
Advanced Topics Data Science and AI
Automated Planning and

Acting

Complex Decision Making

Tanya Braun

Content
1. Planning and Acting with

Deterministic Models
2. Planning and Acting with

Refinement Methods
3. Planning and Acting with

Temporal Models
4. Planning and Acting with

Nondeterministic Models
5. Making Simple Decisions
6. Planning and Acting with

Probabilistic Models

7. Making Complex
Decisions
a. Markov decision

processes (MDP) recap
b. Partially-observable MDP

(POMDP)
c. Dynamic models for

online decision making
d. Reinforcement Learning

8. Provably Beneficial AI
• Other: open world,

perceiving, learning
• If time permits

2

Acknowledgements
• Material from Lise Getoor, Jean-Claude Latombe,

Daphne Koller, and Stuart Russell, Xiaoli Fern
• Compiled by Ralf Möller
• AIMA Book, Chapters 17 + 21

3

Outline
Markov decision problem (MDP) recap

• MDP formalism
• Value iteration, policy iteration

Partially observable Markov decision problem (POMDP)
• POMDP agent, belief state, belief MDP
• Conditional plans, value iteration

Dynamic graphical models for online decision making
• Dynamic Bayes nets
• Parameterised dynamic decision models

Reinforcement Learning (RL)
• Active/passive RL
• Model-based/model-free RL
• Multi-armed bandit problem

4

MDP
• Sequential decision problem for a fully observable,

stochastic environment with a Markovian transition
model and additive rewards (next slide)
• Components

• a set of states ! (with an initial state "#)
• a set $ " of actions in each state
• a transition model % "& ", (
• a reward function)(")

5

+1

2

3

1

4321

-1 U, D, L, R

each move costs 0.04

Principle of MEU
• History ! = ($%, $', … , $))
• Utility of !: + $%, $', … , $) = ∑-.%) / $-

• Bellman equation:
• + $- = / $- + 1max5 ∑67 8 $9| ;. $- + $9

• Optimal policy:
• =∗ $- = argmax

5
∑67 8 $9| ;. $- + $9
• Bellman equation for 1,1

• + 1,1 = −0.04 + 1max

6

+1

2

3

1

4321

-1

Value Iteration: Algorithm

• Inputs
• an MDP, which includes

• States !
• For all " ∈ !, actions $ " , transition model % "&| (. " , rewards * "
• Discount +

• Maximum error allowed ,
• Local variables

• -,-& vectors of utilities for states in !, initially 0
• 0 maximum change in utility of any state in an iteration

7

function value-iteration(mdp,,)
U’ ← 0
repeat

U ← U’
0 ← 0
for each state s ∈ S do

U’[s] ← R(s) + + maxa∈A(s)Σs’P(s’|a.s)U[s’]
if |U’[s] - U[s]| > 0 then

0 ← |U’[s] - U[s]|
until 0 < ,(1-+)/+

Evolution of Utilities
• For ! = 0, 1, 2, …, do
• ()*+ ,- = . ,- + 0max4 ∑67 8 ,9| ;. ,- () ,9

• Form of information propagation

8

+1

2

3

1

4321

-1

0.705 0.655 0.3880.611

0.762

0.812 0.868 0.918

0.660

Policy Iteration
• Pick a policy !" at random
• Repeat:
• Policy evaluation: Compute the utility of each state for !#

• $# %& = (%& + * ∑,- . %/|!# %& . %& $# %/
• No longer involves a max operation as action is determined by !#

• Policy improvement: Compute the policy !#56 given $#
• !#56 %& = argmax9 ∑,- . %/|!# %& . %& $# %/

• If !#56 = !#, then return !#

9

Intermediate Summary
• MDP
• Markov property

• Current state depends only on previous state
• Sequence of actions, history, policy

• Sequence of actions may yield multiple histories, i.e.,
sequences of states, with a utility

• Policy: complete mapping of states to actions
• Optimal policy: policy with maximum expected utility

• Value iteration, policy iteration
• Algorithms for calculating an optimal policy for an MDP

10

New Problem
• Uncertainty about the world state due to imperfect

(partial) information
• Noise

• e.g., in sensors
• Limited accuracy

• e.g., image resolution, geo-location

11

Outline
Markov decision problem (MDP) recap

• MDP formalism
• Value iteration, policy iteration

Partially observable Markov decision problem (POMDP)
• POMDP agent, belief state, belief MDP
• Conditional plans, value iteration

Dynamic graphical models for online decision making
• Dynamic Bayes nets
• Parameterised dynamic decision models

Reinforcement Learning (RL)
• Active/passive RL
• Model-based/model-free RL
• Multi-armed bandit problem

12

POMDP
• POMDP = Partially Observable MDP
• A sensing operation returns multiple

states, with a probability distribution
• Sensor model !(#|%)
• Example:

• Sensing number of adjacent walls (1 or 2)
• Return correct value with probability 0.9

• Choosing the action that maximizes the expected utility
of this state distribution assuming “state utilities”
computed as before is not good enough, and actually
does not make sense (i.e., not rational)
• POMDP agent

• Constructing a new MDP in which the current probability
distribution over states plays the role of the state variable

13

+1

2

3

1

4321

-1

Decision cycle of a POMDP agent

• Given the current belief state !, execute the action
" = $∗ !

• Receive observation &
• Set the current belief state to '(!, ", & and repeat

• SE = State Estimation

14

SE $

Agent

World

Observation

Action

!

Belief State & Update
• ! " is the probability assigned to the actual state "

by belief state !
• Update !# = %& !, (,)

!# "* = + "*|), (, ! = +)|"*, (∑./∈1 + "*|"2, (! "2
∑.3∈1 +)|"4, (∑./∈1 + "4|"2, (! "2

• Initial belief state
• Probability of 0 for terminal

states
• Uniform distribution for rest
• ! = 6

7 ,
6
7 ,
6
7 ,
6
7 ,
6
7 ,
6
7 ,
6
7 ,
6
7 ,
6
7 , 0,0

15

0.0

2

3

1

4321

0.0

0. 91 0. 91 0. 91

0. 91 0. 91 0. 91

0. 91

0. 91

0. 91

Belief State & Update
• Update !" = $% !, ', (
!")* = +)*|(, ', ! = + (|)*, ' ∑./∈1 +)*|)2, ' !)2

∑.3∈1 + (|)4, ' ∑./∈1 +)4|)2, ' !)2
• Consider as two stage-update

1. Update for the action
2. Update for the observation

16

Move L once

! !5

0.0

2

3

1

4321

0.081

0.2 0. 81 0.082

0.2 0. 81 0. 81

0. 81

0.081

0. 81

!; = !"

Perceive 1 wall

0.0

2

3

1

4321

0.0

0. 81 0. 81 0. 81

0. 81 0. 81 0. 81

0. 81

0. 81

0. 81

0.0

2

3

1

4321

0.03285

0.06569 0.03650 0.06569

0.06569 0.03650 0.32847

0.03650

0.00365

0.32847

Belief MDP
• A belief MDP is a tuple !, #, $, %
• ! = infinite set of belief states

• Continuous!
• # = finite set of actions
• Reward function $ &
• Transition function % &' &, (
• Sensor model %) (, &

17

Move L once,
perceive 1 wall&'

&
0.0

2

3

1

4321

0.0

0. ,1 0. ,1 0. ,1

0. ,1 0. ,1 0. ,1

0. ,1

0. ,1

0. ,1

0.0

2

3

1

4321

0.03285

0.06569 0.03650 0.06569

0.06569 0.03650 0.32847

0.03650

0.00365

0.32847

Belief MDP
• Reward function: Sum over all actual states that the agent can be in

="
#
$ % & %

• Transition function: Sum over all possible observations
="

'
($)|+, -, $ (+|-, $

="
'
($)|+, -, $ "

#)
(+|%′ "

#
(%)|%, - $(%)

• where ($)|+, -, $ = 1 if $) = 23 $, -, + and 0 oth.

• Sensor model: Sum over all actual states that the agent might reach
="

#5
(+|-, %), $ (%)|-, $ ="

#5
(+|%) (%)|-, $

="
#5
(+|%) "

#
(%)|%, - $(%)

• ($) $, - and 6 $ define an observable MDP on the space of belief
states

18

($) $, -

(+ -, $

6 $

Belief MDP
• Optimal action depends only on

agent’s current belief state
• Does not depend on actual state the

agent is in

Þ Solving a POMDP on a physical
state space is reduced to solving
an MDP on the corresponding
belief-state space
• Mapping !∗ # from belief states to

actions

19

Move L once,
perceive 1 wall#$

#
0.0

2

3

1

4321

0.0

0. '1 0. '1 0. '1

0. '1 0. '1 0. '1

0. '1

0. '1

0. '1

0.0

2

3

1

4321

0.03285

0.06569 0.03650 0.06569

0.06569 0.03650 0.32847

0.03650

0.00365

0.32847

Example Scenario

20

0.000

2

3

1

4321

0.000

0.111 0.111 0.111

0.111 0.111 0.111

0.111

0.111

0.111

Initial distribution After moving L five times

0.000

2

3

1

4321

0.012

0.300 0.010 0.008

0.371 0.012 0.008

0.221

0.000

0.059

After moving R five times

0.775

2

3

1

4321

0.105

0.005 0.007 0.019

0.005 0.006 0.008

0.034

0.030

0.007

After moving U five times

0.024

2

3

1

4321

0.022

0.622 0.221 0.071

0.003 0.024 0.003

0.005

0.000

0.003

Conditional Plans
• Example:
• Two state world 0,1
• Two actions: $%&' (,)* (

• Actions achieve intended effect with some probability (
• One-step plan)* , $%&'

• Two-step plans are conditional
• [&1, IF +,-.,+% = 0 THEN &2 ELSE &3]
• Shorthand notation: &1, &2/&3

• 3-step plans are trees with
• Nodes attached with actions and
• Edges attached with percepts

21

Value Iteration for POMDPs
• Cannot compute a single utility value for each state of all

belief states
• Consider an optimal policy !∗ and its application in belief

state #
• For this #, the policy is a conditional plan $

• Let the utility of executing a fixed conditional plan $ in % be &' %
• Expected utility (' # = ∑+ # % &' %

• It varies linearly with #, a hyperplane in a belief space
• At any #, the optimal policy will choose the conditional plan with

the highest expected utility
(# = (,∗ # = max' 0

+
% &' %

!∗ = argmax
'

0
+
% &' %

• ((#) is the maximum of a collection of hyperplanes and will be piecewise
linear and convex

22

Example
• Compute the utilities for conditional plans of depth

2 by
• considering each possible first action
• each possible subsequent percept
• each way of choosing a depth-1 plan to execute for each

percept

23

Utility of two one-
step plans as a
function of ! 1

Example
• Two state world 0,1
• Rewards $ 0 = 0, $ 1 = 1
• Two actions:
&'() 0.9 , ,- 0.9

• Sensor reports correct state
with probability of 0.6
• Consider the one-step plans &'() and ,-

• / 0123 0 = $ 0 + 0.9$ 0 + 0.1$ 1 = 0.1
• / 0123 1 = $ 1 + 0.9$ 1 + 0.1$ 0 = 1.9
• / 56 0 = $ 0 + 0.9$ 1 + 0.1$ 0 = 0.9
• / 56 1 = $ 1 + 0.9$ 0 + 0.1$ 1 = 1.1
• This is just the direct reward function (taken into account the

probabilistic transitions)

24

Example
• 8 distinct depth-2 plans for each state

25

! "#$%,"#$%/"#$% 0 = * 0 + 0.9 . 0.6 . 0.1 + 0.4 . 0.1 + 0.1 . 0.6 . 1.9 + 0.4 . 1.9 = 0.28
! "#$%,"#$%/"#$% 1 = * 1 + 0.9 . 0.6 . 1.9 + 0.4 . 1.9 + 0.1 . 0.6 . 0.1 + 0.4 . 0.1 = 2.72

! "#$%,56/"#$% 0 , ! "#$%,"#$%/56 0 , ! "#$%,56/56 0
! "#$%,56/"#$% 1 , ! "#$%,"#$%/56 1 , ! "#$%,56/56 1

! 56,"#$%/"#$% 0 = * 0 + 0.9 . 0.6 . 1.9 + 0.4 . 1.9 + 0.1 . 0.6 . 0.1 + 0.4 . 0.1 = 1.72
! 56,"#$%/"#$% 1 = * 1 + 0.9 . 0.6 . 0.1 + 0.4 . 0.1 + 0.1 . 0.6 . 1.9 + 0.4 . 1.9 = 1.28

! 56,56/"#$% 0 , ! 56,"#$%/56 0 , ! 56,56/56 0
! 56,56/"#$% 1 , ! 56,"#$%/56 1 , ! 56,56/56 1

Sum over states reachable
with first action

Probability of
next state

Sum over possible percepts

Probability of
correct percept

After moving from
0 to 1, perceive
false state (0);

plan says 789: for
0, so receive

! "#$% 1 = 1.9

Utility of depth-1 plan
given state, outcome of
first action, and percept

Reward of state

Example
• 8 distinct depth-2 plans for state 1

• 4 are suboptimal across the entire belief space (dashed lines)
• With probability "(1) = 1:

• & '()*,'()*/'()* 0 = 0.28 & '()*,'()*/'()* 1 = 2.72
• & 23,'()*/'()* 0 = 1.72 & 23,'()*/'()* 1 = 1.28

26

Example

27

Utility of four undominated
two-step plans

Utility function for optimal
eight step plans

General formula
• Let ! be a depth-" conditional plan whose initial

action is # and whose depth-" − 1 subplan for
percept & is !. &, then
() * = , * +.

/0
1(*3| *, #) .

7
1 & *3 ().7 *3

• This gives us a value iteration algorithm
• The elimination of dominated plans is essential for

reducing doubly exponential growth:
• Number of undominated plans with " = 8 is just 144
• Otherwise 2;<< (= > ? @AB)

• For large POMDPs this approach is highly inefficient

28

Value Iteration: Algorithm

• Inputs
• a POMDP, which includes

• States !
• For all " ∈ !, actions $ " , transition model % "&| (. " , sensor model % *| " , rewards + "
• Discount ,

• Maximum error allowed -
• Local variables

• .,.& sets of plans with associated utility vectors 01

29

function value-iteration(pomdp,-)
U’ ← a set containing the empty plan [] with u[](s)=R(s)
repeat

U ← U’
U ← the set of all plans consisting of an action and,

for each possible next percept, a plan in U with
utility vectors computed as on previous slide

U’ ← Remove-dominated-plans(U’)
until Max-difference(U,U’) < -(1-,)/,
return U

Solutions for POMDP
• Belief MDP has reduced POMDP to MDP
• MDP obtained has a multidimensional continuous state

space
• Extract a policy from utility function returned by

value-iteration algorithm
• Policy ! " can be represented as a set of regions of

belief state space
• Each region associated with a particular optimal action
• Value function associates distinct

linear function of " with each region
• Each value or policy iteration step

refines the boundaries of the regions
and may introduce new regions.

30

Intermediate Summary
• POMDP
• Uncertainty about state ➝ belief state
• Solving a POMDP = Solving an MDP on space of belief

states
• Policy = conditional plans
• Value iteration to find optimal policy

• Very expensive, even with deletion of dominated plans
• Offline

31

Outline
Markov decision problem (MDP) recap

• MDP formalism
• Value iteration, policy iteration

Partially observable Markov decision problem (POMDP)
• POMDP agent, belief state, belief MDP
• Conditional plans, value iteration

Dynamic graphical models for online decision making
• Dynamic Bayes nets
• Parameterised dynamic decision models

Reinforcement Learning (RL)
• Active/passive RL
• Model-based/model-free RL
• Multi-armed bandit problem

32

Online Agents for POMDPs
• Transition and sensor models represented as a

dynamic graphical model, extended with
actions/decisions and utilities
• Dynamic decision network

• Inference algorithm (filtering) to incorporate each
new percept, action, and to update the belief state
representation
• Decisions made

by projecting
forward possible
action sequences
and choosing the
best one (MEU)

33AIMA, Russell/Norvig

Dynamic Graphical Models
• Dynamic = sequential or temporal
• Series of snapshots, indexed by !

• Models to extend with actions and utilities
• Dynamic Bayesian network

• Directed, conditional probability tables, propositional
• Special case: HMM

• DBN with only one state and one evidence variable, Markov-1

• Dynamic parameterised models
• Undirected, factors, relational domains

34

"#$%&

'()*+,,#-

"#$%&./

'()*+,,#-./

"#$%&0/

'()*+,,#-0/

• The decision problem involves calculating the value
of !" that maximizes the agent’s expected utility
over the remaining state sequence
• Blue nodes: observed/known
• Current timestep #
• Finite horizon of 3 (Lookahead)

%"

!"&'

("

%")'

(")'

!"

%")*

(")*

!")'

%")+

(")+

!")* ,")+

Dynamic Bayesian Decision Networks

-" -")' -")*

%"&'

!"&*

("&'
-"&'

35

Search Tree of the Lookahead DDN

36

!" in % &" '(:"

'"*(

!"*(in % &"*('(:"*(

'"*+

!"*+ in % &"*+ '(:"*+

'"*+

, &"*-
10 -4 -6 3

Discussion of DDNs
• DDNs provide a general, concise representation for

large POMDPs
• Agent systems moved from
• static and simple environments to
• dynamic and complex environments that are closer to

the real world
• However, exact algorithms are exponential in tree

width

37

Perspectives to Reduce Complexity
• Combined with a heuristic estimate for

the utility of the remaining steps
• Incremental pruning techniques
• Many approximation techniques:
• Using less detailed state variables for states in the

distant future
• Using a greedy heuristic search through the space of

decision sequences
• Assuming “most likely” values for future percept

sequences rather than considering all possible values
• Parameterised models for relational domains

38

Dynamic Parameterised Model
• Relational model
• Allows for lifted calculations

• For decision making
• With actions and utilities

39

!"#$ %

!"#$(%'))*"#$(%, %')

,"#$(%) -"#$(%)

."#$$

."#$/
."#$0

1"#$(%)

2345"#$

!"#$ %

!"(%'))*"(%, %')

,"(%) -"(%)

."$

."/
."0

1"(%)

2345"

.6

.7

.89

.:

Marcel Gehrke, TB, Ralf Möller: Lifted Temporal Maximum Expected Utility, 2019.

Dynamic Parameterised Decisions
• Online inference (as before)
• Repeat

• Update current belief state to percepts (evidence)
• Calculate best action for next timestep based on the projected

expected utility ! timesteps into the future
• Perform best action

• Finite horizon (!)

• Calculations using lifted inference operators
• Same decision/action for groups of indistinguishable

constants
• Polynomial with respect to domain sizes

• Worst case = propositional case

40Marcel Gehrke, TB, Ralf Möller: Lifted Temporal Maximum Expected Utility, 2019.

Intermediate Summary
• Dynamic graphical models
• Complex representation of environment
• Sequential decision making

• Online
• Limited horizon
• Exact algorithms exponential in tree width

• Relational models for complexity polynomial with
respect to domain size

41

Outline
Markov decision problem (MDP)

• MDP formalism
• Value iteration, policy iteration

Partially observable Markov decision problem (POMDP)
• POMDP agent, belief state, belief MDP
• Conditional plans, value iteration

Dynamic graphical models for online decision making
• Dynamic Bayes nets
• Parameterised dynamic decision models

Reinforcement Learning (RL)
• Active/passive RL
• Model-based/model-free RL
• Multi-armed bandit problem

42

Reinforcement Learning (RL)
• Agent placed in an environment and must learn to

behave optimally in it

• Assume that the world behaves like an MDP, except

• Agent can act but does not know the transition model

• Agent observes its current state and its reward but does
not know the reward function

• Goal: learn an optimal policy

43

U, D, L, R

+1

2

3

1

4321

-1

each move costs 0.04

Factors that make RL
• Actions have non-deterministic effects
• which are initially unknown and must be learned

• Rewards / punishments can be infrequent
• Often at the end of long sequences of actions
• How do we determine what action(s) were really

responsible for reward or punishment?
• Credit assignment problem

• World is large and complex

44

Passive vs. Active Learning
• Passive learning
• Agent acts based on a fixed policy ! and tries to learn

how good the policy is by observing the world go by
• Analogous to policy iteration

• Active learning
• Agent attempts to find an optimal (or at least good)

policy by exploring different actions in the world
• Analogous to solving the underlying MDP

45

Model-based vs. Model-free RL
• Model-based approach to RL
• Learn the MDP model (! "# ", % and &), or an

approximation of it
• Use it to find the optimal policy

• Model-free approach to RL
• Derive the optimal policy without explicitly learning the

model

46

Passive RL
• Suppose we are given a policy
• Want to determine how good it is

• Given !: Need to learn "# $:

47

?

2

3

1

4321

?

+1

2

3

1

4321

-1

0.705 0.655 0.3880.611

0.762

0.812 0.868 0.918

0.660

Passive RL
• Given policy !:
• Estimate "# $

• Not given
• Transition model % $& $, (
• Reward function)($)

• Simply follow the policy for many epochs
• Epochs: training sequences

48

+1

2

3

1

4321

-1

0.705 0.655 0.3880.611

0.762

0.812 0.868 0.918

0.660

1,1 → 1,2 → 1,3 → 1,2 → 1,3 → 2,3 → 3,3 → 3,4 + 1
1,1 → 1,2 → 1,3 → 2,3 → 3,3 → 3,2 → 3,3 → 3,4 + 1
1,1 → 2,1 → 3,1 → 3,2 → 4,2 − 1

Direct Utility Estimation (DUE)
• Model-free approach
• Estimate !" # as average total reward of epochs

containing #
• Calculating from # to end of epoch

• Reward-to-go of a state #
• The sum of the (discounted) rewards from that state

until a terminal state is reached
• Key: use observed reward-to-go of the state as the

direct evidence of the actual expected utility of that
state

49

DUE: Example
• Suppose we observe the following trial:
• 1,1 #$.$& → 1,2 #$.$& → 1,3 #$.$& → 1,2 #$.$& →1,3 #$.$& → 2,3 #$.$& → 3,3 #$.$& → 3,4 +,

• The total reward starting at 1,1 is 0.72
• Call this a sample of the observed-reward-to-go for
1,1

• For 1,2 , there are two samples for the observed-
reward-to-go (assuming / = 1)

1. 1,2 #$.$& → 1,3 #$.$& → 1,2 #$.$& → 1,3 #$.$& →
2,3 #$.$& → 3,3 #$.$& → 3,4 +, [Total: 0.76]

2. 1,2 #$.$& → 1,3 #$.$& → 2,3 #$.$& → 3,3 #$.$& →3,4 +, [Total: 0.84]

50

DUE: Convergence
• Keep a running average of the observed reward-to-

go for each state
• E.g., for state 1,2 , it stores $.&'($.)*+ = 0.8

• As the number of trials goes to infinity, the sample
average converges to the true utility

51

DUE: Problem
• Big problem: it converges very slowly!
• Why?
• Does not exploit the fact that utilities of states are not

independent
• Utilities follow the Bellman equation
!" #$ = & #$ + ()

*+
, #-|/ #$, #$!" #-

52

Dependence on neighbouring states

DUE: Problem
• Using the dependence to your advantage
• Suppose you know that state 3,3 has a high utility
• Suppose you are now at 3,2
• Bellman equation would be able to tell you that 3,2 is

likely to have a high utility because 3,3 is a neighbour
• DUE cannot tell you that until the end of the trial

53

?

2

3

1

4321

?

Adaptive Dynamic Programming (ADP)

• Model-based approach
• Basically learns the transition model ! "# ", % and

the reward function &(")
• Takes advantage of constraints in the Bellman equation

• Given policy):
• Estimate *+ "
• Based on ! "# ", % and &("), we can perform policy

evaluation (part of policy iteration)

54

ADP: Policy Evaluation
• Policy Iteration:
• Pick a policy ! at random
• Repeat:

• Policy evaluation: Compute the utility of each state for !
• "#$% &' =) &' + + ∑-. / &0|! &' , &' "# &0

• No longer involves a max operation as action is determined
by !

• Policy improvement: Compute the policy !6 given "#$%
• !6 &' = argmax

9
∑-. / &0|! &' . &' "# &0

• If !6 = !, then return !

55

Or solve the set of linear equations:

" &' =) &' + +;
-.
/ &0|! &' . &' " &0

(often a sparse system)

Can be solved in time
< => , where = is
the number of states

ADP: Learn the Model
• Make use of policy evaluation to learn the utilities

of states
• To use policy equation

!"#$ %& = (%& + *+
,-
. %/|1 %& , %& !" %/

agent needs to learn . %3 %, 4 and (%
• How?

56

ADP: Learn the Model
• Learning ! "
• Easy because it is deterministic
• Whenever you see a new state, store the observed

reward value as ! "
• Learning # "$ ", &
• Keep track of how often you get to state "$ given that

you are in state " and do action &
• E.g., if you are in " = 1,3 and you execute R three

times and you end up in "$ = 2,3 twice, then
"$ R, " = +

,

57

ADP: Algorithm

58

function passive-ADP-agent(percept)
returns an action
input: percept, indicating current state s’, reward r’
static:

!, fixed policy
mdp, MDP with P[s’|s,a], R(s), "
U, table of utilities, initially empty
Nsa, table of freq. for s-a pairs, initially 0
Nsas’, table of freq. for s-a-s’ triples, initially 0
s,a, previous state and action, initially null

if s’ is new then
U[s’] ← r’
R[s’] ← r’

if s is not null then
increment Nsa[s,a] and Nsas’[s,a,s’]
for each t s.t. Nsas’[s,a,t] ≠ 0 do

P[t|s,a] ← Nsas’[s,a,t] / Nsa[s,a]
U ← Policy-evaluation(!,U,mdp)
if Terminal?(s’) then

s,a ← null
else

s,a ← s’,![s’]
return a

Update
reward

function

Update
transition

model

ADP: Problem
• Need to solve a system of simultaneous equations –

costs ! "#
• Very hard to do if you have 10&' states like in

Backgammon
• Could make things a little easier with modified policy

iteration
• Can we avoid the computational expense of full

policy evaluation?

59

Temporal Difference Learning (TD)
• Instead of calculating the exact utility for a state,

can we approximate it and possibly make it less
computationally expensive?
• Yes, we can! Using TD:

!" #$ = & #$ + ()
*+
, #-|/ #$, #$!" #-

• Instead of doing the sum over all successors, only adjust
the utility of the state based on the successor observed
in the trial
• Does not estimate the transition model – model-free

60

TD: Example
• Suppose you see that !" 1,3 = 0.84 and
!" 2,3 = 0.92
• If the transition 1,3 → 2,3 happens all the time,

you would expect to see:
!" 1,3 = . 1,3 + !" 2,3

⇒ !" 1,3 = −0.04 + !" 2,3
⇒ !" 1,3 = −0.04 + 0.92 = 0.88

• Since you observe !" 1,3 = 0.84 in the first trial
and it is a little lower than 0.88, so you might want
to “bump” it towards 0.88

61

Aside: Online Mean Estimation
• Suppose that we want to incrementally compute the mean of a sequence of

numbers
• E.g., to estimate the mean of a random variable from a sequence of samples

= 1
+ 1%&'(

)*(
+& =

1
+ 1%&'(

)
+& + 1

+ 1+)*(=
#

#(# + 1)%&'(

)
+& + 1

+ 1+)*(

= # + 1 − 1
#(# + 1) %&'(

)
+& + 1

+ 1+)*(=
+ 1

#(# + 1)%&'(

)
+& − 1

+ 1 %
&'(

)
+& + 1

+ 1+)*(

= 1
#%&'(

)
+& − 1

+ 1 / 1#%&'(

)
+& + 1

+ 1+)*(=
1
#%&'(

)
+& + 1

+ 1 +)*(−
1
#%&'(

)
+&

= 01) +
1

+ 1 +)*(− 01)

• Given a new sample +)*(, the new mean is the old estimate (for # samples)
plus the weighted difference between the new sample and old estimate

62

average
of # + 1
samples

learning rate sample # + 1

01)*(

TD Update
• TD update for transition from ! to !"

#$! = #$! + ' (! +)#$!′ − #$!

• Similar to one step of value iteration
• Equation called backup

• So, the update is maintaining a “mean” of the (noisy)
utility samples
• If the learning rate decreases with the number of

samples (e.g., 1/.), then the utility estimates will
eventually converge to true values

#$!/ = (!/ +)0
12
3 !4|6 !/ , !/ #$!4

63

learning rate new (noisy) sample of utility
based on next state

TD: Convergence
• Since we are using the observed successor !" instead of

all the successors, what happens if the transition ! ⟶
!" is very rare and there is a big jump in utilities from !
to !"?
• How can $% ! converge to the true equilibrium value?

• Answer: The average value of $% ! will converge to
the correct value
• This means we need to observe enough trials that have

transitions from ! to its successors
• Essentially, the effects of the TD backups will be

averaged over a large number of transitions
• Rare transitions will be rare in the set of transitions

observed

64

Comparison between ADP and TD
• Advantages of ADP
• Converges to true utilities faster
• Utility estimates do not vary as much from the true

utilities
• Advantages of TD
• Simpler, less computation per observation
• Crude but efficient first approximation to ADP
• Do not need to build a transition model to perform its

updates
• important because we can interleave computation with

exploration rather than having to wait for the whole model to
be built first

65

ADP and TD

66

Overall comparisons
• DUE (model-free)

• Simple to implement
• Each update is fast
• Does not exploit Bellman constraints and converges slowly

• ADP (model-based)
• Harder to implement
• Each update is a full policy evaluation (expensive)
• Fully exploits Bellman constraints
• Fast convergence (in terms of epochs)

• TD (model-free)
• Update speed and implementation similar to direct

estimation
• Partially exploits Bellman constraints – adjusts state to

“agree” with observed successor
• Not all possible successors

• Convergence in between DUE and ADP

67

Passive Learning: Disadvantage
• Learning !" # does not lead to an optimal policy,

why?
• Models are incomplete/inaccurate
• Agent has only tried limited actions, we cannot gain

a good overall understanding of $ #% #, '
• This is why we need active learning

68

Goal of Active Learning
• Let us first assume that we still have access to some

sequence of trials performed by the agent
• Agent is not following any specific policy
• We can assume for now that the sequences should

include a thorough exploration of the space
• We will talk about how to get such sequences later

• The goal is to learn an optimal policy from such
sequences
• Active RL agents

• Active ADP agent
• Q-learner (based on TD algorithm)

69

Active ADP Agent
• Model-based approach
• Using the data from its trials, agent learns a

transition model !" and a reward function !#
• With !" $, &, $' and !# $, it has an estimate of the

underlying MDP
• It can compute the optimal policy by solving the

Bellman equations using value or policy iteration
($ = !# $ + +max

/
0
12
!" $, &, $' ($'

• If !" and !# are accurate estimations of the
underlying MDP model, we can find the optimal
policy this way

70

Issues with ADP Approach
• Need to maintain MDP model
• ! can be very large, " # $ ⋅ &
• Also, finding the optimal action requires solving the

Bellman equation – time consuming
• Can we avoid this large computational complexity

both in terms of time and space?

71

Q-learning
• So far, focus on utilities for states
• ! " = utility of state " = expected maximum future

rewards
• Alternative: store Q-values
• # $, " = utility of taking action $ at state "

= expected maximum future reward if action $
at state "

• Relationship between ! " and # $, " ?

! " = max
*
$, "

72

Q-learning can be model-free
• Note that after computing ! " , to obtain the

optimal policy, we need to compute

" = argmax
*

+
,-
. ", 0, "1 ! "1

• Requires ., the model of world
• Even if we use TD learning (model-free), we still need

the model to get the optimal policy
• However, if you successfully estimate 2 0, " for all
0 and ", we can compute the optimal policy
without using the model

" = argmax
*

2 0, "

73

Q-learning
• At equilibrium when Q-values are correct, we can

write the constraint equation:

! ", $ = & $ + ()
*+
, $, ", $- max

1+
! "-, $-

74

Expected value for action-state pair ", $

Reward at state $

Expected value averaged over all
possible states $- that can be reached

from $ after executing action "

2 $-

Q-learning
• At equilibrium when Q-values are correct, we can

write the constraint equation:

! ", $ = & $ + ()
*+
, $, ", $- max

1+
! "-, $-

75

Expected value for action-state pair ", $

Reward at state $

Expected value averaged over all
possible states $- that can be reached

from $ after executing action "

Best value at the
next state = max
over all actions in

state $-

Q-learning without a Model
• Q-update: after moving from ! to state !" using

action #

• TD approach
• Transition model does not appear anywhere!
• Once converged, optimal policy can be computed without

transition model
• Completely model-free learning algorithm

76

New estimate
of $ #, !

Old estimate
of $ #, ! Difference between old

estimate $ #, ! and the
new noisy sample after

taking action #
Learning rate
0 < (< 1

$ #, ! ← $ #, ! + (, ! + -max
12

$ #", !" − $(#, !)

Q-learning: Convergence
• Guaranteed to converge to true Q-values given

enough exploration
• Very general procedure
• Because it is model-free

• Converges slower than ADP agent
• because it is completely model-free and it does not

enforce consistency among values through the model

77

Exploitation vs. Exploration
• Actions are always taken for one of the two

following purposes
• Exploitation: Execute the current optimal policy to get

high payoff
• Exploration: Try new sequences of (possibly random)

actions to improve the agent’s knowledge of the
environment even though current model does not
believe they have a high payoff

• Pure exploitation: gets stuck in a rut
• Pure exploration: not much use if you do not put

that knowledge into practice

78

Acknowledgements
• Slides based on material provided by Dana Nau and

by Shengyu Zhang

79

Multi-Arm Bandit Problem
• Statistical model of sequential

experiments
• Name comes from a traditional slot

machine (one-armed bandit)

• Question:
Which machine to play?

80

Actions
• ! arms, each with a fixed but unknown distribution

of reward
• In terms of actions: Multiple actions "#, "%, … , "'

• Each "(provides a reward from an unknown (but stationary)
probability distribution)(

• Specifically, expectation *(of machine +’s reward unknown
• If all *(’s were known, then the task is easy:

just pick argmax
(

*(

• With *(’s unknown, question is
which arm to pull

81

Formal Model
• At each time step ! = 1, 2, … , ':

• Each machine (has a random reward X*,+
• , -*,+ = .* independent of the past

• Pick a machine /+ and get reward -01,+
• Other machines’ rewards hidden

• Over ' time steps, we have a total reward of ∑+345 -01,+
• If all .*’s known, we would have selected argmax

*
.* at each

time !
• Expected total reward ' ; max* .*

• Our “regret”:
' ; max* .* − ∑+345 -01,+

82

our rewardbest machine’s
reward

(in expectation)

Exploitation vs. Exploration Dilemma
• Exploration: to find the best.
• Overhead: big loss when trying the bad arms.

• Exploitation: to exploit what we’ve discovered
• weakness: there may be better ones that we haven’t

explored and identified.
• Question:

With the fixed budget,
how to balance exploration
and exploitation such that
the total loss (or regret)
is small?

83

Where does the loss come from?
• If !" is small, trying this arm too many times makes

a big loss.
• So we should try it less if we find the previous samples

from it are bad
• But how to know whether an arm is good?
• The more we try an arm #,

the more information
we get about its distribution
• In particular, the better estimate

to its mean !"

84

Where does the loss come from?
• So we want to estimate each !" precisely, and at

the same time, we do not want to try bad arms too
often
• Two competing tasks

• Exploration vs. exploitation dilemma

• Rough idea: we try an arm if
• Either we have not tried it

often enough
• Or our estimate of !" so far

looks good

85

UCB (Upper Confidence Bound) Algorithm

• Assume rewards
between 0 and 1
• If they are not,

normalize them
• For each action !" , let
• #" = average reward from !"
• $" = number of times !" tried
• $ = å"$"

• Confidence interval around #"

86

Try each action ai once
loop

choose an action ai that has
the highest value of ri + Ö2(ln t)/ti

perform ai
update ri , ti , t

#"
()

#" +
2 ln $
$"

UCB: Performance
• Theorem: If each distribution of reward has support

in [0,1], i.e., we have normalised rewards, then the
regret of the UCB algorithm is at most

& '
(:*+,*∗

ln 0
Δ(

+ '
3∈{6,…,8}

Δ3
• :∗ = max? :(
• Δ(= :∗ − :(

• Expected loss of choosing A(once
• [without proof]

• Loss grows very slowly with 0

87

UCB: Performance
• Uses principle of optimism in face of uncertainty

• We do not have a good estimate "̂# of "# before trying it
many times
• We thus give a big confidence

interval [−&#, &#] for such)
• &# = + ,- .

./
• And select an) with maximum "# + &#

• If an action has not been tried
many times, then the big confidence
interval makes it still possible to
be tried.

• I.e., in face of uncertainty (of "#),
we act optimistically by
giving chances to those that have not
been tried enough

88

1#
()

1# +
2 ln 5
5#

UCT Algorithm
• Recursive UCB computation

to compute ! ", $
• Anytime algorithm:

• Call repeatedly until time
runs out

• Then choose action
argmin

+
! ", $

89

UCT(s,h)
if s ∈ S then

return 0
if h = 0 then

return V0(s)
if s ∉ Envelope then

add s to Envelope
n(s) ← 0
for all a ∈ Applicable(s) do

Q(s,a) ← 0
n(s,a) ← 0

Untried ← {a ∈ Applicable(s)| n(s)=0}
if Untried ≠ ∅ then

ã ← Choose(Untried)
else

ã ← argmina∈Applicable(s)
{Q(s,a)-C⋅[log(n(s))/n(s,a)]½}

s’ ← Sample(0,s,ã)
cost—rollout ← cost(s,ã) + UCT(s’,h-1)
Q(s,ã) ← [n(s,ã)⋅Q(s,ã)+cost-rollout]

/(1+n(s,ã))
n(s) ← n(s) + 1
n(s,ã) ← n(s,ã) + 1
return cost-rollout

Goal:
Sg= {d4}

Start:
s0= d1

d2

d4

d3

d4

d1

d6

d7

UCT as an Acting Procedure
• Suppose probabilities and costs

unknown
• Suppose you can restart your

actor as many times as you want
• Can modify UCT to be an acting

procedure
• Use it to explore the environment

90

UCT(s,h)
if s ∈ S then

return 0
if h = 0 then

return V0(s)
if s ∉ Envelope then

add s to Envelope
n(s) ← 0
for all a ∈ Applicable(s) do

Q(s,a) ← 0
n(s,a) ← 0

Untried ← {a ∈ Applicable(s)| n(s)=0}
if Untried ≠ ∅ then

ã ← Choose(Untried)
else

ã ← argmina∈Applicable(s)
{Q(s,a)-C⋅[log(n(s))/n(s,a)]½}

s’ ← Sample(%,s,ã)
cost—rollout ← cost(s,ã) + UCT(s’,h-1)
Q(s,ã) ← [n(s,ã)⋅Q(s,ã)+cost-rollout]

/(1+n(s,ã))
n(s) ← n(s) + 1
n(s,ã) ← n(s,ã) + 1
return cost-rollout

Goal:
Sg= {d4}

Start:
s0= d1

d2

d4

d3

d4

d1

d6

d7

perform &; observe '(

UCT as a Learning Procedure
• Suppose probabilities and

costs unknown
• But you have an accurate

simulator for the environment
• Run UCT multiple times in the

simulated environment
• Learn what actions work best

91

UCT(s,h)
if s ∈ S then

return 0
if h = 0 then

return V0(s)
if s ∉ Envelope then

add s to Envelope
n(s) ← 0
for all a ∈ Applicable(s) do

Q(s,a) ← 0
n(s,a) ← 0

Untried ← {a ∈ Applicable(s)| n(s)=0}
if Untried ≠ ∅ then

ã ← Choose(Untried)
else

ã ← argmina∈Applicable(s)
{Q(s,a)-C⋅[log(n(s))/n(s,a)]½}

s’ ← Sample(%,s,ã)
cost—rollout ← cost(s,ã) + UCT(s’,h-1)
Q(s,ã) ← [n(s,ã)⋅Q(s,ã)+cost-rollout]

/(1+n(s,ã))
n(s) ← n(s) + 1
n(s,ã) ← n(s,ã) + 1
return cost-rollout

Goal:
Sg= {d4}

Start:
s0= d1

d2

d4

d3

d4

d1

d6

d7

simulate &; observe '(

UCT in Two-Player Games
• Generate Monte Carlo rollouts using a modified version of

UCT
• Rollout: game is played out to very end by selecting moves at

random, result of each playout used to weight nodes in game tree
• Main differences:

• Instead of choosing actions that minimize accumulated cost,
choose actions that maximize payoff at the end of the game

• UCT for player 1 recursively calls UCT for player 2
• Choose opponent’s action

• UCT for player 2 recursively
calls UCT for player 1

• Produced the first computer
programs to play Go well
• ≈ 2008–2012

• Monte Carlo rollout
techniques similar to UCT
were used to train AlphaGo

92

Intermediate Summary
• Passive learning
• DUE
• ADP
• TD

• Active learning
• Active ADP
• Q-learning

• Multi-armed bandit problem
• UCB, UCT

93

Outline
Markov decision problem (MDP) recap

• MDP formalism
• Value iteration, policy iteration

Partially observable Markov decision problem (POMDP)
• POMDP agent, belief state, belief MDP
• Conditional plans, value iteration

Dynamic graphical models for online decision making
• Dynamic Bayes nets
• Parameterised dynamic decision models

Reinforcement Learning (RL)
• Active/passive RL
• Model-based/model-free RL
• Multi-armed bandit problem

⟹ Next: Provably Beneficial AI

94

