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Literature
• We now switch from 
• Automated Planning and Acting

• Malik Ghallab, Dana Nau, Paolo Traverso
• Main source

• to
• Artificial Intelligence: 

A Modern Approach (3rd ed.)
• Stuart Russell, Peter Norvig
• Decision theory

• Ch. 16 + 17

• Plus recent research papers 
mentioned in footnotes

3http://aima.cs.berkeley.edu
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Decision Making under Uncertainty
• Many environments have multiple possible outcomes
• Some of these outcomes may be good; 

others may be bad
• Some may be very likely; 

others unlikely

• What’s a 
poor agent 
going to do??

5AIMA, Russell/Norvig



Nondeterministic vs. Probabilistic Uncertainty

• !, #, $
• Decision that is

best for worst case

• ! %& , # %' , $ %(
• Decision that

maximises expected 
utility value
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Expected Utility
• Random variable ! with " range values #$, … , #'

and distribution ($, … , ('
• E.g.: ! is the state reached after doing an action ) = +

under uncertainty
• Function , of !
• E.g., , is the utility of a state

• The expected utility of ) = + is

-,[) = +] =0
12$

'
3 ! = #1 ) = + 4 , ! = #1
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!#!$!%

&%

'. ) '. * '. +
+'' ,' *'

-(!") = 100 3 0.2 + 50 3 0.7 + 70 3 0.1
= 20 + 35 + 7
= 62

One State/One Action Example
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One State/Two Actions Example

#)

#*#"#+

!+

%. ' %. , %. -
-%% .% ,%

/" #) = 74
/ #) = max{/+ #) , /" #) }

= 74

/+ #) = 62
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Introducing Action Costs

#)

#*#"#+

!+

%. ' %. , %. -
-%% .% ,%

/" #) = 74 − 25
/ #) = max{/+ #) , /" #) }

= 57

/+ #) = 62 − 5

−5 −25
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MEU Principle
• A rational agent should choose the action that 

maximizes agent’s expected utility
• This is the basis of the field of decision theory
• The MEU principle provides a normative criterion

for rational choice of action 

AI is solved!!!
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Not quite…
• Must have complete model of:
• Actions
• Utilities
• States

• Even if you have a complete model, it might be 
computationally intractable
• In fact, a truly rational agent takes into account the 

utility of reasoning as well – bounded rationality
• Nevertheless, great progress has been made in this 

area, and we are able to solve much more complex 
decision-theoretic problems than ever before
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Setting
• Agent can perform actions in an environment

• Environment
• Episodic, i.e., not sequential

• Next episode does not depend on the previous episode
• So called static models (vs. dynamic/temporal, next lecture)

• Non-deterministic
• Outcomes of actions not unique
• Associated with probabilities (➝ probabilistic model)

• Partially observable
• Latent, i.e., not observable, random variables

• Agent has preferences over states/action outcomes
• Encoded in utility or utility function ➝ Utility theory

• “Decision theory = Utility theory + Probability theory”
• Model the world with a probabilistic model
• Model preferences with a utility (function)
• Find action that leads to the maximum expected utility, also called 

decision making 
• Lecture title: “Simple decisions” because episodic
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Outline (mainly Ch. 16)
Utility theory
• Preferences
• Utilities
• Dominance
• Preference structure

Decision theory
• Decision networks
• Value of information
• Relational domains
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Preferences
• An agent chooses among prizes (!, ", etc.) and 

lotteries, i.e., situations with uncertain prizes
• Outcome of a nondeterministic action is a lottery 

• Lottery # = %, !; 1 − % , "
• ! and " can be lotteries again
• Prizes are special lotteries: 1, *; 0, not *
• More than two outcomes: 

• # = %/, 0/; %1, 01; ⋯ ; %3, 03 , ∑56/3 %5 = 1
• Notation
• ! ≻ " ! preferred to "
• ! ∼ " indifference between ! and "
• ! ≿ " " not preferred to !
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Rational preferences
• Idea: preferences of a rational agent must obey 

constraints
• Rational preferences ⇒ behaviour describable as 

maximisation of expected utility
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Rational preferences contd.
• Violating constraints leads to self-evident 

irrationality
• Example
• An agent with intransitive preferences can be induced to 

give away all its money

• If ! ≻ #, then an agent who has #
would pay (say) 1 cent to get !
• If $ ≻ !, then an agent who has !

would pay (say) 1 cent to get $
• If # ≻ $, then an agent who has $

would pay (say) 1 cent to get #
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Axioms of Utility Theory
1. Orderability

• ! ≻ # Ú ! ≺ # Ú !~#
• ≺,≻, ~ jointly exhaustive, 

pairwise disjoint

2. Transitivity 
• ! ≻ # Ù # ≻ ' Þ ! ≻ '

3. Continuity
• ! ≻ # ≻ 'Þ
$( (, !; 1 − (, ' ~#

4. Substitutability
• !~#Þ

(, !; 1 − (, ' ~ (, #; 1 − (, '
• Also holds if replacing ~ with ≻

5. Monotonicity
• ! ≻ #Þ
(( ≥ .Û
(, !; 1 − (, #
≿ ., !; 1 − ., # )

6. Decomposability
• (, !; 1 − (, ., #; 1 − ., ' ~

(, !; 1 − ( ., #; 1 − ( 1 − . , '

Decomposability: There is no fun in gambling.
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And Then There Was Utility
• Theorem (Ramsey, 1931; von Neumann and 

Morgenstern, 1944):
• Given preferences satisfying the constraints, there exists a 

real-valued function ! such that

! " ≥ ! $ ⇔ " ≿ $
! '(, *(;… ; '-, *- = /

0
'0! *0

• MEU principle
• Choose the action that maximises expected utility

• Note: an agent can be entirely rational (consistent with 
MEU) without ever representing or manipulating 
utilities and probabilities
• E.g., a lookup table for perfect tictactoe
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Utilities
• Utilities map states to real numbers. 

Which numbers?

• Standard approach to assessment of human utilities:
• Compare a given state ! to a standard lottery "# that has 

• “best possible outcome” ⊤ with probability %
• ”worst possible catastrophe” ⊥ with probability 1 − %

• Adjust lottery probability % until !~"#

20

~ "
continue as before

instant death

pay-$30-and-
continue-as-
before

0.999999

0.000001



Utility scales
• Normalised utilities: !" = 1.0, !( = 0.0
• Utility of lottery ) ~ (pay-$30-and-continue-as-before): 
+ ) = !" , 0.999999 + !( , 0.000001 = 0.999999

• Micromorts: one-millionth chance of death
• Useful for Russian roulette, paying to reduce product 

risks, etc.
• QALYs: quality-adjusted life years
• Useful for medical decisions involving substantial risk

• Behaviour is invariant w.r.t. positive linear 
transformation

+/ 0 = 12+ 0 + 13
• No unique utility function; +/ 0 and + 0 yield same 

behaviour
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Ordinal Utility Functions
• With deterministic prizes only (no lottery choices), 

only ordinal utility can be determined, i.e., total 
order on prizes
• Ordinal utility function also called value function
• Provides a ranking of alternatives (states), but not a 

meaningful metric scale (numbers do not matter)
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Money
• Money does not behave as a utility function
• Given a lottery ! with expected monetary value 
"#$ ! , usually % ! < % '()* + , i.e., people 
are risk-averse
• ',: state of possessing total wealth $n
• Utility curve

• For what probability - am I indifferent between a prize . and a 
lottery -, $#; 1 − - , $0 for large #?

• Right: Typical empirical 
data, extrapolated with
risk-prone behaviour 
for negative wealth
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Money Versus Utility

24

• Money ≠ Utility
• More money is better, but not always in a linear 

relationship to the amount of money
• Expected Monetary Value
• Risk-averse 

• " # < " %&'( )
• Risk-seeking

• " # > " %&'( )
• Risk-neutral

• " # = " %&'( )
• Linear curve
• For small changes in wealth 

relative to current wealth



Multiattribute Utility Theory
• A given state may have multiple utilities
• ...because of multiple evaluation criteria
• ...because of multiple agents (interested parties) with 

different utility functions

• We will look at 
• Cases in which decisions can be made without 

combining the attribute values into a single utility value
• Strict dominance

• Cases in which the utilities of attribute combinations can 
be specified very concisely
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Strict dominance
• Typically define attributes such that ! is monotonic 

in each ➝
• Strict dominance
• Choice " strictly dominates choice # iff

∀ % ∶ '( " ≥ '( # (and hence ! " ≥ ! # )
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Stochastic dominance

27https://people.duke.edu/~dgraham/ECO_463/Handouts/StochasticDominance.pdf

• Cumulative distribution !" first-order stochastically dominates
distribution !# iff

∀% ∶ !" % ≤ !# %
• With a strict inequality for some interval
• Then, ()* > (), (( referring to expected value)

• The reverse is not necessarily true
• Does not imply that every possible return of the superior distribution is 

larger than every possible return of the inferior distribution
• Example:

• As we have negative costs, S2 dominates S1 with ∀% ∶ !-, % ≤ !-* %

https://people.duke.edu/~dgraham/ECO_463/Handouts/StochasticDominance.pdf


Example
• Product P

• Product Q

28

Profit ($m) Probability
0 to under 5 0.2
5 to under 10 0.3
10 to under 15 0.4
15 to under 20 0.1

Profit ($m) Probability
0 to under 5 0.0
5 to under 10 0.1
10 to under 15 0.5
15 to under 20 0.3
20 to under 25 0.1



Stochastic dominance
• Cumulative distribution !" second-order stochastically dominates

distribution !# iff

∀ % ∶ '
()

*
!" + ,+ ≤ '

()

*
!# + ,+

• Or: . % = ∫()
* !# + − !" + ,+ ≥ 0

• With a strict inequality for some interval

• Then, 456 ≥ 457 (4 referring to expected value)

• Examples with % = 8:

• Second-order stochastic dominance

29Figures: https://www.vosesoftware.com/riskwiki/Stochasticdominancetests.php

https://people.duke.edu/~dgraham/ECO_463/Handouts/StochasticDominance.pdf

• No dominance

https://www.vosesoftware.com/riskwiki/Stochasticdominancetests.php
https://people.duke.edu/~dgraham/ECO_463/Handouts/StochasticDominance.pdf


Preference Structure
• To specify the complete utility function ! "#, … , "& , 

we need '& values in the worst case
• ( attributes
• each attribute with ' distinct possible values
• Worst case meaning: Agent’s preferences have no regularity 

at all 
• Supposition in multiattribute utility theory 

• Preferences of typical agents have much more structure
• Approach

• Identify regularities in the preference behaviour
• Use so-called representation theorems to show that an agent 

with a certain kind of preference structure has a utility 
function 

! "#,… , "& = * +# "# , … , +& "&
• where * is hopefully a simple function such as addition

30



Preference structure: Deterministic
• !" and !# preferentially independent (PI) of !$ iff

• Preference between %", %#, %$ and %"
' , %#

' , %$ does not 
depend on %$

• E.g., ()*+,, -)+., /01,.2
• 20,000 +511,6, $4.6 ;*<<*)=, 0.06 >,0.ℎ+/A)=.ℎ
• 70,000 +511,6, $4.2 ;*<<*)=, 0.06 >,0.ℎ+/A)=.ℎ

• Theorem (Leontief, 1947)
• If every pair of attributes is PI of its complement, then every 

subset of attributes is PI of its complement
• Called mutual PI (MPI)

• Theorem (Debreu, 1960):
• MPI ⇒ ∃ additive value function 

E %", … , %G =I
J
EJ %J

• Hence assess = single-attribute functions
• Often a good approximation
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Preference structure: Stochastic
• Need to consider preferences over lotteries
• ! is utility-independent (UI) of " iff
• Preferences over lotteries in ! do not depend on #

• Mutual UI (Keeney, 1974): each subset is UI of its 
complement ⇒ ∃multiplicative utility function
• For & = 3:

) = *+)+ + *-)- + *.).
+*+*-)+)- + *-*.)-). + *.*+).)+
+*+*-*.)+)-).

• I.e., requires only & single-attribute utility functions and 
& constants
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Intermediate Summary
• Preferences
• Preferences of a rational agent must obey constraints 

• Utilities
• Rational preferences = describable as maximisation of 

expected utility
• Utility axioms
• MEU principle

• Dominance
• Strict dominance
• First-order + second-order stochastic dominance

• Preference structure
• (Mutual) preferential independence
• (Mutual) utility independence

33



Outline
Utility theory
• Preferences
• Utilities
• Dominance
• Preference structure

Decision theory
• Decision networks
• Value of information
• Relational domains

34



Decision Networks
• Extend Bayesian networks (BNs) to handle actions 

and utilities
• Or any other probabilistic (graphical) formalism

• Also called influence diagrams
• Use BN inference methods to solve MEU problems
• Perform Value of Information calculations

35



Decision Networks cont.
• Chance nodes: 

random variables
• As in BNs

• Decision nodes: 
actions that decision maker can take

• Utility/value nodes: 
the utility of the outcome state

36



Umbrella Network

37

Weather

Forecast

Take umbrella

Happiness

take/¬take

Have umbrella P(rain)

0.4

Take P(have| Take)

take 1.0

¬take 0.0

Weather P(sunny | Weather)

rain 0.3

¬rain 0.8

rain/¬rainhave/¬have

sunny/rainy

Have Weather U(Have, Weather)

have rain -25

have ¬rain 0

¬have rain -100

¬have ¬rain 100



Evaluating Decision Networks
• Set the evidence variables for current state
• For each possible value of the decision node:
• Set decision node to that value
• Calculate the posterior probability of the parent nodes 

of the utility node, using BN inference
• Calculate the resulting utility for action

• Return the action with the highest utility

38



Umbrella Network

39

Weather

Forecast

Take umbrella

Happiness

take/¬take

Have umbrella

Should I take my 
umbrella??

P(rain)

0.4

Take P(have| Take)

take 1.0

¬take 0.0

Weather P(sunny | Weather)

rain 0.3

¬rain 0.8

rain/¬rainhave/¬have

sunny/rainy

Have Weather U(Have, Weather)

have rain -25

have ¬rain 0

¬have rain -100

¬have ¬rain 100

Take umbrella = take

1.0 ⋅ 0.4 ⋅

1.0 ⋅
Σ

0.0 ⋅ 0.4 ⋅
0.0 ⋅ 0.6 ⋅

1.0 ⋅ 0.6 ⋅
= -10

= 0

= 0

= 0

EU(take) = -10 + 0 + 0 + 0 = -10



Umbrella Network
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Weather

Forecast

Take umbrella

Happiness

take/¬take

Have umbrella

Should I take my 
umbrella??

P(rain)

0.4

Take P(have| Take)

take 1.0

¬take 0.0

Weather P(sunny | Weather)

rain 0.3

¬rain 0.8

rain/¬rainhave/¬have

sunny/rainy

Have Weather U(Have, Weather)

have rain -25

have ¬rain 0

¬have rain -100

¬have ¬rain 100

Take umbrella = ¬take

0.0 ⋅ 0.4 ⋅

1.0 ⋅
Σ

1.0 ⋅ 0.4 ⋅
1.0 ⋅ 0.6 ⋅

0.0 ⋅ 0.6 ⋅
= 0

= -40

= 60

= 0

EU(¬take) = 0 + 0 - 40 + 60 = 20
EU(take) = -10 + 0 + 0 + 0 = -10

MEU(Take) = 20
argmax = ¬take



Decision Making in Decision Nets
• Assumes that all available information provided to 

agent before it makes its decision
• Hardly ever the case
• Know what questions to ask!

• Information value theory
• Choose what information to acquire
• Assume that prior to selecting an action represented by 

a decision node, the agent can acquire the value of any 
of the potentially observable chance nodes
• Simplified version of sequential decision making (next lecture)

• Observation actions affect only agent’s belief state, not the 
external physical state

41



Value of information
• Idea: Compute value of acquiring each possible piece of 

evidence
• Can be done directly from decision network

• Example: Buying oil drilling rights
• Two blocks ! and ", exactly one has oil, worth #
• Prior probabilities 0.5 each, mutually exclusive
• Current price of each block is ⁄( )
• “Consultant” offers accurate survey of !
• Fair price for survey?
• Solution: Compute expected value of information

• = expected value of best action given the information
minus expected value of best action without information

• Survey may say “oil in A” or “no oil in A”, probability 0.5 each 
(given!)= [0.5 , value of “buy A” given “oil in A”+ 0.5 , value of “buy B” given “no oil in A”] − 0= 0.5 , ⁄( ) + 0.5 , ⁄( ) − 0 = ⁄( )
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General formula
• Current evidence !, current best action ", possible action 

outcomes #$, potential new evidence !%
!& " !) = max, -

$
& #$ . #$ | !, 1

• Suppose we knew !% = 2%3, then we would choose 1%3 such 
that
!& "456 | !, !% = 2%3 = max, -

$
& #$ . #$ | !, 1, !% = 2%3

• !% is a random variable whose value is currently unknown
⇒ must compute expected gain over all possible values:
8.9: !%
= -

3
. !% | ! !& "456 | !, !% = 2%3 − !& ", !

• VPI =  value of perfect information
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Properties of VPI
• Non-negative – in expectation

∀", $ ∶ &'() $* ≥ 0
• Non-additive – consider, e.g., obtaining $* twice

&'() $*, $- ≠ &'() $* + &'() $-
• Order-independent

&'() $*, $- = &'() $* + &'(),)1 $-
= &'() $- + &'(),)2 $*

• Note: When more than one piece of evidence can be 
gathered, maximising VPI for each to select one is not 
always optimal
⇒ Evidence-gathering becomes a sequential decision problem

44



Qualitative behaviors

a) Choice is obvious, information worth little
b) Choice is non-obvious, information worth a lot
c) Choice is non-obvious, information worth little
• Information has value to the extent that it is likely to 

cause a change of plan and to the extent that the new 
plan will be significantly better than the old plan 
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Information Gathering Agent

• Ask questions !"#$"%&(()) in a reasonable order
• Avoid irrelevant questions
• Take into account importance of piece of 

information + in relation to ,-%&(())
46

function INFORMATION-GATHERING-AGENT(percept)
returns: an action
persistent: D, a decision network

integrate percept into D
j ← the value that maximises VPI(Ej)/Cost(Ej) 
if VPI(Ej) > Cost(Ej) then

return Request(Ej)
else

return the best action from D



Decision Making in Decision Nets II
• Solving MEU/query answering problems intractable

in general
• Query answering: Computing probability distributions 

(given evidence)
• Exponential in tree width of the graphical model

• Tree width ≈ Largest number of arguments in a table/factor to 
occur during calculations

• Regularities in graphical model may allow to reduce 
the tree width by explicitly encoding them and 
using them during calculations
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Relational Domains
• Relations between objects/individuals/constants
• Regularities/symmetries

• Constructs of first-order logic to parameterise a 
propositional formalism
• Symmetries encoded compactly using logical variables
• Parameterised random variables (PRVs) to denote sets of 

random variables behaving identically

48
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Compact 
Representation
• Factor graph to

parfactor graph
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Compression: Pass the colours around

• If you have a (propositional) model 
available*
• Colour nodes according to the 

evidence you have
• No evidence, say red
• State „one“, say brown
• State „two“, say orange
• ...

• Colour factors distinctively 
according  to their equivalences 
For instance, assuming f1 and f2 to 
be identical and B appears at the 
second position within both, say 
blue

50

*can also be done at the 
„lifted“, i.e., relational level

Singla and Domingos (2008), Kersting et al. (2009), Ahmadi et al. (2013)



1. Each factor collects the colours of its neighbouring nodes
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Compression: Pass the colours around

Slides @Kersting, modified



1. Each factor collects the colours of its neighbouring nodes
2. Each factor „signs“ its colour signature with its own colour
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Compression: Pass the colours around

Slides @Kersting, modified



1. Each factor collects the colours of its neighbouring nodes
2. Each factor „signs“ its colour signature with its own colour
3. Each node collects the signatures of its neighbouring factors

53

Compression: Pass the colours around

Slides @Kersting, modified



1. Each factor collects the colours of its neighbouring nodes
2. Each factor „signs“ its colour signature with its own colour
3. Each node collects the signatures of its neighbouring factors
4. Nodes are recoloured according to the collected signatures

54

Compression: Pass the colours around

Slides @Kersting, modified



1. Each factor collects the colours of its neighbouring nodes
2. Each factor „signs“ its colour signature with its own colour
3. Each node collects the signatures of its neighbouring factors
4. Nodes are recoloured according to the collected signatures
5. If no new colour is created stop, otherwise go back to 1

55

Compression: Pass the colours around

B

f12

A,C

Slides @Kersting, modified



Compression
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Compression
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Compression
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Compression
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Compression
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Lifting

• Factors with PRVs = parfactors
• Undirected (graphical) Model G
• E.g., !"

61

#$%&

'()(+) -(.(/)

01(234(5)

6%78(5)

013()(5,-)

!:

!" !;

David Poole: First-order Probabilistic Inference, 2003.

01(234(5) #$%& 6%78(5) !"
false false false 5
false false true 0
false true false 4
false true true 6
true false false 4
true false true 6
true true false 2
true true true 9



!"#$

%&'()) +&,(-)

./&012(3)

4#56(3)

./1&'(3,+)
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8: 8;

Grounding
• Grounding: replace logical 

variables with constants
• e.g., 8/(8:) = =:

9, =:
:, =:

;

• Semantics: ground + build full joint
>? =

1

A
B

C∈EF(?)

=
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./&012(3) !"#$ 4#56(3) 8:

false false false 5

false false true 0

false true false 4

false true true 6

true false false 4

true false true 6

true true false 2

true true true 9

./&012(&2#51) !"#$ 4#56(&2#51) =:
:

false false false 5

false false true 0

false true false 4

false true true 6

true false false 4

true false true 6

true true false 2

true true true 9

./&012(UVU) !"#$ 4#56(UVU) =:
;

false false false 5

false false true 0

false true false 4

false true true 6

true false false 4

true false true 6

true true false 2

true true true 9

./&012(101) !"#$ 4#56(101) =:
9

false false false 5

false false true 0

false true false 4

false true true 6

true false false 4

true false true 6

true true false 2

true true true 9

David Poole: First-order Probabilistic Inference, 2003.



Lifted Decision Networks
• Decision parameterised model 
• Parfactor graph + utility nodes + action nodes
• Example

• Condition of water retention (!) correlated with weight (")
• #$ = living together, % = scale works

• Ranges for PRVs: true/false for %('), #$ ', '* ;
normal/deviation/retains water for ! ' ; steady/falling/rising 
for "(')

• Action range: ,-./0, ,-123 for do nothing, visit patient
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! '

!('*) #$(', '*)

"(') %(')

45

46

47

8(')

9:;<

Marcel Gehrke, TB, Ralf Möller, Alexander Waschkau, Christoph Strumann, Jost Steinhäuser: 
Lifted Maximum Expected Utility, 2019.



Evaluation: Example
• Evaluation as with 

propositional decision 
networks
• Using lifted inference 

for eliminations
• Compute actions at 

once for group of 
indistinguishable
constants
• No evidence = no 

distinguishable 
features

• With ! " = $%&' as 
evidence for some (": 
two groups, four action 
“plans” 
• 2 actions ⋅ 2 groups
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*+ , - = ./0/1

∝ 3

4

5
6,68∈ℛ ; <

=> ? " = @ABCD, E " = F

= 5
G∈ℛ HI <,<8

=J E " = F, KL ", "M = N, E "M = FM

= 5
O∈ℛ(Q < )

5
S∈ℛ(T < )

=U ! " = V, W " = X
|ZC[ < |

E "

E("M) KL(", "M)

!(") W(")

=J

=U

=>

?(")

\$]N

*+ , - = ./^_` a*+: same action for all X

Marcel Gehrke, TB, Ralf Möller, Alexander Waschkau, Christoph Strumann, Jost Steinhäuser: 
Lifted Maximum Expected Utility, 2019.



Lifted Decision Making
• Solving MEU/query answering problems intractable

in general

• Exponential in tree width of the graphical model

• Explicitly encoded symmetries allows for tractable 

inference in terms of domain sizes for logical 

variables

• Polynomial in domain size

Guy Van den Broeck: On the Completeness of First-order Knowledge Compilation for 

Lifted Probabilistic Inference, NIPS-11.

Nima Taghipour, Jesse Davis, and Hendrik Blockeel: First-order Decomposition Trees, 

NIPS-13.

• Of course: the goal should be linear and better

• Tractability through exchangeability

Mathias Niepert and Guy Van den Broeck: Tractability through Exchangeability: A 

New Perspective on Efficient Probabilistic Inference, AAAI-14.
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Intermediate Summary
• Decision networks
• Utilities, actions, random variables
• Evaluation: for each action setting, eliminate everything 

else
• Value of information
• How much is a piece of information worth?

• Relational domains
• First-order constructs for compact representation
• Same action for sets of indistinguishable constants
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Outline
Utility theory
• Preferences
• Utilities
• Dominance
• Preference structure

Decision theory
• Decision networks
• Value of information
• Relational domains

⟹ Next: Making Complex Decisions
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