Advanced Topics Data Science and AI Automated Planning and Acting

Temporal Models

Tanya Braun

1. Planning and Acting with 4. Planning and Acting with

Deterministic Models
2. Planning and Acting with Refinement Methods
3. Planning and Acting with Temporal Models
a. Temporal Representation
b. Planning with Temporal Refinement Methods
c. Constraint Management
d. Acting with Temporal Models

Nondeterministic
Models
5. Standard Decision Making
6. Planning and Acting with Probabilistic Models
7. Advanced Decision Making
8. Human-aware Planning

Temporal Models

- Durations of actions
- Delayed effects and preconditions
- E.g., resources borrowed or consumed during an action
- Time constraints on goals
- Relative or absolute
- Exogenous events expected to occur in the future
- When?
- Maintenance actions:
- Maintain a property (\neq changing a value)
- E.g., track a moving target, keep a spring latch in position
- Concurrent actions
- Interacting effects, joint effects
- Delayed commitment
- Instantiation at acting time

Timelines

- Up to now, "state-oriented view"
- Time is a sequence of states s_{0}, s_{1}, s_{2}
- Instantaneous actions transform each state into the next one
- No overlapping actions
- Switch to a "time-oriented view"
- Sequence of integer time points
- $t=1,2,3, \ldots$
- For each state variable x, a timeline
- values during different time intervals

- State at time $t=\{$ state - variable values at time $t\}$

Timelines

- Sets of constraints on state variables and events
- Reflect predicted actions and events
- Planning is constraint-based

Outline per the Book

4.2 Representation

- Timelines
- Actions and tasks
- Chronicles
4.3 Temporal Planning
- Resolvers and flaws
- Search space
4.4 Constraint Management
- Consistency of object constraints and time constraints
- Controlling the actions when we do not know how long they will take
4.5 Acting with Temporal Models
- Acting with atemporal refinement
- Dispatching
- Observation actions

Representation

- Quantitative model of time
- Discrete: time points are integers
- Expressions:
- time-point variables
- $t, t^{\prime}, t_{2}, t_{j}, \ldots$
- simple constraints
- $d \leq t^{\prime}-t \leq d^{\prime}$
- Temporal assertion:
- Value of a state variable during a time interval
- Persistence:

$$
\text { entails } t_{1}<t_{2}
$$

- Change:

$$
\left[t_{1}, t_{2}\right] x=v
$$

$$
\left[t_{1}, t_{2}\right] x:\left(v_{1}, v_{2}\right) \quad \text { entails } v_{1} \neq v_{2}
$$

Timeline

- Timeline: pair $(\mathcal{T}, \mathcal{C})$, partially predicted evolution of one state variable
- Instance of $(\mathcal{T}, \mathcal{C})=$ temporal and object variables instantiated
- \mathcal{T} : temporal assertions
- $\left[t_{1}, t_{2}\right] \operatorname{loc}(r 1):(\operatorname{loc} 1, l)$
- $\left[t_{2}, t_{3}\right] \operatorname{loc}(r 1)=l$
- $\left[t_{3}, t_{4}\right] \operatorname{loc}(r 1):(l, l o c 2)$
- \mathcal{C} : constraints
- $t_{1}<t_{2}<t_{3}<t_{4}$
- $l \neq$ loc 1

- $l \neq l o c 2$
- If we want to restrict $\operatorname{loc}(r 1)$ during $\left[t_{1}, t_{2}\right]$
- $\left[t_{1}, t_{1}+1\right] \operatorname{loc}(r 1):$ (loc1, route)
- $\left[t_{2}-1, t_{2}\right] \operatorname{loc}(r 1):($ route, $l)$
- $\left[t_{1}+1, t_{2}-1\right] \operatorname{loc}(r 1)=$ route
- An instance is consistent if it satisfies all constraints in \mathcal{C} and does not specify two different values for a state variable at the same time
- A timeline is secure if its set of consistent instances is not empty

Actions

- Preliminaries:
- Timelines $\left(\mathcal{J}_{1}, \mathcal{C}_{1}\right), \ldots,\left(\mathcal{J}_{k}, \mathcal{C}_{k}\right)$ for k different state variables
- Their union:
- $\left(\mathcal{J}_{1}, \mathcal{C}_{1}\right) \cup \cdots \cup\left(\mathcal{T}_{k}, \mathcal{C}_{k}\right)=\left(\mathcal{J}_{1} \cup \cdots \cup \mathcal{T}_{k}, \mathcal{C}_{1} \cup \cdots \cup \mathcal{C}_{k}\right)$
- If
- every $\left(\mathcal{T}_{i}, \mathcal{C}_{i}\right)$ is secure, and
- no pair of timelines $\left(\mathcal{T}_{i}, \mathcal{C}_{i}\right)$ and $\left(\mathcal{T}_{j}, \mathcal{C}_{j}\right)$ has any unground variables in common
- then
- $\left(\mathcal{T}_{1} \cup \cdots \cup \mathcal{T}_{k}, \mathcal{C}_{1} \cup \cdots \cup \mathcal{C}_{k}\right)$ is also secure
- Action or primitive task (or just primitive):
- a triple (head, \mathcal{T}, \mathcal{C})
- head is the name and arguments
- $(\mathcal{T}, \mathcal{C})$ is the union of a set of timelines

Actions

- leave (r,d,w)
- Robot r leaves dock d, goes to adjacent waypoint w
leave (r, d, w)
assertions:
$\left[t_{s}, t_{e}\right] \operatorname{loc}(r):(d, w)$
[t_{s}, t_{e}] occupant(d): (r,empty) constraints:
$t_{e} \leq t_{s}+\delta_{1}$
$\operatorname{adj}(d, w)$
- $\operatorname{loc}(r)$ changes to w with delay $\leq \delta_{1}$
- Dock d becomes empty

Actions

- enter (r, d, w)
- r enters d from an adjacent waypoint w
enter (r, d, w)
assertions:

$$
\left[t_{s}, t_{e}\right] \operatorname{loc}(r):(w, d)
$$

[t_{s}, t_{e}] occupant(d): (empty,r) constraints:

$$
\begin{aligned}
& t_{e} \leq t_{s}+\delta_{2} \\
& \operatorname{adj}(d, w)
\end{aligned}
$$

- Two additional parameters
- Starting time t_{s}
- Ending time t_{e}
- No separate preconditions and effects
- Preconditions \Leftrightarrow need for causal support
- $\operatorname{loc}(r)$ changes to d with delay $\leq \delta_{2}$
- Dock d becomes occupied by r

Actions

- take(k, c, r, d)
- Action: crane k takes container c from r on dock d
book omits d
- Two additional parameters
- Starting time t_{s}
- Ending time t_{e}
- No separate preconditions and effects
- Preconditions \Leftrightarrow need for causal support

```
take(k,c,r,d)
    assertions:
    [ts,te] pos(c): (r,k) // where container c is
    [ts,tte grip(k): (empty, c) // what crane k's gripper is holding
    [ts,tte] freight(r): (c,empty) // what r is carrying
    [ts,te] ] loc(r)=d // where r is
    constraints:
    attached(k,d)
```


Actions

- leave (r, d, w)
robot r leaves dock d to an adjacent waypoint w
- $\operatorname{enter}(r, d, w)$ r enters d from an adjacent w
- take (k, c, r, d) crane k takes cont. c from r at d
- navigate (r, w, w^{\prime}) r navigates from w to w^{\prime}
- $\operatorname{stack}(k, c, p)$
k stacks c on top of pile p
- unstack (k, c, p)
- put($k, c, r, d)$

book omits d

 k takes c from top of $p$$k$ puts c onto r at d

Tasks and Methods

- Task: move robot r to dock d
- $\left[t_{s}, t_{e}\right] \operatorname{move}(r, d)$
- Method:

```
m-move1(r,d, d',w,w')
    task: move(r,d)
    refinement:
\[
\begin{aligned}
& {\left[t_{s}, t_{1}\right] \text { leave }\left(r, d^{\prime}, w^{\prime}\right)} \\
& {\left[t_{2}, t_{3}\right] \text { navigate }\left(r, w^{\prime}, w\right)} \\
& {\left[t_{4}, t_{e}\right] \text { enter }(r, d, w)}
\end{aligned}
\]
```

assertions:

$$
\left[t_{s}, t_{s}+1\right] \operatorname{loc}(r)=d^{\prime}
$$

constraints:

$$
\begin{aligned}
& \operatorname{adj}(d, w), \\
& \operatorname{adj}\left(d^{\prime}, w^{\prime}\right), d \neq d^{\prime}, \\
& \operatorname{connected}\left(w, w^{\prime}\right), \\
& t_{1} \leq t_{2}, t_{3} \leq t_{4}
\end{aligned}
$$

- d^{\prime} becomes empty during $\left[t_{s}, t_{1}\right]$
- another robot may enter it after t_{1}
- d doesn't need to be empty until t_{4}
- when r starts entering it

Tasks and Methods

- Task: remove everything above container c in pile p
- $\left[t_{s}, t_{e}\right] u n c o v e r(c, p)$
- Method:
$\left[t_{s}, t_{e}\right]$ uncover (c, p)


```
m-uncover(c,p,k,d,p}
    task: uncover(c,p)
    refinement: [ }\mp@subsup{t}{s}{},\mp@subsup{t}{1}{}]\mathrm{ unstack ( }k,\mp@subsup{c}{}{\prime},p) // action
        [t, t t ] stack(k, c', ,\mp@subsup{p}{}{\prime}) // action
        [t}\mp@subsup{t}{4}{},\mp@subsup{t}{e}{}]\mathrm{ uncover(c,p) // recursive uncover
    assertions: [t }\mp@subsup{t}{s}{},\mp@subsup{t}{s}{}+1]\mathrm{ pile(c) =p
        [}\mp@subsup{t}{s}{\prime},\mp@subsup{t}{s}{}+1] top(p)=\mp@subsup{c}{}{\prime
        [ }\mp@subsup{t}{s}{\prime},\mp@subsup{t}{s}{}+1]\operatorname{grip}(k)= empt
    constraints: attached (k,d), attached(p,d),
            attached ( }\mp@subsup{p}{}{\prime},d)\mathrm{ ,
            p\not= p
            t
```


Tasks and Methods

- Task: robot r brings container c to pile p
- $\left[t_{s}, t_{e}\right]$ bring (r, c, p)
- Method:

Chronicles: Unions of Timelines

- Chronicle $\phi=(\mathcal{A}, \mathcal{S}, \mathcal{T}, \mathcal{C})$
- \mathcal{A} : temporally qualified actions and tasks
- \mathcal{S} : a priori supported assertions
- \mathcal{T} : temporally qualified assertions
- \mathcal{C} : constraints
- ϕ can include
- Current state, future predicted events
- Tasks to perform

$$
\begin{array}{ll}
\phi_{0}: & \\
\text { tasks: } & {\left[t, t^{\prime}\right] \operatorname{bring}(r, \mathrm{c} 1, \mathrm{~d} 4)} \\
\text { supported: }: & {\left[t_{s}\right] \operatorname{loc}(\mathrm{r} 1)=\mathrm{d} 1} \\
& {\left[t_{s}\right] \operatorname{loc}(\mathrm{r} 2)=\mathrm{d} 2} \\
& {\left[t_{s}+10, t_{s}+\delta\right] \text { docked }(\text { ship1 })=\mathrm{d} 3} \\
& \left.\left[t_{s}\right] \text { top(pile-ship1 }\right)=\mathrm{c} 1 \\
& {\left[t_{s}\right] \operatorname{pos}(\mathrm{c} 1)=\text { pallet }}
\end{array}
$$

assertions: $\left[t_{e}\right] \operatorname{loc}(r 1)=\mathrm{d} 1$
$\left[t_{e}\right] \operatorname{loc}(r 2)=\mathrm{d} 2$
constraints: $t_{s}=0<t<t^{\prime}<t_{e}, 20 \leq \delta \leq 30$

- Assertions and constraints to satisfy
- Can represent $\operatorname{loc}(r 1)=d 1$
$\left[t_{s}, t_{e}\right] \operatorname{bring}(r, c 1, d 4)$
- Planning problem ${ }^{\text {top(pile-ship1) }=c 1}$
- Plan or partial plan

Intermediate Summary

- Timelines
- Temporal assertions (change, persistence), constraints
- Conflicts, consistency, security, causal support
- Chronicle: union of several timelines
- Consistency, security, causal support
- Actions represented by chronicles
- No separate preconditions and effects
- Preconditions \Leftrightarrow need for causal support

Outline per the Book

4.2 Representation

- Timelines
- Actions and tasks
- Chronicles
4.3 Temporal Planning
- Resolvers and flaws
- Search space
4.4 Constraint Management
- Consistency of object constraints and time constraints
- Controlling the actions when we do not know how long they will take
4.5 Acting with Temporal Models
- Acting with atemporal refinement
- Dispatching
- Observation actions

Planning

－Planning problem：
－Chronicle ϕ_{0} that has some flaws
－Analogous to flaws in PSP

```
\phi0: tasks: (none)
supported: (none)
assertions: }\quad[\mp@subsup{t}{1}{},\mp@subsup{t}{2}{}]\operatorname{loc}(r1)=
    [ th, t⿱亠⿱八乂;
constraints: adj(loc3,w1)
    adj(w1,loc3)
    adj(loc4,w2)
    adj(w2,loc4)
    connected(w1,w2)
```


－Add new assertions， constraints，actions to resolve the flaws


```
supported: (none)
assertions: }\quad[\mp@subsup{t}{1}{},\mp@subsup{t}{2}{}]\operatorname{loc}(r1)=
    [t, t, ] loc(r1) : (loc3,loc4)
constraints: adj(loc3,w1)
    adj(w1,loc3)
    adj(loc4,w2)
    adj(w2,loc4)
    connected(w1,w2)
```


Flaws (1)

1. Temporal assertion α that is not causally supported

- What causes $r 1$ to be at loc3 at time t_{3} ?

Like an open goal in PSP

- Resolvers:
- Add constraints to support α from an assertion in ϕ
- $l=l o c 3, t_{2}=t_{3}$
- Add a new persistence assertion to support α
- $l=\operatorname{loc} 3,\left[t_{2}, t_{3}\right] \operatorname{loc}(r 1)=\operatorname{loc} 3$
- Add a new task or action to support α
- $\left[t_{2}, t_{3}\right]$ move $(r 1, \operatorname{loc} 3)$
- Refining it will produce support for α

Flaws (2)

2. Non-refined task

- Resolver: refinement method m
- Applicable if it matches the task and its constraints are consistent with ϕ 's
- Applying the resolver:
- Modify ϕ by replacing the task with m
- Example: $\left[t_{2}, t_{3}\right]$ move ($r 1, \operatorname{loc} 3$)
- Refinement will replace it with something like
- $\left[t_{2}, t_{5}\right]$ leave $(r 1, l, w)$
- $\left[t_{5}, t_{6}\right]$ navigate $\left(r 1, w, w^{\prime}\right)$
- $\left[t_{6}, t_{3}\right]$ enter (r1, loc3, $\left.w^{\prime}\right)$

- plus constraints

Flaws (3)

3. A pair of possibly-conflicting temporal assertions

Like a threat in PSP

- temporal assertions α and β possibly conflict if they can have inconsistent instances
- Example
- $\left[t_{1}, t_{2}\right] \operatorname{loc}(r 1)=\operatorname{loc} 1,\left[t_{3}, t_{4}\right] \operatorname{loc}(r):\left(l, l^{\prime}\right)$ $\downarrow \downarrow \quad \downarrow \downarrow \quad \downarrow \quad \downarrow \downarrow$
 instance: $[1,5] \operatorname{loc}(r 1)=\operatorname{loc} 1, \quad[3,8] \operatorname{loc}(r 1):(\operatorname{loc} 2, \operatorname{loc} 3)$
- Resolvers: separation constraints
- $r \neq r 1$
- $t_{2}<t_{3}$
- $t_{4}<t_{1}$
- $t_{2}=t_{3}, r=r 1, l=l o c 1$

- Also provides causal support for $\left[t_{3}, t_{4}\right] \operatorname{loc}(r):\left(l, l^{\prime}\right)$
- $t_{4}=t_{1}, r=r 1, l^{\prime}=\operatorname{loc} 1$
- Also provides causal support for $\left[t_{1}, t_{2}\right] \operatorname{loc}(r 1)=\operatorname{loc} 1$

Planning Algorithm

- Like PSP in Ch. 2
- Repeatedly selects flaws and chooses resolvers
- In the book, TemPlan uses recursion
- Can be rewritten with a loop
- If resolving all flaws possible, at least one nondeterministic execution trace will do so
- In a deterministic implementation
- Selecting a resolver ρ is a backtracking point
- Selecting a flaw is not
- (As in PSP)

```
TemPlan(\phi,\Sigma)
    Flaws \leftarrow set of flaws of \phi
    if Flaws = \emptyset then
        return \phi
    arbitrarily select f E Flaws
    Resolvers \leftarrow set of resolvers of f
    if Resolvers = \emptyset then
        return failure
    nondeterministically choose \rho \in Resolvers
    \phi
    TemPlan( }\phi,\Sigma
```

TemPlan (ϕ, Σ)
loop
Flaws \leftarrow set of flaws of ϕ
if Flaws $=\emptyset$ then
return ϕ
arbitrarily select $f \in$ Flaws
Resolvers \leftarrow set of resolvers of f
if Resolvers = \emptyset then
return failure
nondeterministically choose $\rho \in$ Resolvers
$\phi \leftarrow \operatorname{Transform}(\phi, \rho)$

Example

- $\phi=(\mathcal{A}, \mathcal{S}, \mathcal{T}, \mathcal{C})$
- Establishes state-variable values at time $t=0$
- Flaws: two unrefined tasks
- bring(r,c1,p3), bring($r^{\prime}, c 2, p 4$)

$\phi_{0}:$ tasks: bring $(r, c 1, p 3)$ bring ($r^{\prime}, c 2, p 4$)
supported:[0] loc(r1)=d3
[0] freight(r1)=empty
[0] pile(c1)=p'1
[0] pile $\left(c^{\prime} 1\right)=p^{\prime} 1$
[0] pos(c1)=pallet
[0] $\operatorname{pos}\left(c^{\prime} 1\right)=c 1$
assertions: (none)
constraints:
$\operatorname{adj}(\mathrm{d} 1, \mathrm{w} 12)$
adj(d1,w13)

Example

- Flaws: two unrefined tasks
- bring(r,c1,p3), bring($r^{\prime}, c 2, p 4$)
- Refinement for both:
$m-\operatorname{bring}\left(r, c, p, p^{\prime}, d, d^{\prime}, k, k^{\prime}\right)$
task: $\operatorname{bring}(r, c, p)$
refinement: $\left[t_{s}, t_{1}\right]$ move $\left(r, d^{\prime}\right)$
[t_{s}, t_{2}] uncover $\left(c, p^{\prime}\right)$
$\left[t_{3}, t_{4}\right] \operatorname{load}\left(k^{\prime}, r, c, p^{\prime}\right)$
$\left[t_{5}, t_{6}\right]$ move (r, d)
$\left[t_{7}, t_{e}\right]$ unload (k, r, c, p)
assertions: $\left[t_{s}, t_{3}\right]$ pile $(c)=p^{\prime}$
[t_{s}, t_{3}] freight $(r)=$ empty
constraints: attached $\left(p^{\prime}, d^{\prime}\right)$,
$\operatorname{attached}(p, d), d \neq d^{\prime}$
attached($\left.k^{\prime}, d^{\prime}\right)$,
attached $(k, d), k \neq k^{\prime}$
$t_{1} \leq t_{3}, t_{2} \leq t_{3}, t_{4} \leq t_{5}, t_{6} \leq t_{7}$
$\phi_{0}:$ tasks: bring $(r, c 1, p 3)$ bring ($r^{\prime}, c 2, p 4$)
supported:[0] loc(r1)=d3
[0] freight(r1)=empty
[0] pile(c1)=p'1
[0] pile $\left(c^{\prime} 1\right)=p^{\prime} 1$
[0] pos(c1)=pallet
[0] $\operatorname{pos}\left(c^{\prime} 1\right)=c 1$
assertions: (none)
constraints:

```
adj(d1,w12)
    adj(d1,w13)
```


Method Instance

- Instantiate $c=c 1$ and $p=p 3$ to match bring (r, c1, p3)
- $p^{\prime}, d, d^{\prime}, k, k^{\prime}$ instantiated to match book
- Needed later to satisfy action preconditions
m-bring $\left(r, c, p, p^{\prime}, d, d^{\prime}, k, k\right)$
m-bring(r,c1, p3, p'1, d3, d1,k3,k1)
refine
task: bring(r,c1,p3)
refinement: $\left[t_{s}, t_{1}\right]$ move $(r, d 1)$
[t_{s}, t_{2}] uncover(c1, $\left.\mathrm{p}^{\prime} 1\right)$
$\left[t_{3}, t_{4}\right] \operatorname{load}\left(\mathrm{k} 1, r, \mathrm{c} 1, \mathrm{p}^{\prime} 1\right)$
$\left[t_{5}, t_{6}\right]$ move $(r, \mathrm{~d} 3)$
asser
constri
assertions: $\left[t_{s}, t_{3}\right]$ pile(c1) $=\mathrm{p}^{\prime} 1$
[t_{s}, t_{3}] freight $(r)=$ empty
constraints: attached($\left.p^{\prime} 1, \mathrm{~d} 1\right)$,
attached(p3,d3), d3 $\neq \mathrm{d} 1$
attached(k1,d1),
attached(k3, d3), k3 $\neq \mathrm{k} 1$
$t_{1} \leq t_{3}, t_{2} \leq t_{3}, t_{4} \leq t_{5}, t_{6} \leq t_{7}$
$\phi_{0}:$ tasks: bring $(r, c 1, \mathrm{p} 3)$ bring($r^{\prime}, c 2, p 4$)
supported:[0] loc(r1)=d3
[0] freight(r1)=empty
[0] pile(c1)=p'1
[0] pile (c'1)=p'1
[0] pos(c1)=pallet
[0] $\operatorname{pos}\left(c^{\prime} 1\right)=c 1$
assertions: (none)
constraints:
$\operatorname{adj}(d 1, w 12)$
adj(d1,w13)

Modified Chronicle

- Changes to ϕ_{0}
- Removed bring ($r, c 1, p 3$)
- Added 5 tasks, 2 assertions, 4 constraints
- Flaws
- 6 unrefined tasks, 2 unsupported assertions

$\phi_{1}:$ tasks: $\left[t_{s}, t_{1}\right]$ move $(r, \mathrm{~d} 1)$
[t_{s}, t_{2}] uncover(c1, $\left.\mathrm{p}^{\prime} 1\right)$
$\left[t_{3}, t_{4}\right]$ load(k1,r,c1, $\left.\mathrm{p}^{\prime} 1\right)$
$\left[t_{5}, t_{6}\right]$ move $(r, \mathrm{~d} 3)$
[t_{7}, t_{e}] unload(k3,r,c1,p3)
bring($r^{\prime}, c 2, p 4$)
supported:[0] loc(r1)=d3
[0] freight(r1)=empty
[0] pile(c1)=p'1
[0] pile (c'1)=p'1
[0] pos(c1)=pallet
[0] $\operatorname{pos}\left(c^{\prime} 1\right)=c 1$
assertions: $\left[t_{s}, t_{3}\right]$ pile(c1) $=\mathrm{p}^{\prime} 1$
[$\left.t_{s}, t_{3}\right]$ freight $(r)=$ empty
constraints: $t_{5}<t_{1} \leq t_{3}, t_{5}<t_{2} \leq t_{3}, t_{4} \leq t_{5}, t_{6} \leq t_{7}$,
adj(d1,w12),
adj(d1,w13),

Method Instance

- Instantiate $r=r^{\prime}, c=c 2, p=p 4$ to match bring ($r^{\prime}, c 2, p 4$)
- $p^{\prime}, d, d^{\prime}, k, k^{\prime}$ instantiated to match book
m-bring $\left(r, c, p, p^{\prime}, d, d^{\prime}, k, k\right)$
m-bring($\left.r^{\prime}, \mathrm{c} 2, \mathrm{p} 4, \mathrm{p}^{\prime} 2, \mathrm{~d} 4, \mathrm{~d} 2, \mathrm{k} 4, \mathrm{k} 2\right)$
refine
task: bring ($r^{\prime}, c 2, p 4$)
refinement: $\left[t_{s}, t_{1}\right] \operatorname{move}\left(r^{\prime}, \mathrm{d} 2\right)$
[t_{s}, t_{2}] uncover(c2, $\left.p^{\prime} 2\right)$
$\left[t_{3}, t_{4}\right] \operatorname{load}\left(k 2, r^{\prime}, c 2, p^{\prime} 2\right)$
$\left[t_{5}, t_{6}\right]$ move $\left(r^{\prime}, \mathrm{d} 4\right)$
asser
constr
assertions: $\left[t_{s}, t_{3}\right]$ pile(c2) $=p^{\prime} 2$
$\left[t_{s}, t_{3}\right]$ freight $\left(r^{\prime}\right)=$ empty
constraints: attached($p^{\prime} 2, d 2$),
attached(p4,d4), d4 $\neq \mathrm{d} 2$
attached(k2,d2),
attached(k4,d4), k4 $\neq \mathrm{k} 2$
$t_{1} \leq t_{3}, t_{2} \leq t_{3}, t_{4} \leq t_{5}, t_{6} \leq t_{7}$
$\phi_{1}:$ tasks: $\left[t_{s}, t_{1}\right]$ move $(r, \mathrm{~d} 1)$ [t_{s}, t_{2}] uncover(c1, p'1) $\left[t_{3}, t_{4}\right] \operatorname{load}\left(\mathrm{k} 1, r, \mathrm{c} 1, \mathrm{p}^{\prime} 1\right)$ $\left[t_{5}, t_{6}\right]$ move $(r, \mathrm{~d} 3)$ [t_{7}, t_{e}] unload($\left.\mathrm{k} 3, r, \mathrm{c} 1, \mathrm{p} 3\right)$ bring(r', c2,p4)
supported: [0] loc(r1)=d3
[0] freight(r1)=empty
[0] pile(c1)=p’1
[0] pile(c $\left.c^{\prime} 1\right)=p^{\prime} 1$
[0] pos(c1)=pallet
[0] $\operatorname{pos}\left(c^{\prime} 1\right)=c 1$
assertions: $\left[t_{s}, t_{3}\right]$ pile(c1) $=\mathrm{p}^{\prime} 1$
$\left[t_{s}, t_{3}\right]$ freight $(r)=$ empty
constraints: $t_{s}<t_{1} \leq t_{3}, t_{5}<t_{2} \leq t_{3}, t_{4} \leq t_{5}, t_{6} \leq t_{7}$,
adj(d1,w12),
adj(d1,w13),

Modified Chronicle

- Changes
- Removed bring ($r^{\prime}, c 2, p 4$)
- Added 5 tasks, 2 assertions, 4 constraints
- Flaws
- 10 unrefined tasks, 4 unsupported assertions
- Next, work on these two assertions

$\phi_{2}:$ tasks: $\left[t_{s}, t_{1}\right]$ move $(r, \mathrm{~d} 1)$
[t_{s}, t_{2}] uncover(c1, $\left.\mathrm{p}^{\prime} 1\right)$
$\left[t_{3}, t_{4}\right]$ load(k1,r,c1, $\left.\mathrm{p}^{\prime} 1\right)$
$\left[t_{5}, t_{6}\right]$ move $(r, \mathrm{~d} 3)$
[t_{7}, t_{e}] unload($\left.\mathrm{k} 3, r, \mathrm{c} 1, \mathrm{p} 3\right)$
[$t^{\prime}{ }_{s}, t^{\prime}{ }_{1}$] move $\left(r^{\prime}, \mathrm{d} 2\right)$
[$\left.t^{\prime}{ }_{s}, t^{\prime}{ }_{2}\right]$ uncover(c2, $\left.\mathrm{p}^{\prime} 2\right)$
[$\left.t^{\prime}{ }_{3}, t^{\prime}{ }_{4}\right]$ load $\left(\mathrm{k} 4, \mathrm{r}^{\prime}, \mathrm{c} 2, \mathrm{p}^{\prime} 2\right)$
[$t^{\prime}{ }_{5}, t^{\prime}{ }_{6}$] move $\left(r^{\prime}, \mathrm{d} 4\right)$
[$t^{\prime}{ }_{7}, t^{\prime}{ }_{e}$] unload(k2, $\left.r^{\prime}, \mathrm{c} 2, \mathrm{p}^{\prime} 2\right)$
supported:[0] loc(r1)=d3
[0] freight(r1)=empty
[0] pile(c1)=p’1
assertions: $\left[t_{s}, t_{3}\right]$ pile(c1) $=p^{\prime} 1$
$\left[t_{s}, t_{3}\right]$ freight $(r)=$ empty
[$t^{\prime}{ }_{s}, t^{\prime}{ }_{3}$] pile(c2) $=\mathrm{p}^{\prime} 2$
[$\left.t^{\prime}{ }_{s}, t_{1}^{\prime}\right]$ freight $\left(r^{\prime}\right)=$ empty
constraints: $t_{5}<t_{1} \leq t_{3}, t_{5}<t_{2} \leq t_{3}, t_{4} \leq t_{5}, t_{6} \leq t_{7}$, $t_{s}^{\prime}<t_{1}{ }_{1} \leq t^{\prime}{ }_{3}, t_{5}^{\prime}<t^{\prime}{ }_{2} \leq t^{\prime}{ }_{3}, t^{\prime}{ }_{4} \leq t^{\prime}{ }_{5}, t_{6}^{\prime} \leq t^{\prime}{ }_{7}$, adj(d1,w12),
adj(d1,w13), . . .

Supporting the Assertions

－ 3 ways to support $\left[t_{s}, t_{3}\right]$ pile $(c 1)=p^{\prime} 1$
1．Constrain $t_{s}=0$ ，use［0］pile $(c 1)=p^{\prime} 1$
2．Add persistence $\left[0, t_{s}\right]$ pile $(c 1)=p^{\prime} 1$


```
\phi}\mp@subsup{\mp@code{2}}{\mathrm{ : tasks: [ }\mp@subsup{t}{s}{\prime},\mp@subsup{t}{1}{}]\mathrm{ move(r,d1)}}{
    [ }\mp@subsup{t}{s}{},\mp@subsup{t}{2}{}]\mathrm{ uncover(c1, p'1)
    [ th, t⿱亠⿱口小⿺
    [ t 5, t⿱] ] move(r,d3)
    [ t }\mp@subsup{7}{7}{},\mp@subsup{t}{e}{}]\mathrm{ unload(k3,r,c1,p3)
    [ t 'r, t' }\mp@subsup{}{1}{\prime}\mathrm{ ] move( (r',d2)
    [ t' ', t, t' ] uncover(c2, p'2)
    [ }\mp@subsup{t}{3}{\prime},\mp@subsup{t}{}{\prime}\mp@subsup{}{4}{}]\operatorname{load}(\textrm{k}4,\mp@subsup{r}{}{\prime},\textrm{c}2,\mp@subsup{p}{}{\prime}2
    [ }\mp@subsup{t}{5}{\prime},\mp@subsup{t}{}{\prime}\mp@subsup{}{6}{\prime}]\mathrm{ move( (r',d4)
    [ }\mp@subsup{t}{}{\prime},\mp@subsup{t}{}{\prime}\mp@subsup{}{e}{e}]\mathrm{ ] unload(k2,r',c2, p'2)
```

supported：［0］loc（r1）＝d3
［0］freight（r1）＝empty
［0］pile（c1）＝p＇1
assertions：$\left[t_{s}, t_{3}\right]$ pile $(c 1)=p^{\prime} 1$
$\left[t_{s}, t_{3}\right]$ freight $(r)=$ empty
$\left[t^{\prime}{ }_{s} t^{\prime}{ }_{3}\right]$ pile（c2）$=\mathrm{p}^{\prime} 2$
［ $\left.t_{{ }^{\prime}}, t^{\prime}{ }_{1}\right]$ freight $\left(r^{\prime}\right)=$ empty
constraints：$t_{5}<t_{1} \leq t_{3}, t_{5}<t_{2} \leq t_{3}, t_{4} \leq t_{5}, t_{6} \leq t_{7}$ ， $t_{5}^{\prime}<t^{\prime}{ }_{1} \leq t^{\prime}{ }_{3}, t^{\prime}{ }_{5}<t^{\prime}{ }_{2} \leq t^{\prime}{ }_{3}, t^{\prime}{ }_{4} \leq t^{\prime}{ }_{5}, t^{\prime}{ }_{6} \leq t^{\prime}{ }_{7}$, adj（d1，w12），
adj（d1，w13），．．．

Supporting the Assertions

- 3 ways to support $\left[t_{s}, t_{3}\right]$ pile $(c 1)=p^{\prime} 1$ 1. Constrain $t_{s}=0$, use [0]pile (c1) $=p^{\prime} 1$
- To support $\left[0, t_{3}\right]$ freight $(r)=$ empty

1. Constrain $r=r 1$

```
\mp@subsup{\phi}{2}{}: tasks: |0, t1] move(r,d1)
    0, t2] uncover(c1, p'1)
    [t, t t ] load(k1,r,c1, p'1)
    [t5, t⿱ ] move(r,d3)
    [ }\mp@subsup{t}{7}{},\mp@subsup{t}{e}{}]\mathrm{ unload(k3,r,c1,p3)
    [ }\mp@subsup{t}{5}{\prime},\mp@subsup{t}{}{\prime}\mp@subsup{}{1}{}]\mathrm{ move( (r', d2)
    [ }\mp@subsup{t}{5}{\prime},\mp@subsup{t}{}{\prime}\mp@subsup{}{2}{\prime}]\mathrm{ uncover(c2, p}\mp@subsup{}{}{\prime}2
    [ t ' }\mp@subsup{3}{,}{\prime}\mp@subsup{t}{4}{\prime}]\operatorname{load}(\textrm{k}4,\mp@subsup{r}{}{\prime},\textrm{c}2,\mp@subsup{p}{}{\prime}2
    [ }\mp@subsup{t}{5}{\prime},\mp@subsup{t}{}{\prime}\mp@subsup{}{6}{\prime}]\mathrm{ move( }\mp@subsup{r}{}{\prime},\textrm{d}4
    [ }\mp@subsup{t}{7}{\prime},\mp@subsup{t}{}{\prime}\mp@subsup{e}{e}{\prime}\mathrm{ ] unload(k2, r',c2, p'2)
```

supported:[0] loc(r1)=d3
[0] freight(r1)=empty
[0] pile(c1)=p'1
$\left[0, t_{3}\right]$ pile $(c 1)=p^{\prime} 1$
assertions: $0, t_{3}$] freight $(r)=$ empty
$\left[t_{s}^{\prime}, t^{\prime}{ }_{3}\right]$ pile $(\mathrm{c} 2)=\mathrm{p}^{\prime} 2$
[$\left.t^{\prime}{ }_{s}, t_{1}{ }_{1}\right]$ freight $\left(r^{\prime}\right)=$ empty
constraints: $0<t_{1} \leq t_{3}, 0<t_{2} \leq t_{3}, t_{4} \leq t_{5}, t_{6} \leq t_{7}$,
$t_{5}^{\prime}<t^{\prime}{ }_{1} \leq t^{\prime}{ }_{3}, t^{\prime}{ }_{5}<t^{\prime}{ }_{2} \leq t^{\prime}{ }_{3}, t^{\prime}{ }_{4} \leq t^{\prime}{ }_{5}, t^{\prime}{ }_{6} \leq t^{\prime}{ }_{7}$,
$\operatorname{adj}(d 1, w 12)$,
adj(d1,w13), . . .

Supporting the Assertions

- 3 ways to support $\left[t_{s}, t_{3}\right]$ pile $(c 1)=p^{\prime} 1$

1. Constrain $t_{s}=0$, use [0]pile (c1) $=p^{\prime} 1$

- To support $\left[0, t_{3}\right]$ freight $(r)=$ empty

1. Constrain $r=r 1$

$\phi_{2}:$ tasks: $\left[0, t_{1}\right]$ move $(\mathrm{r} 1, \mathrm{~d} 1)$
[$0, t_{2}$] uncover(c1, $p^{\prime} 1$)
$\left[t_{3}, t_{4}\right] \operatorname{load}\left(k 1, r 1, c 1, p^{\prime} 1\right)$
$\left[t_{5}, t_{6}\right]$ move $\left.\mathrm{r} 1, \mathrm{~d} 3\right)$
[t_{7}, t_{e}] unload(k3, r1, c1, p3)
$\left[t^{\prime}{ }_{5}, t^{\prime}{ }_{1}\right]$ move $\left(r^{\prime}, \mathrm{d} 2\right)$
[$t^{\prime}{ }_{s}, t^{\prime}{ }_{2}$] uncover(c2, $\left.\mathrm{p}^{\prime} 2\right)$
$\left[t^{\prime}{ }_{3}, t^{\prime}{ }_{4}\right] \operatorname{load}\left(\mathrm{k} 4, r^{\prime}, \mathrm{c} 2, \mathrm{p}^{\prime} 2\right)$
[$\left.t^{\prime}{ }_{5}, t^{\prime}{ }_{6}\right]$ move $\left(r^{\prime}, \mathrm{d} 4\right)$
$\left[t^{\prime}{ }_{7}, t^{\prime}{ }_{e}\right]$ unload(k2, $\left.r^{\prime}, \mathrm{c} 2, \mathrm{p}^{\prime} 2\right)$
supported:[0] loc(r1)=d3
[0] freight(r1)=empty
[0] pile(c1)=p'1
$\left[0, t_{3}\right]$ pile $(c 1)=p^{\prime} 1$
$\left[0, t_{3}\right]$ freight $(r 1)=$ empty
assertions: $\left[t^{\prime}{ }_{s,} t^{\prime}{ }_{3}\right]$ pile(c2) $=\mathrm{p}^{\prime} 2$
[$t^{\prime}{ }_{s}, t_{1}{ }_{1}$] freight $\left(r^{\prime}\right)=$ empty
constraints: $0<t_{1} \leq t_{3}, 0<t_{2} \leq t_{3}, t_{4} \leq t_{5}, t_{6} \leq t_{7}$,
$t_{5}^{\prime}<t^{\prime}{ }_{1} \leq t^{\prime}{ }_{3}, t^{\prime}{ }_{5}<t^{\prime}{ }_{2} \leq t^{\prime}{ }_{3}, t^{\prime}{ }_{4} \leq t^{\prime}{ }_{5}, t^{\prime}{ }_{6} \leq t^{\prime}{ }_{7}$, adj(d1,w12),
adj(d1,w13), . . .

Supporting the Assertions

- To support $\left[t_{s}^{\prime}, t_{3}^{\prime}\right]$ pile $(c 2)=p^{\prime} 2$
- Add persistence condition $\left[0, t_{s}^{\prime}\right]$ pile $(c 2)=p^{\prime} 2$
- Alternatives:

Constrain $t_{s}^{\prime}=0$ or add new action $\operatorname{stack}\left(k 2, c 2, p^{\prime} 2\right)$

$\phi_{2}:$ tasks: $\left[0, t_{1}\right]$ move(r1,d1)
$\left[0, t_{2}\right]$ uncover(c1, $\left.p^{\prime} 1\right)$
$\left[t_{3}, t_{4}\right] \operatorname{load}\left(\mathrm{k} 1, \mathrm{r} 1, \mathrm{c} 1, \mathrm{p}^{\prime} 1\right)$
[t_{5}, t_{6}] move $(\mathrm{r} 1, \mathrm{~d} 3)$
$\left[t_{7}, t_{e}\right]$ unload (k3,r1,c1,p3)
[$\left.t^{\prime}{ }_{s}, t^{\prime}{ }_{1}\right]$ move $\left(r^{\prime}, \mathrm{d} 2\right)$
[$\left.t^{\prime}{ }_{s}, t^{\prime}{ }_{2}\right]$ uncover(c2, $\mathrm{p}^{\prime} 2$)
$\left[t^{\prime}{ }_{3}, t^{\prime}{ }_{4}\right] \operatorname{load}\left(\mathrm{k} 4, r^{\prime}, \mathrm{c} 2, \mathrm{p}^{\prime} 2\right)$
[$\left.t^{\prime}{ }_{5}, t^{\prime}{ }_{6}\right]$ move $\left(r^{\prime}, \mathrm{d} 4\right)$
[$t^{\prime}{ }_{7}, t^{\prime}{ }_{e}$] unload(k2, $\left.r^{\prime}, \mathrm{c} 2, \mathrm{p}^{\prime} 2\right)$
supported:[0] loc(r1)=d3
[0] freight(r1)=empty
[0] pile(c1)=p'1
...
$\left[0, t_{3}\right]$ pile $(c 1)=p^{\prime} 1$
[$0, t_{3}$] freight(r1) = empty
assertions: $\left[t^{\prime}{ }_{s}, t^{\prime}{ }_{3}\right]$ pile(c2) $=\mathrm{p}^{\prime} 2$
[$\left.t^{\prime}{ }_{s} t^{\prime}{ }_{1}\right]$ freight $\left(r^{\prime}\right)=$ empty
constraints: $0<t_{1} \leq t_{3}, 0<t_{2} \leq t_{3}, t_{4} \leq t_{5}, t_{6} \leq t_{7}$,

$$
t_{5}^{\prime}<t_{1}^{\prime} \leq t^{\prime}{ }_{3}, t_{5}^{\prime}<t^{\prime}{ }_{2} \leq t^{\prime}{ }_{3}, t_{4}^{\prime} \leq t^{\prime}{ }_{5}, t_{6}^{\prime} \leq t^{\prime}{ }_{7}
$$

adj(d1,w12),
adj(d1,w13), . . .

Supporting the Assertions

- To support $\left[t_{s}^{\prime}, t_{3}^{\prime}\right]$ pile $(c 2)=p^{\prime} 2$
- Add $\left[0, t_{s}^{\prime}\right] p i l e(c 2)=p^{\prime} 2$
- To support $\left[t_{s}^{\prime}, t_{1}^{\prime}\right]$ freight $\left(r^{\prime}\right)=$ empty
- Constrain $r^{\prime}=r 2$, add nersistence condition $\left[0, t_{s}^{\prime}\right]$ freight $(r 2)=$ empty

$\phi_{2}:$ tasks: $\left[0, t_{1}\right]$ move(r1,d1)

$$
\left[0, t_{2}\right] \text { uncover }\left(c 1, p^{\prime} 1\right)
$$

$$
\left[t_{3}, t_{4}\right] \operatorname{load}\left(\mathrm{k} 1, \mathrm{r} 1, \mathrm{c} 1, \mathrm{p}^{\prime} 1\right)
$$

$$
\left[t_{5}, t_{6}\right] \text { move }(\mathrm{r} 1, \mathrm{~d} 3)
$$

$$
\left[t_{7}, t_{e}\right] \text { unload(k3,r1,c1,p3) }
$$

[$\left.t^{\prime}{ }_{c}, t^{\prime}{ }_{1}\right]$ move $\left(r^{\prime}, \mathrm{d} 2\right)$
[$\left.t^{\prime}{ }_{s}, t^{\prime}{ }_{2}\right]$ uncover(c2, $\left.\mathrm{p}^{\prime} 2\right)$
$\left[t^{\prime}{ }_{3}, t^{\prime}{ }_{4}\right] \operatorname{load}\left(\mathrm{k} 4, r^{\prime}, \mathrm{c} 2, \mathrm{p}^{\prime} 2\right)$
[$t^{\prime}{ }_{5}, t^{\prime}{ }_{6}$] move $\left(r^{\prime}, \mathrm{d} 4\right)$
[$t^{\prime}{ }_{7}, t^{\prime}{ }_{e}$] unload($\left.\mathrm{k} 2, r^{\prime}, \mathrm{c} 2, \mathrm{p}^{\prime} 2\right)$
supported:[0] loc(r1)=d3
[0] freight(r1)=empty
[0] pile(c1)=p'1
$\left[0, t_{3}\right]$ pile $(c 1)=p^{\prime} 1$
[$\left.0, t_{3}\right]$ freight $(r 1)=$ empty
$\left[0, t_{s}^{\prime}\right]$ pile(c2) $=p^{\prime} 2$
[$\left.t^{\prime}{ }_{s} t^{\prime}{ }_{3}\right]$ pile(c2) $=\mathrm{p}^{\prime} 2$
assertions: $\left[t_{{ }_{s}}^{\prime}, t_{1}{ }_{1}\right]$ freight $\left(r^{\prime}\right)=$ empty constraints: $0<t_{1} \leq t_{3}, 0<t_{2} \leq t_{3}, t_{4} \leq t_{5}, t_{6} \leq t_{7}$, $t_{5}^{\prime}<t^{\prime}{ }_{1} \leq t^{\prime}{ }_{3}, t_{5}^{\prime}<t^{\prime}{ }_{2} \leq t^{\prime}{ }_{3}, t^{\prime}{ }_{4} \leq t^{\prime}{ }_{5}, t^{\prime}{ }_{6} \leq t^{\prime}{ }_{7}$, adj(d1,w12), adj(d1,w13), . . .

Supporting the Assertions

- To support $\left[t_{s}^{\prime}, t_{3}^{\prime}\right]$ pile $(c 2)=p^{\prime} 2$
- $\operatorname{Add}\left[0, t_{s}^{\prime}\right] p i l e(c 2)=p^{\prime} 2$
- To support $\left[t_{s}^{\prime}, t_{1}^{\prime}\right]$ freight $\left(r^{\prime}\right)=$ empty
- Constrain $r^{\prime}=r 2$, add nersistence condition $\left[0, t_{s}^{\prime}\right]$ freight $(r 2)=$ empty

[^0]$\phi_{2}:$ tasks: $\left[0, t_{1}\right]$ move $(r 1, \mathrm{~d} 1)$
$\left[0, t_{2}\right]$ uncover(c1, $\left.p^{\prime} 1\right)$
$\left[t_{3}, t_{4}\right] \operatorname{load}\left(\mathrm{k} 1, \mathrm{r} 1, \mathrm{c} 1, \mathrm{p}^{\prime} 1\right)$
[t_{5}, t_{6}] move (r1, d3)
$\left[t_{7}, t_{e}\right]$ unload (k3,r1,c1,p3)
[$\left.t_{s}^{\prime}, t_{1}^{\prime}\right]$ mover2, d2)
[$\left.t^{\prime}{ }_{s}, t^{\prime}{ }_{2}\right]$ uncover (c2, p'2)
$\left[t^{\prime}{ }_{3}, t^{\prime}{ }_{4}\right] \operatorname{load}\left(\mathrm{k} 4, \mathrm{r} 2, \mathrm{c} 2, \mathrm{p}^{\prime} 2\right)$
[$\left.t^{\prime}{ }_{5}, t^{\prime}{ }_{6}\right]$ move r2d 4)
$\left[t^{\prime}{ }_{7}, t^{\prime}{ }_{e}\right]$ unload (k2, r2, c2, $\left.\mathrm{p}^{\prime} 2\right)$
supported:[0] loc(r1)=d3
[0] freight(r1)=empty
[0] pile(c1)=p'1
$\left[0, t_{3}\right]$ pile $(c 1)=p^{\prime} 1$
$\left[0, t_{3}\right]$ freight $(r 1)=$ empty
$\left[0, t_{s}^{\prime}\right]$ pile(c2)= $p^{\prime} 2$
[$t^{\prime}{ }_{s}, t_{3}^{\prime}$] pile(c2) $=\mathrm{p}^{\prime} 2$
$\frac{\left[0, t_{s}^{\prime}\right] \text { freight }(\mathrm{r} 2)=\text { empty }}{\left[t_{s}^{\prime}, t_{1}^{\prime}\right] \text { freight }(\mathrm{r} 2)=\text { empty }}$
assertions: (none)
constraints: $0<t_{1} \leq t_{3}, 0<t_{2} \leq t_{3}, t_{4} \leq t_{5}, t_{6} \leq t_{7}$, $t_{5}^{\prime}<t_{1}^{\prime} \leq t^{\prime}{ }_{3}, t_{5}^{\prime}<t^{\prime}{ }_{2} \leq t^{\prime}{ }_{3}, t_{4}^{\prime} \leq t^{\prime}{ }_{5}, t_{6} \leq t^{\prime}{ }_{7}$
$\quad \operatorname{adj}(\mathrm{~d} 1, \mathrm{w} 12), \operatorname{adj}(\mathrm{d} 1, \mathrm{w} 13), \ldots$

Example of Conflicts

- Refining tasks into actions will produce possibly-conflicting assertions
- move(r2,d4) must go through d3
- Conflict: occupant(d3)=r1, occupant(d3)=r2
- Resolvers:
- Separation constraints to ensure r2 only goes through d3 while r1 away from d3

$\phi_{2}:$ tasks: $\left[0, t_{1}\right]$ move $(\mathrm{r} 1, \mathrm{~d} 1)$
[$0, t_{2}$] uncover(c1, $p^{\prime} 1$)
$\left[t_{3}, t_{4}\right] \operatorname{load}\left(k 1, r 1, c 1, p^{\prime} 1\right)$
$\left[t_{5}, t_{6}\right]$ move $(r 1, d 3)$
[t_{7}, t_{e}] unload(k3,r1,c1,p3)
$\left[t^{\prime}{ }_{s}, t^{\prime}{ }_{1}\right]$ move $(\mathrm{r} 2, \mathrm{~d} 2)$
[$t^{\prime}{ }_{5}, t^{\prime}{ }_{2}$] uncover(c2, $\left.\mathrm{p}^{\prime} 2\right)$
$\left[t^{\prime}{ }_{3}, t^{\prime}{ }_{4}\right] \operatorname{load}\left(\mathrm{k} 4, r 2, \mathrm{c} 2, \mathrm{p}^{\prime} 2\right)$
$\left[t^{\prime}{ }_{5}, t_{6}^{\prime}\right]$ move $(\mathrm{r} 2, \mathrm{~d} 4)$
[$t^{\prime}{ }_{7}, t^{\prime}{ }_{e}$] unload(k2,r2,c2, $\left.\mathrm{p}^{\prime} 2\right)$
supported:[0] loc(r1)=d3
[0] freight(r1)=empty
[0] pile(c1)=p'1
$\left[0, t_{3}\right]$ pile(c1) $=p^{\prime} 1$
$\left[0, t_{3}\right]$ freight $(r 1)=$ empty
$\left[0, t_{s}^{\prime}\right]$ pile(c2)= $\mathrm{p}^{\prime} 2$
[$t^{\prime}{ }_{s}, t_{3}^{\prime}$] pile(c2) $=\mathrm{p}^{\prime} 2$
[$0, t_{s}^{\prime}$] freight(r 2)=empty [$\left.t^{\prime}{ }_{s}, t^{\prime}{ }_{1}\right]$ freight $(\mathrm{r} 2)=$ empty
assertions:(none)
constraints: $0<t_{1} \leq t_{3}, 0<t_{2} \leq t_{3}, t_{4} \leq t_{5}, t_{6} \leq t_{7}$, $t_{5}^{\prime}<t_{1}^{\prime} \leq t^{\prime}{ }_{3}, t_{5}^{\prime}<t^{\prime}{ }_{2} \leq t^{\prime}{ }_{3}, t_{4}^{\prime} \leq t^{\prime}{ }_{5}, t_{6} \leq t^{\prime}{ }_{7}$,
$\quad \operatorname{adj}(\mathrm{d} 1, \mathrm{w} 12), \operatorname{adj}(\mathrm{d} 1, \mathrm{w} 13), \ldots$

Heuristics for Guiding TemPlan

- Flaw selection, resolver selection heuristics similar to those in PSP
- Select the flaw with the smallest number of resolvers
- Choose the resolver that rules out the fewest resolvers for the other flaws
- There is also a problem with constraint management
- We ignored it when discussing PSP
- We discuss it next

```
TemPlan(\phi,\Sigma)
    Flaws \leftarrow set of flaws of \phi
    if Flaws = \emptyset then
        return \phi
    arbitrarily select f E Flaws
    Resolvers \leftarrow set of resolvers of f
    if Resolvers = \emptyset then
        return failure
    nondeterministically choose \rho \in Resolvers
    \phi
    TemPlan( }\phi,\Sigma\mathrm{ )
```

```
PSP(\boldsymbol{\Sigma},\pi)
    loop
        if Flaws (\pi) = \emptyset then
        return \pi
        arbitrarily select f \in Flaws(\pi)
        R\leftarrow{all feasible resolvers for f}
        if R = \emptyset then
            return failure
        nondeterministically choose }\rho\in
        \pi
    return }
```


Intermediate Summary

- Planning problems
- Three kinds of flaws and their resolvers:
- tasks (that need to be refined),
- causal support (for assertions),
- security (of instantiations)
- Partial plans, solution plans
- Planning: TemPlan
- Like PSP but with tasks, temporal assertions, temporal constraints

Outline per the Book

4.2 Representation

- Timelines
- Actions and tasks
- Chronicles
4.3 Temporal Planning
- Resolvers and flaws
- Search space
4.4 Constraint Management
- Consistency of object constraints and time constraints
- Controlling the actions when we do not know how long they will take
4.5 Acting with Temporal Models
- Acting with atemporal refinement
- Dispatching
- Observation actions

Constraint Management

- Each time TemPlan applies a resolver, it modifies (\mathcal{T}, \mathcal{C})
- Some resolvers will make (\mathcal{T}, \mathcal{C}) inconsistent
- No solution in this part of the search space
- Detect inconsistency => prune this part of the search space
- Do not detect it => waste time looking for a solution
- Analogy: PSP checks simple cases of inconsistency
- E.g., cannot create a constraint $a<b$ if there is already a constraint $b<a$
- Ignores more complicated cases
- Example:
- $c_{1}, c_{2}, c_{3} \in$ Containers $=\{c 1, c 2\}$
- Threats involving c_{1}, c_{2}, c_{3}
- For resolvers, suppose PSP chooses
- $c_{1} \neq c_{2}, c_{2} \neq c_{3}, c_{1} \neq c_{3}$
- No solutions in this part of the search space, but PSP searches it anyway

Constraint Management in TemPlan

- At various points, check consistency of \mathcal{C}
- If \mathcal{C} is inconsistent, then $(\mathcal{T}, \mathcal{C})$ is inconsistent
- Can prune this part of the search space
- If \mathcal{C} is consistent, then $(\mathcal{T}, \mathcal{C})$ may or may not be consistent
- Example:
- $\mathcal{T}=\left\{\left[t_{1}, t_{2}\right] \operatorname{loc}(r 1)=\operatorname{loc} 1,\left[t_{3}, t_{4}\right] \operatorname{loc}(r 1)=\operatorname{loc} 2\right\}$
- $\mathcal{C}=\left(t_{1}<t_{3}<t_{4}<t_{2}\right)$
- Gives $\operatorname{loc}(r 1)$ two values during $\left[t_{3}, t_{4}\right]$

```
An instance is consistent if
- it satisfies all constraints in }\mathcal{C}\mathrm{ and
- does not specify two different values for a state variable at the same time
```


Consistency of \mathcal{C}

- \mathcal{C} contains two kinds of constraints
- Object constraints
- $\operatorname{loc}(r) \neq l_{2}, \quad l \in\{l o c 3, l o c 4\}, \quad r=r 1, o \neq o^{\prime}$
- Temporal constraints
- $t_{1}<t_{3}, a<t, \quad t<t^{\prime}, a \leq t^{\prime}-t \leq b$
- Assume object constraints are independent of temporal constraints and vice versa
- Exclude things like $t<f(l, r)$
- Then two separate subproblems:

1. Check consistency of object constraints
2. Check consistency of temporal constraints

- \mathcal{C} is consistent iff both are consistent

Object Constraints

- Constraint-satisfaction problem - NP-complete
- Can write an algorithm that is complete but runs in exponential time
- If there is an inconsistency, always finds it
- Might prune a lot, but spends lots of time at each node
- Instead, use a technique that is incomplete but takes polynomial time
- Detects some inconsistencies but not others
- Runs much faster, but prunes fewer nodes

Time Constraints: Representation

- Simple Temporal Networks (STNs)
- Networks of constraints on time points
- Synthesise an STN incrementally starting from ϕ_{0}
- TemPlan can check time constraints in time $O\left(n^{3}\right)$
- Incrementally instantiated at acting time
- Kept consistent throughout planning and acting

Simple Temporal Networks

- STN: a pair $(\mathcal{V}, \mathcal{E})$, where
- $\mathcal{V}=\left\{\right.$ a set of temporal variables $\left.t_{1}, \ldots, t_{n}\right\}$
- $\mathcal{E} \subseteq \mathcal{V} \times \mathcal{V}$ is a set of edges
- Each edge $\left(t_{i}, t_{j}\right)$ is labelled with an interval [a,b]

- Shorthand: represents constraint $a \leq t_{j}-t_{i} \leq b$
- Equivalently, $-b \leq t_{i}-t_{j} \leq-a$
- Representing unary constraints
- Dummy variable $t_{0}=0$
- Edge $\left(t_{0}, t_{j}\right)$ labelled with $[a, b]$ represents

$$
a \leq t_{i}-0 \leq b
$$

- Solution to an STN
- Integer value for each t_{i}
- All constraints satisfied
- Consistent STN
- Has a solution

Book says:

- Solution
- Integer value for each t_{i}
- Consistent:
- Has a solution
- All constraints satisfied

Time Constraints

- Minimal STN:
- For every edge $\left(t_{i}, t_{j}\right)$ with label $[a, b]$
- For every $t \in[a, b]$
- There is at least one solution such that $t_{j}-t_{i}=t$
- Cannot make any of the time intervals shorter without excluding some solutions

Operations on STNs

- Intersection, \cap
- $t_{j}-t_{i} \in r_{i j}=\left[a_{i j}, b_{i j}\right]$
- $t_{j}-t_{i} \in r_{i j}^{\prime}=\left[a_{i j}^{\prime}, b_{i j}^{\prime}\right]$

- Infer
$t_{j}-t_{i} \in r_{i j} \cap r_{i j}^{\prime}=\left[\max \left(a_{i j}, a_{i j}^{\prime}\right), \min \left(b_{i j}, b_{i j}^{\prime}\right)\right]$
- Composition, o
- $t_{k}-t_{i} \in r_{i k}=\left[a_{i k}, b_{i k}\right]$
- $t_{j}-t_{k} \in r_{k j}=\left[a_{k j}, b_{k j}\right]$

- Infer $t_{j}-t_{i} \in r_{i k} \circ r_{k j}=\left[a_{i k}+a_{k j}, b_{i k}+b_{k j}\right]$
- Reasoning: shortest and longest times of the two intervals
- Consistency checking
- Three constraints $r_{i k}, r_{k j}, r_{i j}$ are consistent only if $r_{i j} \cap\left(r_{i k} \circ r_{k j}\right) \neq \emptyset$ (empty interval)

$r_{i j} \cap\left(r_{i k} \circ r_{k j}\right)$

Two Examples

- $\operatorname{STN}(\mathcal{V}, \mathcal{E})$, where
- $\mathcal{V}=\left\{t_{1}, t_{2}, t_{3}\right\}$
- $\mathcal{E}=\left\{r_{12}=[1,2], r_{23}=[3,4]\right.$, $\left.r_{13}=[2,3]\right\}$
- Composition
- $r_{13}^{\prime}=r_{12} \circ r_{23}=[4,6]$
- Cannot satisfy both r_{13} and r_{13}^{\prime}
- $r_{13} \cap r_{13}^{\prime}=[2,3] \cap[4,6]=\varnothing$
- $(\mathcal{V}, \mathcal{E})$ is inconsistent

- $\operatorname{STN}(\mathcal{V}, \mathcal{E})$, where
- $\mathcal{V}=\left\{t_{1}, t_{2}, t_{3}\right\}$
- $\mathcal{E}=\left\{r_{12}=[1,2], r_{23}=[3,4]\right.$, $\left.r_{13}=[2,5]\right\}$
- Composition (as before)
- $r_{13}^{\prime}=r_{12} \circ r_{23}=[4,6]$
- $(\mathcal{V}, \mathcal{E})$ is consistent
- $r_{13} \cap r_{13}^{\prime}=[2,5] \cap[4,6]=[4,5]$
- Minimal network
- $r_{13}=[4,5] \quad[1,2]$

Operations on STNs

- PC (Path Consistency) algorithm:
- Consistency checking on all triples
- If an edge has no constraint, use $[-\infty,+\infty]$

```
PC}(\boldsymbol{\nu},\mathcal{\varepsilon}
    for 1}\leqk\leqn do
        for 1 \leqi< j\leqn, i}\not=j,j\not=k d
        rijj \leftarrow rij \cap [r rik \circ r rkj]
        return inconsistent
    return consistent
```

- n constraints
$=>n^{3}$ triples
\Rightarrow time $O\left(n^{3}\right)$
- Example:
- $k=2, i=1, j=4$
- $r_{12}=[1,2]$
- $r_{24}=[3,4]$
- $r_{14}=[-\infty, \infty]$
- $r_{12} \circ r_{24}=[1+3,2+4]=[4,6]$

- $r_{14} \leftarrow[\max (-\infty, 4), \min (\infty, 6)]=[4,6]$

Operations on STNs

- PC makes network minimal
- Shrinks each $r_{i j}$ to exclude values that are not in any solution
- Doing so, it detects inconsistent networks

```
PC (\nu, 穂
    for 1 \leqk\leqn do
        for 1 \leqi< j\leqn, i}\not=j,j\not=k do
            rif }\leftarrow\mp@subsup{r}{ij}{\prime}\cap[\mp@subsup{r}{ik}{}\circ\mp@subsup{r}{kj}{}
            if r}\mp@subsup{r}{ij}{}=\emptyset\mathrm{ then
            return inconsistent
    return consistent
```

- $r_{i j}=\left[a_{i j}, b_{i j}\right]$ empty
\Rightarrow inconsistent
- Graph: dashed lines
- Constraints that were shrunk
- Can modify PC to make it incremental
- Input
- A consistent, minimal STN

- A new constraint $r_{i j}^{\prime}$
- Incorporate $r_{i j}^{\prime}$ in time $O\left(n^{2}\right)$

Pruning TemPlan's search space

- Take the time constraints in \mathcal{C}
- Write them as an STN
- Use PC to check whether STN is consistent
- If it is inconsistent, TemPlan can backtrack

Controllability

Constraint Management with Uncertain Durations

Controllability

- Suppose TemPlan gives you a chronicle and you want to execute it
- Constraints on time points
- Need to reason about these in order to decide when to start each action

Controllability

- Solid lines: duration constraints
- Robot will do bring\&move, will take 30 to 50 time units
- Crane will do uncover, will take 5 to 10 time units
- Dashed line: synchronization constraint
- Do not want either the crane or robot to wait long
- At most 5 seconds between the two ending times
- Objective
- Choose time points that will satisfy all the constraints

Controllability

- Suppose we run PC
- PC returns a minimal and consistent network
- There exist time points that satisfy all the constraints
- Would work if we could choose all four time points
- But we cannot choose t_{2} and t_{4}
- t_{1} and t_{3} are controllable
- Actor can control when each action starts
- t_{2} and t_{4} are contingent
- Cannot control how long the actions take
- Random variables that are known to satisfy the duration constraints

> - $t_{2} \in\left[t_{1}+30, t_{1}+50\right]$
> - $t_{4} \in\left[t_{3}+5, t_{3}+10\right]$

Controllability

- Cannot guarantee that all constraints will be satisfied
- Start bring\&move at time $t_{1}=0$
- Suppose the durations are
- bring\&move 30, uncover 10
- $t_{2}=t_{1}+30=30$
- $t_{4}=t_{3}+10$
- $t_{4}-t_{2}=t_{3}-20$
- Constraint r_{24} :
$\begin{aligned} &-5 \leq t_{4}-t_{2} \leq 5 \\ &-5 \leq t_{3}-20 \\ & 15 \leq 5 \\ & 15 \leq 25\end{aligned}$
- Must start uncover at $t_{3} \leq 25$
- But if we start uncover at $t_{3} \leq 25$, neither action has finished yet
- We do not yet know how long they will take
- Durations might instead be
- bring\&move 50, uncover 5
- $t_{2}=t_{1}+50=50$
- $t_{4}=t_{3}+5 \leq 25+5=30$
- $t_{4}-t_{2} \leq 30-50=-20$
- Violates r_{34}

- STNU (Simple Temporal Network with Uncertainty):
- A 4-tuple $(\mathcal{V}, \tilde{\mathcal{V}}, \mathcal{E}, \tilde{\varepsilon})$
- $\mathcal{V}=\{$ controllable time points $\}$
- E.g., starting times of actions
- $\tilde{\mathcal{V}}=\{$ contingent time points $\}$
- E.g., ending times of actions
- $\mathcal{E}=\{$ controllable constraints $\}$
- $\tilde{\mathcal{E}}=\{$ contingent constraints $\}$
- Controllable and contingent constraints:
- Synchronization between two starting times: controllable
- Duration of an action: contingent
- Synchronization between ending points of two actions: contingent
- Synchronization between end of one action, start of another:
- Controllable if the new action starts after the old one ends
- Contingent if the new action starts before the old one ends
- Want a way for the actor to choose time points in \mathcal{V} (starting times) that guarantee that constraints are satisfied

Three kinds of controllability

- $(\mathcal{V}, \tilde{\mathcal{V}}, \mathcal{E}, \tilde{\varepsilon})$ is strongly controllable if the actor can choose values for \mathcal{V} such that success will occur for all values of $\tilde{\mathcal{V}}$ that satisfy $\tilde{\mathcal{E}}$
- Actor can choose the values for \mathcal{V} offline
- The right choice will work regardless of $\tilde{\mathcal{V}}$
- $(\mathcal{V}, \tilde{\mathcal{V}}, \mathcal{E}, \tilde{\mathcal{E}})$ is weakly controllable if the actor can choose values for \mathcal{V} such that success will occur for at least one combination of values for $\tilde{\mathcal{V}}$
- Actor can choose the values for \mathcal{V} only if the actor knows in advance what the values of $\tilde{\mathcal{V}}$ will be
- Dynamic controllability:
- Game-theoretic model: actor vs. environment
- A player's strategy: a function σ telling what to do in every situation
- Choices may differ depending on what has happened so far
- $(\mathcal{V}, \tilde{\mathcal{V}}, \mathcal{E}, \tilde{\mathcal{E}})$ is dynamically controllable if \exists strategy for an actor that will guarantee success regardless of the environment's strategy

Dynamic Execution

- For $t=0,1,2, \ldots$

1. Actor chooses an unassigned set of variables $\mathcal{V}_{t} \subseteq \mathcal{V}$ that all can be assigned the value t without violating any constraints in \mathcal{E}

- \approx actions the actor chooses to start at time t

2. Simultaneously, environment chooses an unassigned set of variables $\tilde{\mathcal{V}}_{t} \subsetneq \tilde{\mathcal{V}}$ that all can be assigned the value t without violating any constraints in $\tilde{\mathcal{E}}$

- \approx actions that finish at time t

3. \quad Each chosen time point v is assigned $v \leftarrow t$
4. Failure if any of the constraints in $\mathcal{E} \cup \tilde{\mathcal{E}}$ are violated

- There might be violations that neither \mathcal{V}_{t} nor \tilde{V}_{t} caused individually

$$
\begin{aligned}
& r_{i j}=[l, u] \text { is violated } \\
& \text { if } t_{i} \text { and } t_{j} \text { have values } \\
& \text { and } t_{j}-t_{i} \notin[l, u]
\end{aligned}
$$

5. Success if all variables in $\mathcal{V} \cup \tilde{\mathcal{V}}$ have values and no constraints are violated

- Dynamic execution strategies σ_{A} for actor, σ_{E} for environment
- $\sigma_{A}\left(h_{t-1}\right)=\left\{\right.$ what events in \mathcal{V} to trigger at time t, given $\left.h_{t-1}\right\}$
- $\sigma_{E}\left(h_{t-1}\right)=\left\{\right.$ what events in $\tilde{\mathcal{V}}$ to trigger at time t, given $\left.h_{t-1}\right\}$
- $h_{t}=h_{t-1} \cdot\left(\sigma_{A}\left(h_{t-1}\right) \cup \sigma_{E}\left(h_{t-1}\right)\right)$
- $(\mathcal{V}, \tilde{\mathcal{V}}, \mathcal{E}, \tilde{\mathcal{E}})$ is dynamically controllable if $\exists \sigma_{A}$ that will guarantee success $\forall \sigma_{E}$

Example

- Instead of a single bring\&move task, two separate bring and move tasks

- Actor's dynamic execution strategy
- Trigger t_{1} at whatever time you want
- Wait and observe t
- Trigger t^{\prime} at any time from t to $t+5$
- Trigger $t_{3}=t^{\prime}+10$
- For every $t_{2} \in\left[t^{\prime}+15, t^{\prime}+20\right]$ and $t_{4} \in\left[t_{3}+5, t_{3}+10\right]$
- $t_{4} \in\left[t^{\prime}+15, t^{\prime}+20\right]$
- So, $t_{4}-t_{2} \in[-5,5]$
- Thus, all constraints are satisfied

Dynamic Controllability Checking

- For a chronicle $\phi=(\mathcal{A}, \mathcal{S}, \mathcal{T}, \mathcal{C})$
- Temporal constraints in \mathcal{C} correspond to an STNU
- Adapt TemPlan to test not only consistency but also dynamic controllability (*) of the STNU
- If we detect cases where it is not dynamically controllable, then backtrack
* Use PC as well
- If $\operatorname{PC}(\mathcal{V} \cup \tilde{v}, \varepsilon \cup \tilde{\varepsilon})$ reduces a contingent constraint, then $(\mathcal{V}, \mathcal{V}, \mathcal{E}, \tilde{\mathcal{E}})$ is not dynamically controllable \Rightarrow Can prune this branch
- If it does not reduce any contingent constraints, we do not know whether $(\mathcal{V}, \tilde{\mathcal{V}}, \mathcal{E}, \tilde{\mathcal{E}})$ is dynamically controllable
- Only necessary, not sufficient condition
- Two options
- Either continue down this branch and backtrack later if necessary, or
- Extend PC to detect more cases where $(\mathcal{V}, \tilde{\mathcal{V}}, \mathcal{E}, \tilde{\mathcal{E}})$ is not dynamically controllable
- Additional constraint propagation rules

Additional Constraint Propagation Rules

- Case 1: $u \geq 0$
- t must come before t_{e}
- Add a composition constraint $\left[a^{\prime}, b^{\prime}\right]$
- Find $\left[a^{\prime}, b^{\prime}\right]$ such that $\left[a^{\prime}, b^{\prime}\right] \circ[u, v]=[a, b]$

- $\left[a^{\prime}+u, b^{\prime}+v\right]=[a, b]$
- $a^{\prime}=a-u, b^{\prime}=b-v$

Conditions	Propagated constraint
$t_{s} \xrightarrow{[a, b]} t_{e}, t \xrightarrow{[u, v]} t_{e}, u \geq 0$	$t_{s} \xrightarrow{\left[b^{\prime}, a^{\prime}\right]} t$
$t_{s} \xrightarrow{[a, b]} t_{e}, t \xrightarrow{[u, v]} t_{e}, u<0, v \geq 0$	$t_{s} \xrightarrow{\left\langle t_{e}, b^{\prime}\right\rangle} t$
$t_{s} \xrightarrow{[a, b]} t_{e}, t_{s} \xrightarrow{\left\langle t_{e}, u\right\rangle} t$	$t_{s} \xrightarrow{[\min \{a, u\}, \infty]} t$
$t_{s} \xrightarrow{\left\langle t_{e}, b\right\rangle} t, t^{\prime} \xrightarrow{[u, v]} t$	$t_{s} \xrightarrow{\left\langle t_{e}, b^{\prime}\right\rangle} t^{\prime}$
$t_{s} \xrightarrow{\left\langle t_{e}, b\right\rangle} t, t^{\prime} \xrightarrow{[u, v]} t, t_{e} \neq t$	$t_{s} \xrightarrow{\left\langle t_{e}, b-u\right\rangle} t^{\prime}$
\Rightarrow contingent \rightarrow controllable	

Additional Constraint Propagation Rules

- Case 2: $u<0$ and $v \geq 0$
- t may be before or after t_{e}
- Add a wait constraint $\left\langle t_{e}, \alpha\right\rangle$
- α defined w.r.t.
 some controllable time point t_{s}
- Wait until either t_{e} occurs or current time is $t_{s}+\alpha$, whichever comes first

Conditions	Propagated constraint
$t_{s} \xrightarrow{[a, b]} t_{e}, t \xrightarrow{[u, v]} t_{e}, u \geq 0$	$t_{s} \xrightarrow{\left[b^{\prime}, a^{\prime}\right]} t$
$t_{s} \xrightarrow{[a, b]} t_{e}, t \xrightarrow{[u, v]} t_{e}, u<0, v \geq 0$	$t_{s} \xrightarrow{\left\langle t_{e}, b^{\prime}\right\rangle} t$
$t_{s} \xrightarrow{[a, b]} t_{e}, t_{s} \xrightarrow{\left\langle t_{e}, u\right\rangle} t$	$t_{s} \xrightarrow{[\min \{a, u\}, \infty]} t$
$t_{s} \xrightarrow{\left\langle t_{e}, b\right\rangle} t, t^{\prime} \xrightarrow{[u, v]} t$	$t_{s} \xrightarrow{\left\langle t_{e}, b^{\prime}\right\rangle} t^{\prime}$
$t_{s} \xrightarrow{\left\langle t_{e}, b\right\rangle} t, t^{\prime} \xrightarrow{[u, v]} t, t_{e} \neq t$	$t_{s} \xrightarrow{\left\langle t_{e}, b-u\right\rangle} t^{\prime}$
\Rightarrow contingent \rightarrow controllable	

Extended Version of PC

- We want a fast algorithm that TemPlan can run at each node, to decide whether to backtrack
- There is an extended version of PC that runs in polynomial time, but it has high overhead
- Possible compromise: use ordinary PC most of the time
- Run extended version occasionally, or at end of search before returning plan

Conditions	Propagated constraint
$t_{s} \xrightarrow{[a, b]} t_{e}, t \xrightarrow{[u, v]} t_{e}, u \geq 0$	$t_{s} \xrightarrow{\left[b^{\prime}, a^{\prime}\right]} t$
$t_{s} \xrightarrow{[a, b]} t_{e}, t \xrightarrow{[u, v]} t_{e}, u<0, v \geq 0$	$t_{s} \xrightarrow{\left\langle t_{e}, b^{\prime}\right\rangle} t$
$t_{s} \xrightarrow{[a, b]} t_{e}, t_{s} \xrightarrow{\left\langle t_{e}, u\right\rangle} t$	$t_{s} \xrightarrow{[\min \{a, u\}, \infty]} t$
$t_{s} \xrightarrow{\left\langle t_{e}, b\right\rangle} t, t^{\prime} \xrightarrow{[u, v]} t$	$t_{s} \xrightarrow{\left\langle t_{e}, b^{\prime}\right\rangle} t^{\prime}$
$t_{s} \xrightarrow{\left\langle t_{e}, b\right\rangle} t, t^{\prime} \xrightarrow{[u, v]} t, t_{e} \neq t$	$t_{s} \xrightarrow{\left\langle t_{e}, b-u\right\rangle} t^{\prime}$

Intermediate Summary

- Constraint management
- Consistency of object constraints
- Constraint-satisfaction problem
- Consistency of time constraints
- STN, solution, minimality, consistency
- PC
- Controllability
- STNU, controllable, contingent
- Dynamic controllability

Outline per the Book

4.2 Representation

- Timelines
- Actions and tasks
- Chronicles
4.3 Temporal Planning
- Resolvers and flaws
- Search space
4.4 Constraint Management
- Consistency of object constraints and time constraints
- Controlling the actions when we do not know how long they will take
4.5 Acting with Temporal Models
- Acting with atemporal refinement
- Dispatching
- Observation actions

Atemporal Refinement of Primitive Actions

- TemPlan's action templates may correspond to compound tasks
- In RAE, refine into commands with refinement methods
- TemPlan's action template (descriptive model)

```
leave(r,d,w)
    assertions: [ }\mp@subsup{t}{s}{},\mp@subsup{t}{e}{}]\operatorname{loc}(r):(d,w
    [ts,te] occupant(d): (r,empty)
    constraints: }\mp@subsup{t}{e}{}\leq\mp@subsup{t}{s}{}+\mp@subsup{\delta}{1}{
    adj(d,w)
```

- RAE's refinement method (operational model)

Discussion

- Pros
- Simple online refinement with RAE
- Avoids breaking down uncertainty of contingent duration
- Can be augmented with temporal monitoring functions in RAE
- E.g., watchdogs, methods with duration preferences
- Cons
- Does not handle temporal requirements at the command level,
- E.g., synchronise two robots that must act concurrently
- Can augment RAE to include temporal reasoning
- Call it eRAE
- One essential component: a dispatching function

Acting With Temporal Models

- Dispatching procedure: a dynamic execution strategy
- Controls when to start each action
- Given a dynamically controllable plan with executable primitives, it triggers corresponding commands from online observations
- Example
- robot $r 2$ needs to leave dock $d 2$ before robot $r 1$ can enter $d 2$
- crane k needs to uncover c then put c onto $r 1$

Dispatching

- Let $(\mathcal{V}, \tilde{\mathcal{V}}, \mathcal{E}, \tilde{\varepsilon})$ be a controllable STNU that is grounded
- Different from a grounded expression in logic
- At least one time point t^{*} is instantiated
- Bounds each time point t within an interval $\left[l_{t}, u_{t}\right]$

```
Dispatch (V,\tilde{V},\mathcal{E},\tilde{E})
    initialise the network
    while there are time points in v that
        have not been triggered do
        update now
        update the time points in \tilde{V}}\mathrm{ that have
        been newly observed
    update enabled
    trigger every t e enabled s.t. now=ut
    arbitrarily choose other time points
        in enabled and trigger them
    propagate values of triggered
    timepoints (change [ I 
    each future timepoint t)
```

- Controllable time point t in the future:
- t is alive if current time now $\in\left[l_{t}, u_{t}\right]$
- t is enabled if
- It is alive
- For every precedence constraint $t^{\prime}<t, t^{\prime}$ has occurred
- For every wait constraint $\left\langle t_{e}, \alpha\right\rangle, t_{e}$ has occurred or α has expired
- α has expired if t_{s} has occurred and $t_{s}+\alpha \leq$ now

Example

- Trigger t_{1}, observe leave finish
- Enable and trigger t_{2}, this enables t_{3}, t_{4}
- Trigger t_{3} soon enough to allow enter ($r 1, d 2$) at time t_{5}
- Trigger t_{4} soon enough to allow $\operatorname{stack}\left(k, c^{\prime}\right)$ at time t_{6}
- Rest of plan is linear:
- Choose each t_{i} after the previous action ends

```
Dispatch (V,\tilde{V},\mathcal{E},\tilde{E})
    initialise the network
    while there are time points in v that
        have not been triggered do
    update now
    update the time points in \tilde{V}\mathrm{ that have}
        been newly observed
    update enabled
trigger every t E enabled s.t. now=ut
arbitrarily choose other time points
    in enabled and trigger them
propagate values of triggered
    timepoints (change [ [ 
    each future timepoint t)
```


Example from Slide 61

- Trigger t_{1} at time 0
- Wait and observe t; this enables t^{\prime}
- Trigger t^{\prime} at any time from t to $t+5$
- Trigger t_{3} at time $t^{\prime}+10$
- $t_{2} \in\left[t^{\prime}+15, t^{\prime}+20\right]$
- $t_{4} \in\left[t_{3}+5, t_{3}+10\right]=$ $\left[t^{\prime}+15, t^{\prime}+20\right]$
- so $t_{4}-t_{2} \in[-5,5]$

```
Dispatch (V,\tilde{V},\mathcal{E},\tilde{E})
    initialise the network
    while there are time points in v that
        have not been triggered do
    update now
    update the time points in \tilde{V}\mathrm{ that have}
    been newly observed
update enabled
trigger every t E enabled s.t. now=\mp@subsup{u}{t}{}
arbitrarily choose other time points
    in enabled and trigger them
propagate values of triggered
    timepoints (change [ I t, u
    each future timepoint t)
```


Dispatching

- Propagation step most costly one
- $O\left(n^{3}\right)$
- n the number of remaining future time points in network

```
Dispatch (V,\tilde{V},\mathcal{E},\tilde{E})
    initialise the network
    while there are time points in v that
        have not been triggered do
    update now
    update the time points in \tilde{V}\mathrm{ that have}
    been newly observed
    update enabled
    trigger every t E enabled s.t. now=ut
    arbitrarily choose other time points
    in enabled and trigger them
propagate values of triggered
    timepoints (change [ [ }\mp@subsup{t}{t}{},\mp@subsup{u}{t}{}]\mathrm{ for
    each future timepoint t)
```

- Ideally propagation fast enough to allow iterations and updates of now consistent with temporal granularity of plan

Deadline Failures

- Suppose something makes it impossible to start an action on time
- Do one of the following:
- Stop the delayed action, and look for new plan
- Let the delayed action finish, try to repair the plan by resolving violated constraints at the STNU propagation level
- E.g., accommodate a delay in navigate by delaying the whole plan
- Let the delayed action finish, try to repair the plan some other way

Partial Observability

- Tacit assumption: All occurrences of contingent events are observable
- Observation needed for dynamic controllability
- In general, not all events are observable
- POSTNU (Partially Observable STNU)
- STNU where the contingent time points are given by a set of invisible and a set of observable timepoints

- POSTNU = STNU if Invisible = \varnothing
- Dynamically controllable?

Observation Actions

- Example

- Controllable
- Contingent $\begin{cases}2 & \text { Invisible } \\ 0 & \text { observable }\end{cases}$

Dynamic Controllability

- A POSTNU is dynamically controllable if
- there exists an execution strategy that chooses future controllable points to meet all the constraints, given the observation of past visible points
- Check dynamic controllability
- Map an POSTNU to an STNU by deleting invisible time points and adding corresponding constraints on controllable and observable time points
- Check dynamic controllability of the mapped STNU
- E.g., using the extended PC algorithm
- More details in the paper

Dynamic Controllability

- A POSTNU is dynamically controllable if
- there exists an execution strategy that chooses future controllable points to meet all the constraints, given the observation of past visible points
- Observable $=$ visible
- Observable means it will be known when observed
- It can be temporarily hidden

- Aim: Find out which time points need to be observed for the plan to be dynamically controllable (details in paper)

Intermediate Summary

- Acting
- Atemporal refinement
- eRAE
- Dispatching
- Alive, enabled
- Deadline failures
- Partial observability
- Invisible, observable (hidden/visible)

Outline per the Book

4.2 Representation

- Timelines
- Actions and tasks
- Chronicles
4.3 Temporal Planning
- Resolvers and flaws
- Search space
4.4 Constraint Management
- Consistency of object constraints and time constraints
- Controlling the actions when we do not know how long they will take
4.5 Acting with Temporal Models
- Acting with atemporal refinement
- Dispatching
- Observation actions
\Rightarrow Next: Planning and Acting with Nondeterministic Models

[^0]: universitãt zu lúbeck

