVE is complete for M2lv and Mprv1. As MAP-LJT uses MAP-LVE to
answer a particular query, completeness for MAP-LJT immediately follows.

Similar to parameterised queries, more liftable queries exist in addition to the queries
in MAP lift. E.g., if query terms contain fewer logvars than the non-query terms, no
groundings occur, which compares to Proposition 9.3.4. If there is a query term Q(X,Y ),
which appears in a parfactor together with R(X) and S(Y ), then groundings occur (see
Proposition 9.3.2). But, in contrast to parameterised queries, the logvars of MAP query
terms may be subsets of each other as MAP-LVE does not need to induce a joint distri-
bution. In summary, liftable MAP queries exist and under certain conditions, one can
inspect a model to determine a query to be liftable or grounding. As intermediate par-
factors still may get prohibitively large, the upcoming complexity analysis characterises
queries with the same tree width as probability and MPE queries.

Complexity We analyse the runtime complexity of the MPE and MAP versions of LVE
and LJT. We assume a model and evidence that permit a lifted solution.
The complexity results of MPE-LVE are based on two observations, (i) the MPE-LVE

operators stay within the runtime complexity of their LVE counterparts and (ii) an MPE
query corresponds to an empty probability query, cf. the proof of Thm. 10.4.7 for both.
As mentioned before, the runtime complexity of LVE and of message passing in LJT
are identical given a a model G with an FO jtree J , i.e., O(nJ · log2 n · rwg · nw#·r#

# )
where nJ is the number of parclusters in J , (wg, w#) is the lifted width of J , n is the
largest domain size among lv(G), r the largest range size among the PRVs in J , n# is
the largest domain size of the counted logvars, and r# is the largest range size among the
PRVs in the CRVs. Given the two observations from above, we can transfer the runtime
complexity of LVE to MPE-LVE and formulate the following theorem.

Theorem 10.4.10. The runtime complexity of MPE-LVE is equal to the runtime com-
plexity of LVE for single ground query terms, lying in

O(nJ · log2 n · rwg · nw#·r#
# ). (10.4)

Computing an answer to an empty query with LVE and an answer to an MPE query re-
quires the same number of eliminations, carried out by operators of the same complexity.
Thus, the complexity of MPE-LVE and LVE coincide.
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For MPE-LJT, we need to consider its individual steps. The runtime complexity of
construction is negligible. The runtime complexity of evidence entering is characterised
by Expression (10.4). Message passing has only an inward pass, meaning, nJ−1 message
calculations, each in parcluster complexity. After the inward pass, MPE-LVE eliminates
the PRVs at some final parcluster, which also lies in the parcluster complexity. Thus,
Expression (10.4) also characterises the overall runtime complexity of MPE-LJT.

Theorem 10.4.11. The runtime complexity of MPE-LJT is equal to the runtime com-
plexity of MPE-LVE and therefore, LVE, i.e., O(nJ · log2 n · rwg · nw#·r#

# ) (10.4).

The effort for evidence entering and message passing directly coincides with the op-
erations MPE-LVE performs. Only construction produces overhead within MPE-LJT.
But, given a model and a specific set of evidence, only one MPE query is possible. Thus,
MPE-LJT cannot answer multiple queries and trade off its overhead for construction.
A speed-up for answering an MPE query is still possible due to a reduced search space
for possible operations in parclusters. Given a string of evidence sets, MPE-LJT might
offset its construction effort over answering MPE queries for each evidence set.
We now move to analysing the runtime complexity of the MAP algorithms. MAP

queries are similar to parameterised conjunctive queries, requiring a subtree for the query
terms. LJT has a query answering complexity for liftable parameterised conjunctive
queries of O(n′J · log2 n · rwg · nw#·r#

# ) where n′J stands for the number of parclusters
in the subtree J ′ required for answering a parameterised conjunctive query. But since
summing out and maxing out are not commutative, the runtime complexity even of
liftable MAP queries does not adhere to (wg, w#). In a worst-case scenario, MAP-LVE
has to multiply all parfactors in J ′ into one parfactor over all PRVs in J ′ to sum out
non-query terms, which would lead n′J to become a part of rwg , i.e., rn′J ·wg . Given an FO
jtree J , we are able to determine queries that are liftable and have intermediate results
bounded by the lifted width of J . For LVE, an FO dtree and its lifted width take over
the role of an FO jtree.

Proposition 10.4.1. An MAP query over query terms Q for a model G with FO jtree
J permits a domain-lifted run iff Q = rv(J ′) for a subtree J ′ of J . We call such a query
a bounded MAP query.

Such a bounded MAP query permits characterising the complexity of MAP-LVE and
MAP-LJT in terms of the lifted width of the corresponding FO jtree. Given an FO jtree
J , an MAP query over all PRVs of a subtree of J guarantees that all PRVs that do no
occur in the subtree are eliminable by summing out. The non-query PRVs appear in the
remaining parclusters of J given the subtree. Assume that J ′ has n′J parclusters, which
means nJ − n′J parclusters remain outside of J ′. Eliminating the non-query PRVs then
has a complexity of

(nJ − n′J) ·O(log2 n · rwg · nw#·r#
# ), (10.5)
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which is (nJ − n′J) times the parcluster complexity. Within the subtree, MPE-LVE
operators are applied at each parcluster of the subtree, which leads to a complexity of

n′J ·O(log2 n · rwg · nw#·r#
# ). (10.6)

Expressions (10.5) and (10.6) together lead to the following runtime complexity of MAP-
LVE given a liftable bounded MAP query.

Theorem 10.4.12. For a bounded MAP query, MAP-LVE has a runtime complexity of

O(nJ · log2 n · rwg · nw#·r#
# ) (10.7)

which coincides with the complexity of MPE-LVE and LVE.

In contrast to MPE-LJT, MAP-LJT is able to answer a set of queries given an evi-
dence set. MAP-LJT performs a full message pass, which has a complexity as in Expres-
sion (10.4). Given an MAP query and a corresponding subtree, the query answering step
basically follows J-MPE-LJT, maxing out the query terms in the subtree. The complex-
ity of answering an MAP query falls under O(n′J · log2 n · rwg ·nw#·r#

# ) again, which leads
to the following overall complexity of MAP-LVE.

Theorem 10.4.13. Given an FO jtree J with nJ parclusters for a model G and a set of m
liftable bounded MAP queries, which require a subtree with a maximum of n′J parclusters,
the complexity of MAP-LJT is

O((nJ +m · n′J) · log2 n · rwg · nw#·r#
# ), (10.8)

The runtime complexity of MAP-LJT coincides with the complexity of LJT for param-
eterised (conjunctive) queries. MAP-LJT is able to offset its overhead of construction
and message passing by answering multiple queries, which are expected to require small
subtrees of a given FO jtree. Com-LJT also falls under the complexity given in Expres-
sion (10.8), in which n′J = nJ for MPE queries.
The next section presents an empirical evaluation to show that it is practically achiev-

able to implement the given algorithms leading to runtimes for MPE queries and bounded
MAP queries that lie close to the runtimes of probability queries.

10.5 Empirical Evaluation

This section presents an empirical evaluation of the MPE and MAP versions of LJT and
LVE. FOKC is not a part of this evaluation as its implementation (available at https://
dtai.cs.kuleuven.be/software/wfomc) does not allow for assignment queries. For the
MPE and MAP versions, we have implemented prototypes based on the LJT prototype
of the previous evaluations and the LVE implementation by Taghipour (available at
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https://dtai.cs.kuleuven.be/software/gcfove). We test the implementations w.r.t.
the parameters that influence the complexity of LVE and LJT, namely, (i) largest domain
size n, (ii) number of parclusters nJ , and (iii) lifted width (wg, w#) in which wg is the
ground width and w# the counting width. The basic input model is Gex with boolean
ranges, n = 1000, which we use for each logvar, nJ = 3, wg = 3, and w# = 1. Evidence
is empty as to not add noise w.r.t. the parameters. When varying one parameter, the
remaining parameters appear fixed. Additionally, for varying nJ , each new parcluster has
a lifted width of (3, 0). When varying wg, each of the nJ = 3 parclusters has a ground
width of wg. When varying w#, each of the nJ = 3 parclusters has a counting width of
w#. Doing so ensures that each message is affected and that each possible query leads to
a parcluster of worst case size. The overall number of parfactors |G| varies between 3 and
70 with |gr(G)| ranging from 11 to 24,000,000,001. We present the empirical evaluation
in two parts, (i) runtimes for MPE calculations and (ii) runtimes for MAP calculations.

MPE Evaluation This first part of the evaluation investigates the tradeoff still possible
with MPE-LJT compared to MPE-LVE as well as the effect of maxing out and managing
assignments on runtimes. Handling assignments adds work for the MPE versions, but,
on average, determining a maximum value takes less time than computing a sum. As
a baseline, we use LVE answering an empty query P (.), which means computing the
normalisation constant Z. An empty query complements an MPE query as for each, an
algorithm eliminates all model PRVs without splitting off query terms.
Figure 10.2 shows runtimes in milliseconds [ms] for MPE-LJT (hollow circle) and MPE-

LVE (filled circle) as well as LVE (filled triangle) on a log-scaled y-axis. In each subfigure,
one of the parameters domain size n, number of parclusters nJ , ground width wg, and
counting width w# varies. In Fig. 10.2a, n varies from 2 to 1000 on a log-scaled x-axis.
The runtimes of all three algorithms increase with rising domain sizes as expected from
the complexity analysis. Though, only marginally, MPE-LJT has the shortest runtimes
over all n. With larger domain sizes, LVE answering an empty query is the slowest
program, though, again only slightly. In Fig. 10.2b, nJ varies between 2 and 11. All
versions exhibit a linear increase in runtimes. The MPE versions have shorter runtimes
from the beginning. But, only a fraction of time separates MPE-LJT and MPE-LVE.
MPE-LVE runtimes increase slightly more than MPE-LJT runtimes. For nJ = 2, the
LJT version takes 0.93 of the runtime of MPE-LVE. For nJ = 11, this factor is 0.82. In
Fig. 10.2c, wg varies from 2 to 11. Runtimes of LVE and MPE-LVE coincide over all
models while MPE-LJT is faster by a factor between 0.43 and 0.63. In Fig. 10.2d, w#

lies between 0 and 9. Here, runtimes of MPE-LVE and MPE-LJT more or less coincide.
LVE takes slightly longer to answer an empty query. Runtimes surge when reaching a
counting width of 2 after which the increase flattens out.
Overall, the MPE versions exhibit behaviour as expected from the complexity analysis.

Computing answers to MPE queries does not have a negative impact on runtimes, more
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Figure 10.2: Runtimes [ms] for MPE-LJT and MPE-LVE with LVE answering an empty
query as a baseline; if not stated, domain size n = 1000, number of parclusters nJ = 3,
ground width wg = 3, counting width w# = 1

to the contrary. As MPE-LJT always has to perform an MPE message pass to compute
an answer, MPE-LJT runtimes do not exhibit a strong lead compared to MPE-LVE. Still,
MPE-LJT has a reduced runtime compared to MPE-LVE using the underlying helper
structure. Evidence handling, though not part of this evaluation, is not affected by
assignment handling as assignments are empty at that point in the algorithm. The effort
for entering evidence in MPE-LJT and handling evidence in MPE-LVE is identical in
terms of applications of the absorption operator. MPE-LJT and MPE-LVE then handle
the resulting model after absorption, which follows the same behaviour investigated here.

MAP Evaluation This second part of the evaluation takes a look at how runtimes
behave w.r.t. domain size, number of parclusters, and lifted width given a bounded MAP
query. Additionally, we compare runtimes for an MAP query causing a grounding, an
MAP query requiring an extra count conversion, and a bounded MAP query. Each query
consists of two (parameterised) query terms with a > constraint, contained within one
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Figure 10.3: Runtimes [ms] for MAP-LJT and MAP-LVE with LJT and LVE answering
an empty query as a baseline; if not stated, domain size n = 1000, number of parclusters
nJ = 3, ground width wg = 3, counting width w# = 1

parcluster. We do not consider subtree size for MAP queries as we expect a behaviour
of MAP-LJT similar to LJT for conjunctive queries as investigated in Section 8.3.
Figure 10.3 shows runtimes in milliseconds [ms] for MAP-LJT (hollow symbols) and

MAP-LVE (filled symbols) on a log-scaled y-axis for an MAP query over a separator.
In each subfigure, one of the parameters n, nJ , wg, and w# varies. Three runtimes are
given per program, total runtime (squares), runtime for summing out (“sum”, triangles),
and runtime for maxing out (“max”, circles). Given that MAP-LJT answers the query
on a smaller submodel than MAP-LVE, we expect the MAP-LJT runtimes to be shorter
than the MAP-LVE runtimes for summing out and, consequently, in total.
In Fig. 10.3a, n varies from 2 to 1000 on a log-scaled x-axis. Total runtimes of MAP-

LVE exhibit a sharper increase than those of MAP-LJT as the input model for answering
the query is larger and the effects of larger domain sizes amplify because of it. In
Fig. 10.3b, nJ varies between 2 and 11. Runtimes of MAP-LJT are almost constant
as the MAP query can be answered on one parcluster. MAP-LVE runtimes exhibit a
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Figure 10.4: Runtimes [ms] for answering a bounded query (“bnd”), a liftable query with
enlarged parfactor size (“cnt”), and a grounding query (“grd”) for MAP-LJT and MAP-
LVE w.r.t. domain size n ranging from 2 to 1000; number of parclusters nJ = 3, ground
width wg = 3, counting width w# = 1

small linear increase that is barely noticeable in the log-scaled plot. In both plots, the
“sum” runtimes make up a large part of the total runtimes of MAP-LVE as the sum-out
part outweighs the max-out part. With MAP-LJT, the “max” part makes up the larger
portion of the total runtimes as only one non-query term needs to be summed out before
maxing out begins. Overall, MAP-LJT has shorter runtimes, being more than one order
of magnitude faster than MAP-LVE, for all nj tested and n ≥ 100.
In Fig. 10.3c, wg varies from 2 to 11 and in Fig. 10.3d, w# lies between 0 and 9. For

the w# runtimes, the logvars are set up with a domain size of n = 10 as a domain size of
n = 1000 leads to memory errors from a counting width of 5 onwards. For both settings,
MAP-LVE and MAP-LJT exhibit a similar increase in runtimes, with MAP-LJT needing
around 0.2 times the runtime of MAP-LVE. Varying the lifted width still shows that the
“sum” part of MAP-LVE dominates the total runtimes of MAP-LVE. With MAP-LJT,
the “max” part makes up a larger portion of the total runtime only in the beginning. With
a rising lifted width, the query covers a shrinking portion of the parcluster, which means,
MAP-LJT has to sum out more terms. Thus, the “sum” part becomes the main influence
on the overall runtime, similar to MAP-LVE. With varying lifted width, the runtimes of
the “max” part of both programs coincide, which is expected from a theoretical point of
view as both algorithms have to perform the same maxing-out operations (the difference
lies in the number of summing-out operations due to the different model sizes during
query answering). Given a query over a whole parcluster, the summing-out runtimes
of MAP-LJT drop to 0 and the maxing-out time makes up the total runtime with a
behaviour that is similar to the one investigated during the MPE evaluation.
Figure 10.4 shows the effect of a query on runtimes by comparing total runtimes of

three different queries, namely, a bounded query (“bnd”, circles) as before, a liftable query
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with enlarged parfactor size (“cnt”, squares), and a grounding query (“grd”, triangles).
The figure shows runtimes in milliseconds [ms] for MAP-LJT (hollow symbols) and MAP-
LVE (filled symbols) on a log-scaled y-axis. The x-axis shows an increasing domain size
n ranging from 2 to 1000 to illustrate the exponential effect of groundings. Given a
grounding query, runtimes of both programs surge. Starting with n = 14, the grounding
query leads both programs to have memory errors. The counting query, which has the
effect of requiring two count conversion to be able to sum out a non-query term with
fewer logvars, leads both programs to exhibit an increase in runtimes that is not as
sharp as the one for the grounding query but still noticeable. MAP-LVE with a bounded
query performs one count conversion due to the model, while MAP-LJT with a bounded
query performs zero count conversions as the PRVs requiring a count conversion are
independent from the parcluster used for query answering. Together, they illustrate how
count conversions have a greater impact on runtimes than lifted eliminations.
Overall, both MAP versions exhibit expected behaviour when varying parameters that

influence the runtime complexity. With bounded MAP queries, MAP-LJT has decidedly
shorter runtimes than MAP-LVE, enabling MAP-LJT to trade off its static overhead.
Given smaller models, MAP-LJT needs 3 to 6 bounded queries to trade-off its overhead.
With larger models, MAP-LJT needs only 2 queries. Considering Com-LJT as a frame-
work for answering a variety of queries efficiently, liftable (assignment or probability)
queries contribute to trading off static overhead and answering a set of queries fast.

10.6 Interim Conclusion: Most Probable Assignments

Queries for most probable assignments represent a new task to LVE and LJT compared
to the queries for probabilities or probability distributions in the previous chapters. In
this chapter, we introduce MPE and MAP queries as assignment queries. Conceptually,
answering a query for a most probable explanation means replacing summing out with
maxing out. But, given a parameterised model and a set of LVE operators, the imple-
mentation of the replacement is not straight-forward. First, adapting LVE and LJT to
answer assignment queries requires a way to store and retrieve assignments that lead to a
maximum potential. To this end, we present an extended notion of parfactors that map
its arguments to potentials as well as assignments for a sequence of maxed out PRVs.
Second, answering assignment queries requires a new operator for maxing out a set of
interchangeable randvars as well as adapted operators to handle assignments appropri-
ately. Therefore, we present a complete specification of all MPE-LVE operators including
generalised counting operators.
Based on the redefined MPE-LVE operators, MPE-LVE and MPE-LJT are able to effi-

ciently answer MPE queries in probabilistic relational models, leveraging their individual
strengths. With MAP-LVE and MAP-LJT, we also present two algorithms to answer
MAP queries in probabilistic relational models. In combination with an FO jtree, it
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is even possible to characterise MAP queries that allow both algorithms to provide an
answer without requiring any groundings or causing larger intermediate results than a
comparatively simple MPE query would, an observation we pour into J-MPE-LJT. To
the best of our knowledge, the theoretical analysis provides the first analysis of MPE and
MAP queries in the lifted inference field in such detail.

An interesting avenue to take with the MAP algorithms specified here is looking at
the new lifted inference rule introduced by Sharma et al. (2018) and investigate whether
it is transferable to parameterised models. The same holds for the optimisation of Apsel
and Brafman (2012a) regarding look-ups for uniform assignments. Additionally, one can
turn to the lifting rule of domain recursion. Domain recursion allows for lifted runs of
models representing transitivity as shown by Kazemi et al. (2017). The question is how
domain recursion can be used to lift such models also for MPE queries.

With LVE and LJT versions for assignment queries, we have filled a gap in lifted in-
ference algorithms for assignment queries based on VE, allowing for handling assignment
queries in a lifted way. By setting up Com-LJT, we have shown how probability, MPE,
and MAP queries can exploit an underlying FO jtree to varying degrees. Coming to the
end of this chapter and the second part of this dissertation, we have covered Contribution
(5a), redefined LVE operators for solving MPE queries, Contribution (5b), LVE and LJT
versions for MAP queries, and Contribution (5c), completeness and complexity results
for LVE and LJT versions answering MPE and MAP queries. In aiming for a richer query
language, we have designed lifted algorithms for queries for marginal distributions as well
as MAP assignments allowing for a set of parameterised query terms. The upcoming part
focusses on adapting LJT to handling incremental changes in a model as well as allowing
for different QA algorithms as a subroutine.
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Chapter 11

Adaptive Inference

A common task in many applications is repeated inference on variations of a model.
Variations range from a new set of observed events to updating a probability distribu-
tion given observations or adapting a model structure while optimising a model repre-
sentation. Applications include risk analysis where an MPE is of interest with changing
sets of events coming in regularly (Muñoz-González et al., 2017). For learning a model
structure given observed data, one approach, called structural expectation-maximisation,
alternates between minimally changing a model structure and updating distributions in
a model to optimise the representation of the observed data. The approach involves
changing a model w.r.t. structure and distributions as well as repeated inference when
computing the probability of the observed data in the altered model (Friedman, 1998).
In a naive way, one incorporates the changes in a model or evidence and performs

inference. Adaptive inference, however, aims at performing inference more efficiently
when changes in a model or evidence occur. Research exists for adaptive inference on
propositional models (Delcher et al., 1995; Acar et al., 2008a,b). But, modelling realistic
scenarios yields large probabilistic relational models, requiring exact and efficient reason-
ing about sets of individuals. But, to the best of our knowledge, research for adaptive
inference on relational models is limited. Now, changes can also affect the sets of indi-
viduals over which one reasons or the sets on which one conditions on. How to handle
such incremental changes correctly and efficiently is not obvious. Nath and Domingos
(2010b) and Ahmadi et al. (2011) provide an approximate algorithm based on lifted be-
lief propagation, LBP, for lifted, adaptive inference for changing evidence. Nath and
Domingos (2010b) reuse results from previous algorithm runs and propagate messages
only in affected regions. Ahmadi et al. (2011) consider Gaussian belief propagation for
continuous variables. But, a comprehensive algorithm for exact adaptive inference in
probabilistic relational models is still missing.
This chapter focuses on exact inference for multiple queries and presents an efficient

algorithm for adaptive inference based on LJT, called aLJT, handling changes in model
and evidence. The following paper presented aLJT

Tanya Braun and Ralf Möller. Adaptive Inference on Probabilistic Relational
Models. In Proceedings of AI 2018: Advances in Artificial Intelligence, pages
487–500. Springer, 2018
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This paper includes two main contributions, (i) procedures for adapting an FO jtree to
incremental changes for its underlying model and (ii) an algorithm, aLJT, preserving as
much work as possible under changes in a model. LJT for adaptive inference handles
changes ranging from new evidence to extending a model with new factors containing
new randvars. The algorithm quickly reaches the point of answering queries again after
changes, which is especially important for time-critical or online query answering.
In this chapter, we present both the procedures for FO jtrees as well as aLJT, which

make up Contribution (6a) and (6b) of this dissertation. We start with discussing the
potential of adaptive inference for LJT. We continue with the two main contributions
regarding adjusting an FO jtree and adaptive LJT. A theoretical analysis follows, con-
centrating on soundness, which compared to the paper mentioned above, is more fleshed
out. An empirical evaluation highlights how the adaptive nature of aLJT allows for faster
QA given consecutive changes to a model.

11.1 The Potential of Adaptive Inference and LJT

The LJT use case is answering a set of queries {Qi}mi=1 given a model G and evidence
E. LJT assumes a constant G for which it builds an FO jtree J , reusing J for varying
evidence and queries. However, G may change, and changes do not necessarily mean a
completely new evidence set or model. Given incremental changes, LJT can partially
preserve J , local models, or messages. Let us consider what changes in any of the inputs
mean for LJT and how LJT could exploit that certain parts remain unchanged under
incremental changes.

Queries Changing queries are the main feature of LJT which only requires a model and
evidence for setting up an FO jtree including messages. In an online QA scenario, LJT
can answer any query coming in once message passing is complete. Given a new query,
LJT continues answering queries, using J with its current local models and received
messages. To speed up runtimes for queries, one needs to handle internal computations
differently, e.g., through caching, as discussed earlier as a possible course for future work.

Evidence Currently, if evidence changes, LJT resets the local models in J to their
original form, deleting messages and evidence. Then, it enters evidence. But, evidence
may change only partially, making full evidence entering unnecessary. Only if evidence
changes affect a parcluster Ci, LJT has to redo evidence entering for Ci.

Model If changes in a model occur, LJT currently construct an FO jtree for the changed
model. Changes in a model belong to two categories, namely, changes that affect the
model structure through arguments in parfactors and changes that do not. In case of
changes in potentials, domains or constraints, and ranges, the model structure remains the
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same, which entails that the parclusters remain the same. LJT could restart with evidence
entering to ensure that it handles evidence correctly after updating the parfactors and
constraints. New potentials in a parfactor or modified ranges usually concern only a part
of a model, leaving parts of the FO jtree untouched. Incremental changes affecting the
model structure occur in the form of deleting, adding, or replacing a parfactor. As the
model is identical in large parts, we assume that it is efficient to keep J and adapt it
accordingly, saving the effort of reconstructing unchanged parts of the model.
After changes in evidence and model, full message passing may be unnecessary since

not all local models may have changed. Assume that evidence has changed for one
peripheral parcluster, yielding a changed local model Gi. LJT only needs to distribute
the changed Gi to the other parclusters. The same holds for model changes that affect
only a handful of parclusters. These deliberations guide us in setting up adaptive steps
for LJT to handle incremental changes. But before presenting aLJT, we look at how to
adapt an FO jtree to changes, which becomes a subroutine of aLJT.

11.2 Adapting an FO Jtree to Model Changes

Model changes may yield a structure change in a model, which may cause a structure
change in an FO jtree J = (V,E). All actions towards adapting J need to ensure that J
continues to be a minimal FO jtree and local models still partition G. This section looks
at adding, deleting, or replacing a parfactor in a model G with an FO jtree J .

Addition Adding a parfactor g+ to G requires adding g+ to a local model for the local
models in J to partition G∪ {g+}. If the arguments in g+ appear in a parcluster Ci, we
add g+ to Gi. But, if g+ contains new PRVs or if the known PRVs in g+ do not appear
in a single parcluster, there is no parcluster Ci s.t. rv(g+) ⊆ Ci. Thus, we adjust J until
the known PRVs appear in a single parcluster, and handle the new PRVs accordingly.
Algorithm 12 shows pseudocode for adding g+ to J = (V,E). The instructions for

marking parclusters become relevant for aLJT. We assume that g+ contains at least one
PRV from G to yield a single FO jtree and not a forest. Otherwise, in a nutshell, one has
to search for argument PRVs in the forest and combine FO jtrees if necessary. Let Aold

refer to the known PRVs and Anew to the newly introduced PRVs. We first consider the
whole add procedure before delving into adjusting an FO jtree. After adjusting J , there
is a parcluster Ci s.t. Aold ⊆ Ci. If g+ includes only Aold, procedure add adds g+ to the
local model Gi at Ci. If g+ contains new PRVs, add distinguishes between Aold ⊂ Ci

and Aold = Ci. In the former case, there are PRVs in Ci that do not appear in rv(g+)
and vice versa. add adds a new node Ck ← rv(g+) with Gk ← {g+} as a neighbour to
i to keep parclusters small. In the latter case, Ci is a strict subset of the PRVs in g+.
add adds the new PRVs to Ci and g+ to Gi for a minimal J . Now, the local models
partition G′. The following example illustrates a simple addition.
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Algorithm 12 Adding a parfactor g+ to an FO jtree J = (V,E)

procedure add(FO jtree J , parfactor g+)
Aold ← rv(g+) ∩ rv(V ), Anew ← rv(g+) \ rv(V )
adjust(J , Aold)
Get Ci ∈ V where Aold ⊆ Ci

if Anew = ∅ then
Gi ← Gi ∪ {g+}
Mark Ci

else if Aold = Ci then
Ci ← Ci ∪ rv(g+), Gi ← Gi ∪ {g+}
Mark Ci

else
Create Ck ← rv(g+), Gk ← {g+}
Add Ck to V and {i, k} to E
Mark Ck

procedure adjust(FO jtree J , PRVs A)
Extract a set of nodes N s.t. A ⊆ rv(N)
while |N | > 1 do

Take two parclusters Ci,Cj ∈ N
P ← path from Ci to Cj including Ci,Cj

Mark parclusters on P
while length(P ) > 1 do

Merge P [0] and P [length(P )− 1] in J . Definition 4.3.2 plus mark
if ∃Ck,Cl on P : Skl ⊆ SP [0]P [1] ∧ Skl ⊆ SP [length(P )−2]P [length(P )−1] then

Remove {k, l} from E
break

P ← P [1 . . . length(P )− 2]

Update N regarding merged parclusters

Example 11.2.1 (Simple Addition). Consider the FO jtree for Gex as in Fig. 4.1. We
add to Gex the parfactor g4 = φ4(Epid, Sick(X),Work(X)), where PRVWork(X) holds
if a person X works. For g4, the known PRVs are Epid, Sick(X) which appear in C2

and C3. Assume Alg. 12 chooses C3. Parfactor g4 contains a new PRV, Work(X),
and C3 contains a PRV not in g4, Treat(X,M). Thus, Alg. 12 adds a parcluster C4 =
{Epid, Sick(X),Work(X)}, G4 = {g4}. Figure 11.1 shows the result.

Procedure adjust in Alg. 12 arranges that Aold ⊆ Ci for some Ci ∈ V . adjust finds
a set of parclusters N that cover Aold and merges N into a single parcluster to fulfil
Aold ⊆ Ci. To merge N , it successively merges two parclusters Ci,Cj ∈ N . A merge is
a union of parclusters, local models, and neighbours as given in Definition 4.3.2. Since
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Epid
Nat(D) Man(W )

{g0, g1}

C1

Epid
Sick(X) Travel(X)

{g2}

C2

Epid
Sick(X) Treat(X,M)

{g3}

C3

Epid
Sick(X) Work(X)

{g4}

C4

Figure 11.1: FO jtree after adding a parfactor

P [0] P [1] P [2]

. . .

P [len− 3] P [len− 2] P [len− 1]

(a) Before merging P [0] and P [len− 1]

P [0], P [len− 1] merged

P [1]

P [2]

. . .

P [len− 2]

P [len− 3]

(b) After first merging

P [0], P [len− 1] merged

P [1], P [len− 2] merged

P [2]

. . .

P [len− 3]

(c) After second merging

Figure 11.2: A path of parclusters; len = length(P )

J is acyclic, there exists a unique path P from Ci to Cj including Ci and Cj , which
forms a cycle if there lies more than one parcluster between Ci and Cj , i.e., |P | > 3.
Figure 11.2a depicts such a path of parclusters with P [0] = Ci and P [len − 1] = Cj .
Merging Ci and Cj leads to a cycle, a scenario which is depicted in Fig. 11.2b.
There are two ways to resolve the cycle. The first and easy, though more unlikely, way

is to find an appropriate edge to delete on the cycle. Deleting an edge would break the
cycle, but it would require the running intersection property not be violated. Thus, an
edge {k, l} on the path has to fulfil a condition given the separator Skl of that edge:

Skl ⊆ SP [0]P [1] ∧ Skl ⊆ SP [length(P )−2]P [length(P )−1], (11.1)

i.e., information on Skl reaches Ck from P [0] and Cl from P [length(P )−1]. If Skl exists,
adjust deletes the edge {k, l} to break the cycle, which keeps the parclusters on P small.
The second way to resolve the cycle is to merge parclusters of the path, always merging
the parclusters at the ends, i.e., P [0] and P [length(P )− 1], P [1] and P [length(P )− 2],
and so on until the cycle is resolved. Figures 11.2b and 11.2c show the parclusters after
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the first and second merging. After each merging of parclusters at path ends, we again
have the situation as in Fig. 11.2b. After the second merging as in Fig. 11.2c, the newly
merged light grey parcluster becomes the dark grey parcluster in Fig. 11.2b. In this
smaller cycle, Expression (11.1) might be true for some Skl. Thus, the pseudocode of
adjust reflects this situation occurring recursively by merging path ends, removing the
end parclusters from P , and checking Expression (11.1), until the cycle is resolved either
by deleting an edge or by merging all parclusters on the path from opposite ends. To
illustrate adjusting an FO jtree, we look at a slightly extended example FO jtree.

Example 11.2.2 (Adjusting). Let the adapted FO jtree in Fig. 11.1 have three more
parclusters with PRVs A1, A2, A3, and A4, shown in Fig. 11.3a. We add a parfactor g′ =
φ′(A4,Work(X)). A4 appears in parcluster C7, while Work(X) appears in parcluster
C4, i.e., N = {C7,C4}, marked in dark grey in Fig. 11.3a. adjust merges C4 and C7

into C′4, which causes a cycle, shown in Fig. 11.3b. The unique path between the former
C7 and C4 goes over the parclusters with indices 4, 3, 2, 5, 6, 7. No separator on the path
appears in C4 and C7, that is Expression (11.1) is not fulfilled, to easily break the cycle.
adjust continues merging parclusters on a path that now covers the indices 3, 2, 5, 6.
adjust merges the path ends C3 and C6 into C′3, the result shown in Fig. 11.3c. At
this point, separator S25 = {Epid} of edge {2, 5} (thick edge in Fig. 11.3c) appears in
the former C3 and C6. Therefore, adjust deletes edge {2, 5}, yielding a valid FO jtree
with five parclusters as seen in Fig. 11.3d. At C′4, Alg. 12 can add g′ to the local model.
Instead of deleting the edge, adjust could have merged C2 and C5 into one parcluster
{Epid, Sick(X), T ravel(X), A1, A2}, which would have lead to a valid FO jtree as well
but would have one larger parcluster with five PRVs instead of two parclusters with three
PRVs each, which means fewer calculations during query answering.

Deletion Deleting a parfactor g− from G requires removing g− from the local model Gi
in which g− appears. Afterwards, the local models partition G\{g−}. Deleting g− might
remove a PRV A from Gi if only g− contained A in Gi. If A no longer appears in Gi,
it may no longer need to be in Ci and could be removed from Ci, but only if removing
A from Ci does not violate the running intersection property. Removing A from Ci is
permissible if no two separators contain A, i.e.,

∀j, k ∈ nbs(i) : A 6∈ Sij ∧A 6∈ Sik. (11.2)

Procedure delete in Alg. 13 describes deleting g− from J = (V,E). After removing
g− from Gi, delete minimises Ci. Procedure minimise goes through the set of PRVs
that no longer appear and checks for each PRV A if Expression (11.2) holds. If so,
minimise deletes A from Ci, which minimises the messages that arrive from neighbours
that contain A, which also reduces the number of calculations during query answering.
If deleting PRVs from Ci leads to Ci ⊆ Cj for a neighbour Cj , minimise merges Ci and
Cj to keep J minimal. Let us look at deleting a parfactor.
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Figure 11.3: Extended FO jtree during adjusting
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Algorithm 13 Deleting a parfactor g− from an FO jtree J = (V,E)

procedure delete(FO jtree J , parfactor g−)
Get Ci ∈ V s.t. g− ∈ Gi
Gi ← Gi \ {g−}
minimise(J , Ci, rv(g−) \ rv(Gi))
Mark Ci

procedure minimise(FO jtree J , node Ci, PRVs A)
for PRV A ∈ A do

if ∀j, k ∈ nbs(i) : A 6∈ Sij ∧A 6∈ Sik then
Ci ← Ci \ {A}
Mark Ci

if Ci marked ∧ ∃j ∈ nbs(i) s.t. Ci ⊆ Cj then
Merge Ci and Cj in J . Definition 4.3.2 plus mark

Example 11.2.3. Consider the FO jtree in Fig. 11.3d. At parcluster C1, the local
model is G1 = {g0, g1}. We look at two scenarios, first deleting g0 and second deleting
g1. Deleting g0 would lead to a local model {g1}, which still contains all PRVs of the
parcluster, i.e., deleting g0 has no other consequence for the FO jtree. Deleting g1 would
lead to a local model {g0}, which contains only the PRV Epid. The two PRVs Nat(D)
and Man(W ) would no longer appear in G1, which would mean they may be removed
from C1 if the removal does not violate the running intersection property. As both PRVs
do not appear in the only neighbour of C1, Nat(D) andMan(W ) could both be removed
from C1. After removing the PRVs, C1 would be a subset of C2. Therefore, minimise
could merge C1 and C2, leading to a parcluster C′2 with a local model of {g0, g2}.

Replacement Replacing a parfactor g− with a parfactor g+ in G boils down to adding
g+ and then deleting g−, shown in Alg. 14. If both parfactors contain the same arguments,
i.e., rv(g−) = rv(g+), adding g+ and deleting g− only exchanges g− with g+ in the local
model that contains g−. If the new parfactor contains more PRVs than the old one, i.e.,
rv(g−) ⊆ rv(g+), adding g+ changes J in the sense that the parcluster of g− is extended
or a new parcluster added for rv(g+). If the parcluster of g− is extended for g+, deleting
g− does not change J any further as rv(g−) still appears in the parcluster through g+.
If a new parcluster is added for g+, deleting g− may lead to changes for the parcluster of
g−. First deleting g− may lead to removing PRVs and superfluously merging parclusters
before adding g+. If the new parfactor contains fewer PRVs than the old parfactor, i.e.,
rv(g+) ⊆ rv(g−), adding g+ before deleting g− uses that there exists a parcluster Ci

with rv(g+) ⊆ Ci as rv(g−) ⊆ Ci. If the arguments of g− and g+ overlap otherwise, i.e.,
rv(g−) ∩ rv(g+) 6= ∅, first adding g+ and then deleting g− avoids unnecessarily deleting
PRVs and merging parclusters for the overlap. If both parfactors do not share any PRVs,
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Algorithm 14 Replacing a parfactor g− with a parfactor g+ in an FO jtree J = (V,E)

procedure replace(FO jtree J , parfactor g−, parfactor g+)
add(J , g+)
delete(J , g−)

i.e., rv(g−)∩rv(g+) = ∅, replacing g− with g+ naturally decomposes into adding g+ and
deleting g−. To illustrate replacing parfactors, we look at the following example.

Example 11.2.4. Consider the FO jtree in Fig. 11.3d with its five parclusters again
(without Example 11.2.3). Let us replace g2 = φ2(Epid, Travel(X), Sick(X)) with a
parfactor g′2 = φ′2(Travel(X), Sick(X)). The new parfactor contains fewer PRVs than
the old parfactor. Algorithmically, the replacement involves adding g′2 and deleting g2.
As rv(g′2) ⊆ C2, one adds g′2 to C2. Then, replace deletes g2 at C2. After deleting g2

from G2, Epid no longer appears in G2. But, Epid appears in both its separators and
as such, has to remain in C2 to connect the appearance of Epid from C1 to C3.
In contrast to the above scenario of C2 remaining the same, assume that we re-

place g2 with g′2 = φ′2(Epid, Travel(X)). Then, after g2 is deleted from G2, min-
imise would remove Sick(X) from C2 as Sick(X) appears only in one separator. If
g′2 = φ′2(Epid, Sick(X)), minimise would remove Travel(X) after delete has deleted
g2. Then, minimise would merge C2 and C3 since C2 is a subset of C3.

This example concludes this section on adapting an FO jtree to changes in the form
of adding, deleting, or replacing parfactors. The next section details adaptive steps for
LJT to perform adaptive inference given incremental changes in the inputs of LJT.

11.3 LJT for Adaptive Inference

The extended algorithm aLJT performs adaptive inference more efficiently than by
restarting from scratch. Algorithm aLJT again consists of the steps construction, ev-
idence entering, and message passing before it answers queries. But, each step proceeds
in an adaptive manner w.r.t. changes in input model G or in evidence E given an FO
jtree J . If no FO jtree is present, aLJT reverts to LJT, requiring a model G to build J .
Algorithm 15 shows a description of aLJT for J , referring to the changes in G and

E by ∆G and ∆E. Line 2 contains the adaptive construction step, which adapts J to
∆G according to Algs. 12 to 14. To track changes, aLJT marks a parcluster Ci if a
local model Gi changes s.t. the messages become invalid. Based on the marks and ∆E,
aLJT performs an adaptive evidence entering and message passing, answering queries as
before. Lines 3 to 6 show adaptive evidence entering and lines 7 to 12 adaptive message
passing. Lines 13 to 16 contain the steps to answer a query Qi from a set of queries
{Qi}mi=1, as in LJT. Next, we look at the adaptive steps, followed by an example.
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Algorithm 15 LJT for adaptive inference
1: procedure aLJT(FO jtree J , Queries {Qk}mk=1, changes ∆G, changes ∆E)
2: Adapt J to ∆G according to Algs. 12 to 14 . marks parclusters
3: for each parcluster Ci in J do
4: if Ci marked or affected by ∆E then
5: Handle evidence at Ci

6: Mark Ci

7: while ∃ Ci ready to send message mij to Cj in J do
8: if Ci marked, has marked message, or Cj is new then
9: Send newly computed mij

10: else
11: Send empty message . Indicates for receiver “no changes”
12: Mark mij at Cj as un/changed
13: for each Qk ∈ {Qk}mk=1 do
14: Find a subtree J ′ s.t. Qk ⊆ rv(J ′)
15: Extract a submodel G′ from J ′

16: LVE(G′, Qk, ∅) . Output or store result

Construction aLJT handles changes ∆G as in Algs. 12 to 14. ∆G refers to parfactors
to add, delete, or replace. When adding a parfactor, add marks the parcluster Ci to
which the new parfactor is added. If adjusting J for known PRVs, all parclusters are
marked on the path between two parclusters Ci,Cj ∈ N that are merged. The messages
for the parclusters on this path become invalid as neighbours disappear and appear as
well as local models change with merging. Messages from parclusters that do not lie on
the path remain valid at the parclusters on the path. When deleting a parfactor from
the local model of Ci, delete marks Ci and every parcluster. aLJT replaces a parfactor
by adding and deleting, which includes marks.

Example 11.3.1 (Marking). In Example 11.2.1, we add φ4(Epid, Sick(X),Work(X))
to Gex, which leads to an additional parcluster C4 with local model G4 = {g4} (see
Fig. 11.1). add marks C4 as it is new.

For changes in potentials, ranges, or constraints, aLJT uses replacing a parfactor where
the arguments of the old and new parfactor are identical. If the domain for a logvar X
changes, aLJT marks a parcluster Ci if X ∈ lv(Ci) and the constraint w.r.t. X is >.
After incorporating all changes, aLJT has marked parclusters in J accordingly.

Evidence Entering Adaptive entering deals with changes ∆E in evidence and with evi-
dence entering at parclusters marked during construction. In the first case, aLJT enters
evidence at all parclusters Ci that are affected by ∆E. ∆E refers to changes in the
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form of additional or retracted evidence or new observed values. For additional evidence,
aLJT uses the current local model Gi and enters the additional evidence. For retracted
evidence, aLJT resets parfactors where the evidence no longer appears. The reset may
require a reentering of evidence if evidence for a PRV is partially retracted. For new val-
ues, aLJT only needs to reset parfactors that have absorbed the original evidence. These
parfactors absorb the new values. If evidence leads to changes in Gi, aLJT marks Ci.
In the second case, parcluster marked during construction only need evidence entering if
model changes are affected by evidence. That is if domains change, evidence needs to be
entered anew, or if new parfactors are added, the respective parfactors possibly need to
absorb evidence.

Example 11.3.2 (Adaptive evidence). Continuing with Example 11.3.1, assume that
evidence sick(eve) had been entered in the FO jtree before. Then, aLJT only has to add
sick(eve) to the new parcluster C4, which is the only parcluster marked in Fig. 11.1.

Message Passing aLJT maintains the same two-pass scheme starting at the periphery
going inward and returning to the periphery. Using the scheme preserves the ability for
an automatic execution based on the two conditions given in Section 4.3. The adaptive
part occurs during message calculation. A parcluster Ci calculates a new message if
messages have become invalid or if Ci has to distribute changes in its local model or in
received messages. Otherwise, it sends an empty message. The receiver replaces the old
message with the new message (if not empty) and marks it changed or marks the old
message as unchanged. Formally, Ci calculates a new message mij for neighbour Cj if

Ci marked ∨ ∃k ∈ nbs(i), k 6= j : mki changed (11.3)

If Expression (11.3) holds, Ci computes mij using LVE with G′ ← Gi∪
⋃
k∈nbs(i),k 6=jmki

as model (messages irregardless of whether they are marked changed) and Sij as query.
The following example illustrates how aLJT calculates messages according to changes at
a parcluster.

Example 11.3.3 (Adaptive messages). Continuing with Example 11.3.2, only C4 is
marked. aLJT starts message passing at the leafs, i.e., C1 and C4. C1 is not marked,
meaning, an empty messages arrives at C2. Message m12 is therefore marked unchanged.
C4 is marked, i.e., a new message m43 is calculated and sent to C3, which stores the new
message and marks it as changed. Then, C2 and C3 exchange messages. Messages m23 is
empty as C2 is unmarked and m12 is marked as unchanged. Message m32 is recalculated
as m43 is marked as changed. At C2, m32 arrives and is marked as changed, meaning a
new message m21 is calculated for C1. After these messages, the respective marginal of
the new parfactor at C4 has been made available at the other parclusters. At C3, aLJT
calculates a new message m34 as C4 is new. With m34 arriving at C4, message passing
is complete. The FO jtree is prepared for query answering.
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Over the course of the previous examples, which started with adding a parfactor,
aLJT could reuse the FO jtree in large parts, simply extending the structure with a
new parcluster. Evidence entering was limited to the new parcluster, saving the effort of
reentering evidence at two parclusters. Adaptive message passing allowed aLJT to avoid
calculating half of the existing messages. The remaining step of aLJT is query answering.

Query Answering After message passing, aLJT starts answering queries, which follows
the same procedure as before. Let us look at the extended FO jtree in Fig. 11.3a under
various changes to see aLJT as a whole in action.

Example 11.3.4 (aLJT). Assume that the FO jtree in Fig. 11.3a has as evidence
sick(eve) entered and valid messages passed. The FO jtree in Fig. 11.3a then under-
goes a change by having a parfactor φ(Work(X), A4) added, which leads to the FO jtree
in Fig. 11.3d. When adjusting the FO jtree to φ(Work(X), A4), adjust first marks
C4 and C7, the two parclusters in N that cover Work(X) and A4. The path over
indices 4, 3, 2, 5, 6, 7 leads to parclusters C3, C2, C5, and C6 being marked. Merg-
ing parclusters leads to C′4 and C′3 being marked. After adjusting is complete, all
parclusters in Fig. 11.3d are marked except C1, leading to an almost complete mes-
sage passing. The only empty message is m12. After message passing, aLJT answers
queries as before, e.g., for query term {Treat(eve, injection)} on C′3, for query terms
{Treat(eve, injection), T ravel(eve)} onC2 andC′3, or for query term {Sick(X)}, choos-
ing C2 for answering the query.
Next, assume that we add some evidence for Nat(D) at C1, which leads aLJT to mark

C1. With no further changes, aLJT only needs to redistribute G1. Thus, messages m53

and m43 from C5 and C4 to C3 are empty as well as the messages from C3 over C2 to C1

since no changes occur in local models. Message m12 from C1 to C2 is newly calculated.
The new message received by C2 leads to new messages from C2 to C3 and from C3

back to the leaf nodes C4 and C5. Again, aLJT can now answer queries as before.

The first case of adding a parfactor φ(Work(X), A4) shows a rather large effect on the
FO jtree, with a majority of parclusters marked after adjusting the FO jtree. Still, it
allows aLJT to reuse local models where evidence has already been entered. With the
next change in the inputs in the form of additional evidence, aLJT enters evidence at
one parcluster and recalculates only half of the messages in the FO jtree. The upcoming
section argues the correctness of the above algorithms.

11.4 Theoretical Analysis

This section provides a theoretical analysis that focusses primarily on the soundness of
aLJT as well as the algorithms for adapting an FO jtree. Completeness is not affected
by rearranging an FO jtree. This section concludes with a discussion of the effect of
adaptive steps on runtime complexity.
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Theorem 11.4.1. Adding a parfactor g+ to a model G with an FO jtree J yields an FO
jtree J ′ for G ∪ {g+}.

Proof. FO jtree J for model G fulfils the three properties that define an FO jtree. When
adding parfactor g+ to G, we have to add g+ to a local model Gi where rv(g+) ⊆ Ci

in J . Let Aold ← rv(g+) ∩ rv(G) and Anew ← rv(g+) \ rv(G) denote the sets of old
and new PRVs in g+. If Aold ⊆ Ci for some i and Anew = ∅, we add g+ to Gi. As we
do not change J apart from a local model, J is still an FO jtree, now for G ∪ {g+}. If
Anew 6= ∅, the second property (rv(g+) ⊆ Ci) does not hold for g+. We distinguish the
cases Aold ⊂ Ci and Aold = Ci. In the first case, we add a new node Ck as a neighbour
to i with rv(g+) in Ck and g+ in Gk. Now, the second property holds. The first property
(parclusters must contain model PRVs) holds for Ck = rv(g+) given G∪ {g+}. Ck does
not violate the third property (a PRV appearing in two parclusters has to appear in each
parcluster on the path between them): Anew does not appear any further. Aold appears
in Sik, continuing on from Ci to Ck. Thus, J with new parcluster Ck is an FO jtree for
G ∪ {g+}. In the second case, we add Anew to Ci. All three properties hold since Ci

contains PRVs from G∪ {g+}, Ci now includes rv(g+), and we add PRVs to Ci that do
not appear any further. Therefore, J with an extended Ci is an FO jtree for G ∪ {g+}.
Now consider Aold 6⊆ Ci for any i, violating the second property. Adding rv(g+) to

some Ci may violate the third property. Instead, we adjust J s.t. Aold ⊆ Ci for some i.
The basic procedure is merging. Merging two neighbouring parclusters preserves the FO
jtree properties by building unions of parclusters and neighbours, not affecting any other
parclusters. Let N be a set of parclusters s.t. Aold ⊆ rv(N). We successively merge the
parclusters in N . Each merge of two parclusters Ci,Cj ∈ N into C′i causes a cycle if
more than one parcluster lies between Ci and Cj . To make J acyclic again, we (i) delete
an edge to break the cycle or (ii) merge parclusters on the path between Ci and Cj ,
which forms a cycle when merging Ci and Cj . The first approach upholds the third
property since we only delete an edge if Expression (11.1) holds, which ensures that the
PRVs in a separator Skl still reach Ck and Cl without the edge. The second approach
merges the parclusters at the path ends, which upholds the FO jtree properties outside
of the path. When merging the next two parclusters from the ends of the path between
Ci and Cj , the cycle becomes smaller, with the newly merged parcluster Ck forming
the new starting point of the cycle while Ck becomes a neighbour of the parcluster that
was previously merged on the cycle. We continue merging parclusters on the cycle until
the cycle disappears, yielding an acyclic FO jtree. Thus, in all cases that arise, adding a
parfactor g+ to a model G with an FO jtree J yields an FO jtree J ′ for G ∪ {g+}.

Theorem 11.4.2. Deleting a parfactor g− from a model G with an FO jtree J yields an
FO jtree J ′ for G \ {g−}.

Proof. FO jtree J for model G fulfils the three FO jtree properties. When deleting a
parfactor g− from G, we remove g− from Gi where g− ∈ Gi at a parcluster Ci in J
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s.t. the local models partition G \ {g−}. If the deletion removes PRVs from G, the first
property (parclusters must contain model PRVs) does not hold anymore at Ci for G\{g}.
PRVs that no longer appear in G \ {g−} do not appear in any other parcluster and thus,
fulfil Expression (11.2). Minimising Ci removes them, which restores the first property.
Further, Expression (11.2) prevents deleting a PRV A that lies on a path between two
parclusters that contain A, which requires A to remain in the parcluster owing to the
third property. The minimise procedure possibly merges Ci with a neighbour, which
upholds the FO jtree properties. Thus, the resulting FO jtree J ′ is an FO jtree for
G \ {g−}.

Theorem 11.4.3. Replacing a parfactor g− with a parfactor g+ in a model G with an
FO jtree J yields an FO jtree J ′′ for (G ∪ {g+}) \ {g}.
Proof. To replace a parfactor, we add a parfactor g+ and delete a parfactor g−. We
showed that adding a parfactor g+ to J yields a valid FO jtree J ′ for G′ = G ∪ {g+}.
We also showed that deleting a parfactor g− from an FO jtree, here J ′, yields a valid FO
jtree J ′′ for G′ \ {g}. Thus, J ′′ is a valid FO jtree for (G ∪ {g+}) \ {g}.

Theorem 11.4.4. aLJT is sound, i.e., computes a correct result for a query Q on an
FO jtree J after adapting to changes in model G and evidence E.

Proof. As shown in Sections 5.1, 8.2 and 9.3, LJT is sound for (parameterised) con-
junctive queries, yielding an FO jtree J , which partitions the input model G and allows
for local computations. Further, we assume that LVE is sound, ensuring correct local
computations during evidence entering, message passing, and query answering.
aLJT adapts J , which consists of correctly adding, deleting and replacing parfactors in

G as shown in the previous proofs. Thus, adaptive construction outputs an FO jtree with
marked parclusters. aLJT adaptively enters the new evidence version at all parclusters
covering evidence and re-enters evidence at parclusters with changed local models, en-
suring all appropriate parclusters have the current evidence. Evidence absorption is then
handled by a sound LVE operator. When passing messages, aLJT distributes updated
local models whenever a local model or any incoming message has changed. Messages are
calculated by applying sound LVE operators. With messages and local models updated,
aLJT uses local models and messages to correctly answer Q using LVE.

Effects on Complexity The basic assumption for aLJT is that changes in a model occur
incrementally. As such, the changes do not require a completely new FO jtree.
Adapting an FO jtree to changes has an effect on the worst case size of the underlying

FO jtree J . The lifted width (wg, w#) of J may change as a result. The effort itself of
adapting an FO jtree is polynomial in the number of parclusters but does not depend
on the worst case size of a factor, i.e., O(rwg · nw#·r#

# ): To add a parfactor g+, aLJT
has to find a set N of parclusters covering the PRVs in g+, which means touching each
parcluster in a worst case. An optimal set of parclusters, an even harder task to find,
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would lead to parclusters as small as possible during adjustment. Adjusting an FO
jtree includes merging the parclusters in N , meaning we have |N | − 1 times the costs
of merging and breaking up a cycle of length |P |, where P is the path between the two
parclusters to merge. In a best case scenario, aLJT deletes an edge for which we have
to check each separator for being a subset of two parclusters. In the worst case, the
check fails and aLJT merges b |P |2 c times parclusters on the path, leading to as many
parclusters. In no case does aLJT manipulate factors. W.r.t. (wg, w#), the width may
change due to the arguments of g+, which provide a lower bound on the width (see
Expression (5.9)). Additionally, each resulting parcluster after merging parclusters on a
cycle has a worst case size 2 ·O(rwg ·nw#·r#

# ). An alternative to merging parclusters from
both ends of P is merging neighbours, which may lead to better results in certain cases
but has a worst case of |P | − 1 merges resulting in one parcluster with a worst case size
of (|P | − 1) ·O(rwg · nw#·r#

# ). J may deteriorate over time and need reconstruction.
If g+ contains only new PRVs, one starts a new FO jtree for g+ and stores a forest of

independent FO jtrees. To answer queries for PRVs in one FO jtree, other FO jtrees are
irrelevant. A conjunctive query for PRVs from several FO jtree leads to computing the
query on the FO jtrees, ignoring external PRVs, and multiplying the results.
Deleting a parfactor g− has less impact on the FO jtree structure. The worst case

scenario for minimising Ci is checking each combination of two neighbours for each
deleted PRV and leading to a change in Ci. Thereby, the width (wg, w#) may decrease
if PRVs disappear from the largest parcluster of J . Then, a check follows if Ci is a
subset of some neighbour, which may lead to fewer parclusters in J . Replacing g− with
a parfactor g+ combines adding and deleting. The parcluster whose local model contains
g− provides a starting point for adding g+. The new parfactor usually has a connection
to the old one, may it be that only potentials or ranges changed or arguments are dropped
or added. The best case scenario happens if replacing a parfactor entails no structure
change. Then, one parcluster Ci covers the known PRVs and no PRVs are deleted from
Ci. A domain change leaves J untouched, while parclusters are marked accordingly.
Adaptive evidence entering may apply to one parcluster in the best case and all parclus-

ters in the worst case, which leads to a complexity of aLJT identical to LJT. Absorbing
evidence requires the least work with additional or completely retracted evidence.
In the worst case, message passing computes two full messages per edge. The worst

case scenario occurs if at least each leaf in J is marked. The best case is one marked
parcluster. Then, inward, full messages flow from the marked parcluster to the centre and
empty messages otherwise. Outward, parclusters send full messages except on the edges
from the centre to the marked parcluster, yielding one full message per edge. Assume
that changes affect connected parclusters in one branch of J , which is reasonable given
the third FO jtree property. Inward, full messages only occur on the branch to the
center. The outward pass transports the updated information to the other branches of J
and the outer-branch parclusters. In terms of complexity, aLJT and LJT have the same
complexity. But, in practice, aLJT computes fewer messages than LJT in most cases.
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The runtime complexity of query answering is identical as the procedure of answering
a query does not change So, even though in terms of complexity, there is no gain for aLJT
compared to LJT. aLJT adapts an FO jtree s.t. the parclusters are as small as possible
in the worst case and only deals with evidence and messages if necessary. Overall, aLJT
exploits the potential of reusing an FO jtree as well as messages as much as possible.

11.5 Empirical Evaluation

We have implemented a prototype of aLJT based on the prototype implementation of LJT
and the LVE implementation of Taghipour (https://dtai.cs.kuleuven.be/software/
lve). We compare aLJT against LJT, with LVE as a baseline. LJT constructs an FO
jtree for its input model and enters evidence. It passes messages and answers queries. If
a change occurs, it takes the altered input and starts again with construction or evidence
entering. aLJT performs the same steps as LJT for an initial input. With each change,
it reuses the current FO jtree, adapts it accordingly, and proceeds adaptively for the
next steps until it answers queries again. LVE eliminates all non-query randvars for each
query on its input model and the altered models.
This evaluation has two parts. First, we look at runtimes of the individual steps of

LJT and aLJT for varying models G of sizes |G| ranging from 2 to 1024 under a model
change (adding a parfactor) and an evidence change (adding new evidence). Second,
we look at runtimes for Gex under changes, focussing on how fast the programs provide
answers again after consecutive changes.

Step-wise Performance This first part of the evaluation looks at runtimes of the in-
dividual steps of LJT and aLJT given models of varying size. The model sizes start at
2 and double until they reach 1,024. The first model is G2 ∪ G3 from the FO jtree of
Gex. The second model is Gex. For the other models, we basically duplicate the current
G, starting with Gex, rename the PRVs and logvars of the duplicate, and connect the
original part with the copied part through a parfactor. The largest model has 1,024
parfactors and logvars and 3,072 PRVs, resulting in an FO jtree with 770 parclusters.
The largest parcluster contains 256 PRVs. Technical remark: The maximum parcluster
size is larger than required due to the heuristics the FO dtree construction is based on,
cf. (Taghipour et al., 2013a). The largest parcluster contains all parameterless PRVs, be-
cause the heuristics leads the (a)LJT implementations to handle all parfactors without
logvars separately at the beginning, resulting in one large parcluster as the parameterless
PRVs also appear in all other parts of the model.
The domain sizes for all logvars are set to 1,000, leading to grounded model sizes, rang-

ing from 1,001,000 to 513,256,256. A part of the model receives evidence for 50% of the
instances of one PRV. We compare runtimes of the corresponding LJT and aLJT step for
the following settings: (i) Add a parfactor with a new PRV. (ii) Reenter known evidence
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Figure 11.4: Runtimes [ms] of the (a)LJT steps (y-axis in Fig. 11.4b varies). X-axis:
increasing |G| from 2 to 1,024. Both axes are log-scaled. Filled symbols show runtimes
under model changes, hollow symbols show runtimes under evidence changes.

after model changes and enter new evidence in an unchanged model. (iii) Pass messages
after changes in a model and pass messages after changes in evidence. (iv) Answer a
query starting from a model change and from an evidence change.
Figure 11.4 shows the runtimes of both programs averaged over five runs for the four

settings. The triangles indicate LJT, while the circles mark aLJT. The filled turquoise
marks refer to steps handling changes in a model. The hollow orange marks refer to steps
handling changes in evidence. The curves have a similar shape when setting the domain
sizes to other values than 1,000. Figure 11.4a shows runtimes of construction. The aLJT
program is two to three orders of magnitude faster than the LJT program, with the model
change having only a local effect. Figure 11.4b shows the evidence entering runtimes. For
both scenarios (reentering known evidence and entering new evidence), aLJT is faster
than LJT by three orders of magnitude since both changes have only a local effect.
Figure 11.4c shows the message passing runtimes. The first six models allows for aLJT

to be one order of magnitude faster than LJT. Even though aLJT only has to compute
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roughly half of the messages that LJT has to compute, runtimes of both programs almost
align, with aLJT being only a factor of 0.87 faster than LJT given the largest model. The
reason for the similar runtimes lies in aLJT only being able to save calculating messages
that are very easy to calculate (small parcluster, few eliminations). But, the program
still has to compute the messages that take many eliminations. E.g., in the largest model,
there are 512 messages that each take 255 eliminations, while the remaining messages
take only 1 or 2 eliminations. Of the 512 costly messages, aLJT still has to compute
511. Figure 11.4d shows runtimes over three or four steps accumulated, namely from
construction to query answering of one query when handling adding a parfactor and
from evidence entering to query answering when handling new evidence. Since message
passing dominates in the overall performance of (a)LJT with only one query, the runtimes
in Fig. 11.4d resemble the runtimes in Fig. 11.4c.
Given the unbalanced FO jtrees of the example models, the payoff is strongest for

models with a size of up to |G| = 64, which means a grounded size of 32,016,016. The
aLJT runtimes are faster up to one order of magnitude. If changes only have a local
effect, adaptive construction and evidence entering are up to three orders of magnitude
faster. Overall, the savings add up under consecutive changes, which we look at next.

Consecutive Changes This second part of the evaluation looks at how fast the programs
provide answers again. As input, we use Gex with random potentials. We set |D(X)| =
1,000 and |D(.)| = 100 for the other logvars, yielding |gr(Gex)| = 111,001. Evidence
occurs for 200 instances of Sick(X) with the value 1. There are two queries, Sick(x1000)
and Treat(x1,m1). We apply three consecutive changes,

(i) adding a parfactor φ(Epid, Sick(X),Work(X)) (referred to as model G1
ex),

(ii) replacing parfactor g2 with a parfactor φ(Sick(X), T ravel(X)) (model G2
ex), and

(iii) adding evidence for 100 instances of Work(X) with value true (model G3
ex). The

X values are a subset of the X values in the Sick(X) evidence, leading to one
additional split per affected parfactor due to evidence.

After each change, the programs answer both queries. We compare runtimes for inference
averaged over five runs. Runtimes for LJT and aLJT include construction, evidence
entering, message passing, and query answering.
Figure 11.5 shows runtimes in seconds accumulated over all four models with two

queries each for LVE (crosses), LJT (circle), and aLJT (squares). The vertical lines
indicate when the programs have answered both queries, after which LVE and LJT
proceed with the next model, while aLJT starts with adaption. For a model, the points
on the LJT and aLJT lines mark when an individual step is finished. As expected, LVE
takes longer than LJT and aLJT, showcasing the advantage of using an FO jtree. After
only two queries, LJT and aLJT provide answers faster than LVE.
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Figure 11.5: Runtimes [s] accumulated over a model with three consecutive adaptions,
two queries each. Vertical lines indicate that QA is finished for the current model.

For Gex, LJT and aLJT have the same runtimes since their runs are identical. As Gex
incrementally changes, aLJT displays its advantage of adaptive steps over LJT. Starting
with G1

ex, aLJT provides answers faster than LJT. Before LJT has completed message
passing, aLJT has already answered both queries. Especially message passing is faster as
aLJT only has to compute half of the messages that LJT computes. Evidence entering
does not take long. But, evidence usually leads to longer runtimes for query answering
compared to no evidence for LVE and LJT as the necessary splits lead to larger models.
Since G3

ex contains more evidence, all runtimes increase compared to the previous models.
aLJT fast reaches the point of answering queries again, providing answers to queries

more timely than the other two programs. Since each change provides the possibility
for aLJT to save computations, leading to savings in execution time, the savings add up
over a sequence of changes. Thus, performing adaptive inference pays off, even more so
with a sequence of changes. In summary, our empirical setup supports that performing
adaptive inference pays off as aLJT is able to provide a faster online QA than LJT.

11.6 Interim Conclusion: Adaptive Inference with LJT

Algorithms for adaptive inference aim at answering queries more efficiently than starting
from scratch after incremental changes in an input. Changes in a model arise gradually
if the underlying scenario remains the same. In lifted inference, changes no longer only
pertain to relations or potentials but also to domains. Domains change if the set of
individuals they represent change. E.g., if a model includes employees or network com-
ponents, changes in staff or a network topology lead to changed domains. If requiring
fast online QA and having domains that naturally fluctuate, adaptive steps enable aLJT
to quickly reach the point of answering queries again.
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An ongoing learning task on a database may output updated potentials if new data
comes in. Reinforcement learning regularly updates potentials. New data in a database
may also lead to altered parfactors or new ranges for PRVs. A learning task yields more
suitable ranges or derives new model components where the adjusted model allows for
modelling a given scenario more accurately. An adaptive construction avoids the costs
for rebuilding an FO jtree, which can be expensive for large models.
Evidence usually occurs for the same PRVs as certain parts of a model are observable

while others are latent. Instead of new evidence for varying PRVs, there often are new
observations for the same PRVs. The instances within a PRV that receive evidence may
vary, which causes additional or retracted evidence. Such a scenario happens if sensors
fail or data transfers are interrupted.
This chapter presents aLJT, an adaptive version of LJT, which incorporates incremen-

tal changes in its input model or evidence efficiently. We specify how to adapt an FO
jtree when deleting, adding, or replacing parts of a model. We formalise under which
conditions evidence entering and new messages are necessary. Given the adaptive steps,
aLJT reduces its static overhead for construction and message passing under gradual
changes compared to LJT. aLJT allows for fast online inference for answering multiple
queries, minimising the lag in query answering when inputs change.

We currently work on learning lifted models, where we use aLJT as a subroutine to
propagate updated potentials throughout the FO jtree. We also plan to involve aLJT in
solving an MEU problem where one is interested in those actions that lead to a maximum
expected utility. Solving an MEU problem requires calculating an expected utility for
varying action settings. We have defined the MEU problem for parameterised models
(Gehrke et al., 2019e) and show how one may calculate an expected utility with LVE.
The LJT variant for MEU allows for calculating expected utilities as well as answering
probability queries. aLJT could handle varying action settings as part of evidence to
efficiently calculate expected utilities.
Another possible use for aLJT is when arguing with value of information: If based on

some value of information or on the trust one has in given evidence, certain parts of a
model become (ir)relevant, aLJT can quickly update messages. aLJT also provides an
opening into approximate inference regarding marking a message only as changed when
the distribution represented by the message diverges from the distribution of old message
by more than some ε value.

With aLJT, we have covered Contribution (6) regarding adaptive inference on FO
jtrees. As described above, aLJT allows for various applications in different contexts.
The final chapter of Part III looks at LJT in the form of a framework, requiring another
inference algorithm to perform calculations during its steps, and discusses how FOKC
can be a part of LJT.
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LJT as a Backbone for Lifted Inference

For certain inputs, LVE, LJT, and FOKC start to struggle either due to model structure
or size. The implementations of LVE and, as a consequence, LJT ground parts of a
model if randvars of the form Q(X), Q(Y ), X 6= Y appear, where parameters X and Y
have the same domain, even though in theory, LVE handles those occurrences through
counting and merge-counting. But not only implementation-wise does LVE struggle in
this scenario. As seen in Chapter 6, count conversions strike down on runtimes of LVE
and LJT, while FOKC does not show such an increase in runtimes. But, FOKC can
struggle if the model size increases as FOKC requires an input model to be in a normal
form, which may grow exponentially large and result in prohibitively large circuits.
The purpose of this chapter is to prepare LJT as a backbone for lifted QA to use

any exact inference algorithm as a subroutine. Thereby, we are able to select different
algorithms as a subroutine to cater towards a given input model. Using FOKC and LVE
as subroutines, we fuse LJT, LVE, and FOKC to compute answers faster than LJT,
LVE, and FOKC alone for the inputs described above. We first presented this idea in the
following two papers. The second paper, published on a conference, is a slightly shorter
version of first one, published on a workshop.

Tanya Braun and Ralf Möller. Fusing First-order Knowledge Compilation and
the Lifted Junction Tree Algorithm. In 8th International Workshop on Sta-
tistical Relational AI at the 27th International Joint Conference on Artificial
Intelligence, 2018

Tanya Braun and Ralf Möller. Fusing First-order Knowledge Compilation and
the Lifted Junction Tree Algorithm. In Proceedings of KI 2018: Advances in
Artificial Intelligence, pages 24–37. Springer, 2018

The remainder of this chapter provides the last contribution of this dissertation (Con-
tribution 7). We begin with presenting conditions for subroutines of LJT and discuss
how LVE works in this context and FOKC as a candidate. Then, we fuse LJT, LVE,
and FOKC into LJTKC. We discuss the (non)-effects on correctness and complexity and
show the promise of combining different algorithms in a short empirical evaluation. We
conclude with future work, which also concludes this third part.

177
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12.1 The LJT Framework

LJT provides general steps for efficient QA given a set of queries. It constructs an FO
jtree and uses a subroutine to calculate messages and answer queries. To ensure a lifted
algorithm run without groundings, evidence entering and message passing impose some
requirements on the algorithm used as a subroutine. After presenting these requirements,
we analyse how LVE matches the requirements and describe to what extent FOKC can
provide the same service as LVE.

Requirements LJT has a domain-lifted complexity, meaning that if a model allows for
computing a solution without grounding part of a model, LJT is able to compute the
solution without groundings, i.e., has a complexity polynomial in the domain size of the
logvars. Given a model that allows for computing solutions without grounding part of
a model, the subroutine must be able to handle message passing and query answering
without grounding to maintain the domain-lifted complexity of LJT.
Evidence displays symmetries if observing the same value for n instances of a PRV.

Thus, for evidence handling, the algorithm needs to be able to handle a set of observations
for some instances of a single PRV in a lifted way. Calculating messages entails that the
algorithm is able to calculate a form of parameterised, conjunctive query over the PRVs
in the separator. In summary, LJT requires the following:

(i) Given evidence in the form of a set of observations for instances of a single PRV,
the subroutine must be able to absorb evidence independent of the size of the set.

(ii) Given a parcluster with its local model, messages, and a separator, the subroutine
must be able to eliminate all PRVs in the parcluster that do not appear in the
separator in a domain-lifted way.

The subroutine also establishes which kind of queries LJT can answer. The expres-
siveness of the query language for LJT follows from the expressiveness of the inference
algorithm used. If an algorithm answers queries that include a single randvar, LJT an-
swers this type of query. If an algorithm is able to answer MAP queries, LJT is able to
answer MAP queries. Next, we look at how LVE fits into LJT.

LVE as a Subroutine LVE as a subroutine provides lifted absorption for evidence han-
dling. Lifted absorption splits a parfactor into one part, for which evidence exists, and
one part without evidence. The part with evidence then absorbs the evidence by ab-
sorbing it once and exponentiating the result for all isomorphic instances if a logvar is
eliminated during absorption.
For messages, LVE eliminates all non-query terms, without inducing a joint distri-

bution, multiplying the remaining parfactors, and normalising the result. The original
LVE from Section 3.2 answers queries for marginal or conditional distributions of a sin-
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gle ground query term. LJT with this LVE as a subroutine answers the same queries.
Extensions to LVE enable more query types, such as parameterised conjunctive queries
or MPE queries as shown in previous chapters.

FOKC as a Subroutine Candidate Regarding FOKC as a subroutine for LJT, FOKC
does not fulfil all requirements. FOKC can handle evidence through conditioning (Van
den Broeck and Davis, 2012). But, a lifted message passing is not possible in a domain-
lifted and exact way without restrictions. Using an FO d-DNNF circuit, FOKC answers
queries for a probability of a single randvar as specified by Van den Broeck et al. (2011)
and a conditional distribution for a single randvar given events (Van den Broeck and
Davis, 2012). Inherently, conjunctive queries are only possible if the conjuncts are prob-
abilistically independent (Darwiche and Marquis, 2002), which is rarely the case for
separators. Otherwise, FOKC has to invest more effort to take into account that the
probabilities overlap. Thus, the restricted query language means that LJT cannot use
FOKC for message calculations in general. Given an FO jtree with singleton separa-
tors, message passing with FOKC as a subroutine may be possible. FOKC as such
takes ground queries as input or computes answers for random groundings, so FOKC for
message passing needs an extension to handle parameterised queries.
Given a submodel of a local model and appropriate messages, FOKC may answer

queries if the parfactors do not contain CRVs. So, even though FOKC may not fulfil
all requirements to become a subroutine during message passing, we can combine LJT,
LVE, and FOKC into one algorithm, using LVE for evidence handling and message
passing and FOKC for query answering, to answer queries for models where LJT with
LVE as a subroutine struggles or where FOKC struggles because of model sizes.

12.2 LJTKC: Fusing LJT, LVE, and FOKC

Using LJT as a backbone and LVE and FOKC as subroutines, LJTKC is a fusion of LJT,
LVE, and FOKC. Algorithm 16 shows LJTKC with a model G, a set of queries {Qk}mk=1,
and evidence E as inputs. Due to FOKC, each query has a single ground query term
Qk in contrast to a set of query terms Qk in the previous chapters. As a consequence,
LJTKC has the same expressiveness regarding the query language as FOKC.
The first three steps of LJTKC coincide with LJT as specified in Alg. 3: LJTKC

builds an FO jtree J for G, enters E into J , and passes messages in J using LVE
for message calculations. During evidence entering, each local model covering evidence
randvars absorbs evidence. LJTKC calculates messages based on local models with
absorbed evidence, making each parcluster independent of the remaining model given
the messages at each parcluster. The local models and messages are sufficient to answer
queries for randvars contained in Ci and remain valid as long as G and E do not change.
At this point, FOKC starts to interlace with LJT.
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Algorithm 16 LJTKC
procedure LJTKC(Model G, Queries {Qk}mk=1, Evidence E)

Construct an FO jtree J = (V,E) for G
Enter E into J
Pass messages on J . LVE as subroutine
for each parcluster Ci ∈ V with local model Gi do

Form submodel G′ ← Gi ∪
⋃
j∈nbs(i)mij

Reduce G′ to WFOMC problem with ∆i, w
i
T , w

i
F

Compile a circuit Ci for ∆i

Compute ci = WFOMC(Ci, wiT , wiF )

for each Qk ∈ {Qk}mk=1 do
Find Ci ∈ V s.t. Qk ∈ Ci

Compile a circuit Cq for ∆i, Qj
Compute cq = WFOMC(Cq, wiT , wiF )
Compute P (Qj |E) = cq/ci . Output or store result

LJTKC continues its preprocessing. For each parcluster Ci, LJTKC extracts a sub-
model G′ of local model Gi and all messages received and reduces G′ to a WFOMC
problem with theory ∆i and weight functions wiF , w

i
T . LJTKC does not need to incor-

porate E as the information from E is contained in G′ through evidence entering and
message passing. LJTKC compiles an FO d-DNNF circuit Ci for ∆i and computes a
WFOMC ci on Ci. In precomputing a WFOMC ci for each parcluster, LJTKC uses that
the denominator of Expression (3.8) is identical for varying queries on the same model
and evidence. For each query handled at Ci, the submodel consists of G′, resulting in
the same circuit Ci and WFOMC ci.
To answer a query Qk, LJTKC finds a parcluster Ci that covers Qk and compiles an

FO d-DNNF circuit Cq for ∆i and Qj . It computes a WFOMC cq in Cq and determines
an answer to P (Qj |E) by dividing the just computed WFOMC cq by the precomputed
WFOMC ci of this parcluster. LJTKC reuses ∆i, wiT , and w

i
F from preprocessing. Let

us look at Gex with evidence sick(eve) to see how LJTKC works.

Example 12.2.1. For Gex, LJTKC builds an FO jtree as depicted in Fig. 4.1. Entering
sick(eve) as evidence in the FO jtree leads to local models as depicted in Fig. 4.3. LJTKC
sends messages from parclusters C1 and C3 to parcluster C2 and back. The messages
are depicted in Fig. 4.4. For message m12, LJTKC eliminates Nat(D) and Man(W )
from G1 using LVE. For message m32, LJTKC eliminates Treat(X,M) from G3 using
LVE. For the messages back, LJTKC eliminates Travel(X) and Sick(X) from G2 ∪m32

for message m21 and Travel(X) from G2 ∪m12 for message m23.
The local model and received messages at each parcluster form the submodels for the

compilation steps. For each parcluster, LJTKC reduces the submodel to a WFOMC
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Figure 12.1: FO jtree after preprocessing with LJTKC with local information in grey

problem, compiles a circuit for the problem specification, and computes a parcluster
WFOMC. Figure 12.1 shows the FO jtree after preprocessing is complete.
Given a query term Treat(eve, injection), LJTKC takes a parcluster that contains

the query term, here C3. It compiles a circuit for the query term and ∆3, com-
putes a query WFOMC cq, and divides cq by c3 to determine P (treat(eve, injection)).
P (¬treat(eve, injection)) is then given by 1− cq

c3
.

Instead of compiling one large model into a circuit, FOKC compiles three smaller
circuits for query answering. As one can see even in Fig. 12.1, LJTKC needs more
memory than LJT as local models and messages as well as theories, weight functions,
and counts need to be stored. But, one can now choose a QA algorithm, either LVE or
FOKC, to answer a query at hand. Next, we briefly dive into a theoretical discussion
and then into an empirical evaluation.

12.3 Theoretical Discussion

We show soundness for LJTKC and discuss the differences between LJT, LVE, FOKC,
and LJTKC regarding memory and runtime.

Theorem 12.3.1. LJTKC is sound, i.e., computes a correct result for a query Q given
a model G and evidence E.

Proof. As shown in Section 5.1, LJT is sound, yielding an FO jtree J for model G, which
fulfils the three junction tree properties, which allow for local computations (Shenoy and
Shafer, 1990). Further, we assume that LVE is correct, ensuring correct computations
for evidence entering and message passing, (Taghipour et al., 2013c) and that FOKC is
correct (Van den Broeck, 2013), computing correct answers for single term queries.
LJTKC coincides with LJT in the first three steps, construction, evidence entering, and

message passing, i.e., the first three steps of LJTKC are sound. After message passing,
each parcluster holds G and E combined in its local model and received messages, which
allows for answering queries for randvars that the parcluster contains. At this point, the
FOKC part takes over, taking all information present at a parcluster and compiling a
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circuit and computing a WFOMC, which produces correct results given FOKC is correct.
The same holds for the compilation and computations done for query Q. Thus, LJTKC
computes a correct result for Q given G and E.

Complexity We discuss memory and runtime performance of LJT, LVE, FOKC, and
LJTKC in comparison with each other.
LJT requires memory for storing an FO jtree with messages, while FOKC takes up

space for storing circuits. As a combination of LJT and FOKC, LJTKC stores the
preprocessing information produced by both LJT and FOKC. Next to the FO jtree
structure and messages, LJTKC stores a WFOMC problem specification and a circuit
for each parcluster. If LJTKC does not use the messages again after forming a WFOMC
problem, it could drop the messages to free up space. Since LJTKC sometimes avoids
large intermediate results using FOKC, memory requirements during QA are smaller
than for LJT. LJTKC stores more circuits than FOKC but the individual circuits are
smaller and do not require conditioning, which avoids a significant blow-up for circuits.
LJTKC accomplishes speeding up QA for certain challenging inputs by fusing LJT,

LVE, and FOKC. The new algorithm has a faster runtime than LJT, LVE, and FOKC
as it is able to precompute reusable parts and provide smaller models for answering a
specific query using an FO jtree. In comparison with FOKC, LJTKC speeds up runtimes
as answering queries works with smaller models. In comparison with LJT and LVE,
LJTKC is faster when avoiding groundings in LVE and when many count conversions with
large domain sizes are necessary. Instead of precompiling each parcluster, which adds to
its overhead before starting with answering queries, LJTKC could compile on demand.
On-demand compilation means less runtime and space required in advance but more
time per initial query at a parcluster. One could further optimise LJTKC by speeding
up internal computations in LVE or FOKC (e.g., caching for message calculations or
pruning circuits using context-specific information).
In terms of complexity, LVE and FOKC have a time complexity polynomial w.r.t. the

domain sizes of the model logvars for liftable models. LJT with LVE as a subroutine
also has a time complexity polynomial in terms of the domain sizes for query answering.
For message passing, a factor of n, which is the number of parclusters, multiplies into
the complexity, which basically is the same time complexity as answering a single query
with LVE. LJTKC has the same time complexity as LJT for message passing since the
algorithms coincide. For query answering, the complexity is determined by the FOKC
complexity, which is polynomial in terms of domain sizes (Van den Broeck, 2013). There-
fore, LJTKC has a time complexity polynomial in terms of the domain sizes. Further,
the runtime complexity of FOKC is determined in terms of circuit size, on which FOKC
depends linearly (Van den Broeck, 2013), which also holds for LJTKC.
The next section presents an empirical evaluation, showing how LJTKC speeds up QA

compared to FOKC and LJT for challenging inputs.
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12.4 Empirical Evaluation

This evaluation demonstrates the speed up one can achieve for certain inputs when using
LJT and FOKC in conjunction. For LJTKC, we integrate the FOKC implementation
by Van den Broeck into the LJT implementation to compute marginals at parclusters.
As the FOKC implementation does not handle evidence in a lifted manner and FOKC
is part of the evaluation, we do not consider evidence as FOKC runtimes explode. This
evaluation also includes JT as a baseline.
The evaluation has two parts: First, we test an input model with inequalities, which

theoretically, LVE can handle domain-lifted, but does not handle in its implementation
without grounding, to highlight how runtimes of LVE and LJT explode, and how LJTKC
provides a speedup. Second, we test a version of the model without inequalities to
highlight how runtimes of LVE and LJT compare to FOKC without inequalities.
We compare overall runtimes (preprocessing and query answering, answering each pos-

sible representative query) without input parsing averaged over five runs with a working
memory of 16GB. LVE eliminates all non-query randvars from its input model for each
query, grounding in the process. LJT builds an FO jtree for its input model, passes
messages, and then answers queries on submodels. FOKC forms a WFOMC problem
for its input model, compiles a model circuit, compiles for each query a query circuit,
and computes the marginals of all PRVs in the input model with random groundings.
LJTKC starts like LJT for its input model until answering queries. It then calls FOKC
at each parcluster to compute marginals of parcluster PRVs with random groundings.
JT receives the grounded input models and otherwise proceeds like LJT.

Inputs with Inequalities For the first part of this evaluation, we test a model Gl. Model
Gl has 4 logvars, 12 PRVs with one or two parameters, and 20 parfactors with 1 to 3
arguments. Two logvars X and Y have the same domain and one parfactor contains an
inequality of the form X 6= Y . The FO jtree for Gl has six parclusters, the largest one
containing five PRVs. We vary the domain sizes from 2 to 1000, resulting in |gr(Gl)|
from 52 to 8,010,000. We query each PRV grounded randomly, leading to 12 queries.
Figure 12.2 shows for Gl runtimes in milliseconds [ms] with increasing |gr(Gl)| on log-

scaled axes for FOKC (circle), JT (star), LJT (filled square), LJTKC (hollow square), and
LVE (triangle) (points are connected for readability). The JT runtimes are much longer
with the first setting than the other runtimes. Up to the third setting, LVE and LJT
perform better than FOKC with LJT being faster than LVE. From the seventh setting
on, memory errors occur for both LVE and LJT. LJTKC performs best from the third
setting onwards. LJTKC and FOKC show the same steady increase in runtimes. LJTKC
runtimes have a speedup of a factor from 0.13 to 0.76 for Gl compared to FOKC. Up to
a domain size of 100 (|gr(Gl)| = 81,000), LJTKC saves around one order of magnitude.
For small domain sizes, LJTKC and FOKC perform worst. With increasing domain

sizes, they outperform the other programs. Though not part of the numbers in this
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Figure 12.2: Runtimes [ms] for Gl; on x-
axis: |gr(Gl)| from 52 to 8,010,000
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Figure 12.3: Runtimes [ms] for G′l; on x-
axis: |gr(G′l)| from 56 to 8,012,000

evaluation, with an increasing number of parclusters, LJTKC promises to outperform
FOKC even more, especially with smaller domain sizes. The same behaviour of LJTKC
compared to FOKC, LVE, and LJT can be observed when looking at runtimes for models
requiring many count conversions. Compared to LVE and LJT, LJTKC avoids large
intermediate results after count conversions. Compared to FOKC, LJTKC exploits the
sparseness of the model, allowing for smaller circuits.

Inputs without Inequalities For the second part of this evaluation, we test an input
model G′l, that is the model from the first part but with Y receiving an own domain
as large as X, making the inequality superfluous. Domain sizes vary from 2 to 1000,
resulting in |gr(G′l)| from 56 to 8,012,000. Figure 12.3 shows for G′l runtimes [ms] with
increasing |gr(G)| set up as before.
JT is the fastest for the first setting. With the following settings, JT runs into memory

problems while runtimes explode. LVE and LJT do not exhibit the runtime explosion
without inequalities. LVE has a steadily increasing runtime for most parts, though a few
settings lead to shorter runtimes with higher domain sizes. We could not find an expla-
nation for the decrease in runtime for those handful of settings. Overall, LVE runtimes
rise more than the other runtimes apart from JT. LJTKC exhibits an unsteady runtime
performance on the smaller model, though again, we could not find an explanation for
the jumps between various sizes. With the larger model, LJTKC shows a more steady
performance that is better than the one of FOKC. LJTKC is a factor of 0.2 to 0.8 faster.
FOKC and LJT runtimes steadily increase with rising |gr(G)|. LJT gains over an order
of magnitude compared to FOKC. In the larger model, LJT is a factor of 0.02 to 0.06
faster than FOKC over all domain sizes. LJTKC does not perform best as the overhead
introduced by FOKC does not pay off as much for this model without inequalities. In
fact, LJT performs best in almost all cases.
In summary, without inequalities LJT performs best on our input models. Though,

LJTKC does not perform worst, LJT performs better and steadier. With inequalities,
LJTKC exhibits a better runtime performance.
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12.5 Interim Conclusion: LJTKC

This chapter has presented LJT as a backbone for lifted inference. We have determined
conditions for inference algorithms to become a subroutine for LJT, while keeping the
domain-lifted nature of LJT. The conditions require a subroutine to be able to handle
evidence in a lifted manner and to compute messages through a form of parameterised
query. The expressiveness of the query language of the subroutine during query answering
then determines the expressiveness of the query language of LJT. LJT provides a means
to cluster a model into submodels, on which any exact lifted inference algorithm can
answer queries given the algorithm can handle evidence and messages in a lifted way.
We have implemented the LJT framework using LVE for evidence and messages as well

as FOKC for queries, calling the resulting algorithm LJTKC. As both LVE and FOKC
struggle given certain inputs, due to size or limited implementations, LJTKC alleviates
certain problems by allowing for FOKC as a subroutine for query answering. FOKC fused
with LJT and LVE can handle larger models more easily. In turn, FOKC boosts LJT
by avoiding large intermediate results in certain cases. LJTKC enables us to compute
answers faster than LJT with LVE for certain inputs and LVE and FOKC alone.

We currently work on incorporating FOKC into message passing for cases where a
problematic elimination occurs during message calculation, which includes adapting an
FO jtree accordingly. Additionally, we examine FOKC further to possibly extend it for
parameterised queries with a possible use during message passing as well as query answer-
ing as in Chapter 9. Further work includes investigating other lifted QA algorithms, e.g.,
probabilistic theorem proving (Gogate and Domingos, 2011), or even allow for sampling
algorithms (e.g., Gogate and Domingos, 2011; Niepert, 2012, 2013) as a subroutine.

With this look at ongoing work, this last chapter of Part III covering Contribution
(7), LJT as a framework for QA algorithms, ends. Lifted inference as discussed requires
a known universe, which manifests itself in LVE for example through conditional counts
during lifted summing out. The upcoming chapter ventures into unknown universes,
discussing how inference is possible without knowing the inhabitants of a universe.

185





Chapter 13

Outlook: Unknown Universes
Space, the final frontier.
These are the voyages of the Starship Enterprise.
Its five year mission:
To explore strange new worlds.
To seek out new life.
And new civilisations.
To boldly go where no one has gone before.

(James T. Kirk)

Parameterised models contain logvars that have domains and constraints that restrict
logvars to certain constants in a parfactor. The constraints are significant as they allow
LVE to determine conditional counts that LVE needs to check preconditions of operators
as well as to complete a lifted summing out by taking a resulting potential to the power
of such a count. Hence, LVE relies on constraints for its operation, and the constraints
are populated with constants from a known universe. So, what happens if the universe
is unknown, i.e., the domains are unspecified, making constraints empty?
LVE as specified above does not work with empty constraints. Even a > constraint,

which we have often omitted in this dissertation, is only a shorthand notation for a
Cartesian product of domains, which are now empty. This is not an entirely new research
question and an interesting one for diverse research areas: Ceylan et al. define seman-
tics for an open-world probabilistic database (PDB), keeping a fixed upper bound on
domains Ceylan et al. (2016). Srivastava et al. specify first-order open-universe partially
observable Markov decision processes to generate strategies based on sampling Srivas-
tava et al. (2014). Regarding a slightly different problem, Singla and Domingos present
how to work with infinite domains in MLNs Singla and Domingos (2007). Max-entropy
semantics allow for specifying local probability distributions partially, distributing the
remaining probability over the unspecified portion of the distribution equally, which still
requires some knowledge about existing constants and leads to more complex operators
for calculations (Thimm et al., 2010). But, lifted inference given unknown finite universes
has no satisfying solution.
Therefore, we explore lifted inference given unknown universes in this last chapter be-

fore the conclusion of this thesis. The aim is to define a semantics that allows for easily
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transferring a model from one domain to the next. We first consider the constraints
more closely, detaching them from a known universe and instead providing a generative
description. Second, we examine how to define semantics for models with such a con-
straint description combined with a distribution over possible domains. Additionally, we
consider how to restrict the number of universes generated for feasibility. From the se-
mantics, it follows how QA works and what kind of new queries arise. Although the idea
behind our approach is applicable to any lifted formalism and inference algorithm, we
consider parameterised models in combination with LVE and LJT since the constraint
language has been decoupled from the inference algorithms Taghipour et al. (2013c).
This decoupling makes it possible to consider domains, constraints, and QA separately,
which allows for streamlining the approach. A conference paper about semantics and
unknown universes has been accepted Braun and Möller (2019).

13.1 Template Models

Parameterised models contain constraints that restrict logvars in a parfactor to constants
from a known universe. Without a known universe, the set of constantsD becomes empty.
As a consequence, logvar domains no longer exist as the domains are defined as subsets
of D. In turn, constraints are no longer defined since they are combinations of subsets
of domains. Last, semantics lose its meaning as it involves grounding a model, which is
not possible without constraints. We assume, though, that the model itself accurately
describes relations. Thus, a parameterised model without D becomes a template model
that specifies local distributions for unknown instances of PRVs.

Definition 13.1.1 (Template model). A template model G is a set of parfactors {g̃i}ni=1,
in which each g̃i = φi(Ai)|C has an empty constraint C = (X , CX ) with CX = ⊥.

For ease of exposition, assume a slightly smaller example model, namely, Gex without
g1, reducing the logvars to X and M . which we name Gun.

Example 13.1.1 (Template model). Gun = {g0, g2, g3} becomes template model Gun by
replacing the constraints in g2 and g3 with ((X),⊥) and ((X,M),⊥), respectively.

Next, we fill empty constraints in template models with tuples by generating them
using a so-called constraint program.

13.2 Worlds of Constraints

With an unknown universe, we implicitly specify constraints through a set of rules that
generates tuples for constraints given a specific domain at a later point. To model
constraints, one could use, e.g., description logic or probabilistic Datalog Fuhr (1995),
with the latter leading to probabilities associated with constraints.
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Definition 13.2.1 (Constraint program, constraint world). Given a template model G
and a specific domain set D for the logvars in G, a constraint program C returns a set
of ordered constraint sets C = {{Cj,i}ni=1}mj=1 or, if a probability pj exists for each j,
C = {({Cj,i}ni=1, pj)}mj=1, i.e., C generates a constraint for each parfactor in G. We call
each generated constraint set CWj = {Cj,i}ni=1 a constraint world . Instantiating G with
CW , i.e., replacing the empty constraints in G with the constraints in CW , leads to a
parameterised model, denoted by G|CW , which follows distribution semantics.

Let us consider two constraint programs, > constraints as well as a Datalog program,
to generate constraint worlds for Gun.

Example 13.2.1 (Constraint program, constraint worlds). The shorthand > already
defines a constraint program C> that generates tuples by building the Cartesian prod-
uct given specific domains. It also generates exactly one constraint world. Given
Gun, C> returns {{C2, C3}} if D contains the domains D(X) = {alice, bob, eve} and
D(M) = {injection, tablet}. For a more complex example, assume that there are three
possible treatments t1, t2, t3 with only two treatments applicable at a time, i.e., only X
is unknown. Each combination has a different probability, e.g., 0.7 for (t1, t2), 0.3 for
(t2, t3), and 0.2 for (t1, t3). The following Datalog program captures this setup:

element_of_C3(X,Y1) :- linked(X,Y1,Y2).
element_of_C3(X,Y2) :- linked(X,Y1,Y2).
linked(X,Y1,Y2) :- instance_of_X(X) & pair(Y1,Y2).
0.7 pair(t1,t2). 0.3 pair(t2,t3). 0.2 pair(t1,t3).

The first three lines denote rules according to which one can generate (X,M)-tuples.
The last line denotes probabilistic facts that are disjoint, with probabilities adding up to
1, to model the combination of treatments. If given a domain such {alice, bob, eve} for
X, one can add corresponding facts to the program:

instance_of_X(alice). instance_of_X(bob). instance_of_X(eve).

Asking the queries ?- element_of_C3(X, Y) and ?- instance_of_X(X) generates tu-
ples for the constraints in Gun. Using 0.7 pair(t1, t2), the program returns the fol-
lowing facts, which contain tuples for the constraints in Gun:

instance_of_X(alice). instance_of_X(bob). instance_of_X(eve).
0.7 element_of_C3(alice,t1). 0.7 element_of_C3(alice,t2).
0.7 element_of_C3(bob,t1). 0.7 element_of_C3(bob,t2).
0.7 element_of_C3(eve,t1). 0.7 element_of_C3(eve,t2).

Arising from the pair facts, the Datalog program as constraint program CDL returns
three constraint worlds {({Cj,i}2i=1, pj}3j=1 with p1 = 0.7, p2 = 0.3, and p3 = 0.2 and
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constraints

C1,2 = C2,2 = C3,2 = ((X), {(alice), (bob), (eve)})
C1,3 = ((X,M), {(alice, t1), (alice, t2), (bob, t1), (bob, t2), (eve, t1), (eve, t2)})
C2,3 = ((X,M), {(alice, t2), (alice, t3), (bob, t2), (bob, t3), (eve, t2), (eve, t3)})
C3,3 = ((X,M), {(alice, t1), (alice, t3), (bob, t1), (bob, t3), (eve, t1), (eve, t3)})

Going forward, we use CDL as the example constraint program for the remaining
examples. Using rules in a constraint program is a form of meta-level logic programming,
which allows for formulating constraints on constraints without a specific domain. The
semantics of a parameterised model still depends on a constraint world, which requires
a specific domain. Next, we consider domains.

13.3 Worlds of Domains

Constraint programs still need domains or constants to generate constraint worlds. In
unknown universes, these constants are not available. In a naive way, one could generate
all possible domains, from one constant for each logvar to infinite domains, leading to
infeasibly many possible domains. Given knowledge about the setting in which one wants
to reason (like in the example above about treatments t1, t2, t3), one may list all possible
domains. Assumptions may further limit the number of worlds: Since logvars require
discrete domains of at least one, and small worlds (domains) are usually more likely than
large ones, we can set up a discrete distribution over domain sizes.

Definition 13.3.1 (Domain world). Given a template model G, a domain world DW
is a set of domains {D(X)}X∈lv(G) that specifies a domain for each logvar in G. Given a
set of domain worlds {DWk}lk=1 and probabilities pk associated with each DWk s.t. ∀k :
pk ∈ [0, 1] and

∑
k pk = 1, then D = {(DWk, pk)}lk=1 forms a distribution over domain

worlds. Providing a constraint program C with a domain world DWk with probability
pk leads to a set of constraint worlds Ck = {({Ck,j,i}ni=1, pk · pj)}mj=1 in which pj = 1 if C
does not assign probabilities. For pk · pj to be correct, pk and pj need to be independent
(else, replace with an appropriate expression).

One may start with a set of guaranteed constants and add varying numbers of possible
constants for domain worlds, inspired by the λ-completion of open-world PDBs Ceylan
et al. (2016). The probabilities allow for measuring how likely a particular instantiation
is compared to others. Given a distribution, one could specify a threshold τ to account
only for domains with a probability larger τ , which enables some filtering even before
generating parameterised models for efficiency. Another way of restricting the number of
worlds is to take domains that lie within the standard deviation from the mean or whose
probability make up around 95% of the distribution around its mean or maximum value.
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Figure 13.1: Discrete distribution over domain sizes of a logvar

Passing on a domain world to a constraint program C enables C to generate constraint
worlds to instantiate the template model with. Let us consider an example distribution
for a single logvar, namely, X, which is the only unknown quantity given Gun and CDL,
and how it allows for generating domain worlds.

Example 13.3.1 (Distribution over domain worlds). Figure 13.1 shows a beta-binomial
distribution (α = 6, β = 15). Possible domain sizes go from 1 to 20, which are compara-
tively small for readability. A domain size of 0 has a probability of 0. This distribution
represents the assumptions from before (domains with at least one constant, smaller do-
mains more likely than larger domains). The highest probability lies with a domain size
of 5, after which probabilities decrease again. The probability of a domain size of 20 is
around 3.85 · 10−7.
Given Gun and CDL for generating constraint worlds, assume the distribution just

introduced for X, denoted by px(d) with d as the input argument referring to the domain
size of X. There are 20 domain worlds Dbb = {({xi}di=1, px(d)}20

d=1 with probabilities
px(d) between 3.85 · 10−7 and 1.42 · 10−1. Given each domain world, CDL yields three
constraint worlds {({Cd,j,i}2i=1, px(d) · pj)}3j=1, i.e., overall 60 constraint worlds, where
each constraint world contains a constraint for both g̃1 and g̃2. For d = 3, the constraints
look like the ones given in the previous section but with x1, x2, and x3 instead of alice,
bob, and eve. The probabilities of p1 = 0.7, p2 = 0.3, and p3 = 0.2 are multiplied with
px(3) = 1.08 · 10−1.

Some of the 60 constraint worlds in the example have very small probabilities. Hence,
one could use a threshold of τ = 0.01 to first restrict the domain worlds in Dbb to those
with a probability at least τ as inputs for CDL. Given the distribution of Fig. 13.1,
τ would restrict the domains to sizes between 1 and 12, i.e., 12 domain worlds. With
τ = 0.05, the set of domain worlds Dbb5 contains domains with a size between 2 and 9,
which would lead to 8 ·3 = 24 constraint worlds. One could cascade the filtering and drop
constraint worlds if their probability goes below τ as well (or choose a new τ). Given
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τ = 0.05 and Dbb5 as an input to CDL, the number of constraint worlds goes down to 7,
i.e., domain sizes 2 to 8 combined with 0.7 pair(t1,t2). The other constraint worlds
arising from 0.3 pair(t2,t3) and 0.2 pair(t1,t3) have a probability lower than τ .
For the distribution of Fig. 13.1, the domains that make up 95% of the distribution
around its maximum value go from 1 to 12. Restricting that percentage to, e.g., 50%
permits domain sizes between 4 and 8.
With worlds of domains in place, which each in turn leads to worlds of constraints, we

define semantics.

13.4 Distribution-based Semantics

To fully specify a model with an unknown universe, we require three components: (i) A
template model G provides a structure and local distributions. (ii) A constraint program
C generates constraint worlds if given specific domains. A template model can be instan-
tiated with a constraint world, leading to a parameterised model as in Definition 3.1.1,
which follows distribution semantics. (iii) A set of domain worlds D specifies (a distri-
bution over) possible domain worlds. Each domain world can be passed to the constraint
program, which then generates constraint worlds. Each constraint world and thus each
instantiated model has a probability associated. The semantics are defined as follows.

Definition 13.4.1 (Semantics). A model with unknown universe is specified through a
template model G, a constraint program C, and domain worlds D. The semantics are
given by C generating constraint worlds C for each DW ∈ D. Then, a parameterised
model G|CW with distribution semantics is instantiated for each CW ∈ C. The result is
a set of parameterised models G = {(G|CW , p)}CW∈C(G,DW ),DW∈D.

Example 13.4.1 (Semantics). The example of the previous section has already shown
how many parameterised models derive from a given setting. With Gun, CDL, Dbb,
and cascading filtering with τ = 0.05, the semantics yields seven constraint worlds
Cbb5 = {({Cd,j=1,i}3i=2, px(d) ·pj=1)}8d=2, leading to a set of parameterised models Gun =
{(Gun|CWd,1

, px(d) ·p1)}8d=2. Each G ∈ Gun contains parfactors g0, g2, g3 with the follow-
ing signatures and identical mappings (omitted).

g0 = φ0(Epid),

g2 = φ1(Epid, Sick(X), T ravel(X))Cd,1,2
,

g3 = φ2(Epid, Sick(X), T ravel(X))Cd,1,3
.

Constraints Cd,1,2 and Cd,1,3 as well as the associated probability differ between the
models. For d = 2, the probability is 7.18 · 10−2 · 0.7 and the constraints are

C2,1,2 = ((X), {(x1)}),
C2,1,3 = ((X,M), {(x1, t1), (x1, t2)}).
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For d = 8, the probability is 9.02 · 10−2 · 0.7 and the constraints are

C8,1,2 =((X), {(x1), (x2), (x3), (x4), (x5), (x6), (x7), (x8)})
C8,1,3 =((X,M), {(x1, t1), (x1, t2), (x2, t1), (x2, t2), (x3, t1), (x3, t2), (x4, t1), (x4, t2),

(x5, t1), (x5, t2), (x6, t1), (x6, t2), (x7, t1), (x7, t2), (x8, t1), (x8, t2)})

A domain size of d = 5 leads to the most probable model. Within each model, one can
use LVE (or any other algorithm of one’s liking) again to answer queries.

With semantics in place for models with unknown universes, the last step on our
mission of exploring unknown universes is QA.

13.5 Seeking Answers in Unknown Universes

The semantics of a model with an unknown universe yields a set of parameterised models.
For each parameterised model, QA works as before, using, e.g., LVE to answer queries
for marginal or conditional distributions. If each parameterised model has a probability
associated, each result has a probability associated. Let us look at the running example
given a query for a marginal distribution of Sick(X) instantiated with x1

Example 13.5.1 (Query and model probabilities). Considering P (Sick(x1)) as a query,
each of the parameterised models in Gun provides an answer, i.e., a marginal distribution
for Sick(x1). Figure 13.2a shows the probabilities of Sick(x1) = true plotted for each
parameterised model with rising domain sizes on the x-axis, denoted by a circle. The
stars denote the probability associated with each parameterised model. As mentioned
before, the model with domain size d = 5 is most probable and returns a probability
of 0.31 for Sick(x1) = true. The model probabilities decrease to the left and right of 5
while the queried probability declines the larger the domain size becomes.

Given a set of parameterised models, new query types emerge beyond the queries
looked at so far, which we explore next.

Emerging New Queries As we have a set of parameterised models and, therefore, a set
of results, new forms of query processing and queries emerge. If asking for the probability
of a certain event, e.g., Sick(x1) = true, one might be interested in those models that
provide answers with highest probability (top-k query w.r.t. query probability).

Example 13.5.2 (Top-k query). A top-3 query w.r.t. query probabilities in Fig. 13.2
returns the models with domain sizes 2 to 4 (highest probabilities for Sick(x1) = true).

If events such as Sick(x1) = true have been observed, guaranteed constants are avail-
able and a top-k query may support identifying most probable domain sizes for other
logvars. Given the associated probabilities, one might be interested in a top-k query w.r.t.
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Figure 13.2: Plots of query and model probabilities

model probabilities or those models that have the highest combined probabilities of event
and model (skyline query w.r.t. event and model probability). Asking for distributions,
the results over different models might exhibit shifts or clusters worth investigating.

Example 13.5.3 (Skyline query). Figure 13.2b plots the model probabilities versus the
query probabilities. The skyline here consists of the dots labeled d = 2, d = 3, d = 4, d =
5, which form the outskirt of the dots from the origin of the plane.

As shown, given the semantics of models with unknown universe, one can answer var-
ious queries. Handling unknown universes leads to more work as an algorithm performs
QA for multiple instances, which share certain aspects. So, while this chapter focusses
on semantics, we briefly consider how one would implement it.

Arriving at an Implementation As the model structure is identical for each constraint
world and multiple queries probably have to be answered, an algorithm for repeated
inference like LJT or FOKC would be fitting to implement the semantics. Given that
the model structure is the same over different instantiations from constraint worlds, the
underlying FO jtree can be reused, constraints adapted using adaptive inference, and
calculations cached to a certain extend Kazemi and Poole (2016a). Given top-k queries
w.r.t. query probabilities, one would aim at adapting an implementation in the vain of
top-k queries on PDBs Fagin (1999) as to not evaluate more models than necessary.

13.6 Interim Conclusion: Exploring Unknown Universes

Detaching a parameterised model from a known universe allows for handling unknown
universes. Using a constraint program and a domain distribution, one can generate
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possible worlds to instantiate a template model, yielding a set of parameterised models.
For each resulting parameterised model, distribution semantics holds again. Given the
probabilistic nature of the domain distribution and possibly the constraint program, one
can restrict the number of worlds to a number that is feasible to handle. As the same
template model is instantiated with different constraint worlds, it is possible to perform
efficient QA, reusing helper structures or previous calculations. Additionally, new and
interesting forms of queries (top-k, skyline) arise that allow for further exploring a given
model under changing domains.
New inference tasks arise as well, e.g., regarding automatic generation of new instances

that are guaranteed to exist in open universes or regarding learning constraint rules in
completely unknown universes. Detaching a model from a known universe brings us
closer to understanding how transfer learning works: Transferring a model from one
domain to a next opens up possibilities for assumptions changing w.r.t. indistinguishable
individuals and their relations.
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Conclusion

Probabilistic relational models lie at the heart of many algorithms. They are the structure
that stores relations and features, describing universes of individuals. Posing queries for
such models is a major task and being able to efficiently answer these queries is an
ongoing research quest. We summarise the contributions, which this dissertation has
made towards efficient repeated inference, and provide some directions for future work.

14.1 Summary of Contributions

In this dissertation, we focus on exact repeated inference, i.e., solving multiple instances
of different query answering problems. We use the lifting idea to exploit the relational
part in models for compact representations and efficient calculations. We combine lift-
ing with junction trees for efficient repeated inference. Overall, we can summarise the
contributions of this thesis as follows.

Lifting the Junction Tree Algorithm We lift jtrees to compactly represent symmetric
nodes, allowing QA algorithms like LVE to use repeated patterns for efficient QA within
LJT. We prevent algorithm-induced groundings stemming from forced eliminations orders
during message passing. On a theoretical level, we show that the completeness results
of LVE also hold for LJT. We analyse the complexity of LJT, demonstrating that the
connection that exists between VE and JT also exists between LVE and LJT and that
lifting JT to LJT mirrors the effect of lifting VE to LVE.

Conjunctive Queries in LJT and LVE On our way to supporting more complex queries,
we extend the query answering step of LJT to handle conjunctive queries, in which a
single query may contain a set of query terms. We apply lifting to queries, which enables
lifted QA for queries that contain a set of interchangeable query terms by extending
LVE appropriately. The theoretical analysis shows that now queries influence whether
an algorithm run can be lifted. Thus, completeness also depends on the class of queries.

Solving MPE and MAP queries We redefine the LVE operator suite by Taghipour et al.
(2013c) to compute solutions to MPE problems. We arrange LVE and MPE operators to
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solve not only MPE queries but also MAP queries. This work culminates in one combined
algorithm for a set of queries, where each query could be a probability query as well as
an assignment query, reusing computations as much as possible in an FO jtree. Whereas
MPE queries correspond to empty probability queries, MAP queries show a connection
to parameterised conjunctive queries. Given an FO jtree, we are able to characterise
MAP queries that do not lead to larger intermediate results than MPE queries.

Algorithm Extensions Adaptive LJT handles incremental changes in a model or evi-
dence, which allows LJT to fast reach the point of answering queries again. Looking at
LJT as a backbone for lifted QA, we show that any QA algorithm can take on the role
of LVE in LJT as long as the QA algorithm supports lifted evidence handling as well
as the queries needed for message calculations. The query language supported by the
subroutine QA algorithm determines the types of queries LJT can answer.

The last chapter takes on unknown universes. LVE and, as a consequence, LJT require
known universes to be able to calculate counts during computations when performing
inference. Actually, all lifted algorithms need to know the universe. However, the goal
is to facilitate universes where the constants or the numbers of constants are unknown.
While the chapter sketches semantics regarding how to handle unknown domain sizes, it
also points directly to future work, which we consider next.

14.2 Future Work

Moving forward from this dissertation, there are a myriad of ways to continue research
in exact repeated inference and beyond. We single out four topics.

Constraints LVE as defined by the operator suite is decoupled from the constraint
language. The implementation realises constraints through decision trees. Looking into
suitable approaches to implementing constraint handling opens up a whole new universe
of open questions. The actual setting of a scenario, for which one wants to use lifted QA,
influences the way constraints may be stored. But also, LVE puts requirements forward
regarding the counts it needs to actually carry out computations during QA. One way
to go about constraint handling may be encoding constraints as an answer set program,
concentrating on required counts. A Datalog program as for unknown universes could
also provide a suitable avenue. Some generic rules or programs specifying how constraints
are generated is desirable if one wants to keep constraints detached from specific domain
sizes to then instantiate constraints for given domains.

Unknown and Open Universes Constraints that are generated given specific domains
provide the basis for handling unknown universes as discussed in Chapter 13. While
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14.2 Future Work

this discussion provides a first look into a possible way of handling unknown universes,
questions regarding how to implement unknown universes are far from answered. In open
and unknown universes, new inference tasks arise, e.g., regarding automatic generation
of new instances that are guaranteed to exist in open universes or regarding learning
constraint rules in completely unknown universes.

Domain Transfer The semantics of a parameterised model is given by grounding and
building a full joint distribution. But, what happens to the distribution if the domain
sizes change or domains are replaced with completely new constants? Changing a domain
size basically means transferring a given model to a new domain, as the underlying
joint distribution changes. Both completely new sets of constants as well as changing
domain sizes bear the question whether the full joint has an inextricable connection to
the domains it has been specified or learned for in the first place. From this observation,
new research questions arise when domains change regarding, e.g., (i) how a distribution
should change (ii) what behaviour is implicitly encoded and whether that behaviour is
wanted, or (iii) if another behaviour is expected, e.g., if more people are able to travel in
a universe, the model should reveal a higher chance of an epidemic occurring.

Model Integration Applying machine learning techniques on large data sets might lead
to one large model that might not represent data that well. But learning fragments might
yield a reasonable representation of certain aspects in data. Given various fragments, we
may build one model by integrating the fragments, which requires aligning randvars and
logvars of the fragments. One might even consider integrating FO jtrees of the fragments
or, keeping the fragments, one could integrate query results.
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Appendix A

Further Operators of MPE-LVE

The operators are based on the LVE operators as defined by Taghipour et al. (2013c)
and Taghipour (2013). We first provide some helper functions.

A.1 Helper Functions

Definition A.1.1 (Splitting on Overlap). Splitting a constraint C1 on its Y-overlap
with C2, denoted C1/YC2, partitions C1 into two subsets, containing all tuples for which
the Y part occurs or does not occur, respectively, in C2. C1/YC2 = {{t ∈ C1|πY(t) ∈
πY(C2)}, {t ∈ C1|πY(t) /∈ πY(C2)}}

Definition A.1.2 (Parfactor Partitioning). Given a parfactor g = φ(A)|C and a parti-
tion C = {Ci}ni=1 of C, partition(g,C) = {φ(A)B|Ci

}ni=1

Definition A.1.3 (Group-by). Given a constraint C and a function f : C → R, Group-
By(C, f) partitions C into subsets of elements that have the same result for f . Formally,
Group-By(C, f) = C/ ∼f , with x ∼f y ⇔ f(x) = f(y) and / denoting set quotient.

Definition A.1.4 (Joint-count). Given a constraint C over variables X, partitioned
into {C1, C2}, and a counted logvar X ∈ X; then for any t ∈ C, with L = X\{X} and
l = πL(t), joint-countX,{C1,C2}(t) = (|πX(σL=l(C1))|, |πX(σL=l(C2))|).

A.2 Transforming Operators

Operator 4 Splitting
Operator split
Inputs:
(1) g = φ(A)B|C , g ∈ G
(2) A = P (Y) ∈ A, to be split
(3) A′ = P (Y)|C′ or #Y [P (Y)]|C′ , to split on
Output: partition(g,C), with C = C/YC

′ \ ∅
Postcondition: G ≡ G \ {g} ∪ split(g,A,A′)
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Operator 5 Expansion
Operator expand
Inputs:
(1) g = ∀L : φ(A)B|C , g ∈ G
(2) A = #X [R(X)] ∈ A, to be expanded
(3) A′ = R(X)|C ′ or #Y [R(X)]|C ′, to expand on
Preconditions:
(1) ∀B ∈ B : X 6∈ B
Output: {gi = φ′i(A′i)B|C′i}

n
i=1 where

(1) C/XC ′ = {Ccom, Cexcl}
(2) {C1, . . . , Cn} = group-by(C, joint-countX,C/XC′)
(3) for all i where Ci on Ccom = ∅ or Ci on Cexcl = ∅: φ′i = φ,A′i = A, C ′i = Ci, and
(4) for all other i:

C ′i = πlv(A)(Ci) on (ρX→Xcom(Ccom) on ρX→Xexcl
(Cexcl)),

A′i = A \ {A} ∪ {Aθcom, Aθexcl} with θcom = {X → Xcom}, θexcl = {X → Xexcl},
and for each valuation (l, hcom, hexcl) of A′i,

φ′i(l, hcom, hexcl) =
(
φP (l, hcom ⊕ hexcl), φA(l, hcom ⊕ hexcl)

)
Postcondition: G ≡ G \ {g} ∪ expand(g,A,A′)

Operator 6 Counting Normalisation
Operator count-normalise
Inputs:
(1) g = φ(A)B|C , g ∈ G
(2) Y|Z, sets of logvars indicating the desired normalisation property in C
Preconditions:
(1) Y ⊂ lv(A) and Z ⊆ lv(A) \Y
Output: partition(g,group-by(C,CountY|Z))
Postcondition: G ≡ G \ {g} ∪ count-normalise(g,Y|Z)

Operator 7 Grounding
Operator ground-logvar
Inputs:
(1) g = φ(A)B|C , g ∈ G
(2) X ∈ lv(A), to be grounded in g
Output: partition(g,group-by(C, πX))
Postcondition: G ≡ G \ {g} ∪ ground-logvar(g,X)

The operators shown here, split, expand, count-normalise, and ground-logvar, are identical
to their LVE counterparts, copying along assignments.
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A.3 Evidence Operator

A.3 Evidence Operator

Operator 8 Lifted Absorption
Operator absorb
Inputs:
(1) g = φ(A)

B=()
|C , g ∈ G

(2) Ai ∈ A with Ai = R(X) or Ai = #Xi [R(X)]
(3) gE = φE(R(X))|CE

, an evidence parfactor
Let Xexcl = X \ lv(A \Ai);
Xnce = Xexcl \ {Xi} if Ai = #Xi [R(X)], Xexcl otherwise;
o = the observed value for R(X) in gE
Preconditions:
(1) rv(Ai|Ci

) ⊆ rv(Ai|CE
)

(2) Xnce is count-normalised w.r.t. lv(A) \Xexcl in C.
Output: φ′(A′)|C′ such that
(1) A′ = (A1, . . . , Ai−1) ◦ (Ai+1, . . . , An),
(2) C ′ = πlogvar(C)\Xexcl(C), and
(3) for each valuation a′ = (. . . , ai−1, ai+1, . . . ) of A′,

φ′(a′) =
(
φP (. . . , ai−1, e, ai+1, . . . )

r, φA(. . . , ai−1, e, ai+1, . . . )
)
,

• r = CountXnce|L′(C)

• e =

{
o if Ai = R(X),

he otherwise (namely if Ai = #Xi [R(X)]).
where he(o) = countXi|lv(A)(C) and he(.) = 0 elsewhere.

Postcondition: G ∪ {gE} ≡ G \ {g} ∪ {gE ,absorb(g,Ai, gE)}

The operator absorb is usually applied when the assignments are still empty, thus, absorb-
ing evidence changes an input parfactor only w.r.t. arguments, potentials, and possibly
constraints.

A.4 Generalised Counting Operators

As already mentioned in Sections 5.2 and 9.3, the generalisations allow for

• counting logvars that appear in more than one PRV,

• merging CRVs with counted logvars of the same domain into one CRV, and

• merge-counting a PRV and a CRV with an inequality constraint into one CRV.
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Operator 9 Generalised Count Conversion
Operator count-convert
Inputs:
(1) g = φ(A)B|C , g ∈ G
(2) X ∈ lv(A), to count in g
Preconditions:
(1) There is no (P)CRV in the set AX = {A ∈ A|X ∈ lv(A)}.
(2) There is no (P)CRV γ = #Xi [. . . ] ∈ A such that Xi 6= X in C
(3) For all g′ ∈ G, g′ 6= g : rv(Ai|C ∩ rv(g) = ∅.
Output: φ′(A′)B|C such that
(1) A′ = σrv(A)\rv(AX)(A) ◦ (#X [AX ]), and
(2) for each valuation a′ = (a, h(.)),

φ′(a′) =

 ∏
ai∈R(AX)

φP (a,ai)
h(ai), ©

B∈B

1

rb
·

∑
ai∈R(AX)

h(ai) · φA(a,ai)


• h = {(ai, ni)}mi=1, m = |R(AX)|, ai ∈ R(AX), ni ∈ N,

∑
ai∈R(AX) h(ai) = r,

• r = countX|X′(πX(C)), X′ = X \ {X},

• rB =

{
1 if X ∈ lv(B)

r otherwise
Postcondition: G ≡ G \ {g} ∪ {count-convert(g,X)}

Operator 10 Merging
Operator merge
Inputs:
(1) g = φ(A)B|C , g ∈ G
(2) (γ1, γ2) = (#X1 [A1],#X2 [A2]), γ1, γ2 ∈ A, a pair of (P)CRVs to merge
Preconditions:
(1) gr(X1|C) = gr(X2|C)

Output: φ′(A′)B|C such that
(1) A′ = σrv(A)\rv((γ1,γ2)) ◦ (#X [A12]), A12 = σrv(A1)\rv(A2)(A1) ◦ A2θ, θ = {X2 → X1}
(2) for each valuation a′ = (a, h(.)) ,

φ′(a′) =
(
φP (a, h[A1], h[A2θ]), φ

A(a, h[A1], h[A2θ])
)

• h = {(ai, ni)}mi=1, m = |R(A12)|, ai ∈ R(A12), ni ∈ N,
∑

ai∈R(A12) h(ai) = r,
• r = countX1|X(πX(C)), and
• h[Ai] denotes the projection of h on Ai.

Postcondition: G ≡ G \ {g} ∪ {merge(g, γ1, γ2)}
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Both operators are combined into one operator to merge and count a PRV into a CRV.

Operator 11 Merge-counting
Operator merge-count
Inputs:
(1) g = φ(A)B|C , g ∈ G
(2) γ = #X1 [A1] ∈ A
(3) X2 ∈ lv(A), to merge-count into γ
Preconditions:
(1) There is no (P)CRV in the set A2 = {A ∈ A|X2 ∈ lv(A)}.
(2) γ is the only (P)CRV for whose counted logvar X1 holds X1 6= X2.
Output: φ′(A′)B|C such that
(1) A′ = σrv(A)\rv(A2)\{γ}(A) ◦ (#X1 [A12]), A12 = σrv(A1)\rv(A2)(A1) ◦ A2θ, θ = {X2 →

X1},
(2) for each valuation a′ = (a, h(.)),

φ′(a′) =

 ∏
a12∈R(A12)

φP (a, h−a1

[A1],a2)h(a12), ©
B∈B

1

rb
·

∑
a12∈R(A12)

h(a12) · φP (a, h−a1

[A1],a2)


• ai denotes the projection of the valuation of a12 on Ai{X2 → X1},
• h−r is such that h−r(r) = h(r)− 1, and h−r(r′) = h(r′) for r 6= r′,
• h = {(ai, ni)}mi=1, m = |R(A12)|, ai ∈ R(A12), ni ∈ N,

∑
ai∈R(A12) h(ai) = r,

• r = countX1|X′(πX(C)),

• rB =

{
1 if X ∈ lv(B)

r otherwise
Postcondition: G ≡ G \ {g} ∪ {merge-count(g, γ,X2)}
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Appendix B

Inputs of the Empirical Evaluation

During the empirical evaluation, we vary (i) the largest domain size n, (ii) the number of
parclusters nJ , and (iii) the lifted width (wg, w#) in which wg is the ground width and
w# the counting width. In the following, we provide a description of the basic model as
well as the variations for n, nJ , wg, and w#, the evidence setup, and the fusion model.

B.1 Basic Setting

The basic input model is Gex with boolean ranges, n = 1000, which we use for each
logvar, nJ = 3, wg = 3, and w# = 1. The domain sizes are n = |D(D)| = |D(W )| =
|D(M)| = |D(X)| = 1000. The parfactors include random potentials between 0 and 1.

B.2 Varying the Domain Size

Gex remains the same, while n = |D(D)| = |D(W )| = |D(M)| = |D(X)| varies. The last
line holds the basic setting. max |A| refers to the largest number of arguments.

Table B.1: Key numbers about the input models used when varying n

n nJ wg w# |E| |G| |gr(G)| |Gi| in max |A|

2 3 3 1 0 4 11 {1, 2} 3
4 3 3 1 0 4 37 {1, 2} 3
6 3 3 1 0 4 79 {1, 2} 3
8 3 3 1 0 4 137 {1, 2} 3

10 3 3 1 0 4 211 {1, 2} 3
12 3 3 1 0 4 301 {1, 2} 3
14 3 3 1 0 4 407 {1, 2} 3
16 3 3 1 0 4 529 {1, 2} 3
18 3 3 1 0 4 667 {1, 2} 3
20 3 3 1 0 4 821 {1, 2} 3
50 3 3 1 0 4 5051 {1, 2} 3
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n nJ wg w# |E| |G| |gr(G)| |Gi| in max |A|

100 3 3 1 0 4 20101 {1, 2} 3
150 3 3 1 0 4 45151 {1, 2} 3
200 3 3 1 0 4 80201 {1, 2} 3
250 3 3 1 0 4 125251 {1, 2} 3
300 3 3 1 0 4 180301 {1, 2} 3
350 3 3 1 0 4 245351 {1, 2} 3
400 3 3 1 0 4 320401 {1, 2} 3
450 3 3 1 0 4 405451 {1, 2} 3
500 3 3 1 0 4 500501 {1, 2} 3
550 3 3 1 0 4 605551 {1, 2} 3
600 3 3 1 0 4 720601 {1, 2} 3
650 3 3 1 0 4 845651 {1, 2} 3
700 3 3 1 0 4 980701 {1, 2} 3
750 3 3 1 0 4 1125751 {1, 2} 3
800 3 3 1 0 4 1280801 {1, 2} 3
850 3 3 1 0 4 1445851 {1, 2} 3
900 3 3 1 0 4 1620901 {1, 2} 3
950 3 3 1 0 4 1805951 {1, 2} 3

1000 3 3 1 0 4 2001001 {1, 2} 3

B.3 Varying the Number of Parclusters

When varying nJ from 2 to 11, wg and w# remain fixed. Each new parcluster has a
lifted width of (3, 0), leaving the overall lifted width at (3, 1). Gex appears where nJ = 3
and n = 1000. A small jump in |gr(G)| occurs when additional PRVs trigger a new
parcluster. A larger jump occurs if an additional logvar triggers a new parcluster.

Table B.3: Key numbers about the input models used when varying nJ

n nJ wg w# |E| |G| |gr(G)| |Gi| in max |A|

10 2 3 1 0 3 111 {1, 2} 3
10 3 3 1 0 4 211 {1, 2} 3
10 4 3 1 0 5 221 {1, 2} 3
10 5 3 1 0 6 231 {1, 2} 3
10 6 3 1 0 7 331 {1, 2} 3
10 7 3 1 0 8 341 {1, 2} 3
10 8 3 1 0 9 441 {1, 2} 3
10 9 3 1 0 10 451 {1, 2} 3
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B.4 Varying the Ground Width

n nJ wg w# |E| |G| |gr(G)| |Gi| in max |A|

10 10 3 1 0 11 461 {1, 2} 3
10 11 3 1 0 12 561 {1, 2} 3

100 2 3 1 0 3 10101 {1, 2} 3
100 3 3 1 0 4 20101 {1, 2} 3
100 4 3 1 0 5 20201 {1, 2} 3
100 5 3 1 0 6 20301 {1, 2} 3
100 6 3 1 0 7 30301 {1, 2} 3
100 7 3 1 0 8 30401 {1, 2} 3
100 8 3 1 0 9 40401 {1, 2} 3
100 9 3 1 0 10 40501 {1, 2} 3
100 10 3 1 0 11 40601 {1, 2} 3
100 11 3 1 0 12 50601 {1, 2} 3

1000 2 3 1 0 3 1001001 {1, 2} 3
1000 3 3 1 0 4 2001001 {1, 2} 3
1000 4 3 1 0 5 2002001 {1, 2} 3
1000 5 3 1 0 6 2003001 {1, 2} 3
1000 6 3 1 0 7 3003001 {1, 2} 3
1000 7 3 1 0 8 3004001 {1, 2} 3
1000 8 3 1 0 9 4004001 {1, 2} 3
1000 9 3 1 0 10 4005001 {1, 2} 3
1000 10 3 1 0 11 4006001 {1, 2} 3
1000 11 3 1 0 12 5006001 {1, 2} 3

B.4 Varying the Ground Width

Varying wg from 2 to 11 means that nJ and w# appear fixed and each parcluster has a
ground width of wg. Gex appears where wg = 3 and n = 1000.

Table B.5: Key numbers about the input models used when varying wg

n nJ wg w# |E| |G| |gr(G)| |Gi| in max |A|

10 3 2 1 0 4 31 {2} 2
10 3 3 1 0 4 121 {1, 2} 3
10 3 4 1 0 10 631 {3, 4} 3
10 3 5 1 0 16 1231 {5, 7} 3
10 3 6 1 0 25 2131 {8, 9} 3
10 3 7 1 0 34 2761 {11, 12} 3
10 3 8 1 0 43 3661 {14, 15} 3
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n nJ wg w# |E| |G| |gr(G)| |Gi| in max |A|

10 3 9 1 0 52 4561 {17, 18} 3
10 3 10 1 0 61 5191 {20, 21} 3
10 3 11 1 0 70 5821 {23, 24} 3

100 3 2 1 0 4 301 {2} 2
100 3 3 1 0 4 10201 {1, 2} 3
100 3 4 1 0 10 60301 {3, 4} 3
100 3 5 1 0 16 120301 {5, 7} 3
100 3 6 1 0 25 210301 {8, 9} 3
100 3 7 1 0 34 270601 {11, 12} 3
100 3 8 1 0 43 360601 {14, 15} 3
100 3 9 1 0 52 450601 {17, 18} 3
100 3 10 1 0 61 510901 {20, 21} 3
100 3 11 1 0 70 571201 {23, 24} 3

1000 3 2 1 0 4 3001 {2} 2
1000 3 3 1 0 4 1002001 {1, 2} 3
1000 3 4 1 0 10 6003001 {3, 4} 3
1000 3 5 1 0 16 12003001 {5, 7} 3
1000 3 6 1 0 25 21003001 {8, 9} 3
1000 3 7 1 0 34 27006001 {11, 12} 3
1000 3 8 1 0 43 36006001 {14, 15} 3
1000 3 9 1 0 52 45006001 {17, 18} 3
1000 3 10 1 0 61 51009001 {20, 21} 3
1000 3 11 1 0 70 57012001 {23, 24} 3

B.5 Varying the Counting Width

When varying w# from 0 to 9, nJ and wg are fixed and each of the three parclusters has
a counting width of w#. Gex appears where w# = 1 and n = 1000.

Table B.7: Key numbers about the input models used when varying w#

n nJ wg w# |E| |G| |gr(G)| |Gi| in max |A|

10 3 3 0 0 4 31 {2} 2
10 3 3 1 0 4 301 {1, 2} 3
10 3 3 2 0 4 3001 {1, 2} 4
10 3 3 3 0 7 6001 {2, 3} 4
10 3 3 4 0 10 9001 {3, 4} 4
10 3 3 5 0 13 12001 {4, 5} 4
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B.6 Varying the Evidence Coverage

n nJ wg w# |E| |G| |gr(G)| |Gi| in max |A|

10 3 3 6 0 16 15001 {5, 6} 4
10 3 3 7 0 19 18001 {6, 7} 4
10 3 3 8 0 22 21001 {7, 8} 4
10 3 3 9 0 25 24001 {8, 9} 4

100 3 3 0 0 4 301 {2} 2
100 3 3 1 0 4 30001 {1, 2} 3
100 3 3 2 0 4 3000001 {1, 2} 4
100 3 3 3 0 7 6000001 {2, 3} 4
100 3 3 4 0 10 9000001 {3, 4} 4
100 3 3 5 0 13 12000001 {4, 5} 4
100 3 3 6 0 16 15000001 {5, 6} 4
100 3 3 7 0 19 18000001 {6, 7} 4
100 3 3 8 0 22 21000001 {7, 8} 4
100 3 3 9 0 25 24000001 {8, 9} 4

1000 3 3 0 0 4 3001 {2} 2
1000 3 3 1 0 4 3, 000, 001 {1, 2} 3
1000 3 3 2 0 10 3 · 10003 + 1 {1, 2} 4
1000 3 3 3 0 16 6 · 10003 + 1 {2, 3} 4
1000 3 3 4 0 25 9 · 10003 + 1 {3, 4} 4
1000 3 3 5 0 34 12 · 10003 + 1 {4, 5} 4
1000 3 3 6 0 43 15 · 10003 + 1 {5, 6} 4
1000 3 3 7 0 52 18 · 10003 + 1 {6, 7} 4
1000 3 3 8 0 61 21 · 10003 + 1 {7, 8} 4
1000 3 3 9 0 70 24 · 10003 + 1 {8, 9} 4

B.6 Varying the Evidence Coverage

For evidence testing, we add evidence for the 1-logvar PRVs in Gex, i.e., four evidence
parfactors, in 10% steps. The line with n = 1000 and |E| = 0 is Gex.

Table B.9: Key numbers about the input models used when varying evidence coverage

n nJ wg w# |E| |G| |gr(G)| |Gi| in max |A|

10 3 3 1 0 4 211 {1, 2} 3
10 3 3 1 4 4 211 {1, 2} 3
10 3 3 1 8 4 211 {1, 2} 3
10 3 3 1 12 4 211 {1, 2} 3
10 3 3 1 16 4 211 {1, 2} 3

213



Appendix B Inputs of the Empirical Evaluation

n nJ wg w# |E| |G| |gr(G)| |Gi| in max |A|

10 3 3 1 20 4 211 {1, 2} 3
10 3 3 1 24 4 211 {1, 2} 3
10 3 3 1 28 4 211 {1, 2} 3
10 3 3 1 32 4 211 {1, 2} 3
10 3 3 1 36 4 211 {1, 2} 3
10 3 3 1 36 4 211 {1, 2} 3

100 3 3 1 0 4 20101 {1, 2} 3
100 3 3 1 40 4 20101 {1, 2} 3
100 3 3 1 80 4 20101 {1, 2} 3
100 3 3 1 120 4 20101 {1, 2} 3
100 3 3 1 160 4 20101 {1, 2} 3
100 3 3 1 200 4 20101 {1, 2} 3
100 3 3 1 240 4 20101 {1, 2} 3
100 3 3 1 280 4 20101 {1, 2} 3
100 3 3 1 320 4 20101 {1, 2} 3
100 3 3 1 360 4 20101 {1, 2} 3
100 3 3 1 396 4 20101 {1, 2} 3

1000 3 3 1 0 4 2001001 {1, 2} 3
1000 3 3 1 400 4 2001001 {1, 2} 3
1000 3 3 1 800 4 2001001 {1, 2} 3
1000 3 3 1 1200 4 2001001 {1, 2} 3
1000 3 3 1 1600 4 2001001 {1, 2} 3
1000 3 3 1 2000 4 2001001 {1, 2} 3
1000 3 3 1 2400 4 2001001 {1, 2} 3
1000 3 3 1 2800 4 2001001 {1, 2} 3
1000 3 3 1 3200 4 2001001 {1, 2} 3
1000 3 3 1 3600 4 2001001 {1, 2} 3
1000 3 3 1 3996 4 2001001 {1, 2} 3

B.7 Unnecessary Groundings and Fusion

For fusion, we use a slight variation ofGex with nJ = 4, which has unnecessary groundings
with LJT. After fusion, nJ = 3 and wg = 5. We vary the domain size n again.

Table B.11: Key numbers about the input models used for evaluating fusion

n nJ wg w# |E| |G| |gr(G)| |Gi| max |A|

2 4→ 3 3→ 5 1 0 5 15 {1, 2} → {2, 3} 3
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n nJ wg w# |E| |G| |gr(G)| |Gi| max |A|

4 4→ 3 3→ 5 1 0 5 53 {1, 2} → {2, 3} 3
6 4→ 3 3→ 5 1 0 5 115 {1, 2} → {2, 3} 3
8 4→ 3 3→ 5 1 0 5 201 {1, 2} → {2, 3} 3

10 4→ 3 3→ 5 1 0 5 311 {1, 2} → {2, 3} 3
12 4→ 3 3→ 5 1 0 5 445 {1, 2} → {2, 3} 3
14 4→ 3 3→ 5 1 0 5 603 {1, 2} → {2, 3} 3
16 4→ 3 3→ 5 1 0 5 785 {1, 2} → {2, 3} 3
18 4→ 3 3→ 5 1 0 5 991 {1, 2} → {2, 3} 3
20 4→ 3 3→ 5 1 0 5 1221 {1, 2} → {2, 3} 3
50 4→ 3 3→ 5 1 0 5 7551 {1, 2} → {2, 3} 3

100 4→ 3 3→ 5 1 0 5 30101 {1, 2} → {2, 3} 3
150 4→ 3 3→ 5 1 0 5 67651 {1, 2} → {2, 3} 3
200 4→ 3 3→ 5 1 0 5 120201 {1, 2} → {2, 3} 3
250 4→ 3 3→ 5 1 0 5 187751 {1, 2} → {2, 3} 3
300 4→ 3 3→ 5 1 0 5 270301 {1, 2} → {2, 3} 3
350 4→ 3 3→ 5 1 0 5 367851 {1, 2} → {2, 3} 3
400 4→ 3 3→ 5 1 0 5 480401 {1, 2} → {2, 3} 3
450 4→ 3 3→ 5 1 0 5 607951 {1, 2} → {2, 3} 3
500 4→ 3 3→ 5 1 0 5 750501 {1, 2} → {2, 3} 3
550 4→ 3 3→ 5 1 0 5 908051 {1, 2} → {2, 3} 3
600 4→ 3 3→ 5 1 0 5 1080601 {1, 2} → {2, 3} 3
650 4→ 3 3→ 5 1 0 5 1268151 {1, 2} → {2, 3} 3
700 4→ 3 3→ 5 1 0 5 1470701 {1, 2} → {2, 3} 3
750 4→ 3 3→ 5 1 0 5 1688251 {1, 2} → {2, 3} 3
800 4→ 3 3→ 5 1 0 5 1920801 {1, 2} → {2, 3} 3
850 4→ 3 3→ 5 1 0 5 2168351 {1, 2} → {2, 3} 3
900 4→ 3 3→ 5 1 0 5 2430901 {1, 2} → {2, 3} 3
950 4→ 3 3→ 5 1 0 5 2708451 {1, 2} → {2, 3} 3

1000 4→ 3 3→ 5 1 0 5 3001001 {1, 2} → {2, 3} 3
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