Advanced Topics Data Science and Al
Automated Planning and

Acting

Temporal Models

Tanya Braun

Content

1. Planning and Acting with 4. Planning and Acting with
Deterministic Models Nondeterministic Models

2. Planning and Acting with 5. Making Simple Decisions

Refinement Methods 6. Making Complex

3. Planning and Acting with Decisions

Temporal Models 7. Planning and Acting with

a. Temporal Representation Probabilistic Models

b. Planning with Temporal o
Refinement Methods 8. Provably Beneficial Al

c. Constraint Management e Other: open world,

d. Acting with Temporal perceiving, learning

Models * If time permits

Temporal Models

Durations of actions

Delayed effects and preconditions
e E.g., resources borrowed or consumed during an action

* Time constraints on goals
e Relative or absolute

* Exogenous events expected to occur in the future
* When?

e Maintenance actions:

* Maintain a property (# changing a value)
* E.g., track a moving target, keep a spring latch in position

* Concurrent actions
* Interacting effects, joint effects

Delayed commitment
* |nstantiation at acting time

,,,,,
\\\\\

%% INSTITUT FUR INFORMATIONSSYSTEME

Timelines

* Up to now, “state-oriented view”
* Time is a sequence of states sg, 51, S

* Instantaneous actions transform each state into the next

one
* No overlapping actions

e Switch to a “time-oriented view”

* Sequence of
integer time points
e t=1,2,3,..
* For each state variable x,
a timeline

 values during different
time intervals

* State at time t = {state—variable values at time t}

,,,,,
\\\\\

o S
3 %% INSTITUT FUR INFORMATIONSSYSTEME

state variables

Y

t t+1

time

Timelines

e Sets of constraints on state variables and events

* Reflect predicted actions and events

* Planning is constraint-based

visibility window 3
[120,120] ’

-~
..
..
‘e
-
..
-
-

e
e
-
..
-
-~
..
-

’ 17 S Lo 10 L9 typoo
MovePTU Take MovePTU
image e

E
SRs22 5 INSTITUT FUR INFORMATIONSSYSTEME
e

communlication
goal

---------------- »O—Q)"

.0
..

[2,2]
‘@ (")
ceea 13 tig location

goal ..~ t

Move
image
goal .

Outline per the Book

4.2 Representation

e Timelines
e Actions and tasks
 Chronicles

4.3 Temporal planning
* Resolvers and flaws
» Search space

4.4 Constraint management
e Consistency of object constraints and time constraints
* Controlling the actions when we don’t know how long they’ll

take
4.5 Acting with temporal models
* Acting with atemporal refinement
e Dispatching
* Observation actions

5 QAP © UNIVERSITAT ZU LUBECK
wRSse ~ INSTITUT FUR INFORMATIONSSYSTEME
o s

Representation

* Quantitative model of time
* Discrete: time points are integers

* Expressions:
* time-point variables
*t, t, ty, t
* simple constraints
cd<t'-t<d
* Temporal assertion:
* Value of a state variable during a time interval
* Persistence: [t1, to]x = v entails t; < t,
* Change: |t1, to]x : (v, v5) entails vy # v,

E
SRs22 5 INSTITUT FUR INFORMATIONSSYSTEME
e

Timeline

* Timeline: pair (T, C), partially predicted evolution of one state variable
* Instance of (77,C) =temporal and object variables instantiated

* T :temporal assertions
o [tq,t5]loc(rl) : (locl, 1)
o [ty t3]loc(rl) =1
o [ts, ta]loc(rl) : (1, loc2)
* C :constraints
ot <ty <tz <ty

loc(rl)

A

Persistence

" EIOCZ Change

e [#locl
e | # loc2

* If we want to restrict loc(r1) during [t4, t;,]

o [ty t; + 1]loc(rl) : (locl, route)
o [t,-1,t,]loc(rl) : (route,l)
e [ty +1,t,-1]loc(rl) = route

time

* Aninstance is consistent if it satisfies all constraints in C and does not
specify two different values for a state variable at the same time

* Atimelineis secure if its set of consistent instances is not empty

R
SXRSS2 Y INSTITUT FUR INFORMATIONSSYSTEME
o 8

Actions

* Preliminaries:

* Timelines (73, C1), ..., (T, Cyi) for k different state variables
* Their union:

* (1,6 VU (T, C) =1 UUT, CL U U Cy)
o If

 every (7;,C;) is secure, and

* no pair of timelines (7}, C;) and (f]}, C’j) have any unground
variables in common

* then
e (JU--UT},Cq U~ UCy) is also secure

* Action or primitive task (or just primitive):
 atriple (head,T,C)

* head is the name and arguments
* (T,C) is the union of a set of timelines

R
SXRSS2 Y INSTITUT FUR INFORMATIONSSYSTEME
o 8

Actions

o leave(r,d,w) * Two additional
* Robot r leaves dock d, parameters
goes to adjacent * Starting time ¢,
waypoint w e Ending time t,
leave(r,d,w)
assertions: * No separate
EH fccc(s)=;zft‘(ﬂ3)_ i emoty preconditions and
constr;’ir:ts: " ey effects
te<ts+ 0, * Preconditions & need
adjtd,w) for causal support

* loc(r) changes tow
with delay < 0,

* Dock d becomes empty

Actions

o enter(r,d,w)

* renters d from an
adjacent waypoint w

enter(r,d,w)
assertions:
[ts,te] loc(r): (w,d)
[t,,t.] occupant(d): (empty,r)
constraints:
t, <t + 5,
adj(d,w)

* loc(r) changes to d
with delay < 4,

 Dock d becomes
occupied by r

,,,,,
\\\\\

% INSTITUT FUR INFORMATIONSSYSTEME

* Two additional
parameters
 Starting time ¢t
* Ending time ¢,

* No separate
preconditions and
effects

* Preconditions & need
for causal support

Actions
e take(k,c,7,d)

* Action: crane k takes
container ¢ from r on

e Two additional
parameters

* Starting time tg

dock d e Ending time ¢,
* No separate
c preconditions and effects
ry—— - * Preconditions & need for
R | causal support
take(k,c,r,d)
assertions:

[ts,t] pos(c): (r, k)
[t,t.] grip(k): (empty, c)

[t,t.] loc(r) = d
constraints:
attached(k,d)

[t t.] freight(r): (c,empty)

// where container c is

// what crane k’s gripper is holding
// what ris carrying

// where ris

12

Actions

e leave(r,d,w) robot r leaves dock d to an
adjacent waypoint w

o enter(r,d,w) r enters d from an adjacent w

e take(k,c,1) crane k takes container ¢ from r

* navigate(r,w,w') r navigates fromw tow’
« stack(k,c,p) k stacks ¢ on top of pile p
« unstack(k,c,p) k takes c from top of p

* put(k,c,r) k puts contor

Tasks and Methods

e Task: move robot r to

dOCk d navigate
o [ts,t.]move(r,d) leave _ enter
e ’ I -
 Method: ’ - - -
ts tl t2 t3 t4 te
m-movel(r,d,d’,w,w’) , .
task: move(r,d) * d' becomes empty during [t, t4]
refinement: * another robot may enter it after t;

[t t,] leave(r,d’,w')
[t, ts] navigate(rw',w) | * d doesn’t need to be empty

[t4,t.] enter(r,d,w) until t,
assertions: . .
[t,t+1] loc(r) = d * when 7 starts entering it

constraints: Y 4 o W2 / 4 /
adj(d,W), f "
y /

adj(d’,w’), d zd’,

y
connected(w,w’), ewl :)rl Oﬁw
ti<t), t3< t, y e /
S ‘ 14

qqqqqq

4

Tasks and Methods

* Task: remove everything

above container c in pile stack
p unstack _ uncover
* [ts, teluncover(c,p) I . I
. _ : L L e
Method: : —y — te

m-uncover(c,p,k,d,p’)
task: uncover(c,p)
refinement: [t,t;] unstack(k,c’',p) // action
[t,,t5] stack(k,c’,p’) // action

[t,,t.] uncover(c,p) // recursive uncover
assertions: [t t.+1] pile(c) =p
[ty ts+1] top(p) = ¢’
[t ts+1] grip(k) = empty c1
V4 _/

constraints: attached(k,d), attached(p,d), c2
attached(p’,d), /| c3
p#p,c #c, pl p2
ti<t, t3<t,

—

qqqqqq

4

Tasks and Methods

* Task: robot r brings
container ¢ to pile p

* [tS' te]bring(r; C, p)
* Method:

pile(c)=p’

freight(r) = empty

move t; :

m-bring(r,c,p,p’,d,d’)

task:
refinement:

assertions:

constraints:

bring(r,c,p)

[t, t1] move(rd’)

[t, 2] uncover(c,p’)
[ts,t4] load(k’,r,c,p’)
[ts,ts] move(r,d)

[t;,t.] unload(k,r,c,p)

[t t5] pile(c) = p’

[t, t3] freight(r) = empty

attached(p’,d’), attached(p,d), d #d" | |

attached(k’,d’), attached(k,d), k # k’
t; Sty ty Sty ty<ts, te <t

]
‘uncover . unload
N 2 E i ; E E
ts t3 t4 t5 t6 t7 te

Chronicles: Unions of Timelines
* Chronicle ¢ = (A,S,T,C) |4,

* cafét:iéﬁ?;r?(ﬁgglgsua“ﬂed tasks: [t,t’] bring(r,c1,d4)

« S :a priori supported supported: [t loc(rl)=d1
assertions [t,] loc(r2)=d2

* T :temporally qualified [t.+10,t.+8] docked(ship1)=d3
assertions [t;] top(pile-shipl)=cl

* C :constraints [t.] pos(cl)=pallet

o ¢ can include assertions: [t,] loc(rl)=d1

* Current state, future [te] loc(r2)=d2
predicted events constraints: t,=0<t<t'<t,,20<6<30

* Tasks to perform
e Assertions and constraints to

satisfy 3
* Can represent lodrl)=dl gocked(shipl)=d3
* Planning problem tOp(plle_Shlpl)!_—Cli loc(r1) = d1
* Plan or partial plan e

n
»

t, t t+10 t+6 t’ t,

Intermediate Summary

* Timelines
 Temporal assertions (change, persistence), constraints
* Conflicts, consistency, security, causal support

 Chronicle: union of several timelines
* Consistency, security, causal support

* Actions represented by chronicles

* No separate preconditions and effects
* Preconditions © need for causal support

,,,,,
\\\\\

%% INSTITUT FUR INFORMATIONSSYSTEME

Outline per the Book

4.2 Representation

e Timelines
e Actions and tasks
* Chronicles

4.3 Temporal planning
* Resolvers and flaws
* Search space

4.4 Constraint management
e Consistency of object constraints and time constraints
* Controlling the actions when we don’t know how long they’ll

take
4.5 Acting with temporal models
* Acting with atemporal refinement
e Dispatching
* Observation actions

5 QAP © UNIVERSITAT ZU LUBECK
wRSse ~ INSTITUT FUR INFORMATIONSSYSTEME
o s

Planning

* Planning problem: * Add new assertions,

* Chronicle ¢ that has
some flaws
* Analogous to flaws in PSP

¢,: tasks: (none)

supported: (none)

assertions: [t,,t,] loc(rl) =1/
[t5,t,] loc(rl) : (loc3,loc4)
constraints: adj(loc3,w1)

adj(w1,loc3)
adj(loc4,w2)
adj(w2,loc4)

connected(w1,w2)
= / loc4
1. . :
o |: ; |O‘(V
o) E L)
tz t3 ta

constraints, actions to
resolve the flaws

¢,: tasks: [t,,t;] move(rl,loc3)
supported: (none)

assertions: [t,,t,] loc(rl) =1/
[t5,t,] loc(rl) : (loc3,loc4)
constraints: adj(loc3,w1)

adj(w1,loc3)
adj(loc4,w2)
adj(w2,loc4)

connected(wl,w2)

loc(rl))

t1

20

Flaws (1)

1. Temporal assertion a that isn’t
causally supported

* What causes r1 to be at loc3 at time

t3? Like an open goal in PSP

* Resolvers:
e Add constraints to support a from an
assertion in ¢
e [=loc3, t, =t,
* Add a new persistence assertion to
support a
* [=loc3,[t,, t3]loc(rl) = loc3
* Add a new task or action to support a
* [t,, tzlmove(rl,loc3)
* Refining it will produce support for a

rSI
GERSIZ,

Flaws (2)
2. Non-refined task

e Resolver: refinement method m

» Applicable if it matches the task and
its constraints are consistent with ¢’s

* Applying the resolver:
* Modify ¢ by replacing the task with m

* Example: [t,, t;]Jmove(rl, loc3)
e Refinement will replace
it with something like
o [ty, ts|leave(rl,,w)
¢ [tg, tg]navigate(rl,w,w’) .
 [te, tslenter(rl, loc3,w') 1
* plus constraints

loc(rl)

’ S UNIVERSITAT ZU LUBECK

s
= Y
3 7
SXRSS2 Y INSTITUT FUR INFORMATIONSSYSTEME 22
oy e i

5. 518%™

Flaws (3)

3. A pair of possibly-conflicting temporal assertions
* temporal assertions a and 3 possibly conflict

if they can have inconsistent instances | loc3
 Example ;Ioc(rl)é 02, \Oc\(\é
o [tqy,t2]loc(rl) = locl, [ts, ti]loc(r) : (I,1") =
\l/\l/ \l/ \l/ \l/ \l/ N 1 t2 t3 t4'
instance: |1, 5]loc(r1) = locl, [3,8]loc(rl) : (loc2,loc3)
* Resolvers: separation constraints t _Io;l_ loc3
e r#rl loc(rl) |

° t, <t3 loc2, ‘5\00“1\5
.« t, <t s N
* ty, =t3,7r=rl1l=locl t1=1 t3=3 t,=5 t4=8'

* Also provides causal support for [t3, t4]loc(r) : (I,1")
e t,=t,r=rl1l=locl
* Also provides causal support for [ty, ty]loc(r1l) = locl

rSI
GERSIZ,

S O

5 “

= Nz =

H '/ & UNIVERSITAT ZU LUBECK

SR e u omeer 23
215 sisn”

Planning Algorithm

e Like PSP in Chapter 2

* Repeatedly selects
flaws and chooses
resolvers

* In the book, TemPlan
uses recursion

* Can be rewritten to use
a loop

* Just programming style,
equivalent either way

* In a deterministic
implementation

* Selecting a resolver p is
a backtracking point

* Selecting a flaw isn’t

* Ifitis possible to resolve
all flaws, at least one of
the nondeterministic
execution traces will do
SO

< UNIVERSITAT ZU LUBECK
INSTITUT FUR INFORMATIONSSYSTEME

TemPlan (¢, Z)
Flaws « set of flaws of ¢
if Flaws = @ then

return ¢

arbitrarily select f € Flaws
Resolvers « set of resolvers of £
if Resolvers = @ then

return failure

nondeterministically choose p € Resolvers
¢ — Transform(¢p, p)
TemPlan (¢,3)

TemPlan (¢, Z)
loop

Flaws « set of flaws of ¢
if Flaws = @ then
return ¢
arbitrarily select f € Flaws
Resolvers « set of resolvers of £
if Resolvers = (then
return failure
nondeterministically choose p € Resolvers
¢ — Transform(¢p, p)

24

Example

cp=(AST,C)

e Establishes state-variable values at

timet =0

* Flaws: two unrefined tasks
* bring(r,c1,p3), bring(r’,c2,p4)

ﬁ |

‘ (]

= k2
wl2

c'1l 2

cl c2

L pl 7 p2 p2 | d2

w34
r2
O\—% d4

¢o: tasks: bring(r,c1,p3)
bring(r’,c2,p4)
supported:[0] loc(r1)=d3
[0] freight(rl)=empty
[0] pile(c1)=p’
[0] pile(c'1)=p
[0] pos(cl)= paIIet
[0] pos(c'1)=c

assertions: (none)

constraints:
adj(d1,w12)
adj(d1,w13)

25

¢o: tasks: bring(r,c1,p3)
bring(r’,c2,p4)
Exa m p ‘ e supported:[0] loc(r1)=d3

: 0] freight(rl)=
* Flaws: two unrefined tasks [0] reig t(r_), empty
[0] pile(cl)=p'1

o .br|ng(r,c1,p3), bring(r’,c2,p4) (0] pile(c’1)=p’1
* Refinement for both: [0] pos(c1)=pallet

m-bring(r,c,p,p’,d,d’, k,k’) [0] pos(c’1)=c1
task: bring(r,c,p)
refinement: [t,t;] move(r,d’) assertions: (none)

[t 2] uncover(c,p’) constraints:
[t3,t4] load(k’,r,c,p’) adj(d1,w12)

[ts, tg] move(r,d) _
[t5,t.] unload(k,r.c,p) adj(d1,w13)

assertions: [t t3] pile(c) = p’

[t t5] freight(r) = empty
constraints: attached(p’,d’),
attached(p,d), d # d’
attached(k’,d’),
attached(k,d), k # k’
tiSty, <t ty<ts, tg< ty

Method Instance

* Instantiate ¢ = ¢1 and p = p3 to match
bring(r,cl1,p3)
« p',d,d', k, k' instantiated to match book
* Needed later to satisfy action preconditions

m-bring(r,c,p,p',d, d,/ kl k,)

m-bring(r,c1,p3,p’1,d3,d1,k3,k1)
task: bring(r,cl,p3)
refinement: [t t;] move(r,dl)
[t,t;] uncover(cl,p’l)
[t3,t4] load(k1,rcl,p1)
[ts, ts] move(r, d3)
[t5,t.] unload(k3,r,c1,p3)
assertions: [t,t3] pile(cl) =p’1
[t, t5] freight(r) = empty
constraints: attached(p’1,d1),
attached(p3,d3), d3 #d1
attached(k1,d1),
attached(k3,d3), k3 = k1

£ g tist3, sty tysts, sty

¢o: tasks: bring(r,c1,p3)
bring(r’,c2,p4)
supported:[0] loc(r1)=d3
[0] freight(rl)=empty
[0] pile(cl)=p'1
[0] pile(c1)=p"1
[0] pos(cl)=pallet
[0] pos(c’1)=cl

assertions: (none)

constraints:
adj(d1,w12)
adj(d1,w13)

27

¢,: tasks: [t,t;] move(r,dl)
1 " [t,t;] uncover(cl,p’l)
Modified Chronicle o neaerteLp

[ts,ts] move(r,d3)

* Changesto ¢ [t;,t.] unload(k3,r,c1,p3)
* Removed bring(r,cl,p3) bring(r’,c2,p4)
* Added 5 tasks, 2 assertions, 4 supported:[0] loc(r1)=d3
constraints .[O]f ht(r1)
reight(rl)=empt
+ Flaws 0} reighirt-empy
* 6 unrefined tasks, 2 unsupported p! © C, P)
assertions [0] pile(c1)=p"1
g ' k@Z [0] pos(c1)=pallet
K [0] pos(c’1)=cl
wl2
o €2 i [t t5] pile(cl) = p'l
c: 2 | assertions: [t,,t; =
L e [t,t5] freight(r) = empty

d1
constraints: t.<t;<t;, t.<t,<t3, t,<ts, t;<t,
N I /“”23 a adj(d1,w12),
adj(d1,w13),

-rl _ w34 r2
d3 o o QL% d4

D) k)
3 vl -
SRR © UNIVERSITAT ZU ECK
SXRSS2 Y INSTITUT FUR INFORMATIONSSYSTEME 28
oy
5. 518%™

¢,: tasks: [t,t;] move(r,dl)
[t,t;] uncover(cl,p’l)
Method Instance Lot uncoverleL o)
) [ts,ts] move(r,d3)
* |nStantiat_e r = ,T", C=C4Dp = p4‘ to [t5,t.] unload(k3,r,c1,p3)
match bring(r’, c2,p4) br7ing(r’,c2,p4)

 p',d,d', k, k' instantiated to match book
« Variables renamed to avoid name conflicts | supported:[0] loc(rl)=d3

[0] freight(r1l)=empty
[0] pile(cl)=p"1

[0] pile(c1)=p"1

[0] pos(cl)=pallet

m-bring(r,c,p,p’,d,d’, k,k’)
task: bring(r,c,p)
refinement: [t,t;] move(r,d’)
[t,t;] uncover(c,p’)
[t3,t4] load(kr,c,p) [0] pos(c1)=cl
[ts,ts] move(r,d) ce
[t;,t.] unload(k,rc,p) assertions: [t t5] pile(cl) = p'1
assertions: [t,t;3] pile(c) =p’ [ty t5] freight(r) = empty
[t t5] freight(r) = empty constraints: t.<t,<t3, t.<t,<t3, t;,<ts, t;<t7,
constraints: attached(p’,d"), adj(d1,w12),
attached(p,d), d # d’ adj(d1,w13),
attached(k’,d’),
attached(k,d), k # k’

Modified Chronicle

* Changes

* Removed bring(r’,c2,p4)

* Added 5 tasks, 2 assertions, 4 constraints
* Flaws

* 10 unrefined tasks, 4 unsupported
assertions

* Next, work on these two assertions

) (y,

W k2
wl2
Cl C’2
cl)
L pl 7 P2 p2 | d2
dl
w13 . w23
k3 k4
/p3 /p4
v
-rl — w34 r2
d3 o o QL% d4

¢,: tasks: [t,t;] move(r,dl)
[t,t;] uncover(cl,p'l)
[t3,t,] load(k1,rcl,p’l)
[ts,ts] move(r,d3)
[t5,t.] unload(k3,r,c1,p3)
[t’,t'1] move(r,d2)
[t’,t’5] uncover(c2,p’2)
[t’5,t'4] load(k4,r’,c2,p'2)
[t's, t’s] move(r,d4)
[t5,t’.] unload(k2,r’,c2,p'2)
supported:[0] loc(r1)=d3
[0] freight(rl)=empty
[0] pile(cl)=p"1

assertiogsi|t, tz] pile(cl) =p'l
[t, t5] freight(r) = empty
[t',t’5] pile(c2) =p'2
[t',t’1] freight(r’) = empty
constraints: t.<t;<ts, t.<t,<ts, t,<ts, ts<t,
t' <t'|St's, t' <t <t's, t/ySt's, te<t,
adj(d1,w12),
adj(d1,w13), ...

30

Supporting the Assertions

3 ways to support [t., t3]pile(cl) = p'1

1.
2.
3.

Constrain t, = 0, use [0]pile(cl) = p'1
Add persistence [0, ts]pile(c1l) = p'1
Add new action [tg, ts]stack(k1,c1,p'1)

Will any of them also
provide support for
[t t5] freight(r) = empty?

w34

‘-4 %
O O O d4

¢,: tasks: [t,t;] move(r,dl)
[t,t;] uncover(cl,p'l)
[t3,t,] load(k1,rcl,p’l)
[t5,t] move(r,d3)
[t5,t.] unload(k3,r,c1,p3)
[t’,t'1] move(r,d2)
[t’,t5] uncover(c2,p’2)
[t’5,t'4] load(k4,r’,c2,p'2)
[t's, t’s] move(r,d4)
[t5,t’.] unload(k2,r’,c2,p’2)
supported:[0] loc(r1)=d3
[0] freight(rl)=empty
[0] pile(cl)=p'1

assertions: [t t3] pile(cl) = p’l
[t, t3] freight(r) = empty
[t',t’5] pile(c2) =p'2
[t',t'1] freight(r’) = empty
constraints: t.<t;<ts, t.<t,<t3, t,<ts, ts<t,
t' <t/ |St's, t'<t,<t's, t4<St's, t'e<t’,
adj(d1,w12),
adj(d1,w13),...

31

Supporting the Assertions

 To support [t,, t3]pile(cl) =p'1

* Constraint, = 0, use [0]pile(cl) =

p'l
* To support |0, t3|freight(r) =
empty
e Constrain|r = r1
' @1 : k2
wl2 “
c’2
et 2 e
dl
k3
p3 Jpd
o "

r2
2l e

¢y: tasks: [0,t;] move(rd d1)
|0,t,] uncover(cl,p'l)

[ts,t4] Ioad(cl,p’l)

[ts,ts] move(r1}d3)

[t;,t.] unload(k3c1,p3)

[t’,t'1] move(r,d2)

[t’,t5] uncover(c2,p’2)

[t’5,t'4] load(k4,r’,c2,p'2)

[t’s,t’s] move(r’/,d4)

[t5,t’.] unload(k2,r’,c2,p’2)
supported:[0] loc(r1)=d3

[0] freight(rl)=empty

[0] pile(cl)=p'1

|0,t5] pile(cl) = p'1

|0, t3] freight) = empty
assertions: [t',t’5] pile(c2) = p'2

[t',t'1] freight(r’) = empty
constraints: O<t,<t;, O<t,<t3, t,<ts, ts<t,

t' <t’;St's, ' <t',St's, ta<t's, t'e<t’,
adj(d1,w12),
adj(d1,w13), ...

32

Supporting the Assertions

 To support [t., t5|pile(c2) = p'2

e Add nprclcfpnrp rnnd|t|on

[0, tl]pile(c2) = p'2
* Alternatives: constrain t. = 0 or add new
action stack(kZ c2,p 25)

« To support [tL, t!|freight(r") = empty

* Co

condition

nstrain

foe]

add persistence
reight(r2) = empty

ﬁ [
‘ (]
= k2
w12
c1 2
cl)
L pl 7 p2 p2 | d2
di
w13 . w23
k3 k4
/p3 /pad
]
-rl — w34 r2
d3 o o QL% d4

¢,: tasks: [0,t;] move(rl,dl)
[0,t,] uncover(cl,p'l)
[t3,t,] load(k1,rl,c1,p'l)
[ts, tg] move(rl,d3)
[t5,t.] unload(k3,rl,cl,p3)
[t',t'] move@,dZ)
[t’,t5] uncover(c2,p’2)
[t'5,t"] load(k4 c2 p'2)
[t’s,t’s] move(E d4)
[t5,t] unload(k2@c2,p’2)
supported:[0] loc(r1)=d3
[0] freight(rl)=empty
[0] pile(cl)=p'1
[0,¢3] pile(cl) =
[0,t5] freight(rl) = empty
[0,ts] pile(c2)=p"2
[t’st'3] pile(c2) = p'2
[0,t',] freight(r2)=empty
[t'yt"1] freight(r2) = empty
assertions: (none)
constraints: 0<t;<ts, 0<t,<t3, t;<ts, tsz<t,
t <t/ St's, <t',<t's, t4<t's, t/s<t’,

adj(d1,w12),adj(d1,w13), . ..

¢,: tasks: [0,t;] move(rl,dl)

M [0,t,] uncover(cl,p'l)
Example of Conflicts AL T
[ts, tg] move(rl,d3)
* Refining tasks into actions will produce [t,,t.] unload(k3,rl,c1,p3)

possibly-conflicting assertions

must go through [t'st'1] move(r2,d2)

* Conflict: [t’st"] uncover(c2,p’2)
* Resolvers: [t'5,t4] load(k4,r2,c2,p'2)
frzeo‘{)z\ﬁa;'g%%?‘iﬂﬁéﬁ‘g'ﬂté§°weh?|se“ﬁ‘i away E-ﬁe} Tnciggg(zlég?z,cz,p'm
—7 1 [supported:[0] loc(r1)=d3
K1 k2 [0] freight(rl)=empty
) o - [0] pile(cl)=p'1
Ccll 2 [0,t3] pile(cl) =p'1
T o 5 o 02 [0,t5] freight(r1l) = empty
d1 [0,t,] pile(c2)=p'2
N ﬁ/ﬁ ﬁ [t t'3] pile(c2) = p'2
k3 k4 [0,t’,] freight(r2)=empty
s il P | [t’,t';] freight(r2) = empty
P — assertions: (none)
i ‘—“; w3 Oru% g4 | constraints: O<t,<ts;, 0<t,<ts, t,<ts, ts<t,,
t <t 1St <tSth, ySt's, test’,
@ TS M emaTionsssTemE adj(dl,w12),adj(d1,w13), o

Heuristics for Guiding TemPlan

* Flaw selection, TemPlan (¢, X)
resolver selection Flaws « set of flaws of ¢
heuristics similar to e
those In PSP arbitrarily select f € Flaws
e Select the flaw with Resolvers « set of resolvers of f
the smallest if Resolvers = @ then
number of resolvers return failure
e Choose the resolver nondeterministically choose p € Resolvers
that rules out the o Mramsiormid,)

fewest resolvers for Tem®lam (G, 1)
the other flaws

. PSP (&,)
* Thereis also a loop
pr0b|em with if Flaws(m) = @ then
constraint slzizi
arbitrarily select f € Flaws(m)
mar\l/\a/g_emens it wh R ~{all feasible resolvers for f}
* vveignorea it when if R = 0 then
dlscussmg PSP return failure
* Discuss it next nondeterministically choose p € R

T « p(m)
return m

Intermediate Summary

* Planning problems

* Three kinds of flaws and their resolvers:
* tasks, causal support, security

 Partial plans, solution plans

* Planning: TemPlan

 Like PSP but with tasks, temporal assertions, temporal
constraints

,,,,,
\\\\\

%% INSTITUT FUR INFORMATIONSSYSTEME

Outline per the Book

4.2 Representation

e Timelines
e Actions and tasks
* Chronicles

4.3 Temporal planning
* Resolvers and flaws
» Search space

4.4 Constraint management
* Consistency of object constraints and time constraints

. Cokntrolling the actions when we don’t know how long they’ll
take

4.5 Acting with temporal models
* Acting with atemporal refinement
e Dispatching
* Observation actions

El I s
SXRSS2 Y INSTITUT FUR INFORMATIONSSYSTEME
o

37

Constraint Management

* Each time TemPlan applies a resolver, it modifies (7', C)

* Some resolvers will make (T, C) inconsistent
* No solution in this part of the search space
* Detect inconsistency => prune this part of the search space
* Do not detect it => waste time looking for a solution

* Analogy: PSP checked simple cases of inconsistency

* E.g., cannot create a constrainta < b
if there is already a constraint b < a

* Ignored more complicated cases
* Example:

* Cq,Cy,C3 € Containers = {c1, c2}

* Threats involving ¢4, ¢, C3
* For resolvers, suppose PSP chooses /\

®* C1 F Cy,Cy # C3,C1 ¥ C3

* No solutions in this part
of the search space, but ,\ \ \ /\
PSP searches it anyway

Constraint Management in TemPlan

At various points, check consistency of C
* If Cis inconsistent, then (T, C) is inconsistent
* Can prune this part of the search space

* If C is consistent, then (7', C) may or may not be
consistent
* Example:
o T ={[t1,t;]loc(r1l) = locl, [t3,ts]loc(rl) = loc2}
s C=(t1 <tz3 <ty <ty)
* Gives loc(r1) two values during [t3, t4]

:::::
3Rs22 % INSTITUT FUR INFORMATIONSSYSTEME

Consistency of C

e C contains two kinds of constraints
* Object constraints
e loc(r) #1,, l€{loc3,loc4}, r=rl, 0o+ 0’
* Temporal constraints
s t;<t;, a<t t<t, ast' —t<b

* Assume object constraints are independent of temporal
constraints and vice versa

* Exclude thingsliket < f(l,7)

* Then two separate subproblems
* (1) check consistency of object constraints
* (2) check consistency of temporal constraints
* C is consistent iff both are consistent

,,,,,
\\\\\

5 BT © UNIVERSITAT ZU LUBECK
wRSse ~ INSTITUT FUR INFORMATIONSSYSTEME
)

Object Constraints

e Constraint-satisfaction problem (CSP) — NP-hard

* Can write an algorithm that is complete but runs in
exponential time
 If there is an inconsistency, always finds it
* Might do a lot of pruning, but spend lots of time at each node

* Instead, use a technique thatis
incomplete but takes polynomial time

* Edge consistency, path consistency
* Detects some inconsistencies //\
but not others /\

. Euns much 1faster, U W A [\ T\\
ut prunes fewer nodes /\ [\ \\ /\

5 REEYT = UNIVERSITAT ZU LOB
wRSse ~ INSTITUT FUR INFORMATIONSSYSTEME
o s

Time Constraints: Representation

* Simple Temporal Networks (STNs)
* Networks of constraints on time points

e Synthesise them incrementally
starting from ¢,

* TemPlan can check time
constraints in time 0 (n3)

* Incrementally instantiated at acting time

* Kept consistent throughout planning and acting

Simple Temporal Networks

* STN: a pair (V, E), where Is this network

« V = {aset of temporal variables ty, ..., t,, } consistent?
e £EC VPV XVisasetof edges

* Each edge (¢;, t]) is labelled with an interval [a,] 1.2] [3 4]
* Represents constrainta < t; — t; < b
* Equivalently, =b < t; — ¢; S —a

* Representing unary constraints [2,3]
* Dummy variable t, = 0

* Edge 1y; = (o, t;) labelled with [a, b] represents
a<t;—0<bh t

. Shorthand instead ofa<tj—t; <b,

[e— t3
* Solution toan STN [-3,-2]
* Integer value for each t;
* All constraints satisfied Book says:
* Consistent STN Solunc::teger value for each ¢;
* Has a solution « Consistent:

Has a solution
All constraints satisfied

Time Constraints

* Minimal STN:
» For every edge (t;, t;) with label [a, b]

* Foreveryt € [a, D]
* There is at least one solution such thatt; — ¢; = ¢

e Cannot make any of the time intervals shorter without
excluding some solutions

t
[1,2] 2 [3,4]

—> {3
g B3.7]

@
Is this network
minimal?

44

Operations on STNs

* Intersection, N i ot
t j
* tj- 6 €1 = [y, by | s
I / /
* tj - t; €17 = [aj;, by rij N1
* Infer

ti-t; € ryj Nr; = [max(ay;, a;), min(by, by;)

* Composition, o

Fik L Fij
* tp—t; € 1y = |aik, bix]
t —>4

o tj— t; € Tkj = [akj' bkj]

e Reason: shortest and longest times for the two .
intervals Fi : Fkj
* Consistency checking r .
* Three constraints 1, 1%, 7;; are consistent t; !

only if r;; N (ry o 1) = @

Two Examples

t
N
t, —> 3

[2,3]

* STN (V,), where
« V= {ty,tyt3}
« £={r, =1[12], 13 =[34],
rz = [2,3]}
* Composition
* Ty3 = T13 0 T3 = [4,6]

« Cannot satisfy both r;3 and {3
* rizNrz =[23]n[46]= 0
* (V, &) isinconsistent

E
SRs22 5 INSTITUT FUR INFORMATIONSSYSTEME
e

[1,2] [3,4]

t, —> {3
[2,5]
« STN (V,), where
* V= {t,tyt3}
o E={rp =[12], 13 =[34],
rz = [2,5]}
* Composition (as before)
* Ty3 =Ty 0 Ty3 = [4,6]
* (V,€)is consistent
« n3 N1z =[2,5]Nn[46] =[4,5]
* Minimal network t,
« n1i3 =[45] [1,2] [3,4]

tl —> t3
[4,5]

46

Operations on STNs

e PC (Path Consistency) BC(V,€)

for 1 < n do

algorithm: for 1< i< j<n, i#7, 3+kdo

e Consistency checking 5 3 N [© 1]
on all triples '

* If an edge has no constraint,
use [—oo, + 0]

* 1 constraints
=>n3 triples
=>time 0(n3)
* Example:
e k=2i=1,j=2 i
* 112 = [1,2]
« 124 = [3,4]
* 114 = [-00,00]
* rporyy =[1+43,24+ 4] =[4,6] Is
* 14 < [max(-o,4),min(co, 6)] = [4,6]

Operations on STNs

* PC makes network minimal B2

. <
* Shrinks each r;; to exclude ESCEo S
values that are not in any J = Jr 7
solution

* Also detects inconsistent return inconsistent
networks
* 13 = [ayj, bj] empty =>
Inconsistent

* Graph: dashed lines

[Fix © Iyl

* Constraints that were shrunk T’d .
: : w8y, S
* Can modify PC to make it T, LA
incremental o, \Q -
* Input RS T N S
* A consistent, minimal STN 3 [510] 14

* Anew constraint 7;;
* Incorporate 77} in time 0 (n?)

Pruning TemPlan’s search space

* Take the time constraints in C
* Write them as an STN
* Use Path Consistency to check whether STN is consistent
 |fitis inconsistent, TemPlan can backtrack

Controllability

e Suppose TemPlan gives you a chronicle and you
want to execute it
* Constraints on time points

* Need to reason about these in order to decide when to
start each action

l1 [30, 50] Y 12

bring&move * ¢
“‘\j\
““’k&

uncover ;

t3 [5,10] "ty

,,,,,
\\\\\

E
SRS Y INSTITUT FUR INFORMATIONSSYSTEME
s

Controllability

 Solid lines: duration constraints
* Robot will do bring&move, will take 30 to 50 time units
* Crane will do uncover, will take 5 to 10 time units

* Dashed line: synchronization constraint
* Do not want either the crane or robot to wait long
* At most 5 seconds between the two ending times

l1 [30, 50] Y 12

+ Objective ringamove” 5,
* Choose time points that will neover
satisfy all the constraints t3 15, 10])t4

D) K

A, =

B a‘ﬁ?; UUUUUUUUUUUUUUUUUUU

RSS2 » INSTITUT FUR INFORMATIONSSYSTEME 51
O oeks

Controllability

* Suppose we run PC

PC returns a minimal and consistent
network

There exist time points that satisfy all
the constraints

Would work if we could choose all four
time points
* But we cannot choose t, and t,

t; and t3 are controllable
e Actor can control when each action starts

t, and t, are contingent

e Cannot control how long the actions take

 Random variables that are known
to satisfy the duration constraints

* t, €[ty +30,t; + 50]
* ty €[t3+5,t;3 + 10]

5 T
el ,aﬁ\":z; TTTTTTTTTTTTTTTTTTTTTTTTTTTTTT

l1 [30,50] Y 12

bring&move -
uncover ;

t; [510] " 14

I1 [30,50] _I2

% e *
. K3 Q-\ “, .
o, : .,
* N o, *
/ . o "
hd 0
0

.
Yo

uncover a4
t3 [510] 14

Controllability

* Cannot guarantee that all * But if we start uncover at
constraints will be satisfied t3 < 25
e Start bring&move at f'n'Shed yet
timet. = 0 * We do not yet know
1 how long they will take

* Suppose the durationsare . pyrations might instead be
* bring&move 30, uncover 10 + bring&move 50, uncover 5

T =1 +30=230 * tp =t +50 =50 |
* ty =t3+10 * ty =t3+5<25+5=30
o« ty—t, = ta—20 t
4=tz = 13 . t,~t, <30-50 =-20
* Constraint 14 * Violates 734
* :g : g - t6 brlng&move
15 < =3s '1__[30.50]
3 - ‘:.,.. /25)4“
* Must start uncover 2 TRy AN R
att; < 25 P S
o, RN

5 R & UN
wRSse ~ INSTITUT FUR INFORMATIONSSYSTEME
oy s

STNUs

e STNU (Simple Temporal Network with Uncertainty):
* Ad-tuple (V,V,&,€)

* V ={controllable time points} & ={controllable constraints}
e E.g., starting times of actions
e PV ={contingent time points} e & ={contingent constraints}

* E.g., ending times of actions

e Controllable and contingent constraints:
e Synchronization between two starting times: controllable
e Duration of an action: contingent
» Synchronization between ending points of two actions: contingent

* Synchronization between end of one action, start of another:
e Controllable if the new action starts after the old one ends
* Contingent if the new action starts before the old one ends

* Want a way for the actor to choose time points in V
(starting times) that guarantee that constraints are satisfied

D) k)

iz,
2 WUAYT & UNIVERSITAT ZU LUBECK
RSS2 » INSTITUT FUR INFORMATIONSSYSTEME 54
oy s

25 518

Three kinds of controllability

« (V,V,€,E€)is strongly controllable if the actor can choose values
for V such that success will occur for all values of V that satisfy £

e Actor can choose the values for V offline
* The right choice will work regardless of V

« (V,V,€,€) is weakly controllable if the actor can choose values
for V such that success will occur for at least one combination of
values for V

e Actor can choose the values for V only if the actor knows in advance
what the values of V will be

* Dynamic controllability:
* Game-theoretic model: actor vs. environment
* A player’s strategy: a function o telling what to do in every situation
* Choices may differ depending on what has happened so far

. (17, V,E, é) is dynamically controllable if 3 strategy for an actor that
will guarantee success regardless of the environment’s strategy

D) e

2 WUMAYT & UNIVERSITAT ZU ECK

RSS2 » INSTITUT FUR INFORMATIONSSYSTEME 55
215 sisn”

rSI
4444444

Dynamic Execution

e Fort=20,1,2,..
1. Actor chooses an unassigned set of variables V, € V that all can be assigned
the value t without violating any constraints in €
* = actions the actor chooses to start at time ¢t

2. Simultaneously, environment chooses an unassigned set of variables ﬁt;ﬁ
that all can be assigned the value t without violating any constraints in €

* = actions that finish at time t
3. Each chosen time point v is assighed v « ¢ r;; = [l,u] is violated

_ if t; and t; have values
4. Failure if any of the constraints in £ U £ are violated
* There might be violations that neither V, nor V, caused individually

5. Success if all variables in V UV have values and no constraints are violated

andt; — t; & [I, u]

* Dynamic execution strategies g, for actor, o for environment
* ou(hi—1) ={what events in V to trigger at time t, given h;_4}
* og(hi_1) ={what events in V to trigger at time t, given h;_}

* hy=hey- (O-A(ht—l) U O-E(ht—l))

. (V, D, E, é) is dynamically controllable if 3 g4 that will guarantee
success V og

UNIVERSITAT ZU LUBECK

TTTTTTTTTTTTTTTTTTTTTTTTTTTTTT
& 56

Example

* |Instead of a single bring&move task, two separate bring
and move tasks

t: 115,251 t [0,5] ¢ [15,20] 2

..—).—)
bring move
"“‘[_51 5]
uncover «
.—

t3 [5, 10] t4

* Actor’s dynamic execution strategy
* Trigger t1 at whatever time you want
* Wait and observe t
Trigger t’ at any timefromttot + 5
Triggert; =t' + 10
Foreveryt, € [t + 15,t" + 20] and t, € [t3 + 5,t3 + 10]
o t, €[t"+15,t" + 20]
* Sot,~t; € [-5,5]
So all constraints are satisfied

5 T
el ﬁ/:”«'z; TTTTTTTTTTTTTTTTTTTTTTTTTTTTTT

Dynamic Controllability Checking

* Forachronicle p = (A,S,T,C)
* Temporal constraints in C correspond to an STNU

* Adapt TemPlan to test not only consistency but also dynamic
controllability (*) of the STNU

* If we detect cases where it is not dynamically controllable, then
backtrack

* Use PC as well

 IfPC(V UV, €U E)reduces a contingent constraint, then
(V,V, &, €) is not dynamically controllable
= Can prune this branch
* Ifit does not reduce any contingent constraints, we don’t know
whether (V, V,E, 8) is dynamically controllable
* Only necessary, not sufficient condition
* Two options

* Either continue down this branch and backtrack later if necessary, or

* Extend PC to detect more cases where (V, 17, E, é) isn’t dynamically
controllable

* Additional constraint propagation rules

Additional Constraint Propagation Rules

e Casel:u=0
* t must come before t,

« Add a composition constraint [a’, b']

* Find [a', b'] such that [a’, b'] ¢

e [a'+u,b" +v] =|a,b]
ea ' =a-u,b =b-v

lu,

2
.’—.

g, b]

*
.
.
0
.
.
.
.
.
‘e
.

v] =

[a, b]

o
t

A

le

o
L]
- o
., UiVl
., N
- L]
0. »
A
L2

Conditions

[a,b]

[,

v]

Propagated constraint

(te,t')

t3=>te,t—__>te,u<0 v>0 ts—_>t
a0) [min{a,u},00] |

ts —_— te 3 t —) t8 ve t

ty —ly (te,b) t t' [u,v] t to (te,d") i t/

PO L AN UL N P AN

= contingent

— controllable

a'=a-u b =b-v

Additional Constraint Propagation Rules

: t t,
eCase2:u<0Oandv =0 o—labl o,
e t may be before or aftert, R
. . (t b— ’U) [U,_.:V]
* Add a wait constraint (t,, @) —p (le;
* a defined w.rt. b
some controllable time point ¢,
* Wait until either t, occurs or current time is t; + «,
whichever comes first
Conditions Propagated constraint
’b] b’) 4
to =2y p MMy w>0 t, %, 4

[a,b] (te,u) [min{a,u},o0]
ts _— te 3 ts ——— t t8 > t
to (te,b) y ¢ , t’ [u,v] y ¢ to (te,d") i t/
(te,b) , (uw (tep—u)
ta — t) t —;’ t) te # t ta 4 t

= contingent - controllable a’'=a-u,b’ = b-v

Extended Version of PC

* We want a fast algorithm that TemPlan can run at each
node, to decide whether to backtrack

 There is an extended version of PC that runs in
polynomial time, but it has high overhead

* Possible compromise: use ordinary PC most of the time
* Run extended version occasionally, or at end of search before

returning plan

Conditions Propagated constraint
,b) b’) !
ts g} te ’ t ﬂtﬂ_} te ’ U Z 0 ts i) t
[a,b] [u,v] (te,b’)
ts : te) t ————— t(-_v ’ U < 0) U Z O ts e t
a,b] (te,u) [min{a,u},00]
ts —— te , [/3 ———— t; ts > l,
(te,b) ; (uy] (te,d") /
A lg —>1, 1 ——1 tg ——
va :) t'»b_
R R L Ny g, e

2 WUAYT & UNIVERSITAT ZU LUBECK
% £ INSTITUT FOR INFORMATIONSSYSTEME
g

61

Intermediate Summary

 Constraint management

* Consistency of object constraints
* Constraint-satisfaction problem

e Consistency of time constraints
e STN, solution, minimality, consistency

« PC
e Controllability
* STNU, controllable, contingent
e Dynamic controllability

,,,,,
\\\\\

%% INSTITUT FUR INFORMATIONSSYSTEME

Outline per the Book

4.2 Representation

e Timelines
e Actions and tasks
* Chronicles

4.3 Temporal planning
* Resolvers and flaws
» Search space

4.4 Constraint management
e Consistency of object constraints and time constraints
* Controlling the actions when we don’t know how long they’ll

take
4.5 Acting with temporal models
* Acting with atemporal refinement
e Dispatching
* Observation actions

El I s
SRs22 5 INSTITUT FUR INFORMATIONSSYSTEME
S

63

Atemporal Refinement of Primitive Actions

* Templan’s action templates may correspond to

compound tasks

* |[n RAE, refine into commands with refinement methods

* Templan’s
action template
(descriptive model)

 RAE’s
refinement method
(operational model)

5 AT © UNIVERSITAT ZU LUB
WSSy INSTITUT FUR INFORMATIONSSYSTEME

leave(r,d,w)
assertions: [t,t.] loc(r): (d,w)
[t,,t.] occupant(d): (r,empty)

constraints: t,<t.+ 0,

adj(d,w)
m-leave(r,d,w,e)
task: leave(r,d,w)
pre: loc(r)=d, adj(d,w), exit(e,d,w)
body: until empty(e)

wait(1)
goto(re)

Discussion

* Pros
* Simple online refinement with RAE
e Avoids breaking down uncertainty of contingent duration

* Can be augmented with temporal monitoring functions in
RAE

* E.g., watchdogs, methods with duration preferences

e Cons

* Does not handle temporal requirements at the command
level,

* e.g., synchronise two robots that must act concurrently

* Can augment RAE to include temporal reasoning
* Call it eRAE
* One essential component: a dispatching function

aaaa
SRS Y INSTITUT FUR INFORMATIONSSYSTEME
/////

Acting With Temporal Models

* Dispatching procedure: a dynamic execution strategy

e Controls when to start each action

* Given a dynamically controllable plan with executable
primitives, triggers corresponding commands from online

observations

 Example

* robot 2 needs to leave dock d2)
before robot r1 can enter d2 y

* crane k needs to uncover ¢ y
then put c onto rl y.

13 leave(r2,d2) y

A . S wl
A L i s ts Ve

.—0-.).—0,._)o

leave(rl,d1) inavigate(rl) enter(rl,d2) , / f
5 w U7 8
- ;.q---..).ﬁ ----- -).ﬁo
tﬁ. :6 ~ unstack(k,c) putdown(k,c,rl) leave(rl,d2)
_)() >

unstack(k,c’,p) stack(k,c’,q)
66

:::::
SXRSS2 Y INSTITUT FUR INFORMATIONSSYSTEME

Dispatching

e Let (v, ’]’7, 8, é be a Dispatch (V,V,E,E)

initialise the network

ContrO”abIe S NU while there are time points in PV that
that IS grounded have not been triggered do
» Different from a EEEZE? It]}?z time points in V that have
groun.ded expreSSIOn been newly observed
In IOgIC update enabled
e At least one time trigger every t € enabled s.t. now=u,
point t is instantiated arbitrarily choose other time points
. in enabled and trigger them
* T.hls bOL.IndS ea.Ch. propagate values of trigggegred
:tlme pOInt t Wlthln an timepoints (change [1,,u,] for
|nterva| [lt; ut] each future timepoint ¢t)

e Controllable time point t in the future:
e tis alive if current time now € [, u;]

e tisenabledif

* |tisalive

* For every precedence constraint t’ < t, t’ has occurred

* For every wait constraint (t,, a), t, has occurred or a has expired
* a has expired if t; has occurred and t;, + a < now

Example

* Trigger t, observe leave finish RRESERL N CAA R
)] initialise the network
* Enable and trigger t,, this

while there are time points in PV that

enatﬂest3,t4 have not been triggered do
* Trigger t3 soon enough to update now . o
I t (1 dZ) tti ¢ update the time points in V that have
allow enter(rli, atiime tsg been newly observed
° Trigger t, soon enough to update enabled
allow StCle(k, C’) at time t6 trigger every t € enabled s.t. now=u,
. 1.) arbitrarily choose other time points
* Restofrﬂanlsln1ear. in enabled and trigger them
* Choose each t; propagate values of triggered
after the previous action ends timepoints (change [I,,u,] for

each future timepoint ¢t)

13 leave(r2,d2)

®
: .
ZL1 t2 “'-q t5
.q----.}.‘—o llllll }.—o‘
leave(rl,d1) inavigate(rl) enter(rl,d2)- " t
: s 17
-“ ;.q-u.}.q ----- -).—o
t4-*. :6 ~ unstack(k,c) putdown(k,c,rl) leave(rl,d2)
ﬁ() >

unstack(k,c’,p) stack(k,c’,q)

K
i INSTITUT FUR INFORMATIONSSYSTEME 68

Example from Slide 57

* Trigger t; at time O Dispatch(V,V,€,E)
. . initialise the network
* Wait and Observe t; thlS while there are time points in V that

enables t, have not been triggered do

update now

update the time points in V that have
been newly observed

* Trigger t’ at any time
fromttot+5

* Trigger t3 attime t’ + 10 update enabled
, , trigger every t € enabled s.t. now=u,
¢ t2 € [t + 15:t + 20] arbitrarily choose other time points

o t4 € Hé +5 t3'+ 10]:: in enabled and trigger them
! propagate values of triggered
[t" + 15,t" + 20]

timepoints (change [I1,,u,] for
* SO t4,— t3 (S [— 5, 5] each future timepoint ¢t)

‘ t 10,511 [15,20]
. [15’ 25 [...’....]...).M A
_Lbrmg move . [.5, 5]

(3
.
.

uncover
.—

f5 5, 10]

Dispatching

. Dispatch (V,V,E,E)
°
Propagatlon Step initialise the network
most Costly one while there are time points in PV that
have not been triggered do
° ()(113) update now .
update the time points in V that have
°n the number Of been newly observed
o o f update enabled
remalnlng Uture trigger every t € enabled s.t. now=u,
time points Ta arbitrarily choose other time points

in enabled and trigger them
network propagate values of triggered

timepoints (change [I1,,u,] for
each future timepoint ¢t)

* |deally propagation fast enough to allow iterations
and updates of now consistent with temporal
granularity of plan

Deadline Failures

* Suppose something makes it impossible to start an action
on time

* Do one of the following:

e Stop the delayed action, and look for new plan

* Let the delayed action finish, try to repair the plan by resolving
violated constraints at the STNU propagation level

* E.g., accommodate a delay in navigate by delaying the whole plan
* Let the delayed action finish, try to repair the plan some other way

13 leave(r2,d2)

®
! .
51 5 { ls
.—o.....).‘_)o).ﬁo‘
leave(rl,d1) inavigate(rl) enter(rl,d2)- , /)
P U7 8 9
. t ;._()o),.....).q).—o
3 6 " unstack(k,c) putdown(k,c,rl) leave(rl,d2)
t4 V.ﬁo). 4 7= ’

unstack(k,c’,p) stack(k,c’,q)

SRs22 5 INSTITUT FUR INFORMATIONSSYSTEME
D —els

71

Partial Observability

 Tacit assumption: All occurrences of contingent
events are observable

* Observation needed for dynamic controllability
* In general, not all events are observable
 POSTNU (Partially Observable STNU)

Controllable
Timepoints< Invisible
Contingent<

Observable

* Dynamically controllable?

R
SXRSS2 Y INSTITUT FUR INFORMATIONSSYSTEME
o 8

Observation Actions

* Example
to
‘/1900 19
......,..::\.?.0] ,
" Ty (1, 2] t‘ [20, 25] 't2
working driving =~ ™,
% [-5, 10]
cooking 4
® Controllable
¥¢ Invisible

® Contingent
© observable

Dynamic Controllability

* APOSTNU is dynamically controllable if

* there exists an execution strategy that chooses future
controllable points to meet all the constraints, given the
observation of past visible points

 Observable # visible

 Observable means it will be known when observed
* |t can be temporarily hidden

Controllable
Timepoints< Invisible
Contingent< Visible
Observable< >
Hidden

D) K

A, =

B A‘ﬁ?; UUUUUUUUUUUUUUUUUUU

RSS2 » INSTITUT FUR INFORMATIONSSYSTEME 74
O oeks

Intermediate Summary

* Acting
* Atemporal refinement
* eRAE
* Dispatching
* Alive, enabled
e Deadline failures
* Partial observability
* |nvisible, observable (hidden/visible)

,,,,,
\\\\\

% INSTITUT FUR INFORMATIONSSYSTEME

Outline per the Book

4.2 Representation
* Timelines
e Actions and tasks
e Chronicles

4.3 Temporal planning
* Resolvers and flaws
* Search space

4.4 Constraint management
» Consistency of object constraints and time constraints
e Controlling the actions when we don’t know how long they’ll take

4.5 Acting with temporal models
* Acting with atemporal refinement
* Dispatching
* Observation actions

— Next: Planning and Acting with Nondeterministic Models

5 T
el ,aﬁ\":z; TTTTTTTTTTTTTTTTTTTTTTTTTTTTTT

