Advanced Topics Data Science and AI
Automated Planning and Acting

Provably Beneficial AI

Tanya Braun
Content

1. Planning and Acting with **Deterministic** Models
2. Planning and Acting with **Refinement** Methods
3. Planning and Acting with **Temporal** Models
4. Planning and Acting with **Nondeterministic** Models
5. Making Simple Decisions
6. Making Complex Decisions
7. Planning and Acting with **Probabilistic** Models
8. Provably Beneficial AI
 a. The problem of goals
 b. Human-aware planning
 • Other: open world, perceiving, learning
 • If time permits
Acknowledgements

• Slides based on material provided by Russell Norvig and by Subbarao (Rao) Kambhampati and his colleagues (for more material on human-aware planning by Rao: http://rakaposhi.eas.asu.edu)
Outline

Provably beneficial AI (Russell)
 • Motivation
 • Modelling formalism

Human-aware decision making (Rao et al.)
 • Mental models
 • Interpretable Behaviour
 • Explanations
Opponent = 0
Normal (ZooO1)

Ties = 0

Victim = 0
Normal (ZooV1)
Opponent = 0
Adversary (Adv1)

Ties = 0

Victim = 0
Normal (ZooV1)
Standard model for AI

Maximize
\[\sum_{t=0}^{\infty} \gamma^t R(s, a, s') \]

Righty-ho

Also the standard model for control theory, statistics, operations research, economics

King Midas problem:
- **Cannot specify** \(R \) **correctly**
- **Smarter AI** => **worse outcome**
How we got into this mess

• **Humans** are intelligent to the extent that **our** actions can be expected to achieve **our** objectives

• **Machines** are intelligent to the extent that **their** actions can be expected to achieve **their** objectives

• **Machines** are *beneficial* to the extent that **their** actions can be expected to achieve **our** objectives
New model: Provably beneficial AI

1. Robot goal: satisfy human preferences
2. Robot is uncertain about human preferences
3. Human behavior provides evidence of preferences

⇒ **assistance game** with human and machine players

⇒ **Smarter AI** ⇒ **better outcome**
AIMA 1,2,3: objective given to machine

Human objective

Human behaviour

Machine behaviour
AIMA 1,2,3: objective given to machine

Human objective

Machine behaviour
AIMA 4: objective is a latent variable

Human objective

Human behaviour

Machine behaviour
Example: image classification

• Old: minimize loss with (typically) a *uniform* loss matrix
 • Accidentally classify human as gorilla
 • Spend millions fixing public relations disaster

• New: structured prior distribution over loss matrices
 • Some examples safe to classify
 • Say “don’t know” for others
 • Use active learning to gain additional feedback from humans

• Other researchers work on similar ideas
 • E.g., Kristian Kersting

• Sometimes in conflict with demands of privacy
 • E.g., Esfandiar Mohammadi

Example: fetching the coffee

• What does “fetch some coffee” mean?
• If there is so much uncertainty about preferences, how does the robot do anything useful?

• Answer:
 • The instruction suggests coffee would have higher value than expected a priori, ceteris paribus
 • Uncertainty about the value of other aspects of environment state doesn’t matter as long as the robot leaves them unchanged
Basic assistance game

Preferences θ
Acts roughly according to θ

Maximise unknown human θ
Prior $P(\theta)$

Equilibria:
Human teaches robot
Robot learns, asks questions, permission; defers to human; allows off-switch
Related to inverse RL, but two-way
The off-switch problem

• A robot, given an objective, has an incentive to disable its own off-switch
 • “You can’t fetch the coffee if you’re dead”
• A robot with uncertainty about objective won’t behave this way
Theorem: \textit{robot has a positive incentive to allow itself to be switched off}

Theorem: \textit{robot is provably beneficial}
Summary

• Provably beneficial AI is possible **and desirable**

It isn’t “AI safety” or “AI Ethics,” it’s AI

• Continuing theoretical work (AI, CS, economics)
• Initiating practical work (assistants, robots, cars)
• Inverting human cognition (AI, cogsci, psychology)
• Long-term goals (AI, philosophy, polisci, sociology)
Outline

Provably beneficial AI (Russell)
 • Motivation
 • Modelling formalism

Human-aware decision making (Rao et al.)
 • Mental models
 • Interpretable Behaviour
 • Explanations
Motivation

• Collaborations between people and AI systems
 • I.e., systems with humans in the loop
 • Augment perception, cognition, problem-solving abilities of people
• Examples
 • Help physicians make more timely and accurate diagnoses
 • Assistance provided to drivers of cars to help them avoid dangerous situations and crashes

• Objective: Systems that can interact intuitively with users and enable seamless machine-human collaborations
 • Explainable behaviour
 • Explainable AI = XAI
Proposed Solution

• Goal: Synthesise explainable behaviour
• Take into account the **mental model** of the human in the loop
 • Mental model:
 • Goals + capabilities of the humans in the loop
 • Human’s model of AI agent’s goals + capabilities
Classical Intelligent Agent

Human-aware Intelligent Agent

Classical Planning

• Given \((\Sigma, s_0, S_g)\), i.e., the agent’s model \(\mathcal{M}^R\)
• Find a plan \(\pi = \langle a_1, a_2, ..., a_n \rangle\) that transforms \(s_0\) to a state \(s_n \in S_g\)
Collaborative Planning

• Given \((\Sigma, s_0, S_g) \), i.e., the agent’s model \(\mathcal{M}^R \)

• Find a joint plan \(\pi = \{a_1^R, a_2^H, \ldots, a_n^?\} \) that transforms \(s_0 \) to a state \(s_n^+ \in S_g \)
Human-aware Planning

- Next to \mathcal{M}^R
- Agent’s model \mathcal{M}_r^H of the human’s model \mathcal{M}^H
 - Allows the agent to anticipate human behaviour to
 - assist
 - avoid
 - team
Human-aware Planning

• Next to \mathcal{M}^R and \mathcal{M}_r^H
• Agent’s model $\tilde{\mathcal{M}}_h^R$ that the agent expects the human to have of \mathcal{M}^R
 • Allows the agent to anticipate human expectations to
 • conform to those expectations
 • explain its own behaviour in terms of those expectations
Generating Mental Models

• Known beforehand (handcrafted/researched)
 • Urban Search and Rescue
 • Teaching

• Learning simple models for generating explanations/explicability

• Learning full models (transition functions, rewards)
 • Through interaction with users
XAI & Explanations

• Standard XAI: view of explanations too simple
 • Debugging tool for “inscrutable” representations
 • “Pointing” explanations (primitive)

• Explaining decisions will involve pointing over space-time tubes

• Explanations critical for collaboration
 • But not as a monologue from the agent → interaction
Ethical Quandaries of Interaction

• Evolutionary, mental modelling allowed us to both cooperate or compete/sabotage each other
 • Lying is only possible because we can model others’ mental states

• Human-aware AI systems with mental modelling capabilities bring additional ethical quandaries
 • E.g., automated negotiating agents that misrepresent their intentions to gain material advantage
 • Your personal assistant that tells you white lies to get you to eat healthy (or not...)

Every tool is a weapon, if you hold it right.
--Ani DiFranco
Ethical Quandaries of Interaction

• Humans’ example closure tendencies are more pronounced for emotional/social intelligence aspects
 • No one who saw Shakey the first time thought it could shoot hoops, yet the first people interacting with Eliza assumed it was a real doctor
 • Concerns about human-aware AI ”toys” such as Cozmo (e.g., Sherry Turkle)

https://thenewstack.io/remembering-shakey-first-intelligent-robot/
https://en.wikipedia.org/wiki/ELIZA
Differences in Mental Models

• Expectations on capabilities
 • Human may have misconceptions about robot’s actions
 • Certain actions in human’s mental model may not be feasible for robot

• Expected state of the world
 • Human may assume certain facts are true (when they are not true)

• Expected goals
 • Human may have misconceptions about robot’s objectives/intentions

• Sensor model differences
 • Human may have partial observability of robot’s activities
 • Human may have incorrect beliefs about robot’s observational capabilities

• Different representations
 • Robot’s innate representation scheme might be too complex for human
 • Human may be thinking in terms of a different vocabulary
Urban Search and Rescue (USAR)

• Robot deployed to a disaster area
• Tasks robot can perform
 • Survey particular rooms
 • Identify survivors
 • Perform triage

• Two agents in domain
 • Internal agent – Robot
 • External agent – Human

• Their models may diverge – leading to different expectation on behaviours
Model Differences

• Robot and human may have different models of same task
 • Divergence in models can lead to expectation mismatch
 • Consequence: Plans that are optimal to robot may not be so in model of human
 • Inexplicable plans

• Robot has two options
 • Explicable planning – sacrifice optimality in own model to be explicable to human
 → interpretable behaviour
 • Plan Explanations – resolve perceived suboptimality by revealing relevant model differences
 → model reconciliation
Interpretable Behaviour

• Explicable behaviour
 • Acting in a way that make sense to the user

• Legible behaviour
 • Acting in a way that convey necessary information to the user

• Predictable behaviour
 • Acting in a way that allow users to accurately anticipate future behaviour
Explicable Behaviour

- Robot’s behaviour may diverge from human’s expectations of it
- Human may get surprised by robot’s inexplicable behaviour
- One way to avoid surprising a human involves generating explicable behaviour by conforming to human’s expectations
 - Account for human’s mental model
Explicable Behaviour

• Example: Robot may have to sacrifice its optimality to improve explicability
Model-based Explicable Behaviour

- Human’s mental model is available to the robot
- Robot cannot plan directly with human mental model
- Find a valid plan that is ‘closest’ to the expected plan
- Involves minimizing distance w.r.t. expected plans
 - Cost difference in human model
 - Action set difference

Model-free Explicable Planing

• Human’s mental model may not be known upfront

\[\arg\min_{\pi_M^R} \text{cost}(\pi_M^R) + \alpha \cdot \text{dist}(\pi_M^R, \pi_M^R_h) \]

 Cost of robot plan
 Distance between robot plan and human’s expectation of robot plan

• We do not necessarily need to learn the full model
Model-free Explicable Planning

- Understand = Associate abstract tasks with actions

- Consider as a labelling process

$$\text{argmin } \text{cost}(\pi_\mathcal{M}^R) + \alpha \cdot \text{dist}(\pi_\mathcal{M}^R, \pi_{\mathcal{M}^h}^R)$$

Domain-independent function taking task labels as inputs, returning approx. distance value

$$F = (\text{task}_1, \text{task}_2, \text{task}_3)$$

E.g., the ratio between number of actions with non-empty labels and the number of all actions

Plan = \{\text{a}_1, \text{a}_2, \text{a}_3, \ldots, \text{a}_n\}

$$L_h = \{\text{task}_1 \perp \text{task}_2 \text{, task}_1\}$$

No label – inexplicable

Labelling scheme of human for agent plans (to be learned)

Why *Legible* Behaviour?

• In human-robot teams, essential for the robot to communicate its intentions and objectives to the human
 • Explicitly communicate its intentions to the human
 • Generating a behaviour which *implicitly* reveals robot’s intentions to the human
 • Might be easier for the human teammate
Legible Behaviour

- In general, involves a setting where
 - Human has access to candidate goals but does not know true goal
- Robot’s objective: Convey true goal implicitly through its behaviour
- Human updates its belief on set of candidate goals when it receives observations
- By synthesizing legible behaviour, robot reduces human’s uncertainty over candidate goals
Online Legible Behaviour

• Enables human to **quickly** and **confidently** infer robot’s true goal

• Human’s belief update is captured using a probabilistic goal recognition system

• Actions that maximize the posterior probability of the true goal G are favoured

$$\text{argmax}_{G \in \mathcal{G}} P(G|Observations)$$
Legible Robot Motion

• Example: Which medkit will the robot pick up?
• While performing goal recognition, human considers shortest distances
• Approach involves finding a trajectory endpoint between start point and true goal such that posterior probability of true goal is maximized
 • Sooner the goal is recognized in the trajectory, the better is the trajectory’s legibility

Transparent Planning

• Example: Is the robot surveying the rooms or performing triage?

• Whenever an action is performed, goal recognition system is used to update human’s belief

• Objective: Reach a target belief where true goal is more probable than other goals

• Take the first applicable action associated with a belief of highest utility (closest to target belief)
Offline Goal Legibility

• Generalizes problem of goal legibility in terms of
 • Partial observability of the human
 • Amount of goal legibility achieved

• Partial observability:
 • Multiple action and state pairs may yield the same observation
 • Human’s belief update consists of all possible states that emit given observation and are valid considering previous belief
 • $b_{i+1} = \text{update}(b_i, o_{i+1})$
Offline Goal Legibility

• Example: Robot has to survey and treat a victim
 • Has to convey which victim it is treating

• Key idea: Limit number of candidate goals (at most j goals) possible in observer’s final belief

• Explores legible behaviour that satisfies predetermined amount of goal legibility, i.e., the plan is j-legible

Why **Predictable** Behaviour?

• In human-robot teams, if robot’s behaviour cannot be anticipated by human, it can hamper team performance

• **Predictable** robot behaviours are easy for the human to understand and help in engendering trust in the robot

• *Predictability and legibility are fundamentally different and often contradictory properties of motion*
Predictable Behaviour

• In general, involves a setting where
 • Human knows start state and goal but does not know which plan will be executed
• Robot’s objective is to behave in a way that can be anticipated by the human
• Observer updates its belief on set of valid plans when it receives observations
• By synthesizing predictable behaviour, robot reduces human’s uncertainty over possible behaviours
Predictable Robot Motion

• Example: What trajectory will robot take?
• Human assumes that robot is rational and that it prefers short length trajectory
• Most predictable trajectory optimises path towards the goal (C cost fct. modelling human’s expectation)
 \[
 \arg\min_{\text{traj}} C(\text{traj})
 \]
• There are two aspects of generating predictable motion:
 • Learning C
 • Minimizing C
t-Predictability

- Key idea: first \(t \) actions should foreshadow rest of actions
- Example: What route would the robot take to survey the rooms?
- \(t \)-predictability score \(P_t = \) probability of sequence \(a_{t+1} \ldots a_T \), given start state, goal and \(a_1 \ldots a_t \)
- \(t \)-predictable planner finds action sequence \(\alpha^* \) such that
 \[
 \alpha^* = \arg\max_{\alpha \in A} P_t(\alpha)
 \]
Offline Plan Predictability

- Assume offline setting
 - Human has partial observability
 - Belief update performed after receiving all observations
- Human guesses robot’s actions based on plans that
 - Are consistent with observation sequence
 - Achieve goal
- Generalizes the problem of conveying actions to observer

Offline Plan Predictability

• Example:
 • Robot has to perform triage
 • Which medkit should the robot pick?

• Solution: Generate a plan whose observation sequence is associated with
 • At least m plans to the same goal,
 • And the plans have high similarity.
 • i.e., m plans that are at most d distance from each other – m-similar plans

• Using plan distance metrics
 • Action set distance gives the number of similar actions given two plans

Plan Explanations

• Conforming to expectations of human
 • E.g., by explicable planning, considering human’s model of the robot as well
 • But: May not be feasible

• Model reconciliation: Bring mental model closer by explanations
 • Planner is optimal in self but not in human’s model
 • Given a plan, explanation is a model update
 • After explanation, plan is also optimal in the updated human model

Example

• Mock search and reconnaissance scenario with internal robot and external human
Aspects to Explanations

• **Completeness**: No better explanation exists, no aspect of plan remains unexplicable
 • Requires explanations of a plan to be comparable

• **Conciseness**: Explanations are easily understandable to the explainee
 • The larger an explanation, the harder for the human to incorporate information into deliberative process

• **Monotonicity**: Remaining model differences cannot change completeness of explanation, i.e., all aspects of model that yielded plan are reconciled
 • Subsumes completeness

• **Computability**: Ease of computing explanation from robot’s point of view
Types of Explanations

- **Plan Patch Explanation (PPE)**
 - Provide model differences pertaining to only the actions present in the plan that needs to be explained

- **Model Patch Explanation (MPE)**
 - Provide all model differences to the human

- **Minimally Complete Explanation (MCE)**
 - Shortest complete explanation
 - Can be rendered invalid given further updates

- **Minimally Monotonic Explanation (MME)**
 - Shortest explanation preserving monotonicity
 - Not necessarily unique as there may be model differences supporting the same causal links in the plan; exposing one link is enough (to guarantee optimality in the updated model)
Aspects of Types of Explanations

- Plan Patch Explanation (PPE)
- Model Patch Explanation (MPE)
- Minimally Complete Explanation (MCE)
- Minimally Monotonic Explanation (MME)

<table>
<thead>
<tr>
<th>Explanation Type</th>
<th>Completeness</th>
<th>Conciseness</th>
<th>Monotonicity</th>
<th>Computability</th>
</tr>
</thead>
<tbody>
<tr>
<td>PPE</td>
<td>✓</td>
<td>X</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>MPE</td>
<td>X</td>
<td>✓</td>
<td>X</td>
<td>✓</td>
</tr>
<tr>
<td>MCE</td>
<td>✓</td>
<td>✓</td>
<td>X</td>
<td>?</td>
</tr>
<tr>
<td>MME</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>?</td>
</tr>
</tbody>
</table>

|approx. $MCE| \leq |exact. $MCE| < |MME| \ll |MPE|
Example – FetchWorld

- Fetch robot whose design requires it to tuck its arms and lower its torso or crouch before moving – not obvious to human navigating.

Robot’s Model

```
(:action move
  :parameters (?from ?to – location)
  :precondition (and (robot-at ?from)
                  (hand-tucked) (crouched))
  :effect (and (robot-at ?to)
            (not (robot-at ?from))))

(:action tuck
  :parameters ()
  :precondition ()
  :effect (and (hand-tucked)
            (crouched)))

(:action crouch
  :parameters ()
  :precondition ()
  :effect (and (crouched)))
```

Human’s Model

```
(:action move
  :parameters (?from ?to – location)
  :precondition (and (robot-at ?from))
  :effect (and (robot-at ?to)
            (not (robot-at ?from))))

(:action tuck
  :parameters ()
  :precondition ()
  :effect (and (hand-tucked)))

(:action crouch
  :parameters ()
  :precondition ()
  :effect (and (crouched)))
```
Example – FetchWorld

- Initial state and goal: (:init (block-at b1 loc1) (robot-at loc1) (hand-empty)) (:goal (and (block-at b1 loc2)))
- Robot’s optimal plan: pick-up b1 -> tuck -> move loc1 loc2 -> put-down b1
- Human’s expected plan: pick-up b1 -> move loc1 loc2 -> put-down b1

Robot’s Model

(:action move
 :parameters (?from ?to – location)
 :precondition (and (robot-at ?from) (hand-tucked) (crouched))
 :effect (and (robot-at ?to) (not (robot-at ?from))))

(:action tuck
 :parameters ()
 :precondition ()
 :effect (and (hand-tucked) (crouched)))

(:action crouch
 :parameters ()
 :precondition ()
 :effect (and (crouched)))

Human’s Model

(:action move
 :parameters (?from ?to – location)
 :precondition (and (robot-at ?from))
 :effect (and (robot-at ?to) (not (robot-at ?from))))

(:action tuck
 :parameters ()
 :precondition ()
 :effect (and (hand-tucked))))

(:action crouch
 :parameters ()
 :precondition ()
 :effect (and (crouched))))
Example – FetchWorld

• Robot’s optimal plan: pick-up b1 → tuck → move loc1 loc2 → put-down b1

Robot’s Model

(:action move
 :parameters (?from ?to – location)
 :precondition (and (robot-at ?from)
 (hand-tucked)
 (crouched))
 :effect (and (robot-at ?to)
 (not (robot-at ?from))))

(:action tuck
 :parameters ()
 :precondition ()
 :effect (and (hand-tucked)
 (crouched)))

(:action crouch
 :parameters ()
 :precondition ()
 :effect (and (crouched)))

Model Space Search

• Search algorithms for finding MCEs and MMEs
Model Space Search

- Human-aware planning: Given the model of a planning problem and the mental model of the human, find the right model to plan in
 - Trade-off explicability and explanation

- Minimise

\[\text{cost/length of explanations} + \alpha \cdot \text{departure from optimality} \]

Extensions (Outlook)

Explanation ordering

- Handling incomplete models
- Learning model approximation
- Handling cases with abstract human models
- Handling multiple observers
- Handling vocabulary differences
- Handling foils
- Reconciling logic programs
- Reconciling MDPs
- Reconciling task allocation models
Summary

• Mental models
 • Mental model of the human
 • Mental model that the human has of the agent
 • Mental model that the agent assumes the human has of the agent

• Interpretable behaviour
 • Explicability
 • Legibility
 • Predictability

• Explanations (not in this semester)
 • Model reconciliation
Outline

Provably beneficial AI (Russell)
 • Motivation
 • Modelling formalism

Human-aware decision making (Rao et al.)
 • Mental models
 • Interpretable Behaviour
 • Explanations

The End