Advanced Topics Data Science and Al Automated Planning and Acting

Temporal Models

Tanya Braun

Content

- **Deterministic** Models
- 2. Planning and Acting with 5. Making Simple Decisions **Refinement** Methods
- 3. Planning and Acting with **Temporal** Models
 - **Temporal Representation**
 - Planning with Temporal Refinement Methods
 - Constraint Management
 - **Acting with Temporal** Models

- 1. Planning and Acting with 4. Planning and Acting with **Nondeterministic** Models

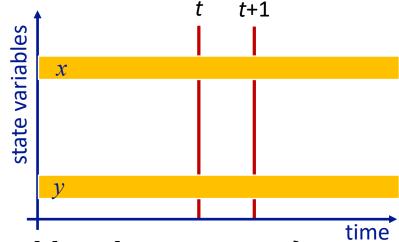
 - 6. Making Complex **Decisions**
 - 7. Planning and Acting with **Probabilistic** Models
 - 8. Provably Beneficial Al
 - Other: open world, perceiving, learning
 - If time permits

Temporal Models

- Durations of actions
- Delayed effects and preconditions
 - E.g., resources borrowed or consumed during an action
- Time constraints on goals
 - Relative or absolute
- Exogenous events expected to occur in the future
 - When?
- Maintenance actions:
 - Maintain a property (≠ changing a value)
 - E.g., track a moving target, keep a spring latch in position
- Concurrent actions
 - Interacting effects, joint effects
- Delayed commitment
 - Instantiation at acting time

Timelines

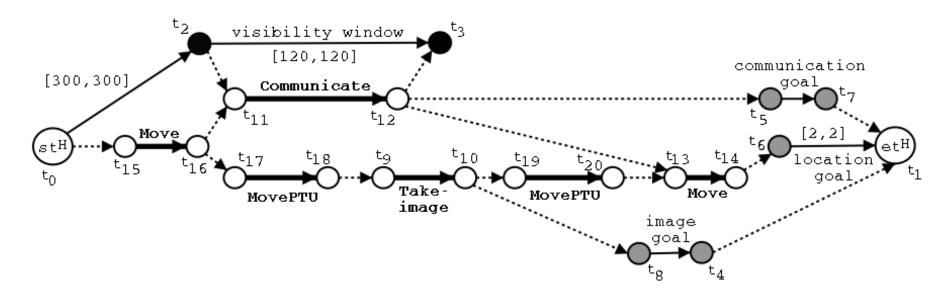
- Up to now, "state-oriented view"
 - Time is a sequence of states s_0, s_1, s_2
 - Instantaneous actions transform each state into the next one
 - No overlapping actions
- Switch to a "time-oriented view"
 - Sequence of integer time points
 - t = 1, 2, 3, ...
 - For each state variable x, a timeline
 - values during different time intervals



• State at time $t = \{\text{state-variable values at time } t\}$

Timelines

- Sets of constraints on state variables and events
 - Reflect predicted actions and events
- Planning is constraint-based



Outline per the Book

4.2 Representation

- Timelines
- Actions and tasks
- Chronicles

4.3 Temporal planning

- Resolvers and flaws
- Search space

4.4 Constraint management

- Consistency of object constraints and time constraints
- Controlling the actions when we don't know how long they'll take

4.5 Acting with temporal models

- Acting with atemporal refinement
- Dispatching
- Observation actions

Representation

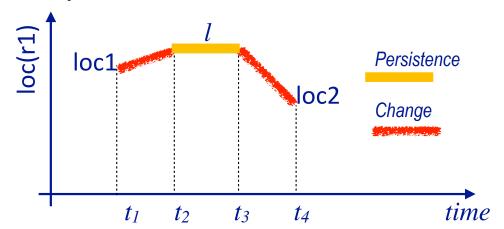
- Quantitative model of time
 - Discrete: time points are integers
- Expressions:
 - time-point variables

•
$$t$$
, t' , t_2 , t_j , ...

- simple constraints
 - $d \leq t' t \leq d'$
- Temporal assertion:
 - Value of a state variable during a time interval
 - Persistence: $[t_1, t_2]x = v$ entails $t_1 < t_2$
 - Change: $[t_1, t_2]x : (v_1, v_2)$ entails $v_1 \neq v_2$

Timeline

- Timeline: pair $(\mathcal{T}, \mathcal{C})$, partially predicted evolution of one state variable
 - Instance of $(\mathcal{T}, \mathcal{C})$ = temporal and object variables instantiated
- T: temporal assertions
 - $[t_1, t_2]loc(r1) : (loc1, l)$
 - $[t_2, t_3]loc(r1) = l$
 - $[t_3, t_4]loc(r1) : (l, loc2)$
- \mathcal{C} : constraints
 - $t_1 < t_2 < t_3 < t_4$
 - $l \neq loc1$
 - $l \neq loc2$
 - If we want to restrict loc(r1) during $[t_1, t_2]$
 - $[t_1, t_1 + 1]loc(r1) : (loc1, route)$
 - $[t_2-1,t_2]loc(r1): (route,l)$
 - $[t_1 + 1, t_2 1]loc(r1) = route$
- An instance is consistent if it satisfies all constraints in $\mathcal C$ and does not specify two different values for a state variable at the same time
- A timeline is secure if its set of consistent instances is not empty



- Preliminaries:
 - Timelines $(\mathcal{T}_1, \mathcal{C}_1), \dots, (\mathcal{T}_k, \mathcal{C}_k)$ for k different state variables
 - Their union:
 - $(\mathcal{T}_1, \mathcal{C}_1) \cup \cdots \cup (\mathcal{T}_k, \mathcal{C}_k) = (\mathcal{T}_1 \cup \cdots \cup \mathcal{T}_k, \mathcal{C}_1 \cup \cdots \cup \mathcal{C}_k)$
 - If
- every (T_i, C_i) is secure, and
- no pair of timelines $(\mathcal{T}_i, \mathcal{C}_i)$ and $(\mathcal{T}_j, \mathcal{C}_j)$ have any unground variables in common
- then
 - $(\mathcal{T}_1 \cup \cdots \cup \mathcal{T}_k, \mathcal{C}_1 \cup \cdots \cup \mathcal{C}_k)$ is also secure
- Action or primitive task (or just primitive):
 - a triple (head, T, C)
 - head is the name and arguments
 - $(\mathcal{T}, \mathcal{C})$ is the union of a set of timelines

- leave(r, d, w)
 - Robot r leaves dock d, goes to adjacent waypoint w

```
leave(r,d,w)

assertions:

[t_s,t_e] \log(r): (d,w)

[t_s,t_e] \operatorname{occupant}(d): (r,empty)

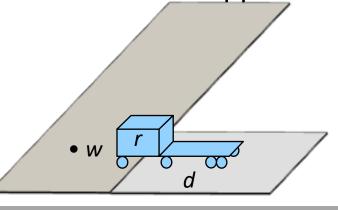
constraints:

t_e \leq t_s + \delta_1

\operatorname{adj}(d,w)
```

- loc(r) changes to w with delay $\leq \delta_1$
- Dock d becomes empty

- Two additional parameters
 - Starting time t_s
 - Ending time t_e
- No separate preconditions and effects
 - Preconditions
 ⇔ need for causal support



- enter(r, d, w)
 - r enters d from an adjacent waypoint w

```
enter(r,d,w)

assertions:

[t_s,t_e] \log(r): (w,d)

[t_s,t_e] \operatorname{occupant}(d): (\operatorname{empty},r)

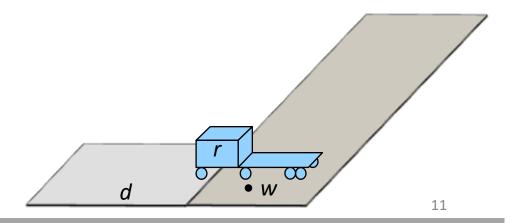
constraints:

t_e \leq t_s + \delta_2

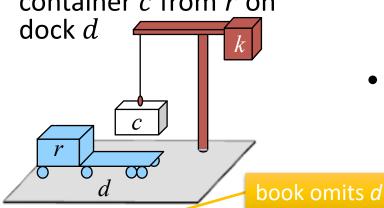
\operatorname{adj}(d,w)
```

- loc(r) changes to d with delay $\leq \delta_2$
- Dock d becomes occupied by r

- Two additional parameters
 - Starting time t_s
 - Ending time t_e
- No separate preconditions and effects
 - Preconditions
 ⇔ need for causal support



- take(k, c, r, d)
 - Action: crane k takes container c from r on



Two additional parameters

- Starting time t_s
- Ending time t_e
- No separate preconditions and effects
 - Preconditions
 ⇔ need for causal support

```
take(k,c,r,d) assertions:

[t_s,t_e] \text{ pos}(c) \colon (r,k) \qquad // \text{ where container } c \text{ is}
[t_s,t_e] \text{ grip}(k) \colon (\text{empty},c) \qquad // \text{ what crane } k\text{'s gripper is holding}
[t_s,t_e] \text{ freight}(r) \colon (c,\text{empty}) \qquad // \text{ what } r \text{ is carrying}
[t_s,t_e] \text{ loc}(r) = d \qquad // \text{ where } r \text{ is}
\text{constraints:}
\text{attached}(k,d)
```

• leave(r, d, w)

robot r leaves dock d to an adjacent waypoint w

• enter(r, d, w)

r enters d from an adjacent w

• take(k, c, r)

crane k takes container c from r

• navigate(r, w, w') r navigates from w to w'

stack(k,c,p)

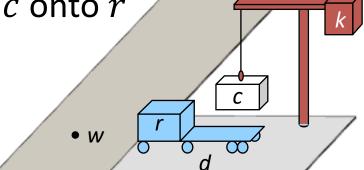
k stacks c on top of pile p

unstack(k, c, p)

k takes c from top of p

• *put*(*k*, *c*, *r*)

k puts c onto r



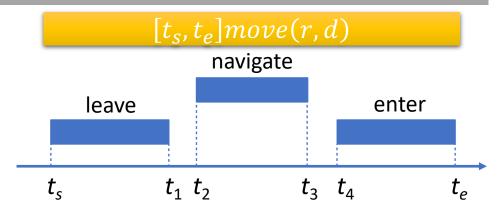
book omits r

13

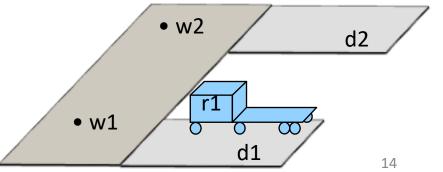
Tasks and Methods

- Task: move robot r to dock d
 - $[t_s, t_e] move(r, d)$
- Method:

```
m-move1(r,d,d′,w,w′)
     task:
                move(r,d)
     refinement:
                [t_{\varsigma},t_{1}] leave(r,d',w')
                [t_2,t_3] navigate(r,w',w)
                [t_4,t_e] enter(r,d,w)
     assertions:
                [t_s, t_s + 1] \log(r) = d'
     constraints:
                adj(d,w),
                adj(d',w'), d \neq d',
                connected(w,w'),
                t_1 \le t_2, t_3 \le t_4
```

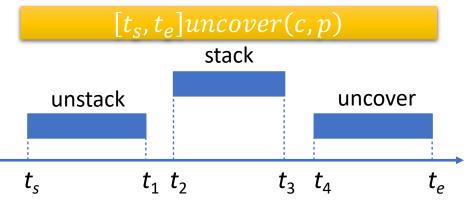


- d' becomes empty during $[t_s, t_1]$
 - another robot may enter it after t_1
- d doesn't need to be empty until t_4
 - when r starts entering it

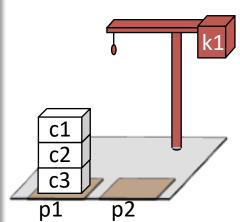


Tasks and Methods

- Task: remove everything above container c in pile p
 - $[t_s, t_e]uncover(c, p)$
- Method:

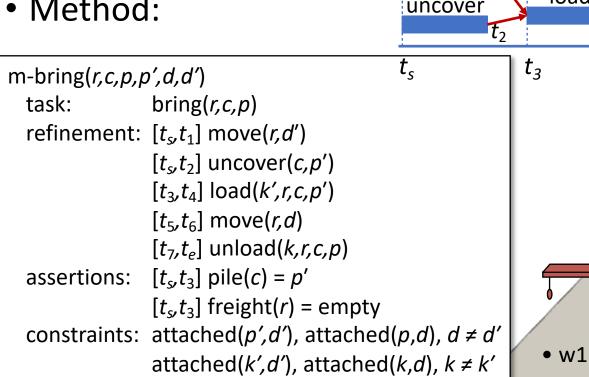


```
m-uncover(c,p,k,d,p')
      task:
               uncover(c,p)
      refinement: [t_s, t_1] unstack(k, c', p)
                                                // action
                      [t_2,t_3] stack(k,c',p') // action
                      [t_4, t_e] uncover(c, p) // recursive uncover
                     [t_s,t_s+1] pile(c)=p
      assertions:
                      [t_s, t_s + 1] \operatorname{top}(p) = c'
                      [t_s, t_s+1] grip(k) = empty
      constraints: attached(k,d), attached(p,d),
                      attached(p',d),
                      p \neq p', c' \neq c
                      t_1 \le t_2, t_3 \le t_4
```

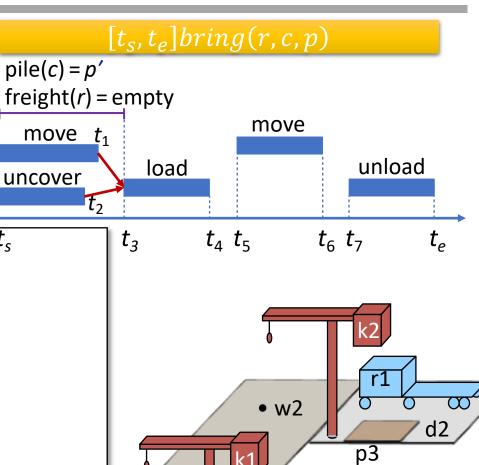


Tasks and Methods

- Task: robot r brings container c to pile p
 - $[t_s, t_e]$ bring(r, c, p)
- Method:



 $t_1 \le t_3, t_2 \le t_3, t_4 \le t_5, t_6 \le t_7$



c1

р1

d1

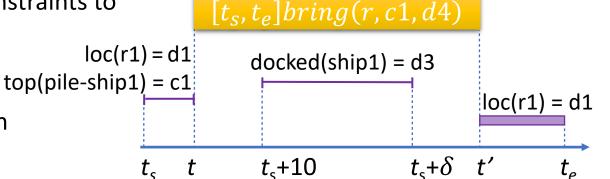
p2

16

Chronicles: Unions of Timelines

- Chronicle $\phi = (\mathcal{A}, \mathcal{S}, \mathcal{T}, \mathcal{C})$
 - \mathcal{A} : temporally qualified actions and tasks
 - S: a priori supported assertions
 - T: temporally qualified assertions
 - C: constraints
- ϕ can include
 - Current state, future predicted events
 - Tasks to perform
 - Assertions and constraints to satisfy
- Can represent
 - Planning problem
 - Plan or partial plan

tasks: [t,t'] bring(r,c1,d4)supported: $[t_s]$ loc(r1)=d1 $[t_s]$ loc(r2)=d2 $[t_s+10,t_s+\delta]$ docked(ship1)=d3 $[t_s]$ top(pile-ship1)=c1 $[t_s]$ pos(c1)=pallet assertions: $[t_e]$ loc(r1)=d1 $[t_e]$ loc(r2)=d2 constraints: $t_s = 0 < t < t' < t_e$, $20 \le \delta \le 30$



Intermediate Summary

- Timelines
 - Temporal assertions (change, persistence), constraints
 - Conflicts, consistency, security, causal support
- Chronicle: union of several timelines
 - Consistency, security, causal support
- Actions represented by chronicles
 - No separate preconditions and effects
 - Preconditions
 ⇔ need for causal support

Outline per the Book

4.2 Representation

- Timelines
- Actions and tasks
- Chronicles

4.3 Temporal planning

- Resolvers and flaws
- Search space

4.4 Constraint management

- Consistency of object constraints and time constraints
- Controlling the actions when we don't know how long they'll take

4.5 Acting with temporal models

- Acting with atemporal refinement
- Dispatching
- Observation actions

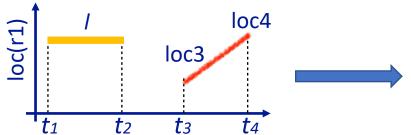
Planning

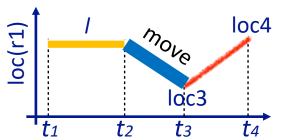
- Planning problem:
 - Chronicle ϕ_0 that has some flaws
 - Analogous to flaws in PSP

```
\phi_0: tasks: (none)
supported: (none)
assertions: [t_1,t_2] \log(r1) = l
[t_3,t_4] \log(r1) : (\log 3,\log 4)
constraints: adj(loc3,w1)
adj(w1,loc3)
adj(loc4,w2)
adj(w2,loc4)
connected(w1,w2)
```

 Add new assertions, constraints, actions to resolve the flaws

```
\phi_0: tasks: [t_2,t_3] move(r1,loc3)
supported: (none)
assertions: [t_1,t_2] loc(r1) = I
[t_3,t_4] loc(r1): (loc3,loc4)
constraints: adj(loc3,w1)
adj(w1,loc3)
adj(loc4,w2)
adj(w2,loc4)
connected(w1,w2)
```

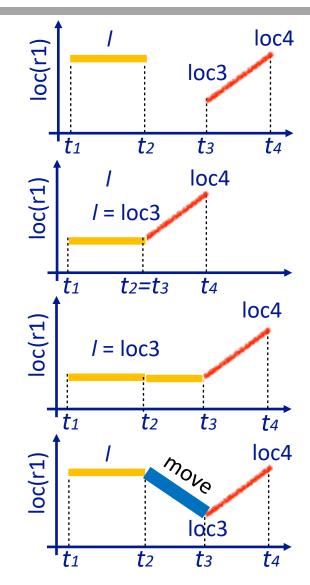




Flaws (1)

- **1.** Temporal assertion α that isn't causally supported
 - What causes r1 to be at loc3 at time t_3 ?

 Like an open goal in PSP
- Resolvers:
 - Add constraints to support α from an assertion in ϕ
 - l = loc3, $t_2 = t_3$
 - Add a new persistence assertion to support α
 - $l = loc3, [t_2, t_3] loc(r1) = loc3$
 - Add a new task or action to support α
 - $[t_2, t_3]$ move(r1, loc3)
 - Refining it will produce support for α

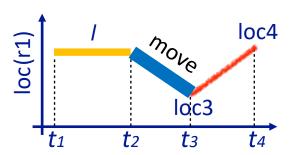


Flaws (2)

2. Non-refined task

Like a task in SeRPE

- *Resolver*: refinement method *m*
 - Applicable if it matches the task and its constraints are consistent with ϕ 's
- Applying the resolver:
 - Modify ϕ by replacing the task with m
- Example: $[t_2, t_3] move(r1, loc3)$
 - Refinement will replace it with something like
 - $[t_2, t_5]$ leave (r1, l, w)
 - $[t_5, t_6]$ navigate(r1, w, w')
 - $[t_6, t_3]$ enter(r1, loc3, w')
 - plus constraints



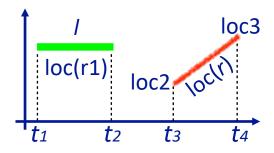
Flaws (3)

- 3. A pair of possibly-conflicting temporal assertions
- Like a threat in PSP

- temporal assertions α and β possibly conflict if they can have inconsistent instances
- Example

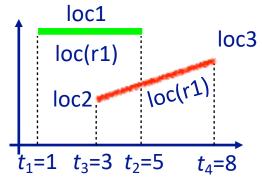
•
$$[t_1, t_2]loc(r1) = loc1$$
, $[t_3, t_4]loc(r) : (l, l')$

$$\downarrow \downarrow \qquad \qquad \downarrow \qquad \downarrow \qquad \downarrow \qquad \downarrow$$



instance: [1, 5]loc(r1) = loc1, [3, 8]loc(r1) : (loc2, loc3)

- Resolvers: separation constraints
 - $r \neq r1$
 - $t_2 < t_3$
 - $t_4 < t_1$
 - $t_2 = t_3$, r = r1, l = loc1
 - Also provides causal support for $[t_3, t_4]loc(r) : (l, l')$
 - $t_4 = t_1, r = r1, l = loc1$
 - Also provides causal support for $[t_1, t_2]loc(r1) = loc1$



Planning Algorithm

- Like PSP in Chapter 2
 - Repeatedly selects flaws and chooses resolvers
- In the book, TemPlan uses recursion
 - Can be rewritten to use a loop
 - Just programming style, equivalent either way
- In a deterministic implementation
 - Selecting a resolver ρ is a backtracking point
 - Selecting a flaw isn't
- If it is possible to resolve all flaws, at least one of the nondeterministic execution traces will do so

```
TemPlan(\phi, \Sigma)

Flaws \leftarrow set of flaws of \phi

if Flaws = \emptyset then

return \phi

arbitrarily select f \in Flaws

Resolvers \leftarrow set of resolvers of f

if Resolvers = \emptyset then

return failure

nondeterministically choose \rho \in Resolvers

\phi \leftarrow Transform(\phi, \rho)

TemPlan(\phi, \Sigma)
```

```
TemPlan (\phi, \Sigma)
loop

Flaws \leftarrow set of flaws of \phi

if Flaws = \emptyset then

return \phi

arbitrarily select f \in Flaws

Resolvers \leftarrow set of resolvers of f

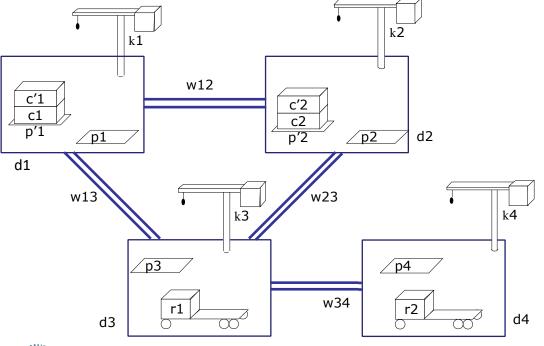
if Resolvers = \emptyset then

return failure

nondeterministically choose \rho \in Resolvers
\phi \leftarrow Transform (\phi, \rho)
```


Example

- $\phi = (\mathcal{A}, \mathcal{S}, \mathcal{T}, \mathcal{C})$
 - Establishes state-variable values at time t=0
 - Flaws: two unrefined tasks
 - bring(r,c1,p3), bring(r',c2,p4)



```
\phi_0: tasks: bring(r,c1,p3)
           bring(r',c2,p4)
supported:[0] loc(r1)=d3
           [0] freight(r1)=empty
           [0] pile(c1)=p'1
           [0] pile(c'1)=p'1
           [0] pos(c1)=pallet
           [0] pos(c'1)=c1
assertions: (none)
constraints:
           adj(d1,w12)
           adj(d1,w13)
```


Example

d1

JNIVERSITÄT ZU LÜBECK

- Flaws: two unrefined tasks
 - bring(r,c1,p3), bring(r',c2,p4)
- Refinement for both:

```
m-bring(r,c,p,p',d,d',k,k')
        task: bring(r,c,p)
 refinement: [t_s, t_1] move(r, d')
                [t_s,t_2] uncover(c,p')
                 [t_3,t_4] load(k',r,c,p')
                 [t_5,t_6] move(r,d)
                 [t_7,t_e] unload(k,r,c,p)
  assertions: [t_s, t_3] pile(c) = p'
                [t_s, t_3] freight(r) = empty
 constraints: attached(p',d'),
                attached(p,d), d \neq d'
                 attached(k',d'),
                 attached(k,d), k \neq k'
                t_1 \le t_3, t_2 \le t_3, t_4 \le t_5, t_6 \le t_7
                                                           d4
```

```
\phi_0: tasks: bring(r,c1,p3)
           bring(r',c2,p4)
supported:[0] loc(r1)=d3
           [0] freight(r1)=empty
           [0] pile(c1)=p'1
           [0] pile(c'1)=p'1
           [0] pos(c1)=pallet
           [0] pos(c'1)=c1
assertions: (none)
constraints:
           adj(d1,w12)
           adj(d1,w13)
```

Method Instance

- Instantiate c = c1 and p = p3 to match bring(r, c1, p3)
 - p', d, d', k, k' instantiated to match book
 - Needed later to satisfy action preconditions

m-bring(*r,c,p,p',d,d',k,k'*)

refine

m-bring(r,c1,p3,p'1,d3,d1,k3,k1)

task: bring(r,c1,p3)

refinement: $[t_s, t_1]$ move(r, d1)

 $[t_{s},t_{2}]$ uncover(c1,p'1)

 $[t_3,t_4]$ load(k1,r,c1,p'1)

 $[t_5, t_6]$ move(r, d3)

 $[t_7,t_e]$ unload(k3,r,c1,p3)

assertions: $[t_9, t_3]$ pile(c1) = p'1

 $[t_{s},t_{3}]$ freight(r) = empty

constraints: attached(p'1,d1),

attached(p3,d3), d3 \neq d1

attached(k1,d1),

attached(k3,d3), k3 \neq k1

 $t_1 \le t_3, t_2 \le t_3, t_4 \le t_5, t_6 \le t_7$

d1

asser

constr

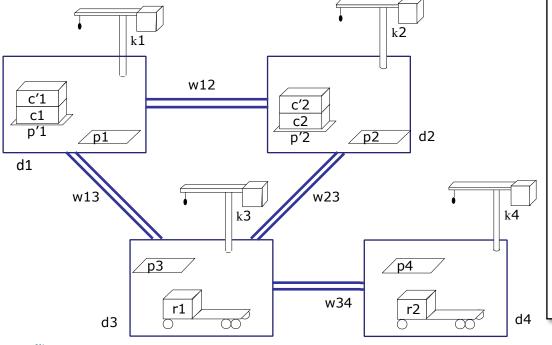
```
\phi_0: tasks: bring(r,c1,p3)
           bring(r',c2,p4)
supported:[0] loc(r1)=d3
           [0] freight(r1)=empty
            [0] pile(c1)=p'1
            [0] pile(c'1)=p'1
            [0] pos(c1)=pallet
            [0] pos(c'1)=c1
```

assertions: (none) constraints:

> adj(d1,w12) adj(d1,w13)

Modified Chronicle

- Changes to ϕ_0
 - Removed bring(r, c1, p3)
 - Added 5 tasks, 2 assertions, 4 constraints
- Flaws
 - 6 unrefined tasks, 2 unsupported assertions



```
\phi_1: tasks: [t_s, t_1] move(r, d1)
              [t_{s},t_{2}] uncover(c1,p'1)
              [t_3,t_4] load(k1,r,c1,p'1)
              [t_5, t_6] move(r, d3)
              [t_7,t_e] unload(k3,r,c1,p3)
              bring(r',c2,p4)
supported:[0] loc(r1)=d3
              [0] freight(r1)=empty
              [0] pile(c1)=p'1
              [0] pile(c'1)=p'1
              [0] pos(c1)=pallet
              [0] pos(c'1)=c1
assertions: [t_9, t_3] pile(c1) = p'1
             [t_{s},t_{3}] freight(r) = empty
constraints: t_s < t_1 \le t_3, t_s < t_2 \le t_3, t_4 \le t_5, t_6 \le t_7,
              adj(d1,w12),
              adj(d1,w13),
```


Method Instance

- Instantiate r=r', c=c2, p=p4 to match bring(r',c2,p4)
 - p', d, d', k, k' instantiated to match book
 - Variables renamed to avoid name conflicts

```
m-bring(r,c,p,p',d,d',k,k')
         task: bring(r,c,p)
 refinement: [t_s, t_1] move(r, d')
                 [t_s,t_2] uncover(c,p')
                 [t_3,t_4] load(k',r,c,p')
                 [t_5,t_6] move(r,d)
                                                      1)
                 [t_7,t_e] unload(k,r,c,p)
  assertions: [t_9, t_3] pile(c) = p'
                                                     1,p3)
                 [t_{s},t_{3}] freight(r) = empty
 constraints: attached(p',d'),
                                                     npty
                 attached(p,d), d \neq d'
                 attached(k',d'),
                                                       ≠ d1
                 attached(k,d), k \neq k'
                 t_1 \le t_3, t_2 \le t_3, t_4 \le t_5, t_6 \le t_7
                                                      ≠ k1
                            t_1 \le t_3, t_2 \le t_3, t_4 \le t_5, t_6 \le t_7
```

d1

```
\phi_1: tasks: [t_s, t_1] move(r, d1)
             [t_s,t_2] uncover(c1,p'1)
             [t_3,t_4] load(k1,r,c1,p'1)
             [t_5, t_6] move(r, d3)
             [t_7,t_e] unload(k3,r,c1,p3)
             bring(r',c2,p4)
supported:[0] loc(r1)=d3
             [0] freight(r1)=empty
             [0] pile(c1)=p'1
             [0] pile(c'1)=p'1
             [0] pos(c1)=pallet
             [0] pos(c'1)=c1
assertions: [t_9, t_3] pile(c1) = p'1
             [t_{s},t_{3}] freight(r) = empty
constraints: t_s < t_1 \le t_3, t_s < t_2 \le t_3, t_4 \le t_5, t_6 \le t_7,
             adj(d1,w12),
             adj(d1,w13),
```

Modified Chronicle

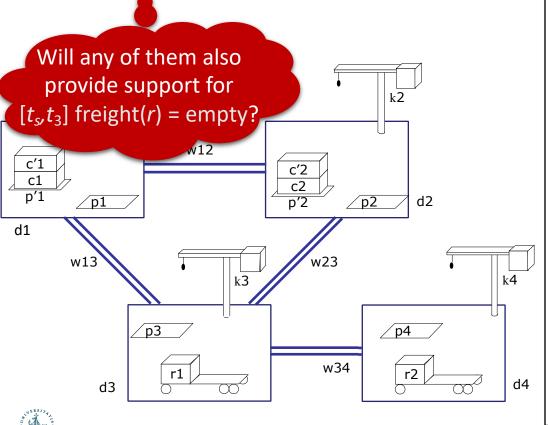
- Changes
 - Removed bring(r', c2, p4)
 - Added 5 tasks, 2 assertions, 4 constraints
- Flaws
 - 10 unrefined tasks, 4 unsupported assertions
- Next, work on these two assertions

```
k1
                         w12
 c'1
                                        c′2
 c1
                                        c2
 p'1
                                                /p2
                                                          d2
          /p1
d1
                                           w23
        w13
                                                                      k4
                  р3
                                                       p4
                                            w34
                                                                        d4
            d3
```

```
\phi_2: tasks: [t_s, t_1] move(r, d1)
               [t_s,t_2] uncover(c1,p'1)
                [t_3,t_4] load(k1,r,c1,p'1)
                [t_5, t_6] move(r, d3)
                [t_7,t_e] unload(k3,r,c1,p3)
               [t', t'] move(r', d2)
               [t'_{s},t'_{2}] uncover(c2,p'2)
               [t'_{3},t'_{4}] load(k4,r',c2,p'2)
               [t'_{5},t'_{6}] move(r',d4)
               [t'_{7},t'_{e}] unload(k2,r',c2,p'2)
supported:[0] loc(r1)=d3
                [0] freight(r1)=empty
                [0] pile(c1)=p'1
assertions: [t_s, t_3] pile(c1) = p'1
               [t_s, t_3] freight(r) = empty
                [t'_{s}, t'_{3}] pile(c2) = p'2
               [t'_{\circ}t'_{1}] freight(r') = empty
constraints: t_s < t_1 \le t_3, t_s < t_2 \le t_3, t_4 \le t_5, t_6 \le t_7,
        t'_{5} < t'_{1} \le t'_{3}, t'_{5} < t'_{2} \le t'_{3}, t'_{4} \le t'_{5}, t'_{6} \le t'_{7},
               adj(d1,w12),
               adj(d1,w13), . . .
                                            30
```

Supporting the Assertions

- 3 ways to support $[t_s, t_3]pile(c1) = p'1$
 - Constrain $t_s = 0$, use [0]pile(c1) = p'1
 - Add persistence $[0, t_s]pile(c1) = p'1$ 2.
 - Add new action $[t_8, t_s] stack(k1, c1, p'1)$



```
\phi_2: tasks: [t_s, t_1] move(r, d1)
               [t_{s},t_{2}] uncover(c1,p'1)
                [t_3,t_4] load(k1,r,c1,p'1)
                [t_5,t_6] move(r,d3)
                [t_7,t_e] unload(k3,r,c1,p3)
               [t', t'] move(r', d2)
               [t'_{s},t'_{2}] uncover(c2,p'2)
               [t'_{3},t'_{4}] load(k4,r',c2,p'2)
               [t'_{5},t'_{6}] move(r',d4)
               [t'_7,t'_e] unload(k2,r',c2,p'2)
supported:[0] loc(r1)=d3
                [0] freight(r1)=empty
                [0] pile(c1)=p'1
assertions: [t_9, t_3] pile(c1) = p'1
               [t_{s},t_{3}] freight(r) = empty
               [t'_{s}, t'_{3}] pile(c2) = p'2
               [t'_{\circ}t'_{1}] freight(r') = empty
constraints: t_s < t_1 \le t_3, t_s < t_2 \le t_3, t_4 \le t_5, t_6 \le t_7,
        t'_{s} < t'_{1} \le t'_{3}, t'_{s} < t'_{2} \le t'_{3}, t'_{4} \le t'_{5}, t'_{6} \le t'_{7},
               adj(d1,w12),
                adj(d1,w13), . . .
```

Supporting the Assertions

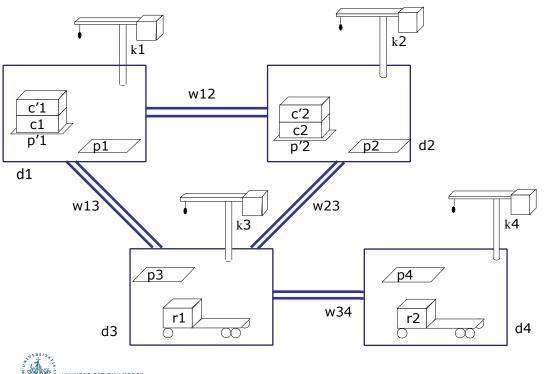
- To support $[t_s, t_3]pile(c1) = p'1$
 - Constrain $t_s = 0$, use [0]pile(c1) = p'1
- To support $[0, t_3] freight(r) = empty$
 - Constrain r=r1

```
k1
                      w12
                                   c′2
 c1
                                    c2
 p'1
                                           /p2
                                                    d2
         /p1
d1
                                      w23
       w13
                                                               k4
                p3
                                                 p4
                                        w34
                                                        d4
          d3
```

```
\phi_2: tasks: [0]t_1] move(r1,d1)
               [0]t_2 uncover(c1,p'1)
               [t_3,t_4] load(k1,r1,c1,p'1)
               [t_{5},t_{6}] move(r1,d3)
               [t_7, t_e] unload(k3,r1,c1,p3)
               [t', t'] move(r', d2)
               [t'_{s},t'_{2}] uncover(c2,p'2)
               [t'_{3},t'_{4}] load(k4,r',c2,p'2)
               [t'_{5},t'_{6}] move(r',d4)
               [t'_7,t'_e] unload(k2,r',c2,p'2)
supported:[0] loc(r1)=d3
               [0] freight(r1)=empty
               [0] pile(c1)=p'1
               [0]t_3] pile(c1) = p'1
               [0,t_3] freight [r1] = empty
assertions: [t'_{si}t'_{3}] pile(c2) = p'2
               [t', t'] freight(r') = empty
constraints: 0 < t_1 \le t_3, 0 < t_2 \le t_3, t_4 \le t_5, t_6 \le t_7,
        t'_{5} < t'_{1} \le t'_{3}, t'_{5} < t'_{2} \le t'_{3}, t'_{4} \le t'_{5}, t'_{6} \le t'_{7},
               adj(d1,w12),
               adj(d1,w13), . . .
```

Supporting the Assertions

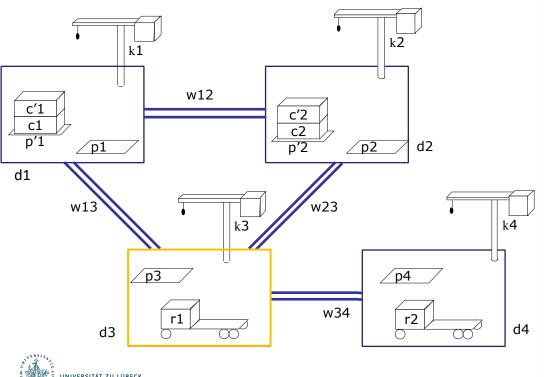
- To support $[t'_s, t'_3]pile(c2) = p'2$
 - Add persistence condition $[0, t'_s]pile(c2) = p'2$
 - Alternatives: constrain $t'_s = 0$ or add new action stack(k2, c2, p'2)
- To support $[t'_s, t'_1]$ freight (r') = empty
 - Constrain r = r2 add persistence condition $0, t'_s | freight(r2) = empty$



```
\phi_2: tasks: [0,t_1] move(r1,d1)
               [0,t_2] uncover(c1,p'1)
               [t_3,t_4] load(k1,r1,c1,p'1)
               [t_5, t_6] move(r1,d3)
               [t_7, t_e] unload(k3,r1,c1,p3)
               [t'_s,t'_1] move [r2,d2)
               [t'_{s},t'_{2}] uncover(c2,p'2)
               [t'_3, t'_4] load(k4,r2,c2,p'2)
               [t'_{5},t'_{6}] move (r2,d4)
               [t'_{7},t'_{e}] unload(k2,r2,c2,p'2)
supported:[0] loc(r1)=d3
               [0] freight(r1)=empty
               [0] pile(c1)=p'1
               [0,t_3] pile(c1) = p'1
               [0,t_3] freight(r1) = empty
               [0,t'_{s}] pile(c2)=p'2
               [t'_{s},t'_{3}] pile(c2) = p'2
              [0,t'_s] freight(r2)=empty
               [t'_{s},t'_{1}] freight(r2) = empty
assertions: (none)
constraints: 0 < t_1 \le t_3, 0 < t_2 \le t_3, t_4 \le t_5, t_6 \le t_7,
        t'_{5} < t'_{1} \le t'_{3}, t'_{5} < t'_{2} \le t'_{3}, t'_{4} \le t'_{5}, t'_{6} \le t'_{7},
               adj(d1,w12),adj(d1,w13), . . .
```

Example of Conflicts

- Refining tasks into actions will produce possibly-conflicting assertions
 - move(r2,d4) must go through d3
 - Conflict: occupant(d3)=r1, occupant(d3)=r2
- Resolvers:
 - Separation constraints to ensure r2 only goes through d3 while r1 away from d3



```
\phi_2: tasks: [0,t_1] move(r1,d1)
               [0,t_2] uncover(c1,p'1)
               [t_3,t_4] load(k1,r1,c1,p'1)
              [t_{5},t_{6}] move(r1,d3)
               [t_7,t_e] unload(k3,r1,c1,p3)
              [t', t'] move(r2,d2)
               [t'_s,t'_2] uncover(c2,p'2)
               [t'_{3},t'_{4}] load(k4,r2,c2,p'2)
              [t'_{5},t'_{6}] move(r2,d4)
               [t'_{7},t'_{e}] unload(k2,r2,c2,p'2)
supported:[0] loc(r1)=d3
               [0] freight(r1)=empty
               [0] pile(c1)=p'1
               [0,t_3] pile(c1) = p'1
               [0,t_3] freight(r1) = empty
               [0,t'_{s}] pile(c2)=p'2
               [t'_{s}, t'_{3}] pile(c2) = p'2
               [0,t'_s] freight(r2)=empty
               [t', t'_1] freight(r2) = empty
assertions: (none)
constraints: 0 < t_1 \le t_3, 0 < t_2 \le t_3, t_4 \le t_5, t_6 \le t_7,
        t'_{5} < t'_{1} \le t'_{3}, t'_{5} < t'_{2} \le t'_{3}, t'_{4} \le t'_{5}, t'_{6} \le t'_{7},
              adj(d1,w12),adj(d1,w13), . . .
```

Heuristics for Guiding TemPlan

- Flaw selection, resolver selection heuristics similar to those in PSP
 - Select the flaw with the smallest number of resolvers
 - Choose the resolver that rules out the fewest resolvers for the other flaws
- There is also a problem with constraint management
 - We ignored it when discussing PSP
 - Discuss it next.

```
TemPlan (\phi, \Sigma)

Flaws \leftarrow set of flaws of \phi

if Flaws = \emptyset then

return \phi

arbitrarily select f \in Flaws

Resolvers \leftarrow set of resolvers of f

if Resolvers = \emptyset then

return failure

nondeterministically choose \rho \in Resolvers
\phi \leftarrow Transform(\phi, \rho)

TemPlan (\phi, \Sigma)
```

```
PSP(\Sigma, \pi)
loop

if Flaws(\pi) = \emptyset then

return \pi

arbitrarily select f \in Flaws(\pi)

R \leftarrow \{all \text{ feasible resolvers for } f\}

if R = \emptyset then

return failure

nondeterministically choose \rho \in R

\pi \leftarrow \rho(\pi)

return \pi
```


Intermediate Summary

- Planning problems
 - Three kinds of flaws and their resolvers:
 - tasks, causal support, security
 - Partial plans, solution plans
- Planning: TemPlan
 - Like PSP but with tasks, temporal assertions, temporal constraints

Outline per the Book

4.2 Representation

- Timelines
- Actions and tasks
- Chronicles

4.3 Temporal planning

- Resolvers and flaws
- Search space

4.4 Constraint management

- Consistency of object constraints and time constraints
- Controlling the actions when we don't know how long they'll take

4.5 Acting with temporal models

- Acting with atemporal refinement
- Dispatching
- Observation actions

Constraint Management

- Each time TemPlan applies a resolver, it modifies $(\mathcal{T}, \mathcal{C})$
 - Some resolvers will make $(\mathcal{T}, \mathcal{C})$ inconsistent
 - No solution in this part of the search space
 - Detect inconsistency => prune this part of the search space
 - Do not detect it => waste time looking for a solution
- Analogy: PSP checked simple cases of inconsistency

• E.g., cannot create a constraint a < b if there is already a constraint b < a

Ignored more complicated cases

• Example:

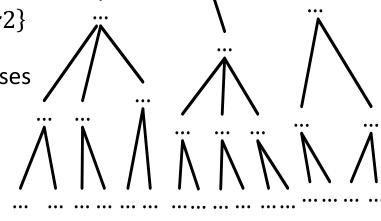
• $c_1, c_2, c_3 \in Containers = \{c1, c2\}$

• Threats involving c_1 , c_2 , c_3

• For resolvers, suppose PSP chooses

•
$$c_1 \neq c_2, c_2 \neq c_3, c_1 \neq c_3$$

 No solutions in this part of the search space, but PSP searches it anyway



Constraint Management in TemPlan

- At various points, check consistency of ${\cal C}$
 - If \mathcal{C} is inconsistent, then $(\mathcal{T}, \mathcal{C})$ is inconsistent
 - Can prune this part of the search space
- If $\mathcal C$ is consistent, then $(\mathcal T,\mathcal C)$ may or may not be consistent
 - Example:
 - $T = \{[t_1, t_2]loc(r1) = loc1, [t_3, t_4]loc(r1) = loc2\}$
 - $C = (t_1 < t_3 < t_4 < t_2)$
 - Gives loc(r1) two values during $[t_3, t_4]$

Consistency of ${\cal C}$

- C contains two kinds of constraints
 - Object constraints
 - $loc(r) \neq l_2$, $l \in \{loc3, loc4\}$, r = r1, $o \neq o'$
 - Temporal constraints
 - $t_1 < t_3$, a < t, t < t', $a \le t' t \le b$
- Assume object constraints are independent of temporal constraints and vice versa
 - Exclude things like t < f(l, r)
- Then two separate subproblems
 - (1) check consistency of object constraints
 - (2) check consistency of temporal constraints
 - C is consistent iff both are consistent

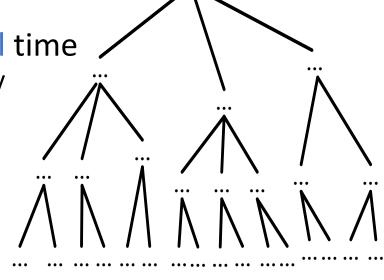
Object Constraints

- Constraint-satisfaction problem (CSP) NP-hard
- Can write an algorithm that is complete but runs in exponential time
 - If there is an inconsistency, always finds it
 - Might do a lot of pruning, but spend lots of time at each node

 Instead, use a technique that is incomplete but takes polynomial time

Edge consistency, path consistency

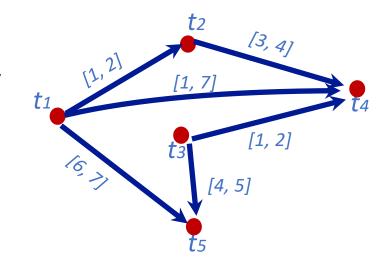
- Detects some inconsistencies but not others
 - Runs much faster, but prunes fewer nodes



Time Constraints: Representation

- Simple Temporal Networks (STNs)
 - Networks of constraints on time points

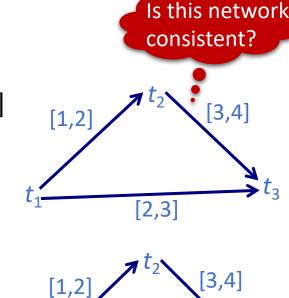
- ullet Synthesise them incrementally starting from ϕ_0
 - TemPlan can check time constraints in time $O(n^3)$



- Incrementally instantiated at acting time
- Kept consistent throughout planning and acting

Simple Temporal Networks

- STN: a pair $(\mathcal{V}, \mathcal{E})$, where
 - $V = \{ \text{a set of temporal variables } t_1, ..., t_n \}$
 - $\mathcal{E} \subseteq \mathcal{V} \times \mathcal{V}$ is a set of edges
- Each edge (t_i, t_j) is labelled with an interval [a, b]
 - Represents constraint $a \le t_i t_i \le b$
 - Equivalently, $-b \le t_i t_j \le -a$
- Representing unary constraints
 - Dummy variable $t_0 = 0$
 - Edge $r_{0i}=(t_0,t_i)$ labelled with [a,b] represents $a \leq t_i-0 \leq b$
- Shorthand: instead of $a \le t_j t_i \le b$, write $r_{ij} = \begin{bmatrix} a_{ij}, b_{ij} \end{bmatrix}$
- Solution to an STN
 - Integer value for each t_i
 - All constraints satisfied
- Consistent STN
 - Has a solution



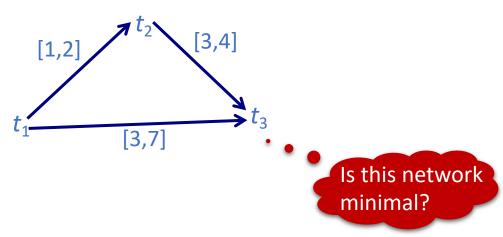
[-3,-2]

Book says:

- Solution
 - Integer value for each t_i
- Consistent:
 - Has a solution
 - All constraints satisfied

Time Constraints

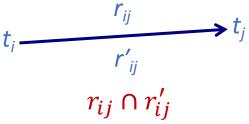
- Minimal STN:
 - For every edge (t_i, t_j) with label [a, b]
 - For every $t \in [a, b]$
 - There is at least one solution such that $t_i t_i = t$
 - Cannot make any of the time intervals shorter without excluding some solutions

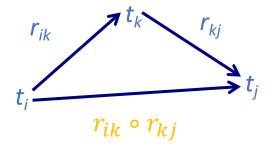


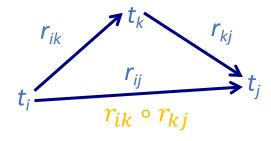
Operations on STNs

- Intersection, ∩
 - $t_j t_i \in r_{ij} = [a_{ij}, b_{ij}]$
 - $t_j t_i \in r'_{ij} = [a'_{ij}, b'_{ij}]$
 - Infer $t_j t_i \in r_{ij} \cap r'_{ij} = \left[\max(a_{ij}, a'_{ij}), \min(b_{ij}, b'_{ij}) \right]$

- $t_k t_i \in r_{ik} = [a_{ik}, b_{ik}]$
- $\bullet \ t_j t_k \in r_{kj} = \left[a_{kj}, b_{kj} \right]$
- Infer $t_{i} t_{i} \in r_{ik} \circ r_{kj} = [a_{ik} + a_{kj}, b_{ik} + b_{kj}]$
 - Reason: shortest and longest times for the two intervals
- Consistency checking
 - Three constraints r_{ik} , r_{kj} , r_{ij} are consistent only if $r_{ij} \cap (r_{ik} \circ r_{kj}) \neq \emptyset$

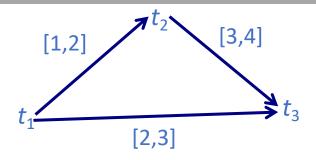




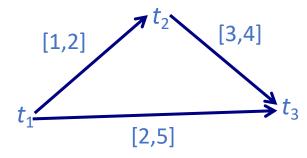


$$r_{ij} \cap (r_{ik} \circ r_{kj})$$

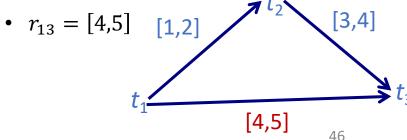
Two Examples



- STN (V, \mathcal{E}) , where
 - $V = \{t_1, t_2, t_3\}$
 - $\mathcal{E} = \{r_{12} = [1,2], r_{23} = [3,4], r_{13} = [2,3]\}$
- Composition
 - $r'_{13} = r_{12} \circ r_{23} = [4,6]$
- Cannot satisfy both r_{13} and r_{13}'
 - $r_{13} \cap r'_{13} = [2,3] \cap [4,6] = \emptyset$
- $(\mathcal{V}, \mathcal{E})$ is inconsistent



- STN $(\mathcal{V}, \mathcal{E})$, where
 - $\mathcal{V} = \{t_1, t_2, t_3\}$
 - $\mathcal{E} = \{r_{12} = [1,2], r_{23} = [3,4], r_{13} = [2,5]\}$
- Composition (as before)
 - $r'_{13} = r_{12} \circ r_{23} = [4,6]$
- $(\mathcal{V}, \mathcal{E})$ is consistent
 - $r_{13} \cap r'_{13} = [2,5] \cap [4,6] = [4,5]$
- Minimal network



Operations on STNs

- PC (*Path Consistency*) algorithm:
 - Consistency checking on all triples
 - If an edge has no constraint, use $[-\infty, +\infty]$
 - n constraints => n^3 triples => time $O(n^3)$
- Example:
 - k = 2, i = 1, j = 2
 - $r_{12} = [1,2]$
 - $r_{24} = [3,4]$
 - $r_{14} = [-\infty, \infty]$
 - $r_{12} \circ r_{24} = [1+3, 2+4] = [4,6]$
 - $r_{14} \leftarrow [\max(-\infty, 4), \min(\infty, 6)] = [4,6]$

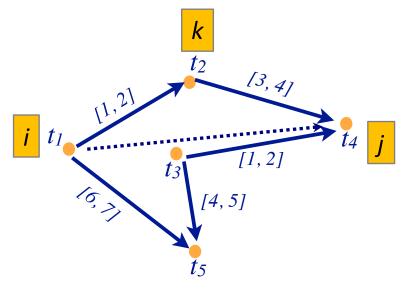
```
PC(\mathcal{V}, \mathcal{E})

for 1 \le k \le n do

for 1 \le i < j \le n, i \ne j, j \ne k do

r_{ij} \leftarrow r_{ij} \cap [r_{ik} \circ r_{kj}]
if r_{ij} = \emptyset then

return inconsistent
```



Operations on STNs

- PC makes network minimal
 - Shrinks each r_{ij} to exclude values that are not in any solution
- Also detects inconsistent networks
 - $r_{ij} = [a_{ij}, b_{ij}]$ empty => inconsistent
- Graph: dashed lines
 - Constraints that were shrunk
- Can modify PC to make it incremental
 - Input
 - A consistent, minimal STN
 - A new constraint r_{ij}^{\prime}
 - Incorporate r'_{ij} in time $O(n^2)$

```
PC(\mathcal{V}, \mathcal{E})

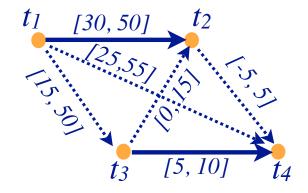
for 1 \le k \le n do

for 1 \le i < j \le n, i \ne j, j \ne k do

r_{ij} \leftarrow r_{ij} \cap [r_{ik} \circ r_{kj}]

if r_{ij} = \emptyset then

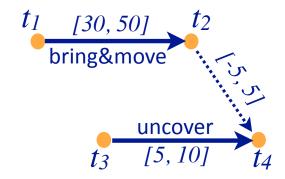
return inconsistent
```



Pruning TemPlan's search space

- Take the time constraints in $\mathcal C$
 - Write them as an STN
 - Use Path Consistency to check whether STN is consistent
 - If it is inconsistent, TemPlan can backtrack

- Suppose TemPlan gives you a chronicle and you want to execute it
 - Constraints on time points
 - Need to reason about these in order to decide when to start each action

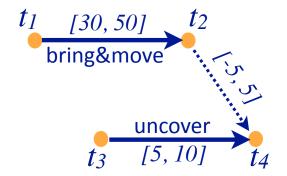


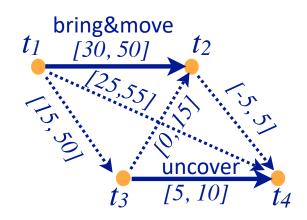
- Solid lines: duration constraints
 - Robot will do bring&move, will take 30 to 50 time units
 - Crane will do uncover, will take 5 to 10 time units
- Dashed line: synchronization constraint
 - Do not want either the crane or robot to wait long
 - At most 5 seconds between the two ending times

- Objective
 - Choose time points that will satisfy all the constraints



- Suppose we run PC
- PC returns a minimal and consistent network
- There exist time points that satisfy all the constraints
- Would work if we could choose all four time points
 - But we cannot choose t_2 and t_4
- t_1 and t_3 are controllable
 - Actor can control when each action starts
- t_2 and t_4 are contingent
 - Cannot control how long the actions take
 - Random variables that are known to satisfy the duration constraints
 - $t_2 \in [t_1 + 30, t_1 + 50]$
 - $t_4 \in [t_3 + 5, t_3 + 10]$





- Cannot guarantee that all constraints will be satisfied
- Start bring&move at time $t_1 = 0$
- Suppose the durations are
 - bring&move 30, uncover 10

•
$$t_2 = t_1 + 30 = 30$$

•
$$t_4 = t_3 + 10^4$$

•
$$t_4 - t_2 = t_3 - 20$$

• Constraint r_{24} :

•
$$-5 \le t_4 - t_2 \le 5$$

 $-5 \le t_3 - 20 \le 5$
 $15 \le t_3 \le 25$

• Must start uncover at $t_3 \le 25$

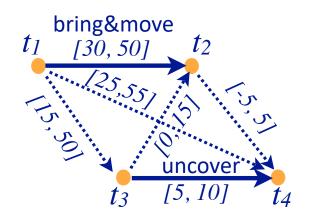
- But if we start uncover at $t_3 \leq 25$, neither action has finished yet
 - We do not yet know how long they will take
- Durations might instead be
 - bring&move 50, uncover 5

•
$$t_2 = t_1 + 50 = 50$$

•
$$t_4 = t_3 + 5 \le 25 + 5 = 30$$

•
$$t_4 - t_2 \le 30 - 50 = -20$$

• Violates r_{34}



STNUs

- STNU (Simple Temporal Network with Uncertainty):
 - A 4-tuple $(\mathcal{V}, \tilde{\mathcal{V}}, \mathcal{E}, \tilde{\mathcal{E}})$
 - \mathcal{V} ={controllable time points}
 - E.g., starting times of actions
 - $\tilde{\mathcal{V}}$ ={contingent time points}
 - E.g., ending times of actions

- \mathcal{E} ={controllable constraints}
- $\tilde{\mathcal{E}}$ ={contingent constraints}
- Controllable and contingent constraints:
 - Synchronization between two starting times: controllable
 - Duration of an action: contingent
 - Synchronization between ending points of two actions: contingent
 - Synchronization between end of one action, start of another:
 - Controllable if the new action starts after the old one ends
 - Contingent if the new action starts before the old one ends
- Want a way for the actor to choose time points in ${\cal V}$ (starting times) that guarantee that constraints are satisfied

Three kinds of controllability

- $(\mathcal{V}, \tilde{\mathcal{V}}, \mathcal{E}, \tilde{\mathcal{E}})$ is strongly controllable if the actor can choose values for \mathcal{V} such that success will occur for all values of $\tilde{\mathcal{V}}$ that satisfy $\tilde{\mathcal{E}}$
 - Actor can choose the values for $\mathcal V$ offline
 - The right choice will work regardless of $ilde{\mathcal{V}}$
- $(\mathcal{V}, \tilde{\mathcal{V}}, \mathcal{E}, \tilde{\mathcal{E}})$ is weakly controllable if the actor can choose values for \mathcal{V} such that success will occur for at least one combination of values for $\tilde{\mathcal{V}}$
 - Actor can choose the values for $\mathcal V$ only if the actor knows in advance what the values of $\tilde{\mathcal V}$ will be
- Dynamic controllability:
 - Game-theoretic model: actor vs. environment
 - A player's strategy: a function σ telling what to do in every situation
 - · Choices may differ depending on what has happened so far
 - $(\mathcal{V}, \tilde{\mathcal{V}}, \mathcal{E}, \tilde{\mathcal{E}})$ is dynamically controllable if \exists strategy for an actor that will guarantee success regardless of the environment's strategy

Dynamic Execution

- For t = 0, 1, 2, ...
 - 1. Actor chooses an unassigned set of variables $\mathcal{V}_t \subseteq \mathcal{V}$ that all can be assigned the value t without violating any constraints in \mathcal{E}
 - \approx actions the actor chooses to start at time t
 - 2. Simultaneously, environment chooses an unassigned set of variables $\tilde{\mathcal{V}}_t \subseteq \tilde{\mathcal{V}}$ that all can be assigned the value t without violating any constraints in $\tilde{\mathcal{E}}$
 - ≈ actions that finish at time t
 - 3. Each chosen time point v is assigned $v \leftarrow t$
 - 4. Failure if any of the constraints in $\mathcal{E} \cup \tilde{\mathcal{E}}$ are violated
 - There might be violations that neither \mathcal{V}_t nor $\tilde{\mathcal{V}}_t$ caused individually
 - 5. Success if all variables in $\mathcal{V} \cup \widetilde{\mathcal{V}}$ have values and no constraints are violated
- Dynamic execution strategies σ_A for actor, σ_E for environment
 - $\sigma_A(h_{t-1})$ = {what events in \mathcal{V} to trigger at time t, given h_{t-1} }
 - $\sigma_E(h_{t-1}) = \{ \text{what events in } \tilde{\mathcal{V}} \text{ to trigger at time } t, \text{ given } h_{t-1} \}$
 - $h_t = h_{t-1} \cdot \left(\sigma_A(h_{t-1}) \cup \sigma_E(h_{t-1})\right)$
- $(\mathcal{V}, \tilde{\mathcal{V}}, \mathcal{E}, \tilde{\mathcal{E}})$ is dynamically controllable if $\exists \sigma_A$ that will guarantee success $\forall \sigma_E$

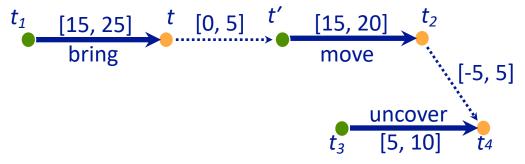
 $r_{ij} = [l, u]$ is violated

if t_i and t_i have values

and $t_i - t_i \notin [l, u]$

Example

 Instead of a single bring&move task, two separate bring and move tasks



- Actor's dynamic execution strategy
 - Trigger t_1 at whatever time you want
 - Wait and observe t
 - Trigger t' at any time from t to t+5
 - Trigger $t_3 = t' + 10$
 - For every $t_2 \in [t' + 15, t' + 20]$ and $t_4 \in [t_3 + 5, t_3 + 10]$
 - $t_4 \in [t' + 15, t' + 20]$
 - So t_4 $t_3 \in [-5, 5]$
 - So all constraints are satisfied

Dynamic Controllability Checking

- For a chronicle $\phi = (\mathcal{A}, \mathcal{S}, \mathcal{T}, \mathcal{C})$
 - Temporal constraints in $\mathcal C$ correspond to an STNU
 - Adapt TemPlan to test not only consistency but also dynamic controllability (*) of the STNU
 - If we detect cases where it is not dynamically controllable, then backtrack

* Use PC as well

- If $PC(\mathcal{V} \cup \tilde{\mathcal{V}}, \mathcal{E} \cup \tilde{\mathcal{E}})$ reduces a contingent constraint, then $(\mathcal{V}, \tilde{\mathcal{V}}, \mathcal{E}, \tilde{\mathcal{E}})$ is not dynamically controllable
 - ⇒ Can prune this branch
- If it does not reduce any contingent constraints, we don't know whether $(\mathcal{V}, \tilde{\mathcal{V}}, \mathcal{E}, \tilde{\mathcal{E}})$ is dynamically controllable
 - Only necessary, not sufficient condition
- Two options
 - Either continue down this branch and backtrack later if necessary, or
 - Extend PC to detect more cases where $(\mathcal{V}, \tilde{\mathcal{V}}, \mathcal{E}, \tilde{\mathcal{E}})$ isn't dynamically controllable
 - Additional constraint propagation rules

Additional Constraint Propagation Rules

- Case 1: $u \ge 0$
 - *t* must come before *t_e*

•
$$[a' + u, b' + v] = [a, b]$$

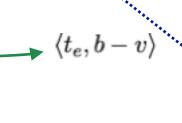
•
$$a' = a - u, b' = b - v$$

Conditions	Propagated constraint
$t_s \stackrel{[a,b]}{\Longrightarrow} t_e , t \stackrel{[u,v]}{\longrightarrow} t_e , u \ge 0$	$t_s \xrightarrow{[b',a']} t$
$t_s \stackrel{[a,b]}{\Longrightarrow} t_e , t \stackrel{[u,v]}{\longrightarrow} t_e , u < 0 , v \ge 0$	$t_s \xrightarrow{\langle t_e, b' \rangle} t$
$t_s \stackrel{[a,b]}{\Longrightarrow} t_e , t_s \stackrel{\langle t_e,u \rangle}{\longrightarrow} t$	$t_s \xrightarrow{[min\{a,u\},\infty]} t$
$t_s \xrightarrow{\langle t_e, b \rangle} t , t' \xrightarrow{[u,v]} t$	$t_s \xrightarrow{\langle t_e, b' \rangle} t'$
$t_s \xrightarrow{\langle t_e, b \rangle} t , t' \stackrel{[u,v]}{\Longrightarrow} t , t_e \neq t$	$t_s \xrightarrow{\langle t_e, b-u \rangle} t'$

[*a*, *b*]

Additional Constraint Propagation Rules

- Case 2: u < 0 and $v \ge 0$
 - t may be before or after t_e



[*a*, *b*]

- α defined w.r.t. some controllable time point t_s
- Wait until either t_e occurs or current time is $t_s + \alpha$, whichever comes first

Conditions	Propagated constraint
$t_s \stackrel{[a,b]}{\Longrightarrow} t_e , t \stackrel{[u,v]}{\longrightarrow} t_e , u \ge 0$	$t_s \xrightarrow{[b',a']} t$
$t_s \stackrel{[a,b]}{\Longrightarrow} t_e , t \stackrel{[u,v]}{\longrightarrow} t_e , u < 0 , v \ge 0$	$t_s \xrightarrow{\langle t_e, b' \rangle} t$
$t_s \stackrel{[a,b]}{\Longrightarrow} t_e , t_s \stackrel{\langle t_e,u \rangle}{\longrightarrow} t$	$t_s \xrightarrow{[min\{a,u\},\infty]} t$
$t_s \xrightarrow{\langle t_e, b \rangle} t , t' \xrightarrow{[u,v]} t$	$t_s \xrightarrow{\langle t_e, b' \rangle} t'$
$t_s \xrightarrow{\langle t_e, b \rangle} t , t' \xrightarrow{[u,v]} t , t_e \neq t$	$t_s \xrightarrow{\langle t_e, b-u \rangle} t'$

 \Rightarrow contingent \rightarrow controllable a' = a - u, b' = b - v

Extended Version of PC

- We want a fast algorithm that TemPlan can run at each node, to decide whether to backtrack
- There is an extended version of PC that runs in polynomial time, but it has high overhead
- Possible compromise: use ordinary PC most of the time
 - Run extended version occasionally, or at end of search before returning plan

Conditions	Propagated constraint
$t_s \stackrel{[a,b]}{\Longrightarrow} t_e , t \stackrel{[u,v]}{\longrightarrow} t_e , u \ge 0$	$t_s \xrightarrow{[b',a']} t$
$t_s \xrightarrow{[a,b]} t_e , t \xrightarrow{[u,v]} t_e , u < 0 , v \ge 0$	$t_s \xrightarrow{\langle t_e, b' \rangle} t$
$t_s \stackrel{[a,b]}{\Longrightarrow} t_e , t_s \stackrel{\langle t_e,u \rangle}{\longrightarrow} t$	$t_s \xrightarrow{[min\{a,u\},\infty]} t$
$t_s \xrightarrow{\langle t_e, b \rangle} t , t' \xrightarrow{[u,v]} t$	$t_s \xrightarrow{\langle t_e, b' \rangle} t'$
$t_s \xrightarrow{\langle t_e, b \rangle} t , t' \stackrel{[u,v]}{\Longrightarrow} t , t_e \neq t$	$t_s \xrightarrow{\langle t_e, b-u \rangle} t'$

Intermediate Summary

- Constraint management
 - Consistency of object constraints
 - Constraint-satisfaction problem
 - Consistency of time constraints
 - STN, solution, minimality, consistency
 - PC
- Controllability
 - STNU, controllable, contingent
 - Dynamic controllability

Outline per the Book

4.2 Representation

- Timelines
- Actions and tasks
- Chronicles

4.3 Temporal planning

- Resolvers and flaws
- Search space

4.4 Constraint management

- Consistency of object constraints and time constraints
- Controlling the actions when we don't know how long they'll take

4.5 Acting with temporal models

- Acting with atemporal refinement
- Dispatching
- Observation actions

Atemporal Refinement of Primitive Actions

- Templan's action templates may correspond to compound tasks
 - In RAE, refine into commands with refinement methods
 - Templan's action template (descriptive model)

```
leave(r,d,w)
assertions: [t_s,t_e] loc(r): (d,w)
[t_s,t_e] occupant(d): (r,empty)
constraints: t_e \le t_s + \delta_1
adj(d,w)
```

 RAE's refinement method (operational model)

```
m-leave(r,d,w,e)
task: leave(r,d,w)
pre: loc(r)=d, adj(d,w), exit(e,d,w)
body: until empty(e)
wait(1)
goto(r,e)
```


Discussion

Pros

- Simple online refinement with RAE
- Avoids breaking down uncertainty of contingent duration
- Can be augmented with temporal monitoring functions in RAE
 - E.g., watchdogs, methods with duration preferences

Cons

- Does not handle temporal requirements at the command level,
 - e.g., synchronise two robots that must act concurrently
- Can augment RAE to include temporal reasoning
 - Call it eRAE
 - One essential component: a dispatching function

Acting With Temporal Models

- Dispatching procedure: a dynamic execution strategy
 - Controls when to start each action
 - Given a dynamically controllable plan with executable primitives, triggers corresponding commands from online observations
- Example robot r2 needs to leave dock d2 before robot r1 can enter d2w2 crane k needs to uncover c then put c onto r1 t_3 leave(r2,d2) w1 t_1 leave(r1,d1) enter(r1,d2) navigate(r1) unstack(k,c) putdown(k,c,r1) leave(r1,d2) unstack(k,c',p) stack(k,c',q)

Dispatching

- Let $(\mathcal{V}, \tilde{\mathcal{V}}, \mathcal{E}, \tilde{\mathcal{E}})$ be a controllable STNU that is grounded
 - Different from a grounded expression in logic
 - At least one time point t is instantiated
 - This bounds each time point t within an interval $[l_t, u_t]$

```
Dispatch (\mathcal{V}, \tilde{\mathcal{V}}, \mathcal{E}, \tilde{\mathcal{E}}) initialise the network while there are time points in \mathcal{V} that have not been triggered do update now update the time points in \tilde{\mathcal{V}} that have been newly observed update enabled trigger every t \in enabled s.t. now=u_t arbitrarily choose other time points in enabled and trigger them propagate values of triggered timepoints (change [l_t, u_t] for each future timepoint t)
```

- Controllable time point t in the future:
 - t is alive if current time $now \in [l_t, u_t]$
 - t is enabled if
 - It is alive
 - For every precedence constraint t' < t, t' has occurred
 - For every wait constraint $\langle t_e, \alpha \rangle$, t_e has occurred or α has expired
 - α has expired if t_s has occurred and $t_s + \alpha \leq now$

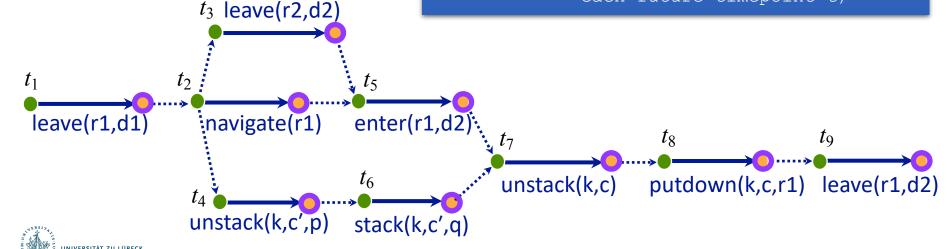
Example

- Trigger t_1 , observe leave finish
- Enable and trigger t_2 , this enables t_3 , t_4
- Trigger t_3 soon enough to allow enter(r1, d2) at time t_5
- Trigger t_4 soon enough to allow stack(k,c') at time t_6
- Rest of plan is linear:
 - Choose each t_i after the previous action ends

Dispatch $(\mathcal{V}, \mathcal{\tilde{V}}, \mathcal{E}, \tilde{E})$ initialise the network
while there are time points in \mathcal{V} that
have not been triggered do

update now
update the time points in $\tilde{\mathcal{V}}$ that have
been newly observed

update enabled
trigger every $t \in enabled \text{ s.t. } now = u_t$ arbitrarily choose other time points
in enabled and trigger them
propagate values of triggered
timepoints (change $[l_t, u_t]$ for
each future timepoint t)



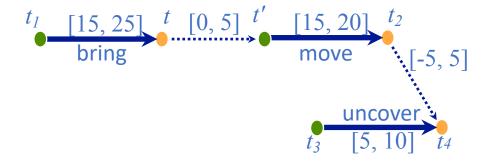
Example from Slide 57

- Trigger t_1 at time 0
- Wait and observe t; this enables t'
- Trigger t' at any time from t to t + 5
- Trigger t_3 at time t' + 10
 - $t_2 \in [t' + 15, t' + 20]$
 - $t_4 \in [t_3 + 5, t_3 + 10] = [t' + 15, t' + 20]$
 - so t_4 $t_3 \in [-5, 5]$

```
Dispatch (\mathcal{V}, \tilde{\mathcal{V}}, \mathcal{E}, \tilde{\mathcal{E}})
initialise the network
while there are time points in \mathcal{V} that
have not been triggered do

update now
update the time points in \tilde{\mathcal{V}} that have
been newly observed

update enabled
trigger every t \in enabled \text{ s.t. } now = u_t
arbitrarily choose other time points
in enabled and trigger them
propagate values of triggered
timepoints (change [l_t, u_t] for
each future timepoint t)
```



Dispatching

- Propagation step most costly one
 - $O(n^3)$
 - n the number of remaining future time points in network

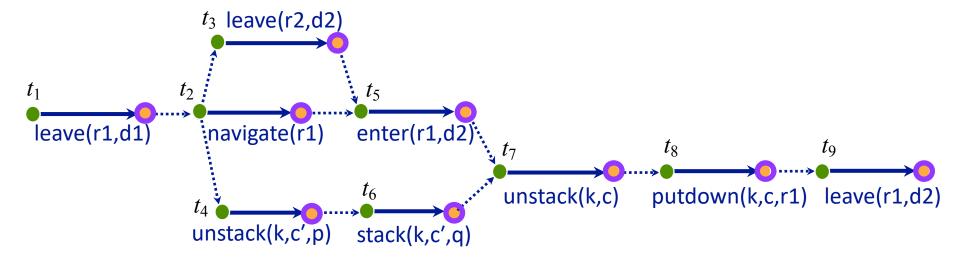
```
Dispatch (\mathcal{V}, \mathcal{E}, \mathcal{E})
initialise the network
while there are time points in \mathcal{V} that
have not been triggered do

update now
update the time points in \tilde{\mathcal{V}} that have
been newly observed
update enabled
trigger every t \in enabled \text{ s.t. } now = u_t
arbitrarily choose other time points
in enabled and trigger them
propagate values of triggered
timepoints (change [l_t, u_t] for
each future timepoint t)
```

• Ideally propagation fast enough to allow iterations and updates of now consistent with temporal granularity of plan

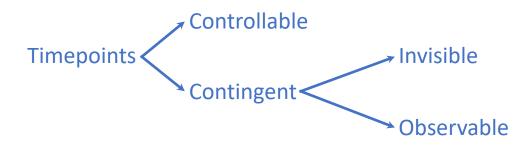
Deadline Failures

- Suppose something makes it impossible to start an action on time
- Do one of the following:
 - Stop the delayed action, and look for new plan
 - Let the delayed action finish, try to repair the plan by resolving violated constraints at the STNU propagation level
 - E.g., accommodate a delay in navigate by delaying the whole plan
 - Let the delayed action finish, try to repair the plan some other way



Partial Observability

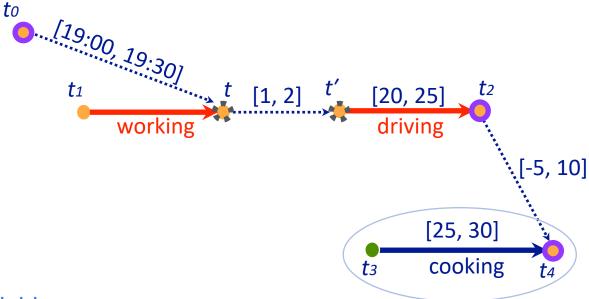
- Tacit assumption: All occurrences of contingent events are observable
 - Observation needed for dynamic controllability
- In general, not all events are observable
- POSTNU (Partially Observable STNU)



Dynamically controllable?

Observation Actions

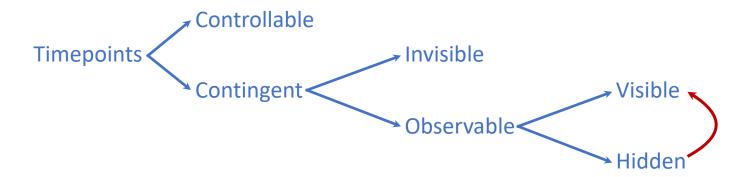
Example



- Controllable
- ContingentInvisibleobservable

Dynamic Controllability

- A POSTNU is dynamically controllable if
 - there exists an execution strategy that chooses future controllable points to meet all the constraints, given the observation of past visible points
- Observable ≠ visible
- Observable means it will be known when observed
 - It can be temporarily hidden



Intermediate Summary

- Acting
 - Atemporal refinement
 - eRAE
 - Dispatching
 - Alive, enabled
 - Deadline failures
 - Partial observability
 - Invisible, observable (hidden/visible)

Outline per the Book

4.2 Representation

- Timelines
- Actions and tasks
- Chronicles

4.3 Temporal planning

- Resolvers and flaws
- Search space

4.4 Constraint management

- Consistency of object constraints and time constraints
- Controlling the actions when we don't know how long they'll take

4.5 Acting with temporal models

- Acting with atemporal refinement
- Dispatching
- Observation actions

⇒ Next: Planning and Acting with Nondeterministic Models

