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Temporal Models
• Durations of actions
• Delayed effects and preconditions

• E.g., resources borrowed or consumed during an action
• Time constraints on goals

• Relative or absolute
• Exogenous events expected to occur in the future

• When?
• Maintenance actions: 

• Maintain a property (≠ changing a value)
• E.g., track a moving target, keep a spring latch in position

• Concurrent actions
• Interacting effects, joint effects

• Delayed commitment 
• Instantiation at acting time
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Timelines
• Up to now, “state-oriented view”
• Time is a sequence of states !", !$, !%
• Instantaneous actions transform each state into the next 

one
• No overlapping actions

• Switch to a “time-oriented view”
• Sequence of 

integer time points
• & = 1, 2, 3, …

• For each state variable ,, 
a timeline
• values during different 

time intervals
• State at time & = {state−variable values at time &}
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Timelines
• Sets of constraints on state variables and events
• Reflect predicted actions and events

• Planning is constraint-based
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Outline per the Book
4.2 Representation

• Timelines
• Actions and tasks
• Chronicles

4.3 Temporal planning
• Resolvers and flaws
• Search space

4.4 Constraint management
• Consistency of object constraints and time constraints
• Controlling the actions when we don’t know how long they’ll 

take
4.5 Acting with temporal models

• Acting with atemporal refinement
• Dispatching
• Observation actions
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Representation
• Quantitative model of time
• Discrete: time points are integers

• Expressions:
• time-point variables

• !, !′, !2 , !% , …
• simple constraints

• ' ≤ !)– ! ≤ ')

• Temporal assertion:
• Value of a state variable during a time interval
• Persistence: !+, !, - = / entails !+ < !,
• Change: !+, !, - ∶ /+, /, entails /+ ≠ /,
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Timeline
• Timeline: pair !, # , partially predicted evolution of one state variable

• Instance of !, # = temporal and object variables instantiated
• ! : temporal assertions

• $%, $& '() *1 ∶ '()1, '
• $&, $- '() *1 = '
• $-, $/ '() *1 ∶ ', '()2

• # : constraints
• $% < $& < $- < $/
• ' ≠ '()1
• ' ≠ '()2
• If we want to restrict '() *1 during $%, $&

• $%, $% + 1 '() *1 ∶ '()1, *(4$5
• $&– 1, $& '() *1 ∶ *(4$5, '
• $% + 1, $&– 1 '() *1 = *(4$5

• An instance is consistent if it satisfies all constraints in # and does not 
specify two different values for a state variable at the same time

• A timeline is secure if its set of consistent instances is not empty
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Actions
• Preliminaries:

• Timelines !", $" , … , !&, $& for ' different state variables
• Their union:

• !", $" ∪ ⋯∪ !&, $& = !" ∪ ⋯∪ !&, $" ∪ ⋯∪ $&
• If 

• every !+, $+ is secure, and 
• no pair of timelines !+, $+ and !,, $, have any unground 

variables in common
• then 

• !" ∪ ⋯∪ !&, $" ∪ ⋯∪ $& is also secure

• Action or primitive task (or just primitive): 
• a triple ℎ./0, !, $

• ℎ./0 is the name and arguments
• !, $ is the union of a set of timelines
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Actions
• !"#$" %, ', (
• Robot % leaves dock ',

goes to adjacent 
waypoint (

• !)*(%) changes to (
with delay ≤ ./
• Dock ' becomes empty

• Two additional 
parameters  
• Starting time 01
• Ending time 02

• No separate 
preconditions and 
effects
• Preconditions ⇔ need 

for causal support

10
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• w r

leave(r,d,w)
assertions:

[ts,te] loc(r): (d,w)
[ts,te] occupant(d): (r,empty) 

constraints:
te ≤ ts + δ1
adj(d,w) 



Actions
• !"#!$ $, &, '
• $ enters & from an 

adjacent waypoint '

• ()*($) changes to &
with delay ≤ ./
• Dock & becomes 

occupied by $

• Two additional 
parameters  
• Starting time #0
• Ending time #1

• No separate 
preconditions and 
effects
• Preconditions ⇔ need 

for causal support
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r

enter(r,d,w)
assertions:

[ts,te] loc(r): (w,d)
[ts,te] occupant(d): (empty,r) 

constraints:
te ≤ ts + δ2
adj(d,w) 



Actions
• !"#$ #, &, ', (
• Action: crane # takes 

container & from ' on 
dock (

• Two additional 
parameters  
• Starting time !)
• Ending time !*

• No separate 
preconditions and effects
• Preconditions ⇔ need for 

causal support
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take(k,c,r,d)
assertions:

[ts,te] pos(c): (r, k) // where container c is
[ts,te] grip(k): (empty, c) // what crane k’s gripper is holding
[ts,te] freight(r): (c,empty) // what r is carrying
[ts,te] loc(r) = d // where r is

constraints:
attached(k,d) 

book omits d



Actions
• !"#$" %, ', ( robot % leaves dock ' to an 

adjacent waypoint (
• ")*"% %, ', ( % enters ' from an adjacent (
• *#+" +, ,, % crane + takes container , from %
• )#$-.#*" %, (, (/ % navigates from ( to (/

• 0*#,+ +, ,, 1 + stacks , on top of pile 1
• 2)0*#,+ +, ,, 1 + takes , from top of 1
• 12* +, ,, % + puts , onto %
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Tasks and Methods

ts t1 t2 t3 t4 te

leave

navigate

enter

!", !$ %&'( ), *• Task: move robot r to 
dock d
• !", !$ %&'( ), *

• Method:

• *+ becomes empty during [!", !-]
• another robot may enter it after !-

• * doesn’t need to be empty 
until !/
• when ) starts entering it

14d1

d2

• w1
r1

• w2

m-move1(r,d,dʹ,w,wʹ)
task: move(r,d)
refinement:

[ts,t1] leave(r,dʹ,wʹ)
[t2,t3] navigate(r,wʹ,w)
[t4,te] enter(r,d,w)

assertions:
[ts,ts+1] loc(r) = dʹ 

constraints:
adj(d,w), 
adj(dʹ,wʹ), d ≠ dʹ, 
connected(w,wʹ), 
t1 ≤ t2, t3 ≤ t4



Tasks and Methods

ts t1 t2 t3 t4 te

unstack

stack

uncover

!", !$ %&'()*+ ', ,• Task: remove everything 
above container ' in pile 
,
• !", !$ %&'()*+ ', ,

• Method:
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m-uncover(c,p,k,d,pʹ)
task: uncover(c,p)
refinement: [ts,t1] unstack(k,cʹ,p)      // action

[t2,t3] stack(k,cʹ,pʹ)         // action
[t4,te] uncover(c,p)         // recursive uncover

assertions: [ts,ts+1] pile(c) = p
[ts,ts+1] top(p) = cʹ
[ts, ts+1] grip(k) = empty 

constraints: attached(k,d), attached(p,d),
attached(pʹ,d), 
p ≠ pʹ, cʹ ≠ c, 
t1 ≤ t2, t3 ≤ t4

k1

p1
c3
c2
c1

p2



Tasks and Methods

d1

d2

• w1

k2

p3k1

r1

p1
c1

• w2

p2

• Task: robot ! brings 
container " to pile #
• $%, $' (!)*+ !, ", #

• Method:
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m-bring(r,c,p,pʹ,d,dʹ)
task: bring(r,c,p)
refinement: [ts,t1] move(r,dʹ)

[ts,t2] uncover(c,pʹ)
[t3,t4] load(kʹ,r,c,pʹ)
[t5,t6] move(r,d)
[t7,te] unload(k,r,c,p)

assertions: [ts,t3] pile(c) = pʹ
[ts,t3] freight(r) = empty 

constraints: attached(pʹ,dʹ), attached(p,d), d ≠ dʹ
attached(kʹ,dʹ), attached(k,d), k ≠ kʹ
t1 ≤ t3, t2 ≤ t3, t4 ≤ t5, t6 ≤ t7

ts t3 t4 t5 t6 t7 te

load

move

unload

$%, $' (!)*+ !, ", #

uncover

move t1

t2

pile(c) = pʹ
freight(r) = empty



Chronicles: Unions of Timelines
• Chronicle ! = #, %, &, '

• # : temporally qualified 
actions and tasks

• % : a priori supported 
assertions

• & : temporally qualified 
assertions

• ' : constraints

• ! can include
• Current state, future 

predicted events
• Tasks to perform
• Assertions and constraints to 

satisfy

• Can represent
• Planning problem
• Plan or partial plan
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ϕ0:

tasks: [t,t’] bring(r,c1,d4)

supported: [ts] loc(r1)=d1
[ts] loc(r2)=d2
[ts+10,ts+δ] docked(ship1)=d3
[ts] top(pile-ship1)=c1
[ts] pos(c1)=pallet

assertions: [te] loc(r1)=d1
[te] loc(r2)=d2

constraints: ts = 0 < t < t' < te , 20 ≤ δ ≤ 30

ts t ts+10 ts+( t’ te

docked(ship1) = d3

loc(r1) = d1

)*, )+ ,-./0 -, 11, 34
loc(r1) = d1

top(pile-ship1) = c1



Intermediate Summary
• Timelines
• Temporal assertions (change, persistence), constraints
• Conflicts, consistency, security, causal support

• Chronicle: union of several timelines
• Consistency, security, causal support

• Actions represented by chronicles
• No separate preconditions and effects

• Preconditions ⇔ need for causal support
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Outline per the Book
4.2 Representation

• Timelines
• Actions and tasks
• Chronicles

4.3 Temporal planning
• Resolvers and flaws
• Search space

4.4 Constraint management
• Consistency of object constraints and time constraints
• Controlling the actions when we don’t know how long they’ll 

take
4.5 Acting with temporal models

• Acting with atemporal refinement
• Dispatching
• Observation actions
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Planning
• Planning problem:
• Chronicle !" that has 

some flaws 
• Analogous to flaws in PSP

• Add new assertions, 
constraints, actions to 
resolve the flaws
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ϕ0: tasks: (none)
supported: (none)
assertions: [t1,t2] loc(r1) = l

[t3,t4] loc(r1) : (loc3,loc4)
constraints: adj(loc3,w1)

adj(w1,loc3)
adj(loc4,w2)
adj(w2,loc4)
connected(w1,w2)

loc4

lo
c(

r1
)

loc3

t1 t2 t3 t4

l move
loc4

lo
c(

r1
)

loc3
t1 t2 t3 t4

l

ϕ0: tasks: [t2,t3] move(r1,loc3)
supported: (none)
assertions: [t1,t2] loc(r1) = l

[t3,t4] loc(r1) : (loc3,loc4)
constraints: adj(loc3,w1)

adj(w1,loc3)
adj(loc4,w2)
adj(w2,loc4)
connected(w1,w2)



Flaws (1)
1.  Temporal assertion ! that isn’t 

causally supported
• What causes "1 to be at $%&3 at time 
()?

• Resolvers:
• Add constraints to support ! from an 

assertion in *
• $ = $%&3, (- = ()

• Add a new persistence assertion to 
support !
• $ = $%&3, (-, () $%& "1 = $%&3

• Add a new task or action to support !
• (-, () .%/0 "1, $%&3

• Refining it will produce support for !
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Flaws (2)
2.  Non-refined task
• Resolver: refinement method !

• Applicable if it matches the task and 
its constraints are consistent with "’s

• Applying the resolver:
• Modify " by replacing the task with !

• Example: #$, #& !'() *1, ,'-3
• Refinement will replace 

it with something like
• #$, #/ ,)0() *1, ,, 1
• #/, #2 30(450#) *1, 1, 16

• #2, #& )3#)* *1, ,'-3, 16

• plus constraints

22

Like a task in SeRPE
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Flaws (3)
3.  A pair of possibly-conflicting temporal assertions
• temporal assertions ! and " possibly conflict 

if they can have inconsistent instances
• Example
• #$, #& '() *1 = '()1, #-, #. '() * ∶ ', '0

↓↓                                  ↓ ↓         ↓       ↓   ↘
• 1, 5 '() *1 = '()1, 3, 8 '() *1 ∶ '()2, '()3
• Resolvers: separation constraints

• * ≠ *1
• #& < #-
• #. < #$
• #& = #-, * = *1, ' = '()1

• Also provides causal support for #-, #. '()(*) ∶ ', '0
• #. = #$, * = *1, ' = '()1

• Also provides causal support for #$, #& '() *1 = '()1
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Like a threat in PSP
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Planning Algorithm
• Like PSP in Chapter 2

• Repeatedly selects 
flaws and chooses 
resolvers

• In the book, TemPlan
uses recursion
• Can be rewritten to use 

a loop
• Just programming style, 

equivalent either way
• In a deterministic 

implementation
• Selecting a resolver ! is

a backtracking point
• Selecting a flaw isn’t

• If it is possible to resolve 
all flaws, at least one of 
the nondeterministic 
execution traces will do 
so

24

TemPlan(",Σ)
Flaws ← set of flaws of "
if Flaws = ∅ then

return "
arbitrarily select f ∈ Flaws
Resolvers ← set of resolvers of f
if Resolvers = ∅ then

return failure
nondeterministically choose ! ∈ Resolvers
" ← Transform(", !)
TemPlan(",Σ)

TemPlan(",Σ)
loop

Flaws ← set of flaws of "
if Flaws = ∅ then

return "
arbitrarily select f ∈ Flaws
Resolvers ← set of resolvers of f
if Resolvers = ∅ then

return failure
nondeterministically choose ! ∈ Resolvers
" ← Transform(", !)



Example
• ! = #, %, &, '

• Establishes state-variable values at 

time ( = 0
• Flaws: two unrefined tasks

• bring(r,c1,p3), bring(rʹ,c2,p4)
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ϕ0: tasks: bring(r,c1,p3)

bring(rʹ,c2,p4)

supported:[0] loc(r1)=d3

[0] freight(r1)=empty

[0] pile(c1)=pʹ1
[0] pile(cʹ1)=pʹ1
[0] pos(c1)=pallet

[0] pos(cʹ1)=c1

. . .

assertions: (none)
constraints:

adj(d1,w12)

adj(d1,w13)

. . .

4
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r1

k1

p’1
c1
c’1

d1 d2

d3 d4

w12

w13 w23

w34 r2

k2

k4k3

p1 p2

p3 p4

p’2
c2
c’2

d1

4

r1

k1

p’1
c1
c’1

d1 d2

d3 d4

w12

w13 w23

w34 r2

k2

k4k3

p1 p2

p3 p4

p’2
c2
c’2

Example
• Flaws: two unrefined tasks

• bring(r,c1,p3), bring(rʹ,c2,p4)

• Refinement for both:
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ϕ0: tasks: bring(r,c1,p3)

bring(rʹ,c2,p4)

supported:[0] loc(r1)=d3

[0] freight(r1)=empty

[0] pile(c1)=pʹ1
[0] pile(cʹ1)=pʹ1
[0] pos(c1)=pallet

[0] pos(cʹ1)=c1

. . .

assertions: (none)
constraints:

adj(d1,w12)

adj(d1,w13)

. . .

m-bring(r,c,p,pʹ,d,dʹ,k,kʹ)
task: bring(r,c,p)

refinement: [ts,t1] move(r,dʹ)

[ts,t2] uncover(c,pʹ)

[t3,t4] load(kʹ,r,c,pʹ)

[t5,t6] move(r,d)

[t7,te] unload(k,r,c,p)

assertions: [ts,t3] pile(c) = pʹ

[ts,t3] freight(r) = empty 

constraints: attached(pʹ,dʹ), 
attached(p,d), d ≠ dʹ
attached(kʹ,dʹ), 
attached(k,d), k ≠ kʹ
t1 ≤ t3, t2 ≤ t3, t4 ≤ t5, t6 ≤ t7



4

r1

k1

p’1
c1
c’1

d1 d2

d3 d4

w12

w13 w23

w34 r2
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p1 p2

p3 p4

p’2
c2
c’2
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p’1
c1
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d1 d2

d3 d4
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p1 p2

p3 p4

p’2
c2
c’2

Method Instance
• Instantiate ! = !1 and $ = $3 to match &'()* ', !1, $3

• $,, -, -,, ., ., instantiated to match book 
• Needed later to satisfy action preconditions
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ϕ0: tasks: bring(r,c1,p3)

bring(rʹ,c2,p4)

supported:[0] loc(r1)=d3

[0] freight(r1)=empty

[0] pile(c1)=pʹ1
[0] pile(cʹ1)=pʹ1
[0] pos(c1)=pallet

[0] pos(cʹ1)=c1

. . .

assertions: (none)
constraints:

adj(d1,w12)

adj(d1,w13)

. . .

m-bring(r,c,p,pʹ,d,dʹ,k,kʹ)
task: bring(r,c,p)

refinement: [ts,t1] move(r,dʹ)

[ts,t2] uncover(c,pʹ)

[t3,t4] load(kʹ,r,c,pʹ)

[t5,t6] move(r,d)

[t7,te] unload(k,r,c,p)

assertions: [ts,t3] pile(c) = pʹ

[ts,t3] freight(r) = empty 

constraints: attached(pʹ,dʹ), 
attached(p,d), d ≠ dʹ
attached(kʹ,dʹ), 
attached(k,d), k ≠ kʹ
t1 ≤ t3, t2 ≤ t3, t4 ≤ t5, t6 ≤ t7

m-bring(r,c1,p3,pʹ1,d3,d1,k3,k1)

task: bring(r,c1,p3)

refinement: [ts,t1] move(r,d1)

[ts,t2] uncover(c1,pʹ1)

[t3,t4] load(k1,r,c1,pʹ1)

[t5,t6] move(r, d3)

[t7,te] unload(k3,r,c1,p3)

assertions: [ts,t3] pile(c1) = pʹ1
[ts,t3] freight(r) = empty 

constraints: attached(pʹ1,d1), 

attached(p3,d3), d3 ≠ d1

attached(k1,d1), 

attached(k3,d3), k3 ≠ k1

t1 ≤ t3, t2 ≤ t3, t4 ≤ t5, t6 ≤ t7



4

r1

k1

p’1
c1
c’1

d1 d2

d3 d4

w12

w13 w23

w34 r2

k2

k4k3

p1 p2

p3 p4

p’2
c2
c’2

d1

4

r1

k1

p’1
c1
c’1

d1 d2

d3 d4

w12

w13 w23

w34 r2

k2

k4k3

p1 p2

p3 p4

p’2
c2
c’2

Modified Chronicle
• Changes to !"

• Removed #$%&' $, )1, +3
• Added 5 tasks, 2 assertions, 4 

constraints
• Flaws

• 6 unrefined tasks, 2 unsupported 
assertions
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ϕ1: tasks: [ts,t1] move(r,d1)
[ts,t2] uncover(c1,pʹ1)
[t3,t4] load(k1,r,c1,pʹ1)
[t5,t6] move(r,d3)
[t7,te] unload(k3,r,c1,p3)
bring(rʹ,c2,p4)

supported:[0] loc(r1)=d3
[0] freight(r1)=empty
[0] pile(c1)=pʹ1
[0] pile(cʹ1)=pʹ1
[0] pos(c1)=pallet
[0] pos(cʹ1)=c1
. . .

assertions: [ts,t3] pile(c1) = pʹ1
[ts,t3] freight(r) = empty

constraints: ts<t1≤t3, ts<t2≤t3, t4≤t5, t6≤t7,
adj(d1,w12), 
adj(d1,w13),

. . .
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p’1
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Method Instance
• Instantiate ! = !#, % = %2, ' = '4 to 

match )!*+, !#, %2, '4
• '#, -, -#, ., .# instantiated to match book
• Variables renamed to avoid name conflicts
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ϕ1: tasks: [ts,t1] move(r,d1)
[ts,t2] uncover(c1,pʹ1)
[t3,t4] load(k1,r,c1,pʹ1)
[t5,t6] move(r,d3)
[t7,te] unload(k3,r,c1,p3)
bring(rʹ,c2,p4)

supported:[0] loc(r1)=d3

[0] freight(r1)=empty

[0] pile(c1)=pʹ1
[0] pile(cʹ1)=pʹ1
[0] pos(c1)=pallet

[0] pos(cʹ1)=c1

. . .

assertions: [ts,t3] pile(c1) = pʹ1
[ts,t3] freight(r) = empty

constraints: ts<t1≤t3, ts<t2≤t3, t4≤t5, t6≤t7,
adj(d1,w12), 
adj(d1,w13),

. . .

m-bring(r,c1,p3,pʹ1,d3,d1,k3,k1)

task: bring(r,c1,p3)

refinement: [ts,t1] move(r,d1)
[ts,t2] uncover(c1,pʹ1)
[t3,t4] load(k1,r,c1,pʹ1)
[t5,t6] move(r, d3)
[t7,te] unload(k3,r,c1,p3)

assertions: [ts,t3] pile(c1) = pʹ1
[ts,t3] freight(r) = empty 

constraints: attached(pʹ1,d1), 
attached(p3,d3), d3 ≠ d1
attached(k1,d1), 
attached(k3,d3), k3 ≠ k1
t1 ≤ t3, t2 ≤ t3, t4 ≤ t5, t6 ≤ t7

m-bring(r,c,p,pʹ,d,dʹ,k,kʹ)
task: bring(r,c,p)

refinement: [ts,t1] move(r,dʹ)
[ts,t2] uncover(c,pʹ)
[t3,t4] load(kʹ,r,c,pʹ)
[t5,t6] move(r,d)
[t7,te] unload(k,r,c,p)

assertions: [ts,t3] pile(c) = pʹ
[ts,t3] freight(r) = empty 

constraints: attached(pʹ,dʹ), 
attached(p,d), d ≠ dʹ
attached(kʹ,dʹ), 
attached(k,d), k ≠ kʹ
t1 ≤ t3, t2 ≤ t3, t4 ≤ t5, t6 ≤ t7
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Modified Chronicle
• Changes

• Removed !"#$% "&, (2, *4
• Added 5 tasks, 2 assertions, 4 constraints

• Flaws
• 10 unrefined tasks, 4 unsupported 

assertions
• Next, work on these two assertions
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ϕ2:   tasks: [ts,t1] move(r,d1)
[ts,t2] uncover(c1,pʹ1)
[t3,t4] load(k1,r,c1,pʹ1)
[t5,t6] move(r,d3)
[t7,te] unload(k3,r,c1,p3)
[tʹs,tʹ1] move(rʹ,d2)
[tʹs,tʹ2] uncover(c2,pʹ2)
[tʹ3,tʹ4] load(k4,rʹ,c2,pʹ2)
[tʹ5,tʹ6] move(rʹ,d4)
[tʹ7,tʹe] unload(k2,rʹ,c2,pʹ2)

supported:[0] loc(r1)=d3
[0] freight(r1)=empty
[0] pile(c1)=pʹ1
. . .

assertions: [ts,t3] pile(c1) = pʹ1
[ts,t3] freight(r) = empty
[tʹs,tʹ3] pile(c2) = pʹ2
[tʹs,tʹ1] freight(rʹ) = empty 

constraints: ts<t1≤t3, ts<t2≤t3, t4≤t5, t6≤t7,
tʹs<tʹ1≤tʹ3, tʹs<tʹ2≤tʹ3, tʹ4≤tʹ5, tʹ6≤tʹ7,

adj(d1,w12), 
adj(d1,w13), . . .
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Supporting the Assertions
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ϕ2:   tasks: [ts,t1] move(r,d1)
[ts,t2] uncover(c1,pʹ1)
[t3,t4] load(k1,r,c1,pʹ1)
[t5,t6] move(r,d3)
[t7,te] unload(k3,r,c1,p3)
[tʹs,tʹ1] move(rʹ,d2)
[tʹs,tʹ2] uncover(c2,pʹ2)
[tʹ3,tʹ4] load(k4,rʹ,c2,pʹ2)
[tʹ5,tʹ6] move(rʹ,d4)
[tʹ7,tʹe] unload(k2,rʹ,c2,pʹ2)

supported:[0] loc(r1)=d3
[0] freight(r1)=empty
[0] pile(c1)=pʹ1
. . .

assertions: [ts,t3] pile(c1) = pʹ1
[ts,t3] freight(r) = empty
[tʹs,tʹ3] pile(c2) = pʹ2
[tʹs,tʹ1] freight(rʹ) = empty 

constraints: ts<t1≤t3, ts<t2≤t3, t4≤t5, t6≤t7,
tʹs<tʹ1≤tʹ3, tʹs<tʹ2≤tʹ3, tʹ4≤tʹ5, tʹ6≤tʹ7,

adj(d1,w12), 
adj(d1,w13), . . .

• 3 ways to support !", !$ %&'( )1 = %,1
1. Constrain !- = 0, use 0 %&'( )1 = %,1
2. Add persistence 0, !" %&'( )1 = %,1
3. Add new action !/, !" -!0)1 11, )1, %,1

Will any of them also 
provide support for

[ts,t3] freight(r) = empty?



Supporting the Assertions
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ϕ2:   tasks: [0,t1] move(r1,d1)
[0,t2] uncover(c1,pʹ1)
[t3,t4] load(k1,r1,c1,pʹ1)
[t5,t6] move(r1,d3)
[t7,te] unload(k3,r1,c1,p3)
[tʹs,tʹ1] move(rʹ,d2)
[tʹs,tʹ2] uncover(c2,pʹ2)
[tʹ3,tʹ4] load(k4,rʹ,c2,pʹ2)
[tʹ5,tʹ6] move(rʹ,d4)
[tʹ7,tʹe] unload(k2,rʹ,c2,pʹ2)

supported:[0] loc(r1)=d3
[0] freight(r1)=empty
[0] pile(c1)=pʹ1
. . .
[0,t3] pile(c1) = pʹ1
[0,t3] freight(r1) = empty

assertions: [tʹs,tʹ3] pile(c2) = pʹ2
[tʹs,tʹ1] freight(rʹ) = empty 

constraints: 0<t1≤t3, 0<t2≤t3, t4≤t5, t6≤t7,
tʹs<tʹ1≤tʹ3, tʹs<tʹ2≤tʹ3, tʹ4≤tʹ5, tʹ6≤tʹ7,

adj(d1,w12), 
adj(d1,w13), . . .
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• To support !", !$ %&'( )1 = %,1
• Constrain !- = 0, use 0 %&'( )1 =
%,1

• To support 0, !$ /0(&1ℎ! 0 =
(3%!4
• Constrain 0 = 01



Supporting the Assertions
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ϕ2:   tasks: [0,t1] move(r1,d1)
[0,t2] uncover(c1,pʹ1)
[t3,t4] load(k1,r1,c1,pʹ1)
[t5,t6] move(r1,d3)
[t7,te] unload(k3,r1,c1,p3)
[tʹs,tʹ1] move(r2,d2)
[tʹs,tʹ2] uncover(c2,pʹ2)
[tʹ3,tʹ4] load(k4,r2,c2,pʹ2)
[tʹ5,tʹ6] move(r2,d4)
[tʹ7,tʹe] unload(k2,r2,c2,pʹ2)

supported:[0] loc(r1)=d3
[0] freight(r1)=empty
[0] pile(c1)=pʹ1 . . .
[0,t3] pile(c1) = pʹ1
[0,t3] freight(r1) = empty
[0,tʹs] pile(c2)=pʹ2
[tʹs,tʹ3] pile(c2) = pʹ2
[0,tʹs] freight(r2)=empty
[tʹs,tʹ1] freight(r2) = empty 

assertions: (none)
constraints: 0<t1≤t3, 0<t2≤t3, t4≤t5, t6≤t7,

tʹs<tʹ1≤tʹ3, tʹs<tʹ2≤tʹ3, tʹ4≤tʹ5, tʹ6≤tʹ7,
adj(d1,w12),adj(d1,w13), . . .
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• To support !"#, !%# &'() *2 = &#2
• Add persistence condition 0, !"# &'() *2 = &#2

• Alternatives: constrain !"# = 0 or add new 
action .!/*0 02, *2, &#2

• To support !"#, !1# 23)'4ℎ! 3# = )6&!7
• Constrain 3 = 32, add persistence 

condition 0, !"# 23)'4ℎ! 32 = )6&!7
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Example of Conflicts
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ϕ2:   tasks: [0,t1] move(r1,d1)
[0,t2] uncover(c1,pʹ1)
[t3,t4] load(k1,r1,c1,pʹ1)
[t5,t6] move(r1,d3)
[t7,te] unload(k3,r1,c1,p3)
[tʹs,tʹ1] move(r2,d2)
[tʹs,tʹ2] uncover(c2,pʹ2)
[tʹ3,tʹ4] load(k4,r2,c2,pʹ2)
[tʹ5,tʹ6] move(r2,d4)
[tʹ7,tʹe] unload(k2,r2,c2,pʹ2)

supported:[0] loc(r1)=d3
[0] freight(r1)=empty
[0] pile(c1)=pʹ1 . . .
[0,t3] pile(c1) = pʹ1
[0,t3] freight(r1) = empty
[0,tʹs] pile(c2)=pʹ2
[tʹs,tʹ3] pile(c2) = pʹ2
[0,tʹs] freight(r2)=empty
[tʹs,tʹ1] freight(r2) = empty 

assertions: (none)
constraints: 0<t1≤t3, 0<t2≤t3, t4≤t5, t6≤t7,

tʹs<tʹ1≤tʹ3, tʹs<tʹ2≤tʹ3, tʹ4≤tʹ5, tʹ6≤tʹ7,
adj(d1,w12),adj(d1,w13), . . .

• Refining tasks into actions will produce 
possibly-conflicting assertions
• move(r2,d4) must go through d3
• Conflict: occupant(d3)=r1, occupant(d3)=r2

• Resolvers: 
• Separation constraints to ensure 

r2 only goes through d3 while r1 away 
from d3



Heuristics for Guiding TemPlan
• Flaw selection, 

resolver selection 
heuristics similar to 
those in PSP
• Select the flaw with 

the smallest 
number of resolvers

• Choose the resolver 
that rules out the 
fewest resolvers for 
the other flaws 

• There is also a 
problem with 
constraint 
management
• We ignored it when 

discussing PSP
• Discuss it next
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TemPlan(!,Σ)
Flaws ← set of flaws of !
if Flaws = ∅ then

return !
arbitrarily select f ∈ Flaws
Resolvers ← set of resolvers of f
if Resolvers = ∅ then

return failure
nondeterministically choose $ ∈ Resolvers
! ← Transform(!, $)
TemPlan(!,Σ)

PSP(Σ,%)
loop

if Flaws(%) = ∅ then
return %

arbitrarily select f ∈ Flaws(%)
R ←{all feasible resolvers for f} 
if R = ∅ then

return failure
nondeterministically choose ρ ∈ R
% ← ρ(%)

return %



Intermediate Summary
• Planning problems
• Three kinds of flaws and their resolvers:

• tasks, causal support, security
• Partial plans, solution plans

• Planning: TemPlan
• Like PSP but with tasks, temporal assertions, temporal 

constraints
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Outline per the Book
4.2 Representation

• Timelines
• Actions and tasks
• Chronicles

4.3 Temporal planning
• Resolvers and flaws
• Search space

4.4 Constraint management
• Consistency of object constraints and time constraints
• Controlling the actions when we don’t know how long they’ll 

take
4.5 Acting with temporal models

• Acting with atemporal refinement
• Dispatching
• Observation actions
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Constraint Management
• Each time TemPlan applies a resolver, it modifies (", $)

• Some resolvers will make (", $) inconsistent
• No solution in this part of the search space
• Detect inconsistency => prune this part of the search space
• Do not detect it => waste time looking for a solution

• Analogy: PSP checked simple cases of inconsistency
• E.g., cannot create a constraint & ≺ (

if there is already a constraint ( ≺ &
• Ignored more complicated cases
• Example: 

• )*, )+, ), ∈ ./01&20345 = )1, )2
• Threats involving )*, )+, ),
• For resolvers, suppose PSP chooses

• )* ≠ )+, )+ ≠ ),, )* ≠ ),
• No solutions in this part 

of the search space, but 
PSP searches it anyway

…

… …

…

…
…

…

…

…

…

…

… …

…

… …

……… …… … … … … … ……
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Constraint Management in TemPlan
• At various points, check consistency of !
• If ! is inconsistent, then (#, !) is inconsistent
• Can prune this part of the search space

• If ! is consistent, then (#, !) may or may not be 
consistent
• Example:

• # = { (), (* +,- .1 = +,-1, (0, (1 +,- .1 = +,-2}
• ! = () < (0 < (1 < (*

• Gives +,- .1 two values during [(0, (1]
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Consistency of !
• ! contains two kinds of constraints

• Object constraints 
• "#$ % ≠ "', " ∈ "#$3, "#$4 , % = %1, # ≠ #.

• Temporal constraints
• /0 < /2, 3 < /, / < /., 3 ≤ /. − / ≤ 6

• Assume object constraints are independent of temporal 
constraints and vice versa
• Exclude things like / < 7 ", %

• Then two separate subproblems
• (1) check consistency of object constraints
• (2) check consistency of temporal constraints
• ! is consistent iff both are consistent
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Object Constraints
• Constraint-satisfaction problem (CSP)  – NP-hard

• Can write an algorithm that is complete but runs in 
exponential time
• If there is an inconsistency, always finds it
• Might do a lot of pruning, but spend lots of time at each node

• Instead, use a technique that is
incomplete but takes polynomial time
• Edge consistency, path consistency

• Detects some inconsistencies 
but not others
• Runs much faster, 

but prunes fewer nodes

41
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Time Constraints: Representation
• Simple Temporal Networks (STNs)
• Networks of constraints on time points

• Synthesise them incrementally
starting from !"
• TemPlan can check time 

constraints in time # $3

• Incrementally instantiated at acting time
• Kept consistent throughout planning and acting

42
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Simple Temporal Networks
• STN: a pair (", ℰ), where

• " = a set of temporal variables 45, … , 47
• ℰ ⊆ " × " is a set of edges

• Each edge 4:, 4; is labelled with an interval <, =
• Represents constraint < ≤ 4; − 4: ≤ =
• Equivalently, −= ≤ 4: − 4; ≤ −<

• Representing unary constraints
• Dummy variable 4@ = 0
• Edge B@: = (4@, 4:) labelled with <, = represents
< ≤ 4: − 0 ≤ =

• Shorthand: instead of < ≤ 4; − 4: ≤ =, 
write B:; = <:;, =:;

• Solution to an STN
• Integer value for each 4:
• All constraints satisfied

• Consistent STN
• Has a solution
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Is this network 
consistent?

Book says:
• Solution

• Integer value for each 4:
• Consistent: 

• Has a solution
• All constraints satisfied

!



Time Constraints
• Minimal STN: 
• For every edge ("#, "%) with label ', (

• For every " ∈ [', (]
• There is at least one solution such that "% − "# = "

• Cannot make any of the time intervals shorter without 
excluding some solutions
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Operations on STNs
• Intersection,   ∩

• "# – "% ∈ '%# = )%#, +%#
• "# – "% ∈ '%#, = )%#, , +%#,
• Infer
"#– "% ∈ '%# ∩ '%#, = max )%#, )%#, , min +%#, +%#,

• Composition,   ∘
• "3– "% ∈ '%3 = )%3, +%3
• "#– "3 ∈ '3# = )3#, +3#
• Infer
"#– "% ∈ '%3 ∘ '3# = )%3 + )3#, +%3 + +3#
• Reason: shortest and longest times for the two 

intervals 

• Consistency checking
• Three constraints '%3, '3#, '%# are consistent 

only if  '%# ∩ ('%3 ∘ '3#) ≠ ∅
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Two Examples

• STN (", ℰ), where
• " = '(, '), '*
• ℰ = {

}
-() = 1,2 , -)* = 3,4 ,

-(* = 2,3
• Composition

• -(*2 = -() ∘ -)* = 4,6
• Cannot satisfy both -(* and -(*2

• -(* ∩ -(*2 = 2,3 ∩ 4,6 = ∅
• (", ℰ) is inconsistent

• STN (", ℰ), where
• " = '(, '), '*
• ℰ = {

}
-() = 1,2 , -)* = 3,4 ,

-(* = 2,5
• Composition (as before)

• -(*2 = -() ∘ -)* = 4,6
• (", ℰ) is consistent

• -(* ∩ -(*2 = 2,5 ∩ 4,6 = 4,5
• Minimal network

• -(* = 4,5
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Operations on STNs
• PC (Path Consistency) 

algorithm: 
• Consistency checking 

on all triples
• If an edge has no constraint, 

use −∞,+∞
• % constraints 

=> %& triples 
=> time ' %&

• Example: 
• ( = 2, + = 1, - = 2
• ./0 = 1,2
• .01 = 3,4
• ./1 = –∞,∞
• ./0 ∘ .01 = [1 + 3, 2 + 4] = [4,6]
• ./1 ← max –∞, 4 ,min ∞, 6 = 4,6
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PC(?,ℰ)
for 1 ≤ k ≤ n do

for 1 ≤ i < j ≤ n, i ≠ j, j ≠ k do
rij ← rij ∩ [rik ∘ rkj]
if rij = ∅ then

return inconsistent



Operations on STNs
• PC makes network minimal

• Shrinks each !"# to exclude 
values that are not in any 
solution

• Also detects inconsistent 
networks
• !"# = [&"#, ("#] empty => 

inconsistent
• Graph: dashed lines

• Constraints that were shrunk
• Can modify PC to make it 

incremental
• Input

• A consistent, minimal STN
• A new constraint !"#*

• Incorporate !"#* in time + ,-
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PC(.,ℰ)
for 1 ≤ k ≤ n do

for 1 ≤ i < j ≤ n, i ≠ j, j ≠ k do
rij ← rij ∩ [rik ∘ rkj]
if rij = ∅ then

return inconsistent
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Pruning TemPlan’s search space
• Take the time constraints in !
• Write them as an STN
• Use Path Consistency to check whether STN is consistent
• If it is inconsistent, TemPlan can backtrack
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Controllability
• Suppose TemPlan gives you a chronicle and you 

want to execute it
• Constraints on time points
• Need to reason about these in order to decide when to 

start each action
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Controllability
• Solid lines: duration constraints
• Robot will do bring&move, will take 30 to 50 time units
• Crane will do uncover, will take 5 to 10 time units

• Dashed line: synchronization constraint
• Do not want either the crane or robot to wait long
• At most 5 seconds between the two ending times

• Objective
• Choose time points that will

satisfy all the constraints
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Controllability
• Suppose we run PC
• PC returns a minimal and consistent 

network
• There exist time points that satisfy all 

the constraints
• Would work if we could choose all four 

time points
• But we cannot choose !" and !#

• !$ and !% are controllable
• Actor can control when each action starts

• !" and !# are contingent
• Cannot control how long the actions take
• Random variables that are known 

to satisfy the duration constraints
• !" ∈ !$ + 30, !$ + 50
• !# ∈ !% + 5, !% + 10
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Controllability
• Cannot guarantee that all 

constraints will be satisfied
• Start bring&move at 

time !" = 0
• Suppose the durations are

• bring&move 30,  uncover 10
• !' = !" + 30 = 30
• !) = !* + 10
• !)– !' = !*– 20

• Constraint -'):  
• – 5 ≤ !)– !' ≤ 5
– 5 ≤ !*– 20 ≤ 5
15 ≤ !* ≤ 25

• Must start uncover
at !* ≤ 25

• But if we start uncover at !* ≤ 25, neither action has 
finished yet
• We do not yet know 

how long they will take
• Durations might instead be

• bring&move 50,  uncover 5
• !' = !" + 50 = 50
• !) = !* + 5 ≤ 25 + 5 = 30
• !)– !' ≤ 30– 50 = –20

• Violates -*)
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STNUs
• STNU (Simple Temporal Network with Uncertainty):

• A 4-tuple !, #!, ℰ, %ℰ
• ! ={controllable time points}

• E.g., starting times of actions

• #! ={contingent time points}
• E.g., ending times of actions

• Controllable and contingent constraints: 
• Synchronization between two starting times: controllable
• Duration of an action: contingent
• Synchronization between ending points of two actions: contingent
• Synchronization between end of one action, start of another:

• Controllable if the new action starts after the old one ends
• Contingent if the new action starts before the old one ends

• Want a way for the actor to choose time points in !
(starting times) that guarantee that constraints are satisfied
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• ℰ ={controllable constraints}

• %ℰ ={contingent constraints}



Three kinds of controllability
• !, #!, ℰ, %ℰ is strongly controllable if the actor can choose values 

for ! such that success will occur for all values of #! that satisfy %ℰ
• Actor can choose the values for ! offline
• The right choice will work regardless of #!

• !, #!, ℰ, %ℰ is weakly controllable if the actor can choose values 
for ! such that success will occur for at least one combination of 
values for #!
• Actor can choose the values for ! only if the actor knows in advance 

what the values of #! will be

• Dynamic controllability: 
• Game-theoretic model: actor vs. environment
• A player’s strategy: a function & telling what to do in every situation

• Choices may differ depending on what has happened so far
• !, #!, ℰ, %ℰ is dynamically controllable if ∃ strategy for an actor that 

will guarantee success regardless of the environment’s strategy

55



Dynamic Execution
• For ! = 0, 1, 2, …

1. Actor chooses an unassigned set of variables () ⊆ ( that all can be assigned 
the value ! without violating any constraints in ℰ
• ≈ actions the actor chooses to start at time !

2. Simultaneously, environment chooses an unassigned set of variables ,()⊆ ,(
that all can be assigned the value ! without violating any constraints in -ℰ
• ≈ actions that finish at time !

3. Each chosen time point . is assigned . ← !

4. Failure if any of the constraints in ℰ ∪ -ℰ are violated
• There might be violations that neither () nor ,() caused individually

5. Success if all variables in ( ∪ ,( have values and no constraints are violated

• Dynamic execution strategies 12 for actor, 13 for environment
• 12(ℎ)67) = {what events in ( to trigger at time !, given ℎ)67}
• 13(ℎ)67) = {what events in ,( to trigger at time !, given ℎ)67}

• ℎ) = ℎ)67 ⋅ 12 ℎ)67 ∪ 13 ℎ)67
• (, ,(, ℰ, -ℰ is dynamically controllable if ∃ 12 that will guarantee 

success ∀ 13
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<=> = ?, @ is violated
if != and !> have values 
and !> − != ∉ ?, @



Example
• Instead of a single bring&move task, two separate bring

and move tasks

• Actor’s dynamic execution strategy
• Trigger !" at whatever time you want
• Wait and observe !
• Trigger !# at any time from ! to ! + 5
• Trigger !& = !# + 10
• For every !* ∈ !# + 15, !# + 20 and !. ∈ [!& + 5, !& + 10]

• !. ∈ !# + 15, !# + 20
• So !.– !& ∈ – 5, 5

• So all constraints are satisfied
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t3

t2

t4

[15, 20]

[5, 10]

[-5, 5]

t1 t[15, 25] [0, 5]
move

uncover
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Dynamic Controllability Checking
• For a chronicle ! = #, %, &, '

• Temporal constraints in ' correspond to an STNU
• Adapt TemPlan to test not only consistency but also dynamic 

controllability (*) of the STNU
• If we detect cases where it is not dynamically controllable, then 

backtrack 
* Use PC as well

• If PC(( ∪ *(, ℰ ∪ ,ℰ) reduces a contingent constraint, then 
(, *(, ℰ, ,ℰ is not dynamically controllable
⇒ Can prune this branch

• If it does not reduce any contingent constraints, we don’t know 
whether (, *(, ℰ, ,ℰ is dynamically controllable
• Only necessary, not sufficient condition

• Two options
• Either continue down this branch and backtrack later if necessary, or
• Extend PC to detect more cases where (, *(, ℰ, ,ℰ isn’t dynamically 

controllable
• Additional constraint propagation rules
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Additional Constraint Propagation Rules
• Case 1: ! ≥ 0

• $ must come before $%
• Add a composition constraint &', )'
• Find &', )' such that &', )' ∘ !, + = &, )

• &' + !, )' + + = &, )
• &' = &– !, )' = )– +
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t

[a, b]

[u, v]

ts te

⇒ contingent →  controllable &' = &– !, )' = )– +



Additional Constraint Propagation Rules

• Case 2: ! < 0 and $ ≥ 0
• & may be before or after &'

• Add a wait constraint &', )
• ) defined w.r.t. 

some controllable time point &*
• Wait until either &' occurs or current time is &* + ), 

whichever comes first
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[a, b]

[u, v]

ts te

⇒ contingent →  controllable -. = -– !, 1. = 1– $



Extended Version of PC
• We want a fast algorithm that TemPlan can run at each 

node, to decide whether to backtrack
• There is an extended version of PC that runs in 

polynomial time, but it has high overhead
• Possible compromise: use ordinary PC most of the time

• Run extended version occasionally, or at end of search before 
returning plan

61



Intermediate Summary
• Constraint management
• Consistency of object constraints 

• Constraint-satisfaction problem
• Consistency of time constraints

• STN, solution, minimality, consistency
• PC

• Controllability
• STNU, controllable, contingent
• Dynamic controllability
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Outline per the Book
4.2 Representation

• Timelines
• Actions and tasks
• Chronicles

4.3 Temporal planning
• Resolvers and flaws
• Search space

4.4 Constraint management
• Consistency of object constraints and time constraints
• Controlling the actions when we don’t know how long they’ll 

take
4.5 Acting with temporal models

• Acting with atemporal refinement
• Dispatching
• Observation actions
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Atemporal Refinement of Primitive Actions

• Templan’s action templates may correspond to 
compound tasks
• In RAE, refine into commands with refinement methods
• Templan’s

action template 
(descriptive model)

• RAE’s 
refinement method
(operational model)
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leave(r,d,w)
assertions: [ts,te] loc(r): (d,w)

[ts,te] occupant(d): (r,empty) 
constraints: te ≤ ts + δ1

adj(d,w) 

m-leave(r,d,w,e)
task: leave(r,d,w)
pre: loc(r)=d, adj(d,w), exit(e,d,w)
body: until empty(e) 

wait(1)
goto(r,e)



Discussion
• Pros

• Simple online refinement with RAE
• Avoids breaking down uncertainty of contingent duration
• Can be augmented with temporal monitoring functions in 

RAE
• E.g., watchdogs, methods with duration preferences

• Cons
• Does not handle temporal requirements at the command 

level, 
• e.g., synchronise two robots that must act concurrently

• Can augment RAE to include temporal reasoning
• Call it eRAE
• One essential component: a dispatching function
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Acting With Temporal Models
• Dispatching procedure: a dynamic execution strategy

• Controls when to start each action
• Given a dynamically controllable plan with executable 

primitives, triggers corresponding commands from online 
observations

• Example
• robot !2 needs to leave dock #2

before robot !1 can enter #2
• crane % needs to uncover &

then put & onto !1
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Dispatching
• Let !, #!, ℰ, %ℰ be a 

controllable STNU 
that is grounded
• Different from a 

grounded expression 
in logic

• At least one time 
point & is instantiated

• This bounds each
time point & within an 
interval '(, )(
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• Controllable time point & in the future:
• & is alive if current time *+, ∈ '(, )(
• & is enabled if

• It is alive
• For every precedence constraint &. < &, &. has occurred
• For every wait constraint &0, 1 , &0 has occurred or 1 has expired

• 1 has expired if &2 has occurred and &2 + 1 ≤ *+,

Dispatch(!,Ṽ,ℰ,Ẽ)
initialise the network
while there are time points in ! that

have not been triggered do
update now
update the time points in Ṽ that have 

been newly observed
update enabled
trigger every t ∈ enabled s.t. now=ut
arbitrarily choose other time points 

in enabled and trigger them
propagate values of triggered 

timepoints (change [lt,ut] for 
each future timepoint t)



Example
• Trigger !", observe leave finish
• Enable and trigger !#, this 

enables !$, !%
• Trigger !$ soon enough to 

allow &'!&( (1, +2 at time !-
• Trigger !% soon enough to 

allow .!/01 1, 02 at time !3
• Rest of plan is linear: 

• Choose each !4
after the previous action ends
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navigate(r1)leave(r1,d1)

stack(k,cʹ,q)unstack(k,cʹ,p)
putdown(k,c,r1)unstack(k,c)

leave(r2,d2)

enter(r1,d2)

leave(r1,d2)

t1 t2

t3

t4

t5

t6

t7 t8 t9

Dispatch(5,Ṽ,ℰ,Ẽ)
initialise the network
while there are time points in 5 that

have not been triggered do
update now
update the time points in Ṽ that have 

been newly observed
update enabled
trigger every t ∈ enabled s.t. now=ut
arbitrarily choose other time points 

in enabled and trigger them
propagate values of triggered 

timepoints (change [lt,ut] for 
each future timepoint t)



Example from Slide 57
• Trigger !" at time 0
• Wait and observe !; this 

enables !$
• Trigger !$ at any time 

from ! to ! + 5
• Trigger !' at time !$ + 10

• !) ∈ !$ + 15, !$ + 20
• !- ∈ [!' + 5, !' + 10] =[!$ + 15, !$ + 20]
• so !-– !' ∈ – 5, 5
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t′

t3

t2

t4

[15, 20]

[5, 10]

[-5, 5]

t1 t[15, 25] [0, 5]
move

uncover

bring

Dispatch(2,Ṽ,ℰ,Ẽ)
initialise the network
while there are time points in 2 that

have not been triggered do
update now
update the time points in Ṽ that have 

been newly observed
update enabled
trigger every t ∈ enabled s.t. now=ut
arbitrarily choose other time points 

in enabled and trigger them
propagate values of triggered 

timepoints (change [lt,ut] for 
each future timepoint t)



Dispatching
• Propagation step 

most costly one
• ! "#
• " the number of 

remaining future 
time points in 
network
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• Ideally propagation fast enough to allow iterations 
and updates of "$% consistent with temporal 
granularity of plan

Dispatch(&,Ṽ,ℰ,Ẽ)
initialise the network
while there are time points in & that

have not been triggered do
update now
update the time points in Ṽ that have 

been newly observed
update enabled
trigger every t ∈ enabled s.t. now=ut
arbitrarily choose other time points 

in enabled and trigger them
propagate values of triggered 

timepoints (change [lt,ut] for 
each future timepoint t)



Deadline Failures
• Suppose something makes it impossible to start an action 

on time
• Do one of the following:

• Stop the delayed action, and look for new plan
• Let the delayed action finish, try to repair the plan by resolving 

violated constraints at the STNU propagation level
• E.g., accommodate a delay in navigate by delaying the whole plan

• Let the delayed action finish, try to repair the plan some other way
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navigate(r1)leave(r1,d1)

stack(k,cʹ,q)unstack(k,cʹ,p)
putdown(k,c,r1)unstack(k,c)

leave(r2,d2)
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Partial Observability
• Tacit assumption: All occurrences of contingent 

events are observable
• Observation needed for dynamic controllability

• In general, not all events are observable 

• POSTNU (Partially Observable STNU)

• Dynamically controllable?
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Controllable

Timepoints Invisible

Contingent

Observable

Arthur Bit-Monnot, Malik Ghallab, Félix Ingrand: “Which Contingent Events to Observe for the 
Dynamic Controllability of a Plan”, IJCAI-16



tʹ

t3

t2

t4

[20, 25]

[25, 30]

[-5, 10]

t1 t [1, 2]
driving

cooking

working

t0
[19:00, 19:30]

Observation Actions
• Example
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Controllable

Contingent
Invisible
observable



Dynamic Controllability
• A POSTNU is dynamically controllable if 
• there exists an execution strategy that chooses future 

controllable points to meet all the constraints, given the 
observation of past visible points

• Observable ≠ visible
• Observable means it will be known when observed
• It can be temporarily hidden
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Controllable
Timepoints Invisible

Contingent Visible
Observable

Hidden



Intermediate Summary
• Acting
• Atemporal refinement

• eRAE
• Dispatching

• Alive, enabled
• Deadline failures
• Partial observability

• Invisible, observable (hidden/visible)
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Outline per the Book
4.2 Representation

• Timelines
• Actions and tasks
• Chronicles

4.3 Temporal planning
• Resolvers and flaws
• Search space

4.4 Constraint management
• Consistency of object constraints and time constraints
• Controlling the actions when we don’t know how long they’ll take

4.5 Acting with temporal models
• Acting with atemporal refinement
• Dispatching
• Observation actions

⟹ Next: Planning and Acting with Nondeterministic Models
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