Advanced Topics Data Science and Al Automated Planning and Acting

Simple Decision Making

Tanya Braun

INIVERSITÄT ZU LÜBECK INSTITUT FÜR INFORMATIONSSYSTEME

Content

- 1. Planning and Acting with 6. Making Complex **Deterministic** Models Decisions
- 2. Planning and Acting with 7. Planning and Acting with **Refinement** Methods
- 3. Planning and Acting with 8. Provably Beneficial AI **Temporal** Models
- 4. Planning and Acting with Nondeterministic Models
- 5. Making Simple Decisions
 - **Utility Theory** а.
 - **Decision Theory** b.
 - **Relational Domains C**.

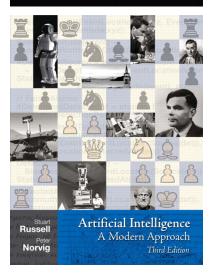
- - **Probabilistic** Models
- Other: open world, perceiving, learning
 - If time permits

Literature

- We now switch from
 - Automated Planning and Acting
 - Malik Ghallab, Dana Nau, Paolo Traverso
 - Main source
- to
 - Artificial Intelligence: A Modern Approach (3rd ed.)
 - Stuart Russell, Peter Norvig
 - Decision theory
 - Ch. 16 + 17
 - Plus recent research papers mentioned in footnotes

Automated Planning and Acting

> Malik Ghallab, Dana Nau and Paolo Traverso

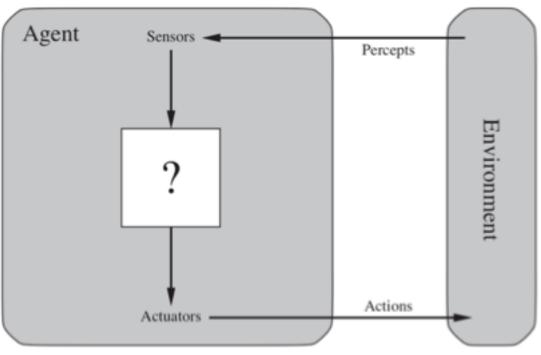


Acknowledgements

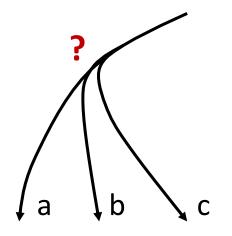
- Material from Lise Getoor, Jean-Claude Latombe, Daphne Koller, and Stuart Russell
- Compiled by Ralf Möller

Decision Making under Uncertainty

- Many environments have multiple possible outcomes
- Some of these outcomes may be good; others may be bad
- Some may be very likely; others unlikely
- What's a poor agent going to do??

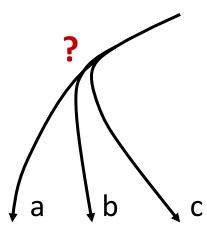


Nondeterministic vs. Probabilistic Uncertainty



Nondeterministic model

- {*a*, *b*, *c*}
- Decision that is best for worst case



Probabilistic model

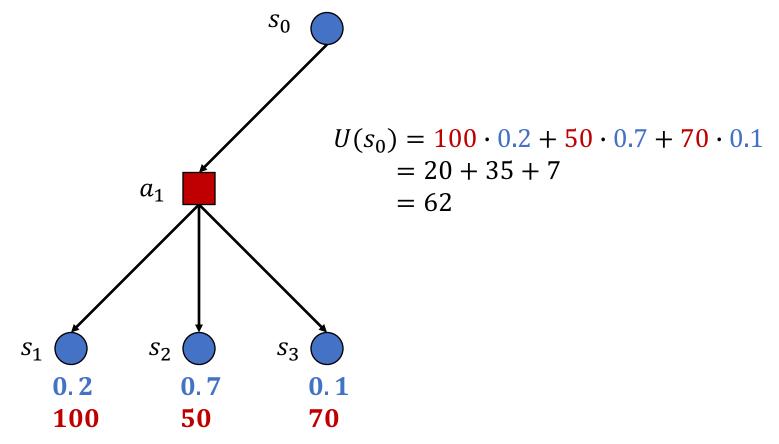
- { $a(p_a), b(p_b), c(p_c)$ }
- Decision that maximises expected utility value

Expected Utility

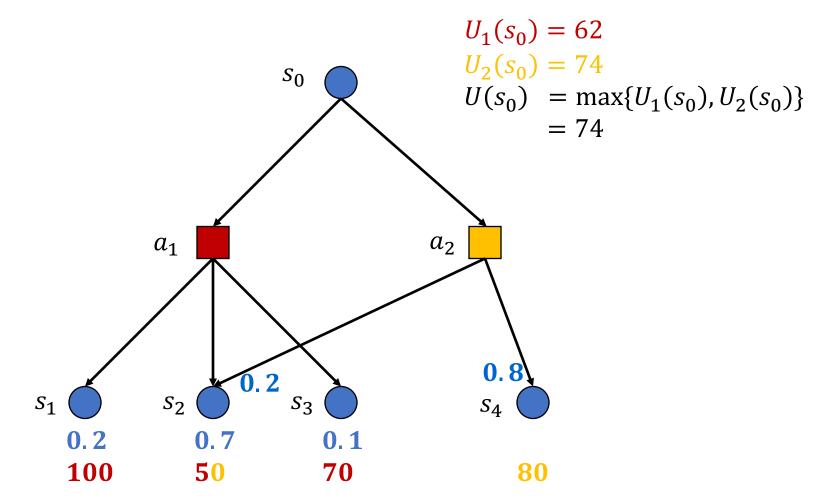
- Random variable X with n range values x_1, \ldots, x_n and distribution (p_1, \ldots, p_n)
 - E.g.: X is the state reached after doing an action A = a under uncertainty
- Function *U* of *X*
 - E.g., U is the utility of a state
- The expected utility of A = a is

$$EU[A = a] = \sum_{i=1}^{n} P(X = x_i | A = a) \cdot U(X = x_i)$$

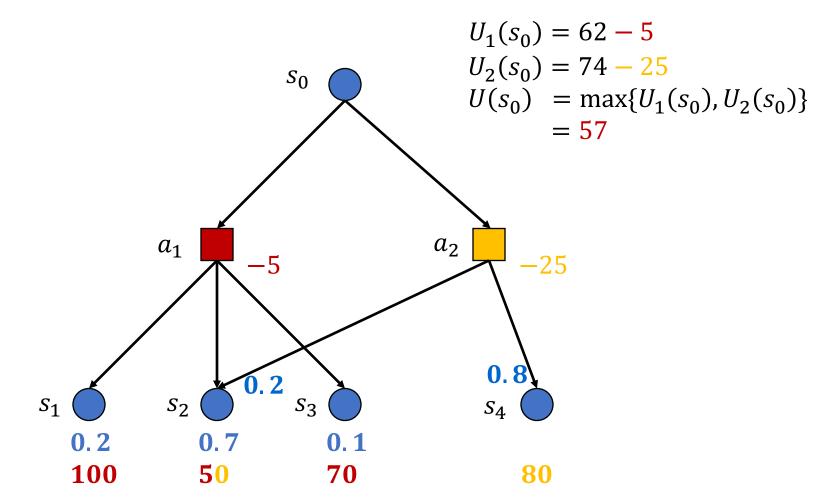
One State/One Action Example



One State/Two Actions Example



Introducing Action Costs



MEU Principle

- A rational agent should choose the action that maximizes agent's expected utility
- This is the basis of the field of decision theory
- The MEU principle provides a normative criterion for rational choice of action

Al is solved!!!

Not quite...

- Must have complete model of:
 - Actions
 - Utilities
 - States
- Even if you have a complete model, it might be computationally intractable
- In fact, a truly rational agent takes into account the utility of reasoning as well – bounded rationality
- Nevertheless, great progress has been made in this area, and we are able to solve much more complex decision-theoretic problems than ever before

Setting

- Agent can perform actions in an environment
 - Environment
 - Episodic, i.e., not sequential
 - Next episode does not depend on the previous episode
 - So called static models (vs. dynamic/temporal, next lecture)
 - Non-deterministic
 - Outcomes of actions not unique
 - Associated with probabilities (→ probabilistic model)
 - Partially observable
 - Latent, i.e., not observable, random variables
 - Agent has preferences over states/action outcomes
 - Encoded in utility or utility function \rightarrow Utility theory
- "Decision theory = Utility theory + Probability theory"
 - Model the world with a probabilistic model
 - Model preferences with a utility (function)
 - Find action that leads to the maximum expected utility, also called decision making
 - Lecture title: "Simple decisions" because episodic

Outline (mainly Ch. 16)

Utility theory

- Preferences
- Utilities
- Dominance
- Preference structure

Decision theory

- Decision networks
- Value of information
- Relational domains

Preferences

- An agent chooses among prizes (*A*, *B*, etc.) and lotteries, i.e., situations with uncertain prizes
 - Outcome of a nondeterministic action is a lottery
- Lottery L = [p, A; (1 p), B]
 - A and B can be lotteries again
 - Prizes are special lotteries: [1, X; 0, not X]
 - More than two outcomes:

•
$$L = [p_1, S_1; p_2, S_2; \dots; p_n, S_n], \sum_{i=1}^n p_i = 1$$

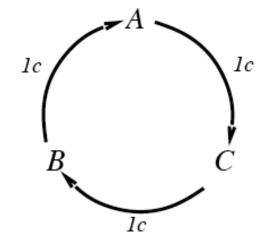
- Notation
 - A > B A preferred to B
 - $A \sim B$ indifference between A and B
 - $A \gtrsim B$ B not preferred to A

Rational preferences

- Idea: preferences of a rational agent must obey constraints
- Rational preferences ⇒ behaviour describable as maximisation of expected utility

Rational preferences contd.

- Violating constraints leads to self-evident irrationality
- Example
 - An agent with intransitive preferences can be induced to give away all its money
 - If B > C, then an agent who has C would pay (say) 1 cent to get B
 - If A ≻ B, then an agent who has B would pay (say) 1 cent to get A
 - If C > A, then an agent who has A would pay (say) 1 cent to get C



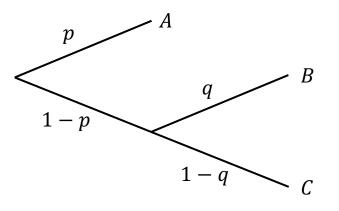
Axioms of Utility Theory

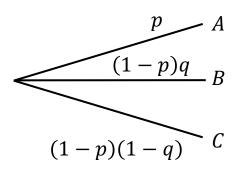
- 1. Orderability
 - $(A \succ B) \lor (A \prec B) \lor (A \sim B)$
 - {≺, ≻, ~} jointly exhaustive, pairwise disjoint
- 2. Transitivity
 - $(A \succ B) \land (B \succ C) \Rightarrow (A \succ C)$
- 3. Continuity
 - $A > B > C \Rightarrow$ $\exists p [p, A; 1 - p, C] \sim B$
- 4. Substitutability
 - $A \sim B \Rightarrow$ [p, A; 1 - p, C]~[p, B; 1 - p, C]
 - Also holds if replacing \sim with \succ
- 5. Monotonicity

IIVERSITÄT ZU LÜBECK NSTITUT FÜR INFORMATIONSSYSTEME

• $A \succ B \Rightarrow$ $(p \ge q \Leftrightarrow)$ [p, A; 1 - p, B] $\gtrsim [q, A; 1 - q, B])$

- 6. Decomposability
 - $[p, A; 1-p, [q, B; 1-q, C]] \sim [p, A; (1-p)q, B; (1-p)(1-q), C]$





Decomposability: There is no fun in gambling.

And Then There Was Utility

- Theorem (Ramsey, 1931; von Neumann and Morgenstern, 1944):
 - Given preferences satisfying the constraints, there exists a real-valued function U such that

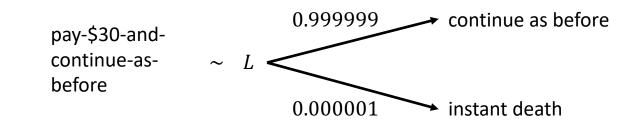
$$U(A) \ge U(B) \Leftrightarrow A \gtrsim B$$
$$U([p_1, S_1; ...; p_n, S_n]) = \sum_i p_i U(S_i)$$

- MEU principle
 - Choose the action that maximises expected utility
- Note: an agent can be entirely rational (consistent with MEU) without ever representing or manipulating utilities and probabilities
 - E.g., a lookup table for perfect tictactoe

Utilities

VERSITÄT ZU LÜBECK

- Utilities map states to real numbers. Which numbers?
- Standard approach to assessment of human utilities:
 - Compare a given state A to a standard lottery L_p that has
 - "best possible outcome" \top with probability p
 - "worst possible catastrophe" \perp with probability (1-p)
 - Adjust lottery probability p until $A \sim L_p$



Utility scales

- Normalised utilities: $u_{T} = 1.0$, $u_{\perp} = 0.0$
 - Utility of lottery $L \sim$ (pay-\$30-and-continue-as-before): $U(L) = u_{T} \cdot 0.999999 + u_{\perp} \cdot 0.000001 = 0.999999$
- Micromorts: one-millionth chance of death
 - Useful for Russian roulette, paying to reduce product risks, etc.
- QALYs: quality-adjusted life years
 - Useful for medical decisions involving substantial risk
- Behaviour is invariant w.r.t. positive linear transformation

$$U'(x) = k_1 U(x) + k_2$$

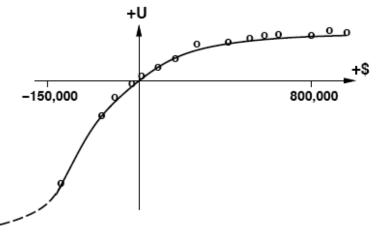
• No unique utility function; U'(x) and U(x) yield same behaviour

Ordinal Utility Functions

- With deterministic prizes only (no lottery choices), only ordinal utility can be determined, i.e., total order on prizes
 - Ordinal utility function also called value function
 - Provides a ranking of alternatives (states), but not a meaningful metric scale (numbers do not matter)

Money

- Money does not behave as a utility function
- Given a lottery L with expected monetary value EMV(L), usually $U(L) < U(S_{EMV(L)})$, i.e., people are risk-averse
 - S_n : state of possessing total wealth \$n
 - Utility curve
 - For what probability p am I indifferent between a prize x and a lottery [p, M; (1 p), S0] for large M?
 - Right: Typical empirical data, extrapolated with risk-prone behaviour for negative wealth



Money Versus Utility

- Money \neq Utility
 - More money is better, but not always in a linear relationship to the amount of money
- Expected Monetary Value
 - Risk-averse
 - $U(L) < U(S_{EMV(L)})$
 - Risk-seeking
 - $U(L) > U(S_{EMV(L)})$
 - Risk-neutral
 - $U(L) = U(S_{EMV(L)})$
 - Linear curve
 - For small changes in wealth relative to current wealth

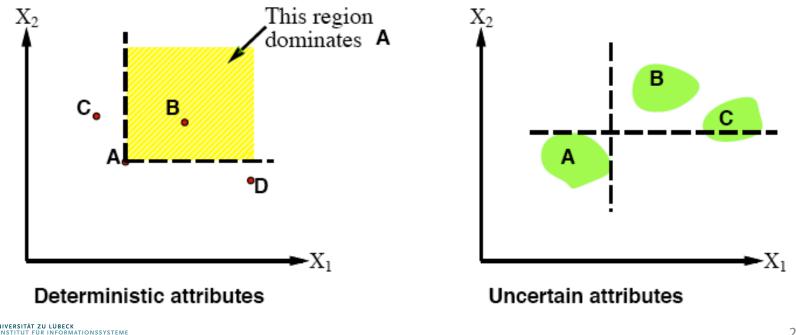


Multiattribute Utility Theory

- A given state may have multiple utilities
 - ...because of multiple evaluation criteria
 - ...because of multiple agents (interested parties) with different utility functions
- We will look at
 - Cases in which decisions can be made *without* combining the attribute values into a single utility value
 - Strict dominance
 - Cases in which the utilities of attribute combinations can be specified very concisely

Strict dominance

- Typically define attributes such that U is monotonic in each →
- Strict dominance
 - Choice *B* strictly dominates choice *A* iff
 - $\forall i : X_i(B) \ge X_i(A)$ (and hence $U(B) \ge U(A)$)

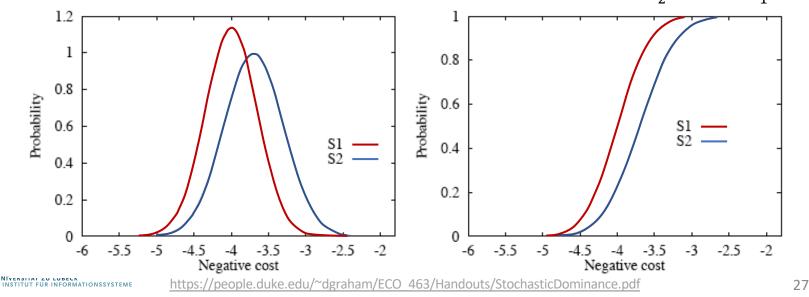


Stochastic dominance

- Cumulative distribution p_1 first-order stochastically dominates distribution p_2 iff

 $\forall x: p_1(x) \le p_2(x)$

- With a strict inequality for some interval
- Then, $E_{p_1} > E_{p_2}$ (*E* referring to expected value)
 - The reverse is not necessarily true
- Does not imply that every possible return of the superior distribution is larger than every possible return of the inferior distribution
- Example:
 - As we have *negative costs*, S2 dominates S1 with $\forall x : p_{S_2}(x) \le p_{S_1}(x)$



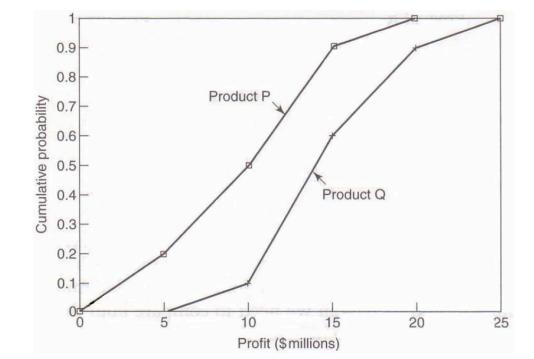
Example

• Product P

Profit (\$m)	Probability
0 to under 5	0.2
5 to under 10	0.3
10 to under 15	0.4
15 to under 20	0.1

• Product Q

Profit (\$m)	Probability
0 to under 5	0.0
5 to under 10	0.1
10 to under 15	0.5
15 to under 20	0.3
20 to under 25	0.1



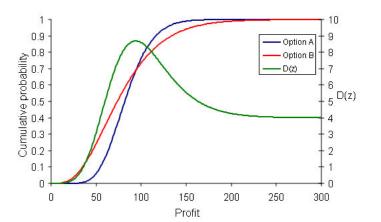
Stochastic dominance

- Cumulative distribution p_1 second-order stochastically dominates distribution p_2 iff

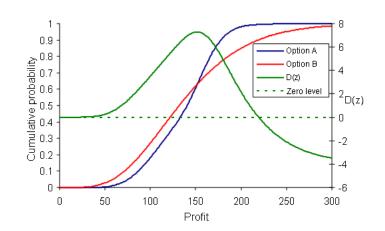
$$\forall t: \int_{-\infty}^{t} p_1(x) \, dx \leq \int_{-\infty}^{t} p_2(x) \, dx$$

• Or:
$$D(t) = \int_{-\infty}^{t} p_2(x) - p_1(x) \, dx \ge 0$$

- With a strict inequality for some interval
- Then, $E_{p_1} \ge E_{p_2}$ (*E* referring to expected value)
- Examples with t = z:
 - Second-order stochastic dominance



No dominance



https://people.duke.edu/~dgraham/ECO_463/Handouts/StochasticDominance.pdf Figures: https://www.vosesoftware.com/riskwiki/Stochasticdominancetests.php

Preference Structure

- To specify the complete utility function $U(x_1, ..., x_n)$, we need d^n values in the worst case
 - *n* attributes
 - each attribute with d distinct possible values
 - Worst case meaning: Agent's preferences have no regularity at all
- Supposition in multiattribute utility theory
 - Preferences of typical agents have much more structure
- Approach
 - Identify regularities in the preference behaviour
 - Use so-called representation theorems to show that an agent with a certain kind of preference structure has a utility function

$$U(x_1, \dots, x_n) = F[f_1(x_1), \dots, f_n(x_n)]$$

• where F is hopefully a simple function such as addition

Preference structure: Deterministic

- X_1 and X_2 preferentially independent (PI) of X_3 iff
 - Preference between $\langle x_1, x_2, x_3 \rangle$ and $\langle x'_1, x'_2, x_3 \rangle$ does not depend on x_3
 - E.g., (Noise, Cost, Safety)
 - (20,000 suffer, \$4.6 billion, 0.06 deaths/month)
 - (70,000 suffer, \$4.2 billion, 0.06 deaths/month)
- Theorem (Leontief, 1947)
 - If every pair of attributes is PI of its complement, then every subset of attributes is PI of its complement
 - Called mutual PI (MPI)
- Theorem (Debreu, 1960):
 - MPI $\Rightarrow \exists$ additive value function

$$V(x_1, \dots, x_n) = \sum_i V_i(x_i)$$

- Hence assess *n* single-attribute functions
- Often a good approximation

Preference structure: Stochastic

- Need to consider preferences over lotteries
- X is utility-independent (UI) of Y iff
 - Preferences over lotteries in *X* do not depend on *y*
- Mutual UI (Keeney, 1974): each subset is UI of its complement $\Rightarrow \exists$ *multiplicative* utility function

For
$$n = 3$$
:
 $U = k_1U_1 + k_2U_2 + k_3U_3$
 $+k_1k_2U_1U_2 + k_2k_3U_2U_3 + k_3k_1U_3U_1$
 $+k_1k_2k_3U_1U_2U_3$

 I.e., requires only n single-attribute utility functions and n constants

Intermediate Summary

- Preferences
 - Preferences of a rational agent must obey constraints
- Utilities
 - Rational preferences = describable as maximisation of expected utility
 - Utility axioms
 - MEU principle
- Dominance
 - Strict dominance
 - First-order + second-order stochastic dominance
- Preference structure
 - (Mutual) preferential independence
 - (Mutual) utility independence

Outline

Utility theory

- Preferences
- Utilities
- Dominance
- Preference structure

Decision theory

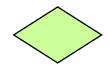
- Decision networks
- Value of information
- Relational domains

Decision Networks

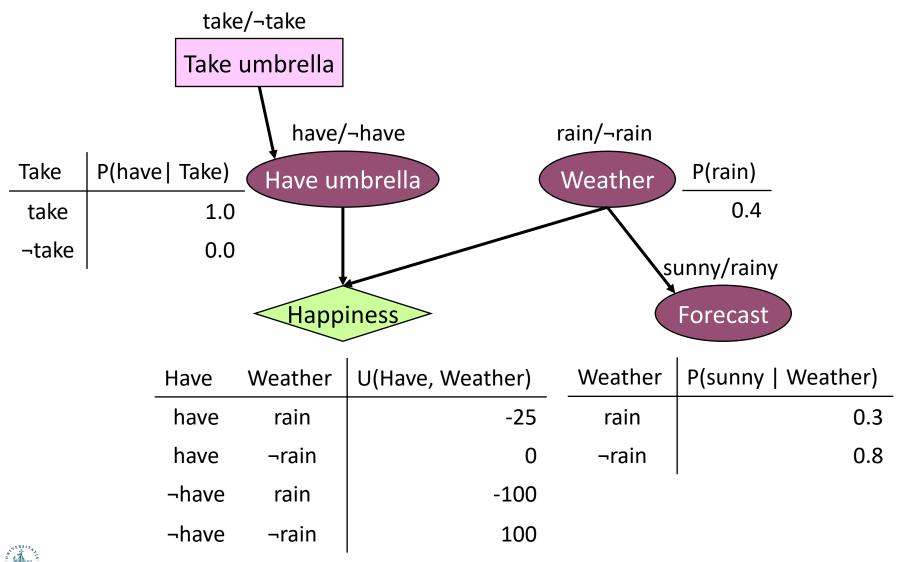
- Extend Bayesian networks (BNs) to handle actions and utilities
 - Or any other probabilistic (graphical) formalism
- Also called influence diagrams
- Use BN inference methods to solve MEU problems
- Perform Value of Information calculations

Decision Networks cont.

- Chance nodes: random variables
 - As in BNs
- Decision nodes: actions that decision maker can take
- Utility/value nodes: the utility of the outcome state



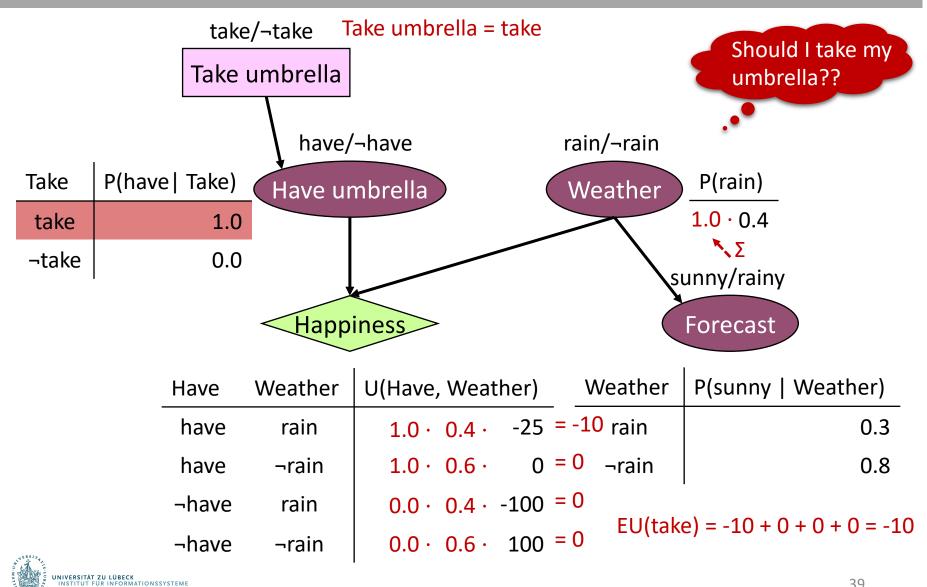
Umbrella Network



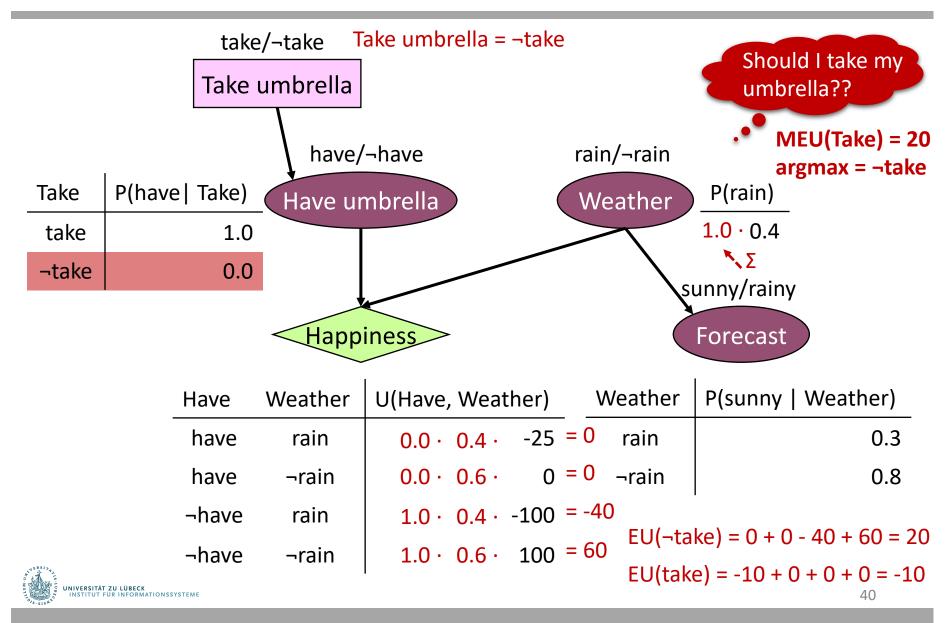
Evaluating Decision Networks

- Set the evidence variables for current state
- For each possible value of the decision node:
 - Set decision node to that value
 - Calculate the posterior probability of the parent nodes of the utility node, using BN inference
 - Calculate the resulting utility for action
- Return the action with the highest utility

Umbrella Network



Umbrella Network



Decision Making in Decision Nets

- Assumes that all available information provided to agent before it makes its decision
 - Hardly ever the case
 - Know what questions to ask!
- Information value theory
 - Choose what information to acquire
 - Assume that prior to selecting an action represented by a decision node, the agent can acquire the value of any of the potentially observable chance nodes
 - Simplified version of sequential decision making (next lecture)
 - Observation actions affect only agent's belief state, not the external physical state

Value of information

- Idea: Compute value of acquiring each possible piece of evidence
 - Can be done directly from decision network
- Example: Buying oil drilling rights
 - Two blocks A and B, exactly one has oil, worth k
 - Prior probabilities 0.5 each, mutually exclusive
 - Current price of each block is $k/_2$
 - "Consultant" offers accurate survey of A
 - Fair price for survey?
 - Solution: Compute expected value of information
 - expected value of best action given the information minus expected value of best action without information
 - Survey may say "oil in A" or "no oil in A", probability 0.5 each (given!)
 - $= [0.5 \cdot value of "buy A" given "oil in A"]$

$$1 + 0.5 \cdot \text{value of "buy" B" given "no oil in A"]} - 0$$

 $= (0.5 \cdot \frac{k}{2}) + (0.5 \cdot \frac{k}{2}) - 0^{3} = \frac{k}{2}$

General formula

• Current evidence E, current best action α , possible action outcomes S_i , potential new evidence E_i

$$EU(\alpha|E) = \max_{a} \sum_{i} U(S_i) P(S_i | E, a)$$

• Suppose we knew $E_j = e_{jk}$, then we would choose a_{jk} such that

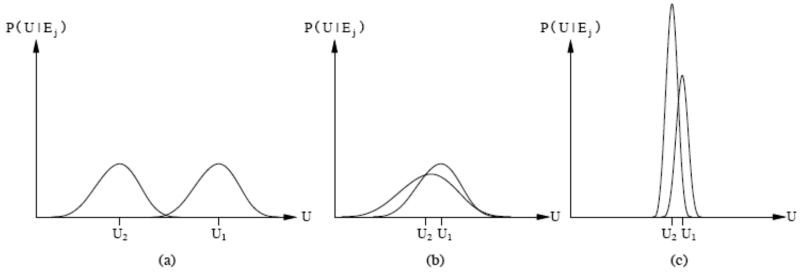
$$EU\left(\alpha_{e_{jk}} \mid E, E_j = e_{jk}\right) = \max_{a} \sum_{i} U(S_i) P\left(S_i \mid E, a, E_j = e_{jk}\right)$$

- E_j is a random variable whose value is currently unknown \Rightarrow must compute expected gain over all possible values: $VPI_E(E_j)$ $= \left(\sum_k P(E_j | E) EU(\alpha_{e_{jk}} | E, E_j = e_{jk})\right) - EU(\alpha, E)$
 - VPI = value of perfect information

Properties of VPI

- Non-negative in expectation $\forall j, E : VPI_E(E_j) \ge 0$
- Non-additive consider, e.g., obtaining E_j twice $VPI_E(E_j, E_k) \neq VPI_E(E_j) + VPI_E(E_k)$
- Order-independent $VPI_E(E_j, E_k) = VPI_E(E_j) + VPI_{E,E_j}(E_k)$ $= VPI_E(E_k) + VPI_{E,E_k}(E_j)$
- Note: When more than one piece of evidence can be gathered, maximising VPI for each to select one is not always optimal
 - \Rightarrow Evidence-gathering becomes a sequential decision problem

Qualitative behaviors



- a) Choice is obvious, information worth little
- b) Choice is non-obvious, information worth a lot
- c) Choice is non-obvious, information worth little
- Information has value to the extent that it is likely to cause a change of plan and to the extent that the new plan will be significantly better than the old plan

Information Gathering Agent

```
function INFORMATION-GATHERING-AGENT(percept)
returns: an action
persistent: D, a decision network

integrate percept into D
j ← the value that maximises VPI(Ej)/Cost(Ej)
if VPI(Ej) > Cost(Ej) then
    return Request(Ej)
else
    return the best action from D
```

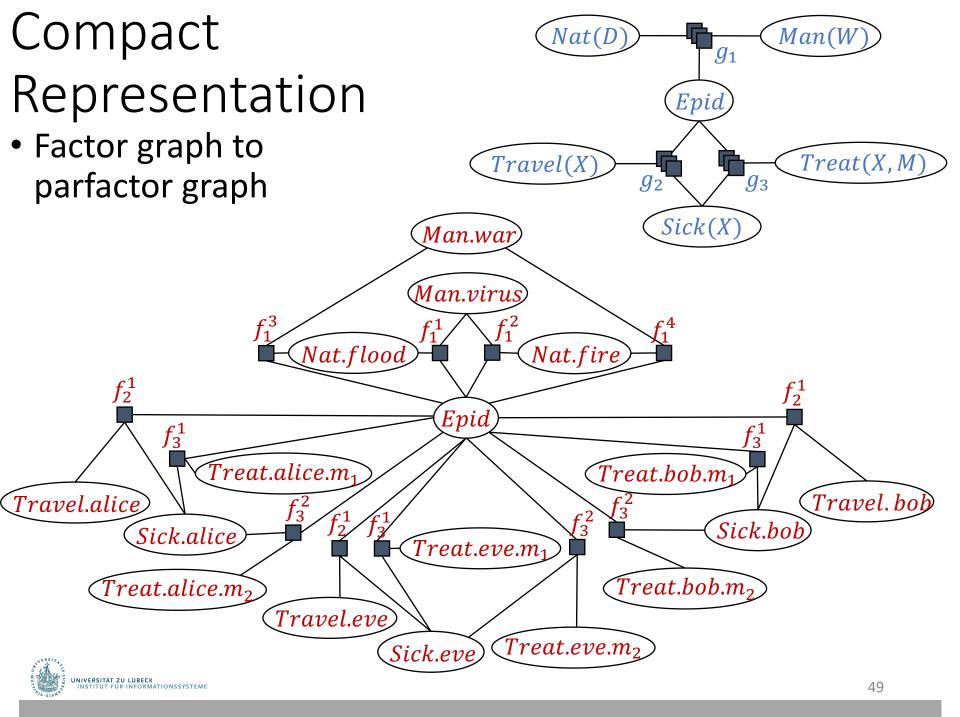
- Ask questions $Request(E_i)$ in a reasonable order
- Avoid irrelevant questions
- Take into account importance of piece of information j in relation to $Cost(E_j)$

Decision Making in Decision Nets II

- Solving MEU/query answering problems intractable in general
 - Query answering: Computing probability distributions (given evidence)
 - Exponential in tree width of the graphical model
 - Tree width ≈ Largest number of arguments in a table/factor to occur during calculations
- Regularities in graphical model may allow to reduce the tree width by explicitly encoding them and using them during calculations

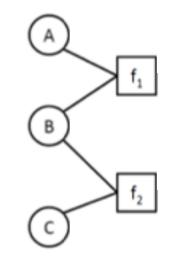
Relational Domains

- Relations between objects/individuals/constants
 - Regularities/symmetries
- Constructs of first-order logic to parameterise a propositional formalism
 - Symmetries encoded compactly using logical variables
 - Parameterised random variables (PRVs) to denote sets of random variables behaving identically

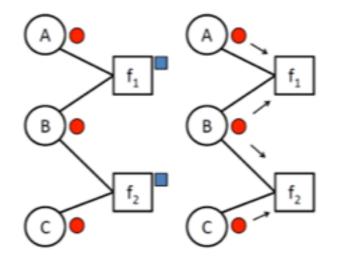


- If you have a (propositional) model available*
- Colour nodes according to the evidence you have
 - No evidence, say red
 - State "one", say brown
 - State "two", say orange
 - ...
- Colour factors distinctively according to their equivalences For instance, assuming f₁ and f₂ to be identical and B appears at the second position within both, say blue

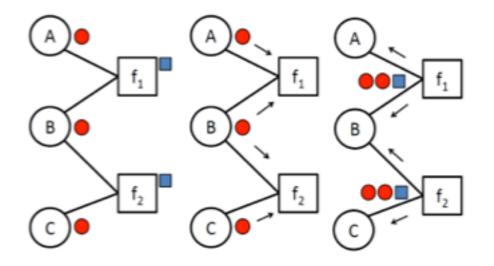
*can also be done at the "lifted", i.e., relational level



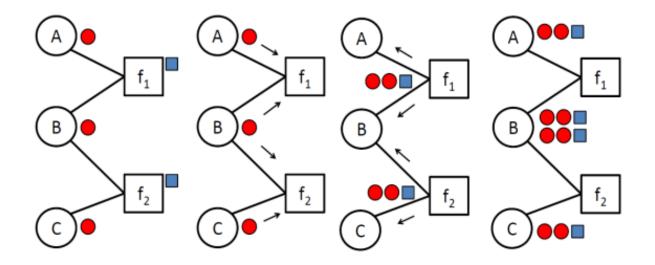
1. Each factor collects the colours of its neighbouring nodes



- 1. Each factor collects the colours of its neighbouring nodes
- 2. Each factor "signs" its colour signature with its own colour

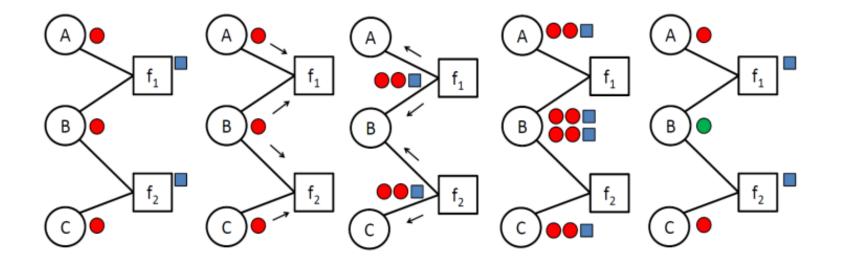


- 1. Each factor collects the colours of its neighbouring nodes
- 2. Each factor "signs" its colour signature with its own colour
- 3. Each node collects the signatures of its neighbouring factors



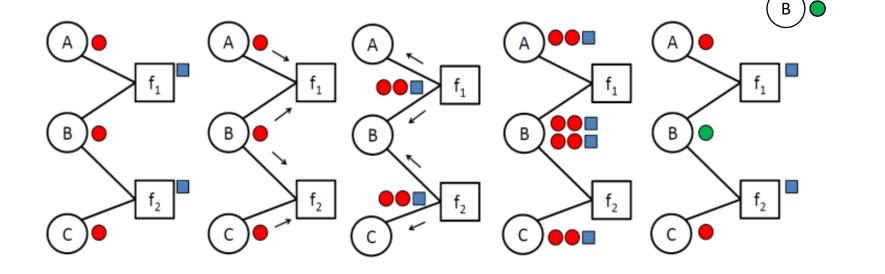
Slides @Kersting, modified

- 1. Each factor collects the colours of its neighbouring nodes
- 2. Each factor "signs" its colour signature with its own colour
- 3. Each node collects the signatures of its neighbouring factors
- 4. Nodes are recoloured according to the collected signatures



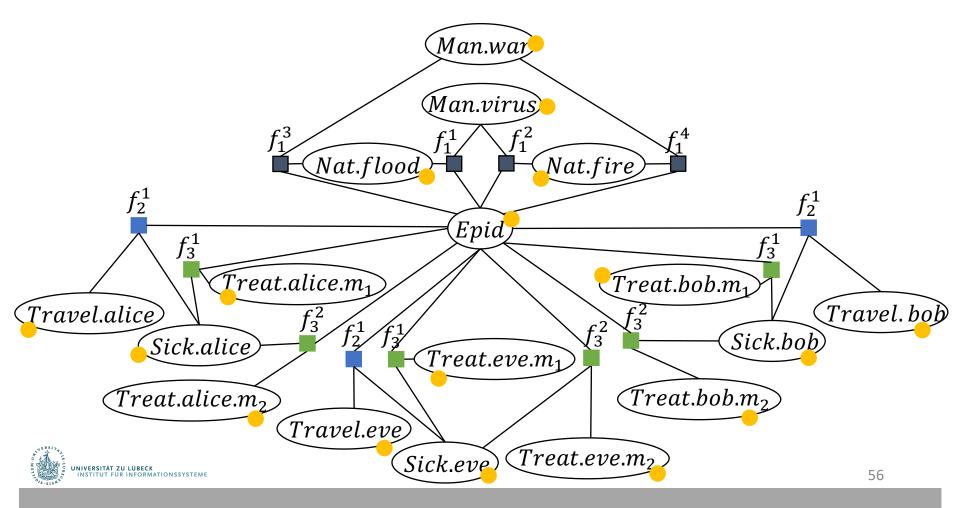
Slides @Kersting, modified

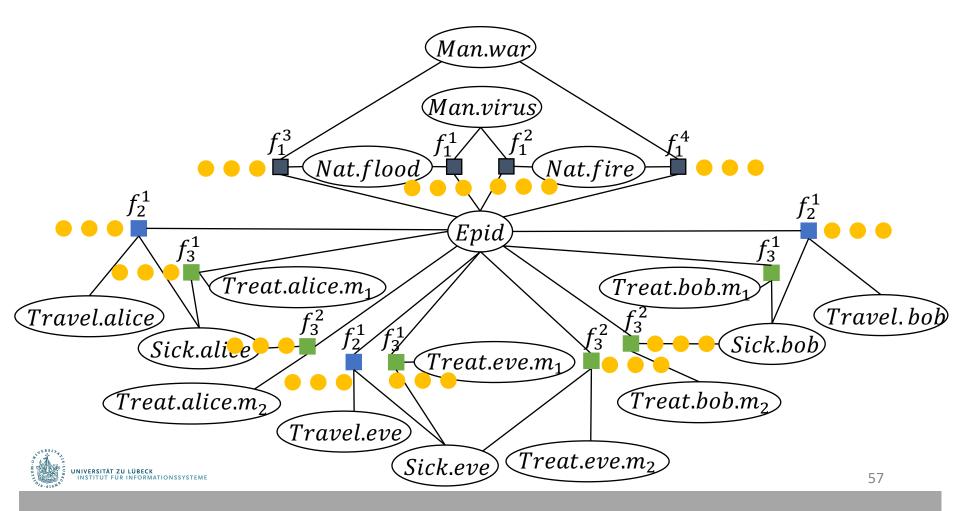
- 1. Each factor collects the colours of its neighbouring nodes
- 2. Each factor "signs" its colour signature with its own colour
- 3. Each node collects the signatures of its neighbouring factors
- 4. Nodes are recoloured according to the collected signatures
- 5. If no new colour is created stop, otherwise go back to 1

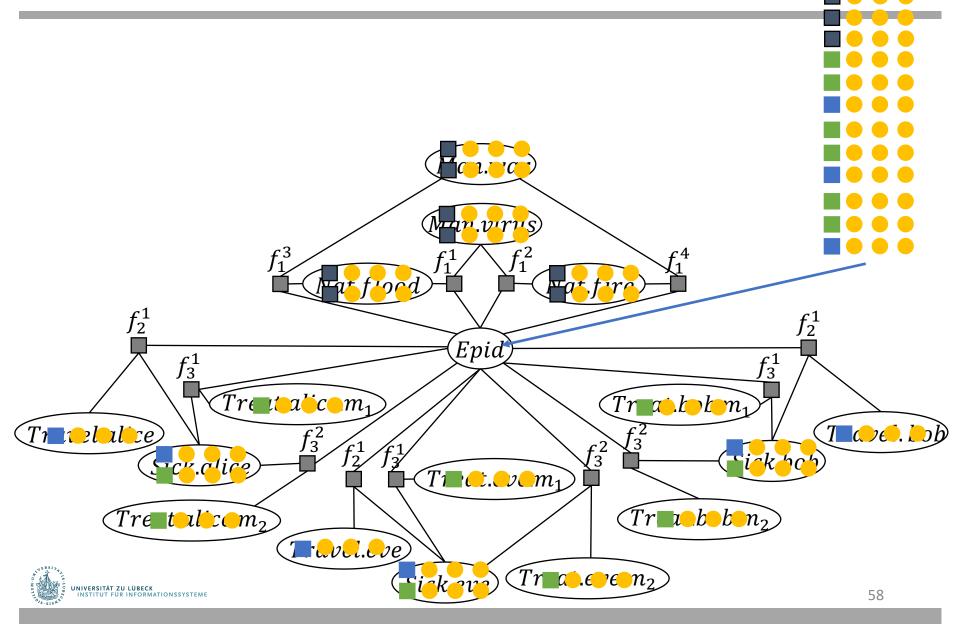


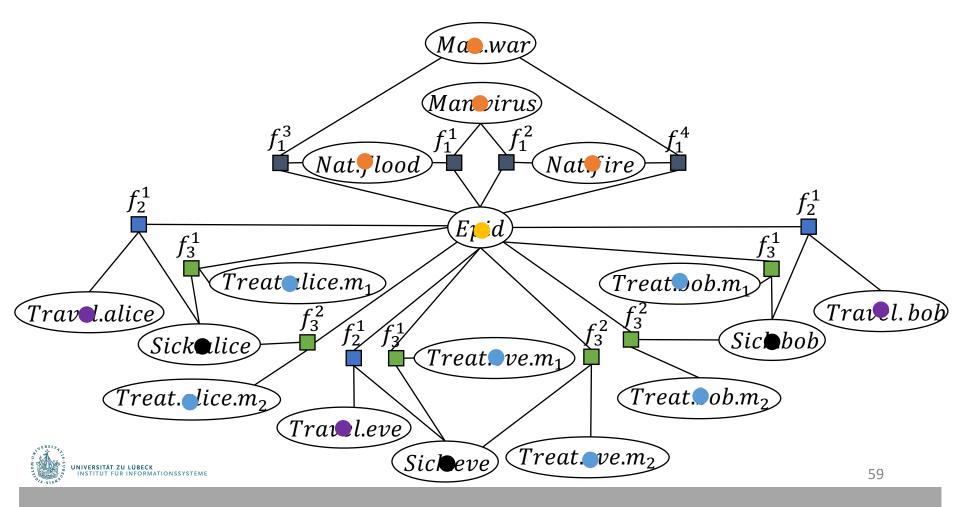
Slides @Kersting, modified

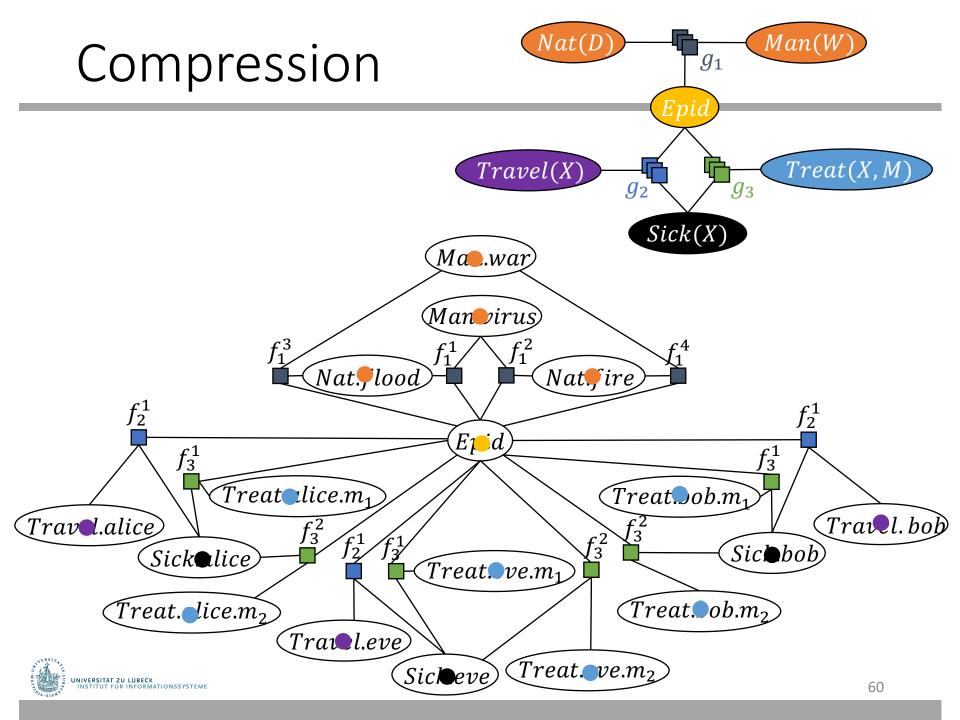
f₁₂







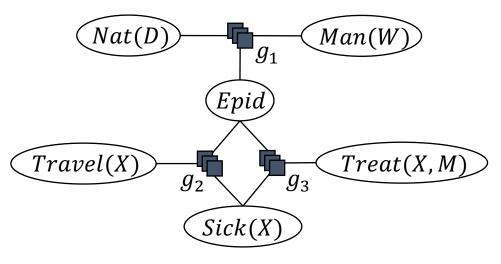




Lifting

- Factors with PRVs = parfactors
 - Undirected (graphical) Model G
 - E.g., *g*₂

Travel(X)	Epid	Sick(X)	g_2
false	false	false	5
false	false	true	0
false	true	false	4
false	true	true	6
true	false	false	4
true	false	true	6
true	true	false	2
true	true	true	9



Grounding

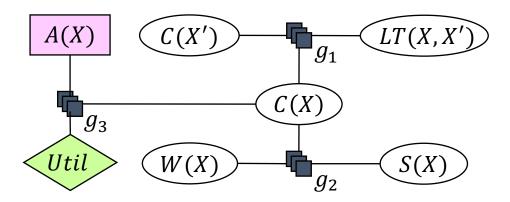
- Grounding: replace logical variables with constants
 - e.g., $gr(g_2) = \{f_2^1, f_2^2, f_2^3\}$
- Semantics: ground + build full joint $P_G = \frac{1}{Z} \prod_{f \in gr(G)} f$

		Travel(eve)	Epid	Sick(eve)	f_{2}^{1}	$(h \circ h)$	Enid	Cicle(hoh)	£3
	Enid	false	false	false	5	(bob)		Sick(bob)	
Travel(alice)	Epi	false	false	true	0	se	false	false	5
false	fals			false	4	se	false	true	0
false	fals		true	Idise		se	true	false	4
false		false	true	true	6	se	true	true	6
	tru	true	false	false	4				-
false	tru	true	false	true	6	<i>Ie</i>	false	false	4
true	fals			false	2	Ie	false	true	6
true	fals	true	true	Idise		ie	true	false	2
		true	true	true	9 	IP IP	true	true	9
true	tru	e taise	۷				uuc	<i>uu</i>	,
true	tru	e true	9						

David Poole: First-order Probabilistic Inference, 2003.

Lifted Decision Networks

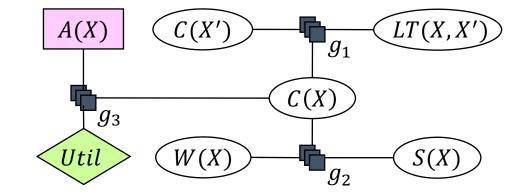
- Decision parameterised model
 - Parfactor graph + utility nodes + action nodes
 - Example
 - Condition of water retention (C) correlated with weight (W)
 - *LT* = living together, *S* = scale works
 - Ranges for PRVs: true/false for S(X), LT(X, X'); normal/deviation/retains water for C(X); steady/falling/rising for W(X)
 - Action range: do_{not} , do_{vis} for do nothing, visit patient



Marcel Gehrke, TB, Ralf Möller, Alexander Waschkau, Christoph Strumann, Jost Steinhäuser: Lifted Maximum Expected Utility, 2019.

Evaluation: Example

- Evaluation as with propositional decision networks
 - Using lifted inference for eliminations
 - Compute actions at once for group of indistinguishable constants
 - No evidence = no distinguishable features
 - With W(X) = true as evidence for some \hat{X} : two groups, four action "plans"
 - 2 actions · 2 groups



$$\mathcal{E}U(A(X) = do_{not})$$

$$\propto \left(\sum_{c,c' \in \mathcal{R}(C(X))} g_3(A(X) = do_{not}, C(X) = c)\right)$$

$$\sum_{l \in \mathcal{R}(LT(X,X'))} g_1(C(X) = c, LT(X,X') = l, C(X') = c')$$

$$\sum_{w \in \mathcal{R}(W(X))} \sum_{s \in \mathcal{R}(S(X))} g_2(W(X) = w, S(X) = s)\right)^{|dom(X)|}$$

MEU: same action for all X

Marcel Gehrke, TB, Ralf Möller, Alexander Waschkau, Christoph Strumann, Jost Steinhäuser: Lifted Maximum Expected Utility, 2019.

 $EU(A(X) = do_{vis})$

Lifted Decision Making

- Solving MEU/query answering problems intractable in general
 - Exponential in tree width of the graphical model
- Explicitly encoded symmetries allows for tractable inference in terms of domain sizes for logical variables
 - Polynomial in domain size

Guy Van den Broeck: On the Completeness of First-order Knowledge Compilation for Lifted Probabilistic Inference, NIPS-11.

Nima Taghipour, Jesse Davis, and Hendrik Blockeel: First-order Decomposition Trees, NIPS-13.

- Of course: the goal should be linear and better
- Tractability through exchangeability

Mathias Niepert and Guy Van den Broeck: Tractability through Exchangeability: A New Perspective on Efficient Probabilistic Inference, AAAI-14.

Intermediate Summary

- Decision networks
 - Utilities, actions, random variables
 - Evaluation: for each action setting, eliminate everything else
- Value of information
 - How much is a piece of information worth?
- Relational domains
 - First-order constructs for compact representation
 - Same action for sets of indistinguishable constants

Outline

Utility theory

- Preferences
- Utilities
- Dominance
- Preference structure

Decision theory

- Decision networks
- Value of information
- Relational domains

⇒ Next: Making Complex Decisions

