Advanced Topics Data Science and Al Automated Planning and Acting

Introduction

Tanya Braun

INIVERSITÄT ZU LÜBECK INSTITUT FÜR INFORMATIONSSYSTEME

Organisational Stuff: Lecture

- Module number: CS5070-KP04 (Dataaktuell)
- Topic (summer term):

Automated Planning and Acting

- (winter term lecture on probabilistic differentiable programming by Özgür Özcep)
- Language: English
- Schedule: Thursdays, 10.15-11.45 am

Organisational Stuff: Exercises

- Schedule: in flux
- Task: Give a presentation on a selected topic
 - 45 minutes
 - Ties to lecture expected
 - How to fill the 45 minutes is up to you!
 - Theory
 - Exercises
 - Programming

- Alternatives
 - 1. Webex Meeting
 - 2. Slides + script in Moodle
 - 3. Meeting @UzL once we are allowed back
 - May require switch to Alternative 1 or 2 if we are not allowed back before exams hit
- Each can decide for their presentation

Organisational Stuff: Exercises

- Assignment of topics now
 - In Moodle (after this lecture) if not everybody has a topic after we have moved passed this slide
- Topic areas
 - Topics 1-2 on deterministic planning
 - Topic 3 on refinement methods
 - Topic 4-6 on nondeterministic planning
 - Topic 7 on probabilistic planning
 - Topics 8-9 on other deliberation methods

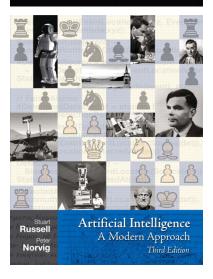
- Topics
 - 1. Hierarchical Task Network Planning
 - 2. Planning with Control Rules
 - 3. REAP
 - 4. Symbolic Model Checking Techniques
 - 5. Planning based on Search Automata
 - 6. Acting with Input/Output Automata
 - 7. First-order MDPs*
 - 8. Hybrid Models
 - 9. Ontologies for Planning and Acting

Organisational Stuff: Exam

- Oral exam at the end of the semester
- Prerequisites to participate in exam
 - Registration in Moodle course
 - Exercise presentation
- Registration for exam via Moodle

Literature

- Automated Planning and Acting
 - Malik Ghallab, Dana Nau, Paolo Traverso
 - Main source
- Artificial Intelligence: A Modern Approach (3rd ed.)
 - Stuart Russell, Peter Norvig
 - Decision theory
 - Ch. 16 + 17
 - Reinforcement learning
 - Ch. 21

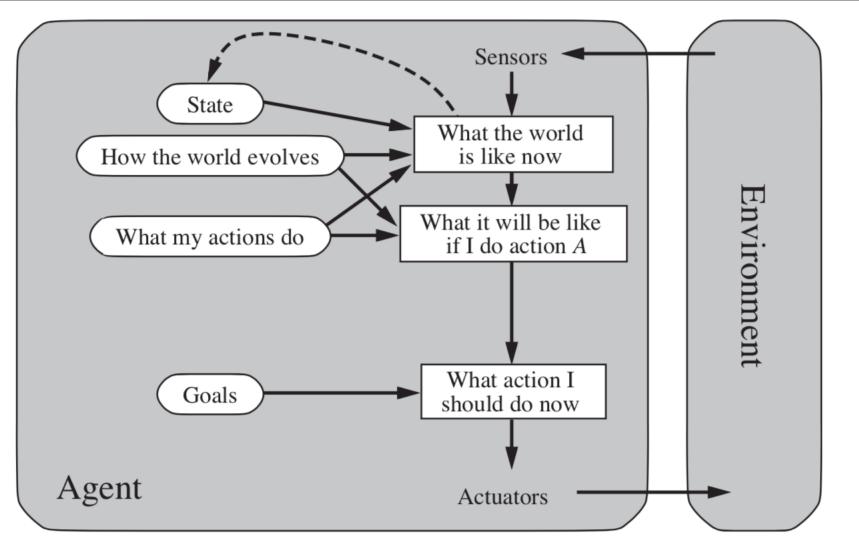

NIVERSITÄT ZU LÜBECK INSTITUT FÜR INFORMATIONSSYSTEME

 Further research papers may be announced in lectures

Automated Planning and Acting

Malik Ghallab, Dana Nau and Paolo Traverso

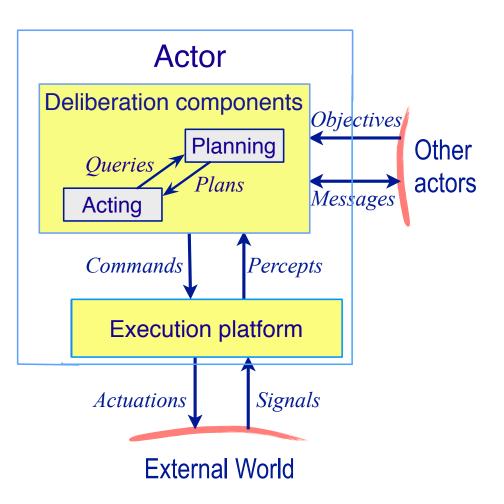
Acknowledgements


 If not stated otherwise, slides are adapted from material provided by Dana Nau

Last update: February 28, 2020	Chapter 1 Introduction	Automated Planning and Acting Malik Ghallab, Dana Nau and Paolo Traverso	
τ	Dana S. Nau Jniversity of Maryland		

http://www.laas.fr/planning

Agent Setting



Motivation

- Actor: agent that performs actions
- Deliberation functions
 - Planning What actions to perform
 - Acting

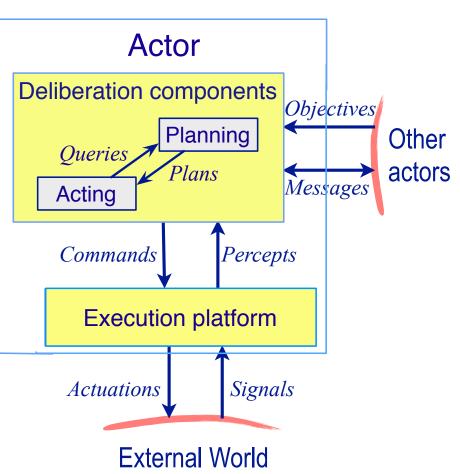
How to perform them

Planning

- Relies on prediction + search
- Uses descriptive models of the actions
 - Predict what the actions will do, but don't tell how to do them
- Search over predicted states and possible organizations of feasible actions

- Different types of actions
 - → Different predictive models
 - → Different planning problems and techniques
 - Motion and manipulation pl.
 - Perception planning
 - Navigation planning
 - Communication planning

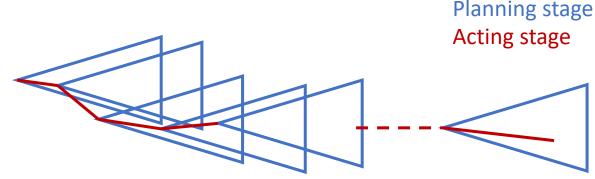
Task planning


 $\rightarrow s' = \gamma(s,a)$

Most Al planning

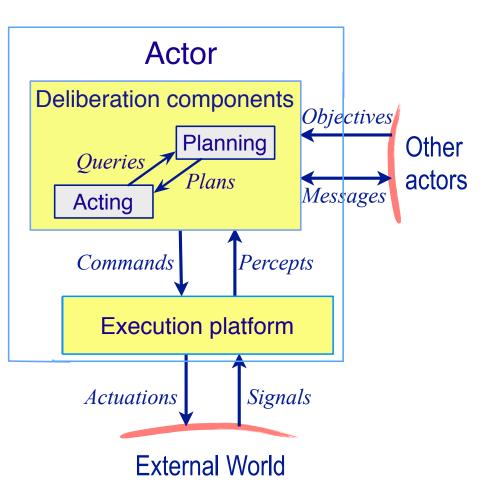
Acting

- Traditional "AI planning" view:
 - Carrying out an action is just execution
 - Doesn't require the actor to think about how
- Sometimes that's true
 - If the environment has been engineered to make it true
- Usually acting is more complicated

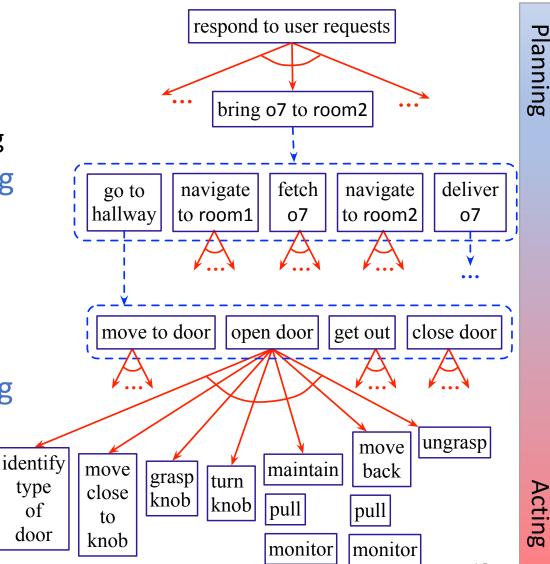

Acting as Execution

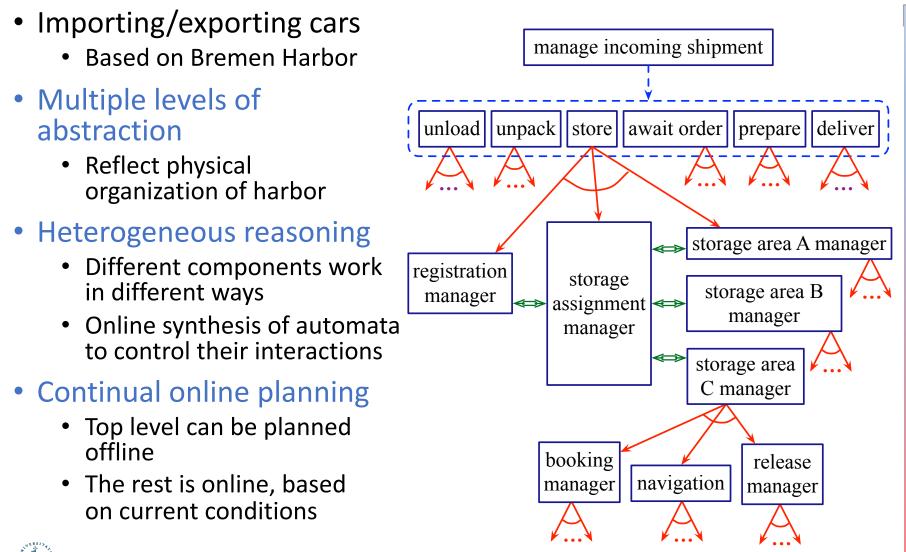
Deliberative Acting

- Actor is situated in a dynamic unpredictable environment
 - Adapt actions to current context
 - React to events
- Relies on
 - Operational models telling how to perform the actions
 - Observations of current state


Deliberative Acting

General Characteristics


- Multiple levels of abstraction
 - Actors are organised into physical subsystems
- Heterogeneous reasoning
 - Different techniques
 - At different levels
 - In different subsystems at same level
- Continual online planning
 - Can't plan everything in advance
 - Plans are abstract and partial until more detail is needed



Example: Service Robot

- Multiple levels of abstraction
 - Higher levels: more planning
 - Lower levels: more acting
- Heterogeneous reasoning
 - bring o7 to room2: abstract steps
 - navigate to room1: path planning
 - open door: reactive
- Continual online planning
 - Is o7 really in room1?
 - What kind of door?
 - Close enough to the doorknob?

Example: Harbour Management

Acting

Planning

Content

- 1. Planning and Acting with Deterministic Models
 - Conventional AI planning
- 2. Planning and Acting with Refinement Methods
 - Abstract activities → collections 7. of less-abstract activities
- 3. Planning and Acting with Temporal Models
 - Reasoning about time constraints
- 4. Planning and Acting with Nondeterministic Models
 - Actions with multiple possible outcomes
- 5. Making Simple Decisions
 - Utility theory + probability theory = decision theory

- 6. Making **Complex** Decisions
 - (Partially observable) Markov decision processes ((PO)MDP)
 - Dynamic Models (online)
 - Reinforcement learning
 - Planning and Acting with Probabilistic Models
 - Actions with multiple possible outcomes, with probabilities
- 8. Provably Beneficial AI
 - Acting for the better of humanity (without destroying the world)
- Other: open world, perceiving
 - If time permits

