
Advanced Topics Data Science and AI
Automated Planning and

Acting

Temporal Models

Tanya Braun

Content
1. Planning and Acting with

Deterministic Models

2. Planning and Acting with
Refinement Methods

3. Planning and Acting with
Temporal Models
a. Temporal Representation
b. Planning with Temporal

Refinement Methods
c. Constraint Management
d. Acting with Temporal

Models

4. Planning and Acting with
Nondeterministic Models

5. Making Simple Decisions

6. Making Complex
Decisions

7. Planning and Acting with
Probabilistic Models

8. Provably Beneficial AI

• Other: open world,
perceiving, learning
• If time permits

2

Temporal Models
• Durations of actions
• Delayed effects and preconditions

• E.g., resources borrowed or consumed during an action
• Time constraints on goals

• Relative or absolute
• Exogenous events expected to occur in the future

• When?
• Maintenance actions:

• Maintain a property (≠ changing a value)
• E.g., track a moving target, keep a spring latch in position

• Concurrent actions
• Interacting effects, joint effects

• Delayed commitment
• Instantiation at acting time

3

Timelines
• Up to now, “state-oriented view”
• Time is a sequence of states !", !$, !%
• Instantaneous actions transform each state into the next

one
• No overlapping actions

• Switch to a “time-oriented view”
• Sequence of

integer time points
• & = 1, 2, 3, …

• For each state variable ,,
a timeline
• values during different

time intervals
• State at time & = {state−variable values at time &}

t+1

time

st
at

e
va

ria
bl

es

x

y

t

4

Timelines
• Sets of constraints on state variables and events
• Reflect predicted actions and events

• Planning is constraint-based

5

Outline per the Book
4.2 Representation

• Timelines
• Actions and tasks
• Chronicles

4.3 Temporal planning
• Resolvers and flaws
• Search space

4.4 Constraint management
• Consistency of object constraints and time constraints
• Controlling the actions when we don’t know how long they’ll

take
4.5 Acting with temporal models

• Acting with atemporal refinement
• Dispatching
• Observation actions

6

Representation
• Quantitative model of time
• Discrete: time points are integers

• Expressions:
• time-point variables

• !, !′, !2 , !% , …
• simple constraints

• ' ≤ !)– ! ≤ ')

• Temporal assertion:
• Value of a state variable during a time interval
• Persistence: !+, !, - = / entails !+ < !,
• Change: !+, !, - ∶ /+, /, entails /+ ≠ /,

7

Timeline
• Timeline: pair !, # , partially predicted evolution of one state variable

• Instance of !, # = temporal and object variables instantiated
• ! : temporal assertions

• $%, $& '() *1 ∶ '()1, '
• $&, $- '() *1 = '
• $-, $/ '() *1 ∶ ', '()2

• # : constraints
• $% < $& < $- < $/
• ' ≠ '()1
• ' ≠ '()2
• If we want to restrict '() *1 during $%, $&

• $%, $% + 1 '() *1 ∶ '()1, *(4$5
• $&– 1, $& '() *1 ∶ *(4$5, '
• $% + 1, $&– 1 '() *1 = *(4$5

• An instance is consistent if it satisfies all constraints in # and does not
specify two different values for a state variable at the same time

• A timeline is secure if its set of consistent instances is not empty

8

2

time

lo
c(
r1
)

loc1
loc2

l

t1 t2 t3 t4

Change

Persistence

Actions
• Preliminaries:

• Timelines !", $" , … , !&, $& for ' different state variables
• Their union:

• !", $" ∪ ⋯∪ !&, $& = !" ∪ ⋯∪ !&, $" ∪ ⋯∪ $&
• If

• every !+, $+ is secure, and
• no pair of timelines !+, $+ and !,, $, have any unground

variables in common
• then

• !" ∪ ⋯∪ !&, $" ∪ ⋯∪ $& is also secure

• Action or primitive task (or just primitive):
• a triple ℎ./0, !, $

• ℎ./0 is the name and arguments
• !, $ is the union of a set of timelines

9

Actions
• !"#$" %, ', (
• Robot % leaves dock ',

goes to adjacent
waypoint (

• !)*(%) changes to (
with delay ≤ ./
• Dock ' becomes empty

• Two additional
parameters
• Starting time 01
• Ending time 02

• No separate
preconditions and
effects
• Preconditions ⇔ need

for causal support

10
d

• w r

leave(r,d,w)
assertions:

[ts,te] loc(r): (d,w)
[ts,te] occupant(d): (r,empty)

constraints:
te ≤ ts + δ1
adj(d,w)

Actions
• !"#!$ $, &, '
• $ enters & from an

adjacent waypoint '

• ()*($) changes to &
with delay ≤ ./
• Dock & becomes

occupied by $

• Two additional
parameters
• Starting time #0
• Ending time #1

• No separate
preconditions and
effects
• Preconditions ⇔ need

for causal support

11
d • w

r

enter(r,d,w)
assertions:

[ts,te] loc(r): (w,d)
[ts,te] occupant(d): (empty,r)

constraints:
te ≤ ts + δ2
adj(d,w)

Actions
• !"#$ #, &, ', (
• Action: crane # takes

container & from ' on
dock (

• Two additional
parameters
• Starting time !)
• Ending time !*

• No separate
preconditions and effects
• Preconditions ⇔ need for

causal support

12

c

d

r

k

take(k,c,r,d)
assertions:

[ts,te] pos(c): (r, k) // where container c is
[ts,te] grip(k): (empty, c) // what crane k’s gripper is holding
[ts,te] freight(r): (c,empty) // what r is carrying
[ts,te] loc(r) = d // where r is

constraints:
attached(k,d)

book omits d

Actions
• !"#$" %, ', (robot % leaves dock ' to an

adjacent waypoint (
• ")*"% %, ', (% enters ' from an adjacent (
• *#+" +, ,, % crane + takes container , from %
•)#$-.#*" %, (, (/ % navigates from (to (/

• 0*#,+ +, ,, 1 + stacks , on top of pile 1
• 2)0*#,+ +, ,, 1 + takes , from top of 1
• 12* +, ,, % + puts , onto %

13

• w
c

d

r

k
book omits r

Tasks and Methods

ts t1 t2 t3 t4 te

leave

navigate

enter

!", !$ %&'(), *• Task: move robot r to
dock d
• !", !$ %&'(), *

• Method:

• *+ becomes empty during [!", !-]
• another robot may enter it after !-

• * doesn’t need to be empty
until !/
• when) starts entering it

14d1

d2

• w1
r1

• w2

m-move1(r,d,dʹ,w,wʹ)
task: move(r,d)
refinement:

[ts,t1] leave(r,dʹ,wʹ)
[t2,t3] navigate(r,wʹ,w)
[t4,te] enter(r,d,w)

assertions:
[ts,ts+1] loc(r) = dʹ

constraints:
adj(d,w),
adj(dʹ,wʹ), d ≠ dʹ,
connected(w,wʹ),
t1 ≤ t2, t3 ≤ t4

Tasks and Methods

ts t1 t2 t3 t4 te

unstack

stack

uncover

!", !$ %&'()*+ ', ,• Task: remove everything
above container ' in pile
,
• !", !$ %&'()*+ ', ,

• Method:

15

m-uncover(c,p,k,d,pʹ)
task: uncover(c,p)
refinement: [ts,t1] unstack(k,cʹ,p) // action

[t2,t3] stack(k,cʹ,pʹ) // action
[t4,te] uncover(c,p) // recursive uncover

assertions: [ts,ts+1] pile(c) = p
[ts,ts+1] top(p) = cʹ
[ts, ts+1] grip(k) = empty

constraints: attached(k,d), attached(p,d),
attached(pʹ,d),
p ≠ pʹ, cʹ ≠ c,
t1 ≤ t2, t3 ≤ t4

k1

p1
c3
c2
c1

p2

Tasks and Methods

d1

d2

• w1

k2

p3k1

r1

p1
c1

• w2

p2

• Task: robot ! brings
container " to pile #
• $%, $' (!)*+ !, ", #

• Method:

16

m-bring(r,c,p,pʹ,d,dʹ)
task: bring(r,c,p)
refinement: [ts,t1] move(r,dʹ)

[ts,t2] uncover(c,pʹ)
[t3,t4] load(kʹ,r,c,pʹ)
[t5,t6] move(r,d)
[t7,te] unload(k,r,c,p)

assertions: [ts,t3] pile(c) = pʹ
[ts,t3] freight(r) = empty

constraints: attached(pʹ,dʹ), attached(p,d), d ≠ dʹ
attached(kʹ,dʹ), attached(k,d), k ≠ kʹ
t1 ≤ t3, t2 ≤ t3, t4 ≤ t5, t6 ≤ t7

ts t3 t4 t5 t6 t7 te

load

move

unload

$%, $' (!)*+ !, ", #

uncover

move t1

t2

pile(c) = pʹ
freight(r) = empty

Chronicles: Unions of Timelines
• Chronicle ! = #, %, &, '

• # : temporally qualified
actions and tasks

• % : a priori supported
assertions

• & : temporally qualified
assertions

• ' : constraints

• ! can include
• Current state, future

predicted events
• Tasks to perform
• Assertions and constraints to

satisfy

• Can represent
• Planning problem
• Plan or partial plan

17

ϕ0:

tasks: [t,t’] bring(r,c1,d4)

supported: [ts] loc(r1)=d1
[ts] loc(r2)=d2
[ts+10,ts+δ] docked(ship1)=d3
[ts] top(pile-ship1)=c1
[ts] pos(c1)=pallet

assertions: [te] loc(r1)=d1
[te] loc(r2)=d2

constraints: ts = 0 < t < t' < te , 20 ≤ δ ≤ 30

ts t ts+10 ts+(t’ te

docked(ship1) = d3

loc(r1) = d1

)*,)+ ,-./0 -, 11, 34
loc(r1) = d1

top(pile-ship1) = c1

Intermediate Summary
• Timelines
• Temporal assertions (change, persistence), constraints
• Conflicts, consistency, security, causal support

• Chronicle: union of several timelines
• Consistency, security, causal support

• Actions represented by chronicles
• No separate preconditions and effects

• Preconditions ⇔ need for causal support

18

Outline per the Book
4.2 Representation

• Timelines
• Actions and tasks
• Chronicles

4.3 Temporal planning
• Resolvers and flaws
• Search space

4.4 Constraint management
• Consistency of object constraints and time constraints
• Controlling the actions when we don’t know how long they’ll

take
4.5 Acting with temporal models

• Acting with atemporal refinement
• Dispatching
• Observation actions

19

Planning
• Planning problem:
• Chronicle !" that has

some flaws
• Analogous to flaws in PSP

• Add new assertions,
constraints, actions to
resolve the flaws

20

ϕ0: tasks: (none)
supported: (none)
assertions: [t1,t2] loc(r1) = l

[t3,t4] loc(r1) : (loc3,loc4)
constraints: adj(loc3,w1)

adj(w1,loc3)
adj(loc4,w2)
adj(w2,loc4)
connected(w1,w2)

loc4

lo
c(

r1
)

loc3

t1 t2 t3 t4

l move
loc4

lo
c(

r1
)

loc3
t1 t2 t3 t4

l

ϕ0: tasks: [t2,t3] move(r1,loc3)
supported: (none)
assertions: [t1,t2] loc(r1) = l

[t3,t4] loc(r1) : (loc3,loc4)
constraints: adj(loc3,w1)

adj(w1,loc3)
adj(loc4,w2)
adj(w2,loc4)
connected(w1,w2)

Flaws (1)
1. Temporal assertion ! that isn’t

causally supported
• What causes "1 to be at $%&3 at time
()?

• Resolvers:
• Add constraints to support ! from an

assertion in *
• $ = $%&3, (- = ()

• Add a new persistence assertion to
support !
• $ = $%&3, (-, () $%& "1 = $%&3

• Add a new task or action to support !
• (-, () .%/0 "1, $%&3

• Refining it will produce support for !

21

loc4

lo
c(

r1
)

loc3

t1 t2 t3 t4

l

loc4

lo
c(

r1
)

l = loc3

t1 t2=t3 t4

l

loc4

lo
c(

r1
)

l = loc3

t1 t2 t3 t4

move
loc4

lo
c(

r1
)

loc3
t1 t2 t3 t4

l

Like an open goal in PSP

Flaws (2)
2. Non-refined task
• Resolver: refinement method !

• Applicable if it matches the task and
its constraints are consistent with "’s

• Applying the resolver:
• Modify " by replacing the task with !

• Example: #$, #& !'() *1, ,'-3
• Refinement will replace

it with something like
• #$, #/ ,)0() *1, ,, 1
• #/, #2 30(450#) *1, 1, 16

• #2, #&)3#)* *1, ,'-3, 16

• plus constraints

22

Like a task in SeRPE

move
loc4

lo
c(

r1
)

loc3
t1 t2 t3 t4

l

Flaws (3)
3. A pair of possibly-conflicting temporal assertions
• temporal assertions ! and " possibly conflict

if they can have inconsistent instances
• Example
• #$, #& '() *1 = '()1, #-, #. '() * ∶ ', '0

↓↓ ↓ ↓ ↓ ↓ ↘
• 1, 5 '() *1 = '()1, 3, 8 '() *1 ∶ '()2, '()3
• Resolvers: separation constraints

• * ≠ *1
• #& < #-
• #. < #$
• #& = #-, * = *1, ' = '()1

• Also provides causal support for #-, #. '()(*) ∶ ', '0
• #. = #$, * = *1, ' = '()1

• Also provides causal support for #$, #& '() *1 = '()1

23

Like a threat in PSP

loc3

loc2

t1 t2 t3 t4

l

loc(r)loc(r1)

loc1
loc3

loc2

t1=1 t3=3 t2=5 t4=8

loc(r1)

loc(r1)

instance:

Planning Algorithm
• Like PSP in Chapter 2

• Repeatedly selects
flaws and chooses
resolvers

• In the book, TemPlan
uses recursion
• Can be rewritten to use

a loop
• Just programming style,

equivalent either way
• In a deterministic

implementation
• Selecting a resolver ! is

a backtracking point
• Selecting a flaw isn’t

• If it is possible to resolve
all flaws, at least one of
the nondeterministic
execution traces will do
so

24

TemPlan(",Σ)
Flaws ← set of flaws of "
if Flaws = ∅ then

return "
arbitrarily select f ∈ Flaws
Resolvers ← set of resolvers of f
if Resolvers = ∅ then

return failure
nondeterministically choose ! ∈ Resolvers
" ← Transform(", !)
TemPlan(",Σ)

TemPlan(",Σ)
loop

Flaws ← set of flaws of "
if Flaws = ∅ then

return "
arbitrarily select f ∈ Flaws
Resolvers ← set of resolvers of f
if Resolvers = ∅ then

return failure
nondeterministically choose ! ∈ Resolvers
" ← Transform(", !)

Example
• ! = #, %, &, '

• Establishes state-variable values at

time (= 0
• Flaws: two unrefined tasks

• bring(r,c1,p3), bring(rʹ,c2,p4)

25

ϕ0: tasks: bring(r,c1,p3)

bring(rʹ,c2,p4)

supported:[0] loc(r1)=d3

[0] freight(r1)=empty

[0] pile(c1)=pʹ1
[0] pile(cʹ1)=pʹ1
[0] pos(c1)=pallet

[0] pos(cʹ1)=c1

. . .

assertions: (none)
constraints:

adj(d1,w12)

adj(d1,w13)

. . .

4

r1

k1

p’1
c1
c’1

d1 d2

d3 d4

w12

w13 w23

w34 r2

k2

k4k3

p1 p2

p3 p4

p’2
c2
c’2

d1

4

r1

k1

p’1
c1
c’1

d1 d2

d3 d4

w12

w13 w23

w34 r2

k2

k4k3

p1 p2

p3 p4

p’2
c2
c’2

4

r1

k1

p’1
c1
c’1

d1 d2

d3 d4

w12

w13 w23

w34 r2

k2

k4k3

p1 p2

p3 p4

p’2
c2
c’2

d1

4

r1

k1

p’1
c1
c’1

d1 d2

d3 d4

w12

w13 w23

w34 r2

k2

k4k3

p1 p2

p3 p4

p’2
c2
c’2

Example
• Flaws: two unrefined tasks

• bring(r,c1,p3), bring(rʹ,c2,p4)

• Refinement for both:

26

ϕ0: tasks: bring(r,c1,p3)

bring(rʹ,c2,p4)

supported:[0] loc(r1)=d3

[0] freight(r1)=empty

[0] pile(c1)=pʹ1
[0] pile(cʹ1)=pʹ1
[0] pos(c1)=pallet

[0] pos(cʹ1)=c1

. . .

assertions: (none)
constraints:

adj(d1,w12)

adj(d1,w13)

. . .

m-bring(r,c,p,pʹ,d,dʹ,k,kʹ)
task: bring(r,c,p)

refinement: [ts,t1] move(r,dʹ)

[ts,t2] uncover(c,pʹ)

[t3,t4] load(kʹ,r,c,pʹ)

[t5,t6] move(r,d)

[t7,te] unload(k,r,c,p)

assertions: [ts,t3] pile(c) = pʹ

[ts,t3] freight(r) = empty

constraints: attached(pʹ,dʹ),
attached(p,d), d ≠ dʹ
attached(kʹ,dʹ),
attached(k,d), k ≠ kʹ
t1 ≤ t3, t2 ≤ t3, t4 ≤ t5, t6 ≤ t7

4

r1

k1

p’1
c1
c’1

d1 d2

d3 d4

w12

w13 w23

w34 r2

k2

k4k3

p1 p2

p3 p4

p’2
c2
c’2

d1

4

r1

k1

p’1
c1
c’1

d1 d2

d3 d4

w12

w13 w23

w34 r2

k2

k4k3

p1 p2

p3 p4

p’2
c2
c’2

Method Instance
• Instantiate ! = !1 and $ = $3 to match &'()* ', !1, $3

• $,, -, -,, ., ., instantiated to match book
• Needed later to satisfy action preconditions

27

ϕ0: tasks: bring(r,c1,p3)

bring(rʹ,c2,p4)

supported:[0] loc(r1)=d3

[0] freight(r1)=empty

[0] pile(c1)=pʹ1
[0] pile(cʹ1)=pʹ1
[0] pos(c1)=pallet

[0] pos(cʹ1)=c1

. . .

assertions: (none)
constraints:

adj(d1,w12)

adj(d1,w13)

. . .

m-bring(r,c,p,pʹ,d,dʹ,k,kʹ)
task: bring(r,c,p)

refinement: [ts,t1] move(r,dʹ)

[ts,t2] uncover(c,pʹ)

[t3,t4] load(kʹ,r,c,pʹ)

[t5,t6] move(r,d)

[t7,te] unload(k,r,c,p)

assertions: [ts,t3] pile(c) = pʹ

[ts,t3] freight(r) = empty

constraints: attached(pʹ,dʹ),
attached(p,d), d ≠ dʹ
attached(kʹ,dʹ),
attached(k,d), k ≠ kʹ
t1 ≤ t3, t2 ≤ t3, t4 ≤ t5, t6 ≤ t7

m-bring(r,c1,p3,pʹ1,d3,d1,k3,k1)

task: bring(r,c1,p3)

refinement: [ts,t1] move(r,d1)

[ts,t2] uncover(c1,pʹ1)

[t3,t4] load(k1,r,c1,pʹ1)

[t5,t6] move(r, d3)

[t7,te] unload(k3,r,c1,p3)

assertions: [ts,t3] pile(c1) = pʹ1
[ts,t3] freight(r) = empty

constraints: attached(pʹ1,d1),

attached(p3,d3), d3 ≠ d1

attached(k1,d1),

attached(k3,d3), k3 ≠ k1

t1 ≤ t3, t2 ≤ t3, t4 ≤ t5, t6 ≤ t7

4

r1

k1

p’1
c1
c’1

d1 d2

d3 d4

w12

w13 w23

w34 r2

k2

k4k3

p1 p2

p3 p4

p’2
c2
c’2

d1

4

r1

k1

p’1
c1
c’1

d1 d2

d3 d4

w12

w13 w23

w34 r2

k2

k4k3

p1 p2

p3 p4

p’2
c2
c’2

Modified Chronicle
• Changes to !"

• Removed #$%&' $,)1, +3
• Added 5 tasks, 2 assertions, 4

constraints
• Flaws

• 6 unrefined tasks, 2 unsupported
assertions

28

ϕ1: tasks: [ts,t1] move(r,d1)
[ts,t2] uncover(c1,pʹ1)
[t3,t4] load(k1,r,c1,pʹ1)
[t5,t6] move(r,d3)
[t7,te] unload(k3,r,c1,p3)
bring(rʹ,c2,p4)

supported:[0] loc(r1)=d3
[0] freight(r1)=empty
[0] pile(c1)=pʹ1
[0] pile(cʹ1)=pʹ1
[0] pos(c1)=pallet
[0] pos(cʹ1)=c1
. . .

assertions: [ts,t3] pile(c1) = pʹ1
[ts,t3] freight(r) = empty

constraints: ts<t1≤t3, ts<t2≤t3, t4≤t5, t6≤t7,
adj(d1,w12),
adj(d1,w13),

. . .

4

r1

k1

p’1
c1
c’1

d1 d2

d3 d4

w12

w13 w23

w34 r2

k2

k4k3

p1 p2

p3 p4

p’2
c2
c’2

d1

4

r1

k1

p’1
c1
c’1

d1 d2

d3 d4

w12

w13 w23

w34 r2

k2

k4k3

p1 p2

p3 p4

p’2
c2
c’2

Method Instance
• Instantiate ! = !#, % = %2, ' = '4 to

match)!*+, !#, %2, '4
• '#, -, -#, ., .# instantiated to match book
• Variables renamed to avoid name conflicts

29

ϕ1: tasks: [ts,t1] move(r,d1)
[ts,t2] uncover(c1,pʹ1)
[t3,t4] load(k1,r,c1,pʹ1)
[t5,t6] move(r,d3)
[t7,te] unload(k3,r,c1,p3)
bring(rʹ,c2,p4)

supported:[0] loc(r1)=d3

[0] freight(r1)=empty

[0] pile(c1)=pʹ1
[0] pile(cʹ1)=pʹ1
[0] pos(c1)=pallet

[0] pos(cʹ1)=c1

. . .

assertions: [ts,t3] pile(c1) = pʹ1
[ts,t3] freight(r) = empty

constraints: ts<t1≤t3, ts<t2≤t3, t4≤t5, t6≤t7,
adj(d1,w12),
adj(d1,w13),

. . .

m-bring(r,c1,p3,pʹ1,d3,d1,k3,k1)

task: bring(r,c1,p3)

refinement: [ts,t1] move(r,d1)
[ts,t2] uncover(c1,pʹ1)
[t3,t4] load(k1,r,c1,pʹ1)
[t5,t6] move(r, d3)
[t7,te] unload(k3,r,c1,p3)

assertions: [ts,t3] pile(c1) = pʹ1
[ts,t3] freight(r) = empty

constraints: attached(pʹ1,d1),
attached(p3,d3), d3 ≠ d1
attached(k1,d1),
attached(k3,d3), k3 ≠ k1
t1 ≤ t3, t2 ≤ t3, t4 ≤ t5, t6 ≤ t7

m-bring(r,c,p,pʹ,d,dʹ,k,kʹ)
task: bring(r,c,p)

refinement: [ts,t1] move(r,dʹ)
[ts,t2] uncover(c,pʹ)
[t3,t4] load(kʹ,r,c,pʹ)
[t5,t6] move(r,d)
[t7,te] unload(k,r,c,p)

assertions: [ts,t3] pile(c) = pʹ
[ts,t3] freight(r) = empty

constraints: attached(pʹ,dʹ),
attached(p,d), d ≠ dʹ
attached(kʹ,dʹ),
attached(k,d), k ≠ kʹ
t1 ≤ t3, t2 ≤ t3, t4 ≤ t5, t6 ≤ t7

4

r1

k1

p’1
c1
c’1

d1 d2

d3 d4

w12

w13 w23

w34 r2

k2

k4k3

p1 p2

p3 p4

p’2
c2
c’2

d1

4

r1

k1

p’1
c1
c’1

d1 d2

d3 d4

w12

w13 w23

w34 r2

k2

k4k3

p1 p2

p3 p4

p’2
c2
c’2

Modified Chronicle
• Changes

• Removed !"#$% "&, (2, *4
• Added 5 tasks, 2 assertions, 4 constraints

• Flaws
• 10 unrefined tasks, 4 unsupported

assertions
• Next, work on these two assertions

30

ϕ2: tasks: [ts,t1] move(r,d1)
[ts,t2] uncover(c1,pʹ1)
[t3,t4] load(k1,r,c1,pʹ1)
[t5,t6] move(r,d3)
[t7,te] unload(k3,r,c1,p3)
[tʹs,tʹ1] move(rʹ,d2)
[tʹs,tʹ2] uncover(c2,pʹ2)
[tʹ3,tʹ4] load(k4,rʹ,c2,pʹ2)
[tʹ5,tʹ6] move(rʹ,d4)
[tʹ7,tʹe] unload(k2,rʹ,c2,pʹ2)

supported:[0] loc(r1)=d3
[0] freight(r1)=empty
[0] pile(c1)=pʹ1
. . .

assertions: [ts,t3] pile(c1) = pʹ1
[ts,t3] freight(r) = empty
[tʹs,tʹ3] pile(c2) = pʹ2
[tʹs,tʹ1] freight(rʹ) = empty

constraints: ts<t1≤t3, ts<t2≤t3, t4≤t5, t6≤t7,
tʹs<tʹ1≤tʹ3, tʹs<tʹ2≤tʹ3, tʹ4≤tʹ5, tʹ6≤tʹ7,

adj(d1,w12),
adj(d1,w13), . . .

4

r1

k1

p’1
c1
c’1

d1 d2

d3 d4

w12

w13 w23

w34 r2

k2

k4k3

p1 p2

p3 p4

p’2
c2
c’2

d1

4

r1

k1

p’1
c1
c’1

d1 d2

d3 d4

w12

w13 w23

w34 r2

k2

k4k3

p1 p2

p3 p4

p’2
c2
c’2

Supporting the Assertions

31

ϕ2: tasks: [ts,t1] move(r,d1)
[ts,t2] uncover(c1,pʹ1)
[t3,t4] load(k1,r,c1,pʹ1)
[t5,t6] move(r,d3)
[t7,te] unload(k3,r,c1,p3)
[tʹs,tʹ1] move(rʹ,d2)
[tʹs,tʹ2] uncover(c2,pʹ2)
[tʹ3,tʹ4] load(k4,rʹ,c2,pʹ2)
[tʹ5,tʹ6] move(rʹ,d4)
[tʹ7,tʹe] unload(k2,rʹ,c2,pʹ2)

supported:[0] loc(r1)=d3
[0] freight(r1)=empty
[0] pile(c1)=pʹ1
. . .

assertions: [ts,t3] pile(c1) = pʹ1
[ts,t3] freight(r) = empty
[tʹs,tʹ3] pile(c2) = pʹ2
[tʹs,tʹ1] freight(rʹ) = empty

constraints: ts<t1≤t3, ts<t2≤t3, t4≤t5, t6≤t7,
tʹs<tʹ1≤tʹ3, tʹs<tʹ2≤tʹ3, tʹ4≤tʹ5, tʹ6≤tʹ7,

adj(d1,w12),
adj(d1,w13), . . .

• 3 ways to support !", !$ %&'()1 = %,1
1. Constrain !- = 0, use 0 %&'()1 = %,1
2. Add persistence 0, !" %&'()1 = %,1
3. Add new action !/, !" -!0)1 11,)1, %,1

Will any of them also
provide support for

[ts,t3] freight(r) = empty?

Supporting the Assertions

32

ϕ2: tasks: [0,t1] move(r1,d1)
[0,t2] uncover(c1,pʹ1)
[t3,t4] load(k1,r1,c1,pʹ1)
[t5,t6] move(r1,d3)
[t7,te] unload(k3,r1,c1,p3)
[tʹs,tʹ1] move(rʹ,d2)
[tʹs,tʹ2] uncover(c2,pʹ2)
[tʹ3,tʹ4] load(k4,rʹ,c2,pʹ2)
[tʹ5,tʹ6] move(rʹ,d4)
[tʹ7,tʹe] unload(k2,rʹ,c2,pʹ2)

supported:[0] loc(r1)=d3
[0] freight(r1)=empty
[0] pile(c1)=pʹ1
. . .
[0,t3] pile(c1) = pʹ1
[0,t3] freight(r1) = empty

assertions: [tʹs,tʹ3] pile(c2) = pʹ2
[tʹs,tʹ1] freight(rʹ) = empty

constraints: 0<t1≤t3, 0<t2≤t3, t4≤t5, t6≤t7,
tʹs<tʹ1≤tʹ3, tʹs<tʹ2≤tʹ3, tʹ4≤tʹ5, tʹ6≤tʹ7,

adj(d1,w12),
adj(d1,w13), . . .

4

r1

k1

p’1
c1
c’1

d1 d2

d3 d4

w12

w13 w23

w34 r2

k2

k4k3

p1 p2

p3 p4

p’2
c2
c’2

d1

4

r1

k1

p’1
c1
c’1

d1 d2

d3 d4

w12

w13 w23

w34 r2

k2

k4k3

p1 p2

p3 p4

p’2
c2
c’2

• To support !", !$ %&'()1 = %,1
• Constrain !- = 0, use 0 %&'()1 =
%,1

• To support 0, !$ /0(&1ℎ! 0 =
(3%!4
• Constrain 0 = 01

Supporting the Assertions

33

ϕ2: tasks: [0,t1] move(r1,d1)
[0,t2] uncover(c1,pʹ1)
[t3,t4] load(k1,r1,c1,pʹ1)
[t5,t6] move(r1,d3)
[t7,te] unload(k3,r1,c1,p3)
[tʹs,tʹ1] move(r2,d2)
[tʹs,tʹ2] uncover(c2,pʹ2)
[tʹ3,tʹ4] load(k4,r2,c2,pʹ2)
[tʹ5,tʹ6] move(r2,d4)
[tʹ7,tʹe] unload(k2,r2,c2,pʹ2)

supported:[0] loc(r1)=d3
[0] freight(r1)=empty
[0] pile(c1)=pʹ1 . . .
[0,t3] pile(c1) = pʹ1
[0,t3] freight(r1) = empty
[0,tʹs] pile(c2)=pʹ2
[tʹs,tʹ3] pile(c2) = pʹ2
[0,tʹs] freight(r2)=empty
[tʹs,tʹ1] freight(r2) = empty

assertions: (none)
constraints: 0<t1≤t3, 0<t2≤t3, t4≤t5, t6≤t7,

tʹs<tʹ1≤tʹ3, tʹs<tʹ2≤tʹ3, tʹ4≤tʹ5, tʹ6≤tʹ7,
adj(d1,w12),adj(d1,w13), . . .

4

r1

k1

p’1
c1
c’1

d1 d2

d3 d4

w12

w13 w23

w34 r2

k2

k4k3

p1 p2

p3 p4

p’2
c2
c’2

d1

4

r1

k1

p’1
c1
c’1

d1 d2

d3 d4

w12

w13 w23

w34 r2

k2

k4k3

p1 p2

p3 p4

p’2
c2
c’2

• To support !"#, !%# &'() *2 =
• Add persistence condition 0, !"# &'() *2 =

• Alternatives: constrain !"# = 0 or add new
action .!/*0 02, *2,

• To support !"#, !1# 23)'4ℎ! 3# =)6&!7
• Constrain 3 = 32, add persistence

condition 0, !"# 23)'4ℎ! 32 =)6&!7

4

r1

k1

p’1
c1
c’1

d1 d2

d3 d4

w12

w13 w23

w34 r2

k2

k4k3

p1 p2

p3 p4

p’2
c2
c’2

d1

4

r1

k1

p’1
c1
c’1

d1 d2

d3 d4

w12

w13 w23

w34 r2

k2

k4k3

p1 p2

p3 p4

p’2
c2
c’2

Example of Conflicts

34

ϕ2: tasks: [0,t1] move(r1,d1)
[0,t2] uncover(c1,pʹ1)
[t3,t4] load(k1,r1,c1,pʹ1)
[t5,t6] move(r1,d3)
[t7,te] unload(k3,r1,c1,p3)
[tʹs,tʹ1] move(r2,d2)
[tʹs,tʹ2] uncover(c2,pʹ2)
[tʹ3,tʹ4] load(k4,r2,c2,pʹ2)
[tʹ5,tʹ6] move(r2,d4)
[tʹ7,tʹe] unload(k2,r2,c2,pʹ2)

supported:[0] loc(r1)=d3
[0] freight(r1)=empty
[0] pile(c1)=pʹ1 . . .
[0,t3] pile(c1) = pʹ1
[0,t3] freight(r1) = empty
[0,tʹs] pile(c2)=pʹ2
[tʹs,tʹ3] pile(c2) = pʹ2
[0,tʹs] freight(r2)=empty
[tʹs,tʹ1] freight(r2) = empty

assertions: (none)
constraints: 0<t1≤t3, 0<t2≤t3, t4≤t5, t6≤t7,

tʹs<tʹ1≤tʹ3, tʹs<tʹ2≤tʹ3, tʹ4≤tʹ5, tʹ6≤tʹ7,
adj(d1,w12),adj(d1,w13), . . .

• Refining tasks into actions will produce
possibly-conflicting assertions
• move(r2,d4) must go through d3
• Conflict: occupant(d3)=r1, occupant(d3)=r2

• Resolvers:
• Separation constraints to ensure

r2 only goes through d3 while r1 away
from d3

Heuristics for Guiding TemPlan
• Flaw selection,

resolver selection
heuristics similar to
those in PSP
• Select the flaw with

the smallest
number of resolvers

• Choose the resolver
that rules out the
fewest resolvers for
the other flaws

• There is also a
problem with
constraint
management
• We ignored it when

discussing PSP
• Discuss it next

35

TemPlan(!,Σ)
Flaws ← set of flaws of !
if Flaws = ∅ then

return !
arbitrarily select f ∈ Flaws
Resolvers ← set of resolvers of f
if Resolvers = ∅ then

return failure
nondeterministically choose $ ∈ Resolvers
! ← Transform(!, $)
TemPlan(!,Σ)

PSP(Σ,%)
loop

if Flaws(%) = ∅ then
return %

arbitrarily select f ∈ Flaws(%)
R ←{all feasible resolvers for f}
if R = ∅ then

return failure
nondeterministically choose ρ ∈ R
% ← ρ(%)

return %

Intermediate Summary
• Planning problems
• Three kinds of flaws and their resolvers:

• tasks, causal support, security
• Partial plans, solution plans

• Planning: TemPlan
• Like PSP but with tasks, temporal assertions, temporal

constraints

36

Outline per the Book
4.2 Representation

• Timelines
• Actions and tasks
• Chronicles

4.3 Temporal planning
• Resolvers and flaws
• Search space

4.4 Constraint management
• Consistency of object constraints and time constraints
• Controlling the actions when we don’t know how long they’ll

take
4.5 Acting with temporal models

• Acting with atemporal refinement
• Dispatching
• Observation actions

37

Constraint Management
• Each time TemPlan applies a resolver, it modifies (", $)

• Some resolvers will make (", $) inconsistent
• No solution in this part of the search space
• Detect inconsistency => prune this part of the search space
• Do not detect it => waste time looking for a solution

• Analogy: PSP checked simple cases of inconsistency
• E.g., cannot create a constraint & ≺ (

if there is already a constraint (≺ &
• Ignored more complicated cases
• Example:

•)*,)+,), ∈ ./01&20345 =)1,)2
• Threats involving)*,)+,),
• For resolvers, suppose PSP chooses

•)* ≠)+,)+ ≠),,)* ≠),
• No solutions in this part

of the search space, but
PSP searches it anyway

…

… …

…

…
…

…

…

…

…

…

… …

…

… …

……… …… … … … … … ……

38

Constraint Management in TemPlan
• At various points, check consistency of !
• If ! is inconsistent, then (#, !) is inconsistent
• Can prune this part of the search space

• If ! is consistent, then (#, !) may or may not be
consistent
• Example:

• # = { (), (* +,- .1 = +,-1, (0, (1 +,- .1 = +,-2}
• ! = () < (0 < (1 < (*

• Gives +,- .1 two values during [(0, (1]

39

Consistency of !
• ! contains two kinds of constraints

• Object constraints
• "#$ % ≠ "', " ∈ "#$3, "#$4 , % = %1, # ≠ #.

• Temporal constraints
• /0 < /2, 3 < /, / < /., 3 ≤ /. − / ≤ 6

• Assume object constraints are independent of temporal
constraints and vice versa
• Exclude things like / < 7 ", %

• Then two separate subproblems
• (1) check consistency of object constraints
• (2) check consistency of temporal constraints
• ! is consistent iff both are consistent

40

Object Constraints
• Constraint-satisfaction problem (CSP) – NP-hard

• Can write an algorithm that is complete but runs in
exponential time
• If there is an inconsistency, always finds it
• Might do a lot of pruning, but spend lots of time at each node

• Instead, use a technique that is
incomplete but takes polynomial time
• Edge consistency, path consistency

• Detects some inconsistencies
but not others
• Runs much faster,

but prunes fewer nodes

41

…

… …

…

…
…

…

…

…

…

…

… …

…

… …

……… …… … … … … … ……

Time Constraints: Representation
• Simple Temporal Networks (STNs)
• Networks of constraints on time points

• Synthesise them incrementally
starting from !"
• TemPlan can check time

constraints in time # $3

• Incrementally instantiated at acting time
• Kept consistent throughout planning and acting

42

t2

[1, 2]

[1, 2]

t1 t4

t3

t5

[3, 4]

[6, 7] [4, 5]

[1, 7]

Simple Temporal Networks
• STN: a pair (", ℰ), where

• " = a set of temporal variables 45, … , 47
• ℰ ⊆ " × " is a set of edges

• Each edge 4:, 4; is labelled with an interval <, =
• Represents constraint < ≤ 4; − 4: ≤ =
• Equivalently, −= ≤ 4: − 4; ≤ −<

• Representing unary constraints
• Dummy variable 4@ = 0
• Edge B@: = (4@, 4:) labelled with <, = represents
< ≤ 4: − 0 ≤ =

• Shorthand: instead of < ≤ 4; − 4: ≤ =,
write B:; = <:;, =:;

• Solution to an STN
• Integer value for each 4:
• All constraints satisfied

• Consistent STN
• Has a solution

43

t1

t2

t3

[1,2] [3,4]

[2,3]

t1

t2

t3

[1,2] [3,4]

[–3,–2]

Is this network
consistent?

Book says:
• Solution

• Integer value for each 4:
• Consistent:

• Has a solution
• All constraints satisfied

!

Time Constraints
• Minimal STN:
• For every edge ("#, "%) with label ', (

• For every " ∈ [', (]
• There is at least one solution such that "% − "# = "

• Cannot make any of the time intervals shorter without
excluding some solutions

44

t1

t2

t3

[1,2] [3,4]

[3,7]
Is this network
minimal?

Operations on STNs
• Intersection, ∩

• "# – "% ∈ '%# =)%#, +%#
• "# – "% ∈ '%#, =)%#, , +%#,
• Infer
"#– "% ∈ '%# ∩ '%#, = max)%#,)%#, , min +%#, +%#,

• Composition, ∘
• "3– "% ∈ '%3 =)%3, +%3
• "#– "3 ∈ '3# =)3#, +3#
• Infer
"#– "% ∈ '%3 ∘ '3# =)%3 +)3#, +%3 + +3#
• Reason: shortest and longest times for the two

intervals

• Consistency checking
• Three constraints '%3, '3#, '%# are consistent

only if '%# ∩ ('%3 ∘ '3#) ≠ ∅

45

ti
tj

rij

'%# ∩ '%#,
rʹij

ti

tk

tj

rik rkj

'%3 ∘ '3#

ti

tk

tj

rik rkj
rij

'%# ∩ '%3 ∘ '3#

'%3 ∘ '3#

Two Examples

• STN (", ℰ), where
• " = '(, '), '*
• ℰ = {

}
-() = 1,2 , -)* = 3,4 ,

-(* = 2,3
• Composition

• -(*2 = -() ∘ -)* = 4,6
• Cannot satisfy both -(* and -(*2

• -(* ∩ -(*2 = 2,3 ∩ 4,6 = ∅
• (", ℰ) is inconsistent

• STN (", ℰ), where
• " = '(, '), '*
• ℰ = {

}
-() = 1,2 , -)* = 3,4 ,

-(* = 2,5
• Composition (as before)

• -(*2 = -() ∘ -)* = 4,6
• (", ℰ) is consistent

• -(* ∩ -(*2 = 2,5 ∩ 4,6 = 4,5
• Minimal network

• -(* = 4,5

46

t1
t3

[1,2] [3,4]

[2,3]

t2

t1

t2

t3

[1,2] [3,4]

[2,5]

t1

t2

t3

[1,2] [3,4]

[4,5]

Operations on STNs
• PC (Path Consistency)

algorithm:
• Consistency checking

on all triples
• If an edge has no constraint,

use −∞,+∞
• % constraints

=> %& triples
=> time ' %&

• Example:
• (= 2, + = 1, - = 2
• ./0 = 1,2
• .01 = 3,4
• ./1 = –∞,∞
• ./0 ∘ .01 = [1 + 3, 2 + 4] = [4,6]
• ./1 ← max –∞, 4 ,min ∞, 6 = 4,6

47

1

t2

[1, 2]

[1, 2]
t1 t4

t3

t5

[3, 4]

[6, 7] [4, 5]

k

i j

PC(?,ℰ)
for 1 ≤ k ≤ n do

for 1 ≤ i < j ≤ n, i ≠ j, j ≠ k do
rij ← rij ∩ [rik ∘ rkj]
if rij = ∅ then

return inconsistent

Operations on STNs
• PC makes network minimal

• Shrinks each !"# to exclude
values that are not in any
solution

• Also detects inconsistent
networks
• !"# = [&"#, ("#] empty =>

inconsistent
• Graph: dashed lines

• Constraints that were shrunk
• Can modify PC to make it

incremental
• Input

• A consistent, minimal STN
• A new constraint !"#*

• Incorporate !"#* in time + ,-

48

PC(.,ℰ)
for 1 ≤ k ≤ n do

for 1 ≤ i < j ≤ n, i ≠ j, j ≠ k do
rij ← rij ∩ [rik ∘ rkj]
if rij = ∅ then

return inconsistent

3

t1

t3

t2

t4

[30, 50]

[5, 10]

[-5, 5]

[15, 50] [0
, 1

5]

[25,55]

Pruning TemPlan’s search space
• Take the time constraints in !
• Write them as an STN
• Use Path Consistency to check whether STN is consistent
• If it is inconsistent, TemPlan can backtrack

49

Controllability
• Suppose TemPlan gives you a chronicle and you

want to execute it
• Constraints on time points
• Need to reason about these in order to decide when to

start each action

50

2

t1

t3

t2

t4

[30, 50]

[5, 10]

[-5, 5]

bring&move

uncover

Controllability
• Solid lines: duration constraints
• Robot will do bring&move, will take 30 to 50 time units
• Crane will do uncover, will take 5 to 10 time units

• Dashed line: synchronization constraint
• Do not want either the crane or robot to wait long
• At most 5 seconds between the two ending times

• Objective
• Choose time points that will

satisfy all the constraints

51

2

t1

t3

t2

t4

[30, 50]

[5, 10]

[-5, 5]

bring&move

uncover

2

t1

t3

t2

t4

[30, 50]

[5, 10]

[-5, 5]

bring&move

uncover

3

t1

t3

t2

t4

[30, 50]

[5, 10]

[-5, 5]

[15, 50] [0
, 1

5]

[25,55]

bring&move

uncover

Controllability
• Suppose we run PC
• PC returns a minimal and consistent

network
• There exist time points that satisfy all

the constraints
• Would work if we could choose all four

time points
• But we cannot choose !" and !#

• !$ and !% are controllable
• Actor can control when each action starts

• !" and !# are contingent
• Cannot control how long the actions take
• Random variables that are known

to satisfy the duration constraints
• !" ∈ !$ + 30, !$ + 50
• !# ∈ !% + 5, !% + 10

52

Controllability
• Cannot guarantee that all

constraints will be satisfied
• Start bring&move at

time !" = 0
• Suppose the durations are

• bring&move 30, uncover 10
• !' = !" + 30 = 30
• !) = !* + 10
• !)– !' = !*– 20

• Constraint -'):
• – 5 ≤ !)– !' ≤ 5
– 5 ≤ !*– 20 ≤ 5
15 ≤ !* ≤ 25

• Must start uncover
at !* ≤ 25

• But if we start uncover at !* ≤ 25, neither action has
finished yet
• We do not yet know

how long they will take
• Durations might instead be

• bring&move 50, uncover 5
• !' = !" + 50 = 50
• !) = !* + 5 ≤ 25 + 5 = 30
• !)– !' ≤ 30– 50 = –20

• Violates -*)

53

3

t1

t3

t2

t4

[30, 50]

[5, 10]

[-5, 5]

[15, 50] [0
, 1

5]

[25,55]

bring&move

uncover

STNUs
• STNU (Simple Temporal Network with Uncertainty):

• A 4-tuple !, #!, ℰ, %ℰ
• ! ={controllable time points}

• E.g., starting times of actions

• #! ={contingent time points}
• E.g., ending times of actions

• Controllable and contingent constraints:
• Synchronization between two starting times: controllable
• Duration of an action: contingent
• Synchronization between ending points of two actions: contingent
• Synchronization between end of one action, start of another:

• Controllable if the new action starts after the old one ends
• Contingent if the new action starts before the old one ends

• Want a way for the actor to choose time points in !
(starting times) that guarantee that constraints are satisfied

54

• ℰ ={controllable constraints}

• %ℰ ={contingent constraints}

Three kinds of controllability
• !, #!, ℰ, %ℰ is strongly controllable if the actor can choose values

for ! such that success will occur for all values of #! that satisfy %ℰ
• Actor can choose the values for ! offline
• The right choice will work regardless of #!

• !, #!, ℰ, %ℰ is weakly controllable if the actor can choose values
for ! such that success will occur for at least one combination of
values for #!
• Actor can choose the values for ! only if the actor knows in advance

what the values of #! will be

• Dynamic controllability:
• Game-theoretic model: actor vs. environment
• A player’s strategy: a function & telling what to do in every situation

• Choices may differ depending on what has happened so far
• !, #!, ℰ, %ℰ is dynamically controllable if ∃ strategy for an actor that

will guarantee success regardless of the environment’s strategy

55

Dynamic Execution
• For ! = 0, 1, 2, …

1. Actor chooses an unassigned set of variables () ⊆ (that all can be assigned
the value ! without violating any constraints in ℰ
• ≈ actions the actor chooses to start at time !

2. Simultaneously, environment chooses an unassigned set of variables ,()⊆ ,(
that all can be assigned the value ! without violating any constraints in -ℰ
• ≈ actions that finish at time !

3. Each chosen time point . is assigned . ← !

4. Failure if any of the constraints in ℰ ∪ -ℰ are violated
• There might be violations that neither () nor ,() caused individually

5. Success if all variables in (∪ ,(have values and no constraints are violated

• Dynamic execution strategies 12 for actor, 13 for environment
• 12(ℎ)67) = {what events in (to trigger at time !, given ℎ)67}
• 13(ℎ)67) = {what events in ,(to trigger at time !, given ℎ)67}

• ℎ) = ℎ)67 ⋅ 12 ℎ)67 ∪ 13 ℎ)67
• (, ,(, ℰ, -ℰ is dynamically controllable if ∃ 12 that will guarantee

success ∀ 13

56

<=> = ?, @ is violated
if != and !> have values
and !> − != ∉ ?, @

Example
• Instead of a single bring&move task, two separate bring

and move tasks

• Actor’s dynamic execution strategy
• Trigger !" at whatever time you want
• Wait and observe !
• Trigger !# at any time from ! to ! + 5
• Trigger !& = !# + 10
• For every !* ∈ !# + 15, !# + 20 and !. ∈ [!& + 5, !& + 10]

• !. ∈ !# + 15, !# + 20
• So !.– !& ∈ – 5, 5

• So all constraints are satisfied

57

tʹ

t3

t2

t4

[15, 20]

[5, 10]

[-5, 5]

t1 t[15, 25] [0, 5]
move

uncover

bring

Dynamic Controllability Checking
• For a chronicle ! = #, %, &, '

• Temporal constraints in ' correspond to an STNU
• Adapt TemPlan to test not only consistency but also dynamic

controllability (*) of the STNU
• If we detect cases where it is not dynamically controllable, then

backtrack
* Use PC as well

• If PC((∪ *(, ℰ ∪ ,ℰ) reduces a contingent constraint, then
(, *(, ℰ, ,ℰ is not dynamically controllable
⇒ Can prune this branch

• If it does not reduce any contingent constraints, we don’t know
whether (, *(, ℰ, ,ℰ is dynamically controllable
• Only necessary, not sufficient condition

• Two options
• Either continue down this branch and backtrack later if necessary, or
• Extend PC to detect more cases where (, *(, ℰ, ,ℰ isn’t dynamically

controllable
• Additional constraint propagation rules

58

Additional Constraint Propagation Rules
• Case 1: ! ≥ 0

• $ must come before $%
• Add a composition constraint &',)'
• Find &',)' such that &',)' ∘ !, + = &,)

• &' + !,)' + + = &,)
• &' = &– !,)' =)– +

59

t

[a, b]

[u, v]

ts te

⇒ contingent → controllable &' = &– !,)' =)– +

Additional Constraint Propagation Rules

• Case 2: ! < 0 and $ ≥ 0
• & may be before or after &'

• Add a wait constraint &',)
•) defined w.r.t.

some controllable time point &*
• Wait until either &' occurs or current time is &* +),

whichever comes first

60

t

[a, b]

[u, v]

ts te

⇒ contingent → controllable -. = -– !, 1. = 1– $

Extended Version of PC
• We want a fast algorithm that TemPlan can run at each

node, to decide whether to backtrack
• There is an extended version of PC that runs in

polynomial time, but it has high overhead
• Possible compromise: use ordinary PC most of the time

• Run extended version occasionally, or at end of search before
returning plan

61

Intermediate Summary
• Constraint management
• Consistency of object constraints

• Constraint-satisfaction problem
• Consistency of time constraints

• STN, solution, minimality, consistency
• PC

• Controllability
• STNU, controllable, contingent
• Dynamic controllability

62

Outline per the Book
4.2 Representation

• Timelines
• Actions and tasks
• Chronicles

4.3 Temporal planning
• Resolvers and flaws
• Search space

4.4 Constraint management
• Consistency of object constraints and time constraints
• Controlling the actions when we don’t know how long they’ll

take
4.5 Acting with temporal models

• Acting with atemporal refinement
• Dispatching
• Observation actions

63

Atemporal Refinement of Primitive Actions

• Templan’s action templates may correspond to
compound tasks
• In RAE, refine into commands with refinement methods
• Templan’s

action template
(descriptive model)

• RAE’s
refinement method
(operational model)

64

leave(r,d,w)
assertions: [ts,te] loc(r): (d,w)

[ts,te] occupant(d): (r,empty)
constraints: te ≤ ts + δ1

adj(d,w)

m-leave(r,d,w,e)
task: leave(r,d,w)
pre: loc(r)=d, adj(d,w), exit(e,d,w)
body: until empty(e)

wait(1)
goto(r,e)

Discussion
• Pros

• Simple online refinement with RAE
• Avoids breaking down uncertainty of contingent duration
• Can be augmented with temporal monitoring functions in

RAE
• E.g., watchdogs, methods with duration preferences

• Cons
• Does not handle temporal requirements at the command

level,
• e.g., synchronise two robots that must act concurrently

• Can augment RAE to include temporal reasoning
• Call it eRAE
• One essential component: a dispatching function

65

Acting With Temporal Models
• Dispatching procedure: a dynamic execution strategy

• Controls when to start each action
• Given a dynamically controllable plan with executable

primitives, triggers corresponding commands from online
observations

• Example
• robot !2 needs to leave dock #2

before robot !1 can enter #2
• crane % needs to uncover &

then put & onto !1

66

d1

d2
r2

w1

k

p
c

r1

cʹw2

q

navigate(r1)leave(r1,d1)

stack(k,cʹ,q)unstack(k,cʹ,p)
putdown(k,c,r1)unstack(k,c)

leave(r2,d2)

enter(r1,d2)

leave(r1,d2)

t1 t2

t3

t4

t5

t6

t7 t8 t9

Dispatching
• Let !, #!, ℰ, %ℰ be a

controllable STNU
that is grounded
• Different from a

grounded expression
in logic

• At least one time
point & is instantiated

• This bounds each
time point & within an
interval '(,)(

67

• Controllable time point & in the future:
• & is alive if current time *+, ∈ '(,)(
• & is enabled if

• It is alive
• For every precedence constraint &. < &, &. has occurred
• For every wait constraint &0, 1 , &0 has occurred or 1 has expired

• 1 has expired if &2 has occurred and &2 + 1 ≤ *+,

Dispatch(!,Ṽ,ℰ,Ẽ)
initialise the network
while there are time points in ! that

have not been triggered do
update now
update the time points in Ṽ that have

been newly observed
update enabled
trigger every t ∈ enabled s.t. now=ut
arbitrarily choose other time points

in enabled and trigger them
propagate values of triggered

timepoints (change [lt,ut] for
each future timepoint t)

Example
• Trigger !", observe leave finish
• Enable and trigger !#, this

enables !$, !%
• Trigger !$ soon enough to

allow &'!&((1, +2 at time !-
• Trigger !% soon enough to

allow .!/01 1, 02 at time !3
• Rest of plan is linear:

• Choose each !4
after the previous action ends

68

navigate(r1)leave(r1,d1)

stack(k,cʹ,q)unstack(k,cʹ,p)
putdown(k,c,r1)unstack(k,c)

leave(r2,d2)

enter(r1,d2)

leave(r1,d2)

t1 t2

t3

t4

t5

t6

t7 t8 t9

Dispatch(5,Ṽ,ℰ,Ẽ)
initialise the network
while there are time points in 5 that

have not been triggered do
update now
update the time points in Ṽ that have

been newly observed
update enabled
trigger every t ∈ enabled s.t. now=ut
arbitrarily choose other time points

in enabled and trigger them
propagate values of triggered

timepoints (change [lt,ut] for
each future timepoint t)

Example from Slide 57
• Trigger !" at time 0
• Wait and observe !; this

enables !$
• Trigger !$ at any time

from ! to ! + 5
• Trigger !' at time !$ + 10

• !) ∈ !$ + 15, !$ + 20
• !- ∈ [!' + 5, !' + 10] =[!$ + 15, !$ + 20]
• so !-– !' ∈ – 5, 5

69

t′

t3

t2

t4

[15, 20]

[5, 10]

[-5, 5]

t1 t[15, 25] [0, 5]
move

uncover

bring

Dispatch(2,Ṽ,ℰ,Ẽ)
initialise the network
while there are time points in 2 that

have not been triggered do
update now
update the time points in Ṽ that have

been newly observed
update enabled
trigger every t ∈ enabled s.t. now=ut
arbitrarily choose other time points

in enabled and trigger them
propagate values of triggered

timepoints (change [lt,ut] for
each future timepoint t)

Dispatching
• Propagation step

most costly one
• ! "#
• " the number of

remaining future
time points in
network

70

• Ideally propagation fast enough to allow iterations
and updates of "$% consistent with temporal
granularity of plan

Dispatch(&,Ṽ,ℰ,Ẽ)
initialise the network
while there are time points in & that

have not been triggered do
update now
update the time points in Ṽ that have

been newly observed
update enabled
trigger every t ∈ enabled s.t. now=ut
arbitrarily choose other time points

in enabled and trigger them
propagate values of triggered

timepoints (change [lt,ut] for
each future timepoint t)

Deadline Failures
• Suppose something makes it impossible to start an action

on time
• Do one of the following:

• Stop the delayed action, and look for new plan
• Let the delayed action finish, try to repair the plan by resolving

violated constraints at the STNU propagation level
• E.g., accommodate a delay in navigate by delaying the whole plan

• Let the delayed action finish, try to repair the plan some other way

71

navigate(r1)leave(r1,d1)

stack(k,cʹ,q)unstack(k,cʹ,p)
putdown(k,c,r1)unstack(k,c)

leave(r2,d2)

enter(r1,d2)

leave(r1,d2)

t1 t2

t3

t4

t5

t6

t7 t8 t9

Partial Observability
• Tacit assumption: All occurrences of contingent

events are observable
• Observation needed for dynamic controllability

• In general, not all events are observable

• POSTNU (Partially Observable STNU)

• Dynamically controllable?

72

Controllable

Timepoints Invisible

Contingent

Observable

Arthur Bit-Monnot, Malik Ghallab, Félix Ingrand: “Which Contingent Events to Observe for the
Dynamic Controllability of a Plan”, IJCAI-16

tʹ

t3

t2

t4

[20, 25]

[25, 30]

[-5, 10]

t1 t [1, 2]
driving

cooking

working

t0
[19:00, 19:30]

Observation Actions
• Example

73

Controllable

Contingent
Invisible
observable

Dynamic Controllability
• A POSTNU is dynamically controllable if
• there exists an execution strategy that chooses future

controllable points to meet all the constraints, given the
observation of past visible points

• Observable ≠ visible
• Observable means it will be known when observed
• It can be temporarily hidden

74

Controllable
Timepoints Invisible

Contingent Visible
Observable

Hidden

Intermediate Summary
• Acting
• Atemporal refinement

• eRAE
• Dispatching

• Alive, enabled
• Deadline failures
• Partial observability

• Invisible, observable (hidden/visible)

75

Outline per the Book
4.2 Representation

• Timelines
• Actions and tasks
• Chronicles

4.3 Temporal planning
• Resolvers and flaws
• Search space

4.4 Constraint management
• Consistency of object constraints and time constraints
• Controlling the actions when we don’t know how long they’ll take

4.5 Acting with temporal models
• Acting with atemporal refinement
• Dispatching
• Observation actions

⟹ Next: Planning and Acting with Nondeterministic Models

76

