Advanced Topics Data Science and Al Automated Planning and Acting

Temporal Models

Tanya Braun

INIVERSITÄT ZU LÜBECK INSTITUT FÜR INFORMATIONSSYSTEME

Content

- Planning and Acting with Deterministic Models
- 2. Planning and Acting with **Refinement** Methods
- 3. Planning and Acting with **Temporal** Models
 - a. Temporal Representation
 - b. Planning with Temporal Refinement Methods
 - c. Constraint Management
 - d. Acting with Temporal Models

- 4. Planning and Acting with
 Nondeterministic
 Models
 - 5. **Standard** Decision Making
 - Planning and Acting with
 Probabilistic Models
 - 7. **Advanced** Decision Making
 - 8. Human-aware Planning

Temporal Models

- Durations of actions
- Delayed effects and preconditions
 - E.g., resources borrowed or consumed during an action
- Time constraints on goals
 - Relative or absolute
- Exogenous events expected to occur in the future
 - When?
- Maintenance actions:
 - Maintain a property (≠ changing a value)
 - E.g., track a moving target, keep a spring latch in position
- Concurrent actions
 - Interacting effects, joint effects
- Delayed commitment
 - Instantiation at acting time

Timelines

- Up to now, "state-oriented view"
 - Time is a sequence of states s_0, s_1, s_2
 - Instantaneous actions transform each state into the next one
 - No overlapping actions
- Switch to a "time-oriented view"
 - Sequence of integer time points
 - t = 1, 2, 3, ...
 - For each state variable x, a timeline
 - values during different time intervals

Timelines

- Sets of constraints on state variables and events
 - Reflect predicted actions and events
- Planning is constraint-based

Outline per the Book

4.2 Representation

- Timelines
- Actions and tasks
- Chronicles

4.3 Temporal Planning

- Resolvers and flaws
- Search space

4.4 Constraint Management

- Consistency of object constraints and time constraints
- Controlling the actions when we do not know how long they will take

4.5 Acting with Temporal Models

- Acting with atemporal refinement
- Dispatching
- Observation actions

Representation

- Quantitative model of time
 - Discrete: time points are integers
- Expressions:
 - time-point variables
 - $t, t', t_2, t_j, ...$
 - simple constraints
 - $d \leq t' t \leq d'$
- Temporal assertion:
 - Value of a state variable during a time interval
 - Persistence: $[t_1, t_2]x = v$
 - Change:

- $x_2 = v$ entails $t_1 < t_2$
- $[t_1, t_2]x : (v_1, v_2)$ entails $v_1 \neq v_2$

Timeline

- Timeline: pair $(\mathcal{T}, \mathcal{C})$, partially predicted evolution of one state variable
 - Instance of $(\mathcal{T}, \mathcal{C})$ = temporal and object variables instantiated
- \mathcal{T} : temporal assertions
 - $[t_1, t_2]loc(r1) : (loc1, l)$
 - $[t_2, t_3]loc(r1) = l$
 - $[t_3, t_4]loc(r1) : (l, loc2)$
- C : constraints
 - $t_1 < t_2 < t_3 < t_4$
 - $l \neq loc1$
 - $l \neq loc2$
 - If we want to restrict loc(r1) during $[t_1, t_2]$
 - $[t_1, t_1 + 1]loc(r1) : (loc1, route)$
 - $[t_2 1, t_2]loc(r1) : (route, l)$
 - $[t_1 + 1, t_2 1]loc(r1) = route$
- An instance is consistent if it satisfies all constraints in ${\cal C}$ and does not specify two different values for a state variable at the same time
- A timeline is secure if its set of consistent instances is not empty

- Preliminaries:
 - Timelines $(\mathcal{T}_1, \mathcal{C}_1), \dots, (\mathcal{T}_k, \mathcal{C}_k)$ for k different state variables
 - Their union:
 - $(\mathcal{T}_1, \mathcal{C}_1) \cup \cdots \cup (\mathcal{T}_k, \mathcal{C}_k) = (\mathcal{T}_1 \cup \cdots \cup \mathcal{T}_k, \mathcal{C}_1 \cup \cdots \cup \mathcal{C}_k)$
 - If
 - every $(\mathcal{T}_i, \mathcal{C}_i)$ is secure, and
 - no pair of timelines (T_i, C_i) and (T_j, C_j) has any unground variables in common
 - then
 - $(\mathcal{T}_1 \cup \cdots \cup \mathcal{T}_k, \mathcal{C}_1 \cup \cdots \cup \mathcal{C}_k)$ is also secure
- Action or primitive task (or just *primitive*):
 - a triple (head, T, C)
 - *head* is the name and arguments
 - $(\mathcal{T}, \mathcal{C})$ is the union of a set of timelines

- leave(r, d, w)
 - Robot r leaves dock d, goes to adjacent waypoint w

leave(r, d, w) assertions: $[t_s, t_e] \log(r)$: (d, w) $[t_s, t_e] \operatorname{occupant}(d)$: $(r, \operatorname{empty})$ constraints: $t_e \leq t_s + \delta_1$

- adj(*d*,w)
- loc(r) changes to w with delay $\leq \delta_1$
- Dock d becomes empty

- Two additional parameters
 - Starting time t_s
 - Ending time t_e
- No separate preconditions and effects

• W

 Preconditions ⇔ need for causal support

 ∞

d

- enter(r, d, w)
 - r enters d from an adjacent waypoint w

enter(*r*,*d*,*w*) assertions:

[t_s,t_e] loc(r): (w,d)
[t_s,t_e] occupant(d): (empty,r)
constraints:

 $t_e \leq t_s + \delta_2$ adj(*d*, *w*)

- loc(r) changes to d with delay $\leq \delta_2$
- Dock *d* becomes occupied by *r*

- Two additional parameters
 - Starting time t_s
 - Ending time t_e
- No separate preconditions and effects
 - Preconditions ⇔ need for causal support

take(k, c, r, d)

dock d

• Action: crane k takes container c from r on

- Two additional parameters
 - Starting time t_s
 - Ending time t_{ρ}
- No separate preconditions and effects
 - Preconditions \Leftrightarrow need for causal support

take(k,c,r,d) assertions:

d

 $[t_{s},t_{e}]$ pos(c): (r, k) $[t_s, t_e]$ freight(r): (c, empty) // what r is carrying $[t_s, t_e] \log(r) = d$ constraints: attached(*k*,*d*)

book omits d

// where container *c* is $[t_s, t_e]$ grip(k): (empty, c) // what crane k's gripper is holding // where r is

- leave(r, d, w)
- enter(r, d, w)
- *take*(*k*,*c*,*r*,*d*)
- navigate(r,w,w')
- *stack*(*k*,*c*,*p*)
- unstack(k,c,p)
- put(k,c,r,d)

book omits d

- robot r leaves dock d to an adjacent waypoint w
- r enters d from an adjacent w
- crane k takes cont. c from r at d
- r navigates from w to w'k stacks c on top of pile p
 - k takes c from top of p

Tasks and Methods

- Task: move robot r to dock d
 - $[t_s, t_e]move(r, d)$
- Method:

```
m-move1(r,d,d',w,w')
     task:
                move(r,d)
     refinement:
                [t_s, t_1] leave(r, d', w')
                [t_2, t_3] navigate(r, w', w)
                [t_4, t_e] enter(r, d, w)
     assertions:
                [t_{s}, t_{s}+1] \log(r) = d'
     constraints:
                adj(d,w),
                adj(d',w'), d \neq d',
                connected(w,w'),
                t_1 \leq t_2, t_3 \leq t_4
```


Tasks and Methods

Tasks and Methods

Chronicles: Unions of Timelines

- Chronicle $\phi = (\mathcal{A}, \mathcal{S}, \mathcal{T}, \mathcal{C})$
 - *A* : temporally qualified actions and tasks
 - *S* : *a priori* supported assertions
 - \mathcal{T} : temporally qualified assertions
 - C : constraints
- ϕ can include
 - Current state, future predicted events
 - Tasks to perform
 - Assertions and constraints to satisfy
- Can represent

IIVERSITÄT ZU LÜBECK NSTITUT FÜR INFORMATIONSSYSTEME

- Planning problem ^{top(pile-ship1)} = c1
- Plan or partial plan

 ϕ_0 :

tasks: [t,t'] bring(r,c1,d4)supported: $[t_s]$ loc(r1)=d1 $[t_s]$ loc(r2)=d2 $[t_s+10,t_s+\delta]$ docked(ship1)=d3 $[t_s]$ top(pile-ship1)=c1 $[t_s]$ pos(c1)=palletassertions: $[t_e]$ loc(r1)=d1 $[t_e]$ loc(r2)=d2

constraints: $t_s = 0 < t < t' < t_e$, $20 \le \delta \le 30$

Intermediate Summary

- Timelines
 - Temporal assertions (change, persistence), constraints
 - Conflicts, consistency, security, causal support
- Chronicle: union of several timelines
 - Consistency, security, causal support
- Actions represented by chronicles
 - No separate preconditions and effects
 - Preconditions \Leftrightarrow need for causal support

Outline per the Book

4.2 Representation

- Timelines
- Actions and tasks
- Chronicles

4.3 Temporal Planning

- Resolvers and flaws
- Search space

4.4 Constraint Management

- Consistency of object constraints and time constraints
- Controlling the actions when we do not know how long they will take

4.5 Acting with Temporal Models

- Acting with atemporal refinement
- Dispatching
- Observation actions

Planning

NIVERSITÄT ZU LÜBECK

RMATIONSSYSTEME

- Planning problem:
 - Chronicle ϕ_0 that has some flaws
 - Analogous to flaws in PSP

 Add new assertions, constraints, actions to resolve the flaws

 t_2

t1

loc3

t3

t4

Flaws (1)

- **1.** Temporal assertion α that is not *causally supported*
 - What causes r1 to be at *loc*3 at time t₃?
 Like an open goal in PSP
- Resolvers:
 - Add constraints to support α from an assertion in ϕ

•
$$l = loc3, t_2 = t_3$$

- Add a new persistence assertion to support α
 - $l = loc3, [t_2, t_3]loc(r1) = loc3$
- Add a new task or action to support α
 - $[t_2, t_3]move(r1, loc3)$
 - Refining it will produce support for α

Flaws (2)

2. Non-refined task

- *Resolver*: refinement method *m*
 - Applicable if it matches the task and its constraints are consistent with ϕ 's
- Applying the resolver:
 - Modify ϕ by replacing the task with m
- Example: $[t_2, t_3]move(r1, loc3)$
 - Refinement will replace it with something like
 - $[t_2, t_5] leave(r1, l, w)$
 - $[t_5, t_6]$ navigate(r1, w, w')
 - $[t_6, t_3]enter(r1, loc3, w')$
 - plus constraints

Like a task in SeRPE

Flaws (3)

- **3.** A pair of possibly-conflicting temporal assertions
- temporal assertions α and β possibly conflict if they can have inconsistent instances
- Example

instance: [1, 5]loc(r1) = loc1, [3, 8]loc(r1) : (loc2, loc3)

- Resolvers: separation constraints
 - $r \neq r1$
 - $t_2 < t_3$
 - $t_4 < t_1$
 - $t_2 = t_3, r = r1, l = loc1$
 - Also provides causal support for $[t_3, t_4]loc(r)$: (l, l')
 - $t_4 = t_1, r = r1, l' = loc1$
 - Also provides causal support for $[t_1, t_2]loc(r1) = loc1$

Planning Algorithm

- Like PSP in Ch. 2
 - Repeatedly selects flaws and chooses resolvers
- In the book, TemPlan uses recursion
 - Can be rewritten with a loop
- If resolving all flaws possible, at least one nondeterministic execution trace will do so
- In a deterministic implementation
 - Selecting a resolver ρ is a backtracking point
 - Selecting a flaw is not
 - (As in PSP)

NIVERSITÄT ZU LÜBECK

```
TemPlan (\phi, \Sigma)

Flaws \leftarrow set of flaws of \phi

if Flaws = \emptyset then

return \phi

arbitrarily select f \in Flaws

Resolvers \leftarrow set of resolvers of f

if Resolvers = \emptyset then

return failure

nondeterministically choose \rho \in Resolvers

\phi \leftarrow Transform(\phi, \rho)

TemPlan(\phi, \Sigma)
```

```
\begin{array}{l} \textbf{TemPlan}\left(\phi, \Sigma\right) \\ \textbf{loop} \\ Flaws \leftarrow \text{set of flaws of } \phi \\ \textbf{if } Flaws = \emptyset \textbf{ then} \\ \textbf{return } \phi \\ arbitrarily \text{ select } f \in Flaws \\ \text{Resolvers } \leftarrow \text{ set of resolvers of } f \\ \textbf{if } Resolvers \in \emptyset \textbf{ then} \\ \textbf{return } failure \\ \text{nondeterministically choose } \rho \in Resolvers \\ \phi \leftarrow \text{Transform}(\phi, \rho) \end{array}
```

Example

INIVERSITÄT ZU LÜBECK INSTITUT FÜR INFORMATIONSSYSTEME

- $\phi = (\mathcal{A}, \mathcal{S}, \mathcal{T}, \mathcal{C})$
 - Establishes state-variable values at time t = 0
 - Flaws: two unrefined tasks
 - bring(*r*,c1,p3), bring(*r*',c2,p4)

ϕ_0 : tasks: bring(r,c1,p3) bring(r',c2,p4) supported:[0] loc(r1)=d3

[0] freight(r1)=empty
[0] pile(c1)=p'1
[0] pile(c'1)=p'1
[0] pos(c1)=pallet
[0] pos(c'1)=c1

assertions: (none) constraints: adj(d1,w12) adj(d1,w13)

Example

- Flaws: two unrefined tasks
 - bring(r,c1,p3), bring(r',c2,p4)
- Refinement for both:

m-bring(*r,c,p,p',d,d',k,k'*) task: bring(r,c,p) refinement: $[t_s, t_1]$ move(r, d') $[t_s, t_2]$ uncover(c, p') $[t_3, t_4]$ load(k', r, c, p') $[t_5, t_6]$ move(*r*,*d*) [*t*₇,*t*_e] unload(*k*,*r*,*c*,*p*) assertions: $[t_s, t_3]$ pile(c) = p' $[t_{s},t_{3}]$ freight(r) = empty constraints: attached(p',d'), attached(p,d), $d \neq d'$ attached(k',d'), attached(k,d), $k \neq k'$ $t_1 \le t_3, t_2 \le t_3, t_4 \le t_5, t_6 \le t_7$

k4

d4

ϕ_0 : tasks: bring(r,c1,p3) bring(*r*′,c2,p4) supported:[0] loc(r1)=d3 [0] freight(r1)=empty [0] pile(c1)=p'1 [0] pile(c'1)=p'1 [0] pos(c1)=pallet [0] pos(c'1)=c1 assertions: (none) constraints: adj(d1,w12)adj(d1,w13)

UNIVERSITÄT ZU LÜBECK INSTITUT FÜR INFORMATIONSSYSTEME

d1

Method Instance

- Instantiate c = c1 and p = p3 to match bring(r, c1, p3)
 - *p*', *d*, *d*', *k*, *k*' instantiated to match book
 - Needed later to satisfy action preconditions

m-bring(*r*,*c*,*p*,*p*',*d*,*d*',*k*,*k*')

C.

d1

m-bring(*r*,c1,p3,p'1,d3,d1,k3,k1) refine task: bring(r,c1,p3) refinement: $[t_{s},t_{1}]$ move(r,d1) $[t_s, t_2]$ uncover(c1, p'1) $[t_3, t_4]$ load(k1, r, c1, p'1) $[t_5, t_6]$ move(r, d3) asser $[t_7, t_e]$ unload(k3, r, c1, p3) assertions: $[t_s, t_3]$ pile(c1) = p'1 constr $[t_{s},t_{3}]$ freight(r) = empty constraints: attached(p'1,d1), attached(p3,d3), d3 \neq d1 attached(k1,d1), attached(k3,d3), k3 \neq k1 $t_1 \leq t_3, t_2 \leq t_3, t_4 \leq t_5, t_6 \leq t_7$ UNIVERSITÄT ZU

ϕ_0 : tasks: bring(r,c1,p3) bring(r',c2,p4) supported:[0] loc(r1)=d3 [0] freight(r1)=empty [0] pile(c1)=p'1 [0] pile(c'1)=p'1 [0] pos(c1)=pallet [0] pos(c'1)=c1

assertions: *(none)* constraints: adj(d1,w12) adj(d1,w13)

Modified Chronicle

- Changes to ϕ_0
 - Removed bring(r, c1, p3)
 - Added 5 tasks, 2 assertions, 4 constraints
- Flaws

NIVERSITÄT ZU LÜBECK

• 6 unrefined tasks, 2 unsupported assertions

 ϕ_1 : tasks: $[t_s, t_1]$ move(r, d1) $[t_{s},t_{2}]$ uncover(c1,p'1) $[t_3, t_4]$ load(k1, r, c1, p'1) $[t_5, t_6]$ move(*r*, d3) $[t_7, t_e]$ unload(k3, r, c1, p3) bring(r',c2,p4)supported:[0] loc(r1)=d3 [0] freight(r1)=empty [0] pile(c1)=p'1 [0] pile(c'1)=p'1[0] pos(c1)=pallet [0] pos(c'1)=c1 assertions: $[t_{s}, t_{3}]$ pile(c1) = p'1 $[t_{s},t_{3}]$ freight(r) = empty constraints: $t_s < t_1 \le t_3$, $t_s < t_2 \le t_3$, $t_4 \le t_5$, $t_6 \le t_7$, adj(d1,w12), adj(d1,w13),

Method Instance

- Instantiate r = r', c = c2, p = p4 to match bring(r', c2, p4)
 - p', d, d', k, k' instantiated to match book

m-bring(*r,c,p,p',d,d',k,k'*)

d1

refine		.p4,p'2,d4,d2,k4,k2) bring(r',c2,p4)
		$[t_s, t_1]$ move(r' , d2)
		$[t_s, t_2]$ uncover(c2,p'2) $[t_3, t_4]$ load(k2,r',c2,p'2)
		$[t_5, t_6]$ move(r' , d4)
asser		$[t_7, t_e]$ unload(k4,r',c2,p4)
constr	assertions:	$[t_s, t_3]$ pile(c2) = p'2 $[t_s, t_3]$ freight(r') = empty
	constraints:	attached(p'2,d2),
		attached(p4,d4), d4 \neq d2
		attached(k2,d2),
v		attached(k4,d4), k4 ≠ k2
UNIVERSITÄT ZU L INSTITUT FÜR IN		$t_1 \le t_3, t_2 \le t_3, t_4 \le t_5, t_6 \le t_7$

 ϕ_1 : tasks: $[t_s, t_1]$ move(r, d1) $[t_{s},t_{2}]$ uncover(c1,p'1) $[t_3, t_4]$ load(k1, r, c1, p'1) $[t_5, t_6]$ move(*r*, d3) $[t_7, t_e]$ unload(k3, r, c1, p3) bring(r',c2,p4)supported:[0] loc(r1)=d3 [0] freight(r1)=empty [0] pile(c1)=p'1 [0] pile(c'1)=p'1[0] pos(c1)=pallet [0] pos(c'1)=c1 assertions: $[t_{s}, t_{3}]$ pile(c1) = p'1 $[t_{s},t_{3}]$ freight(r) = empty constraints: $t_s < t_1 \le t_3$, $t_s < t_2 \le t_3$, $t_4 \le t_5$, $t_6 \le t_7$, adj(d1,w12), adj(d1,w13),

Modified Chronicle

- Changes
 - Removed bring(r', c2, p4)
 - Added 5 tasks, 2 assertions, 4 constraints
- Flaws
 - 10 unrefined tasks, 4 unsupported assertions
- Next, work on these two assertions

 ϕ_2 : tasks: $[t_s, t_1]$ move(r, d1) $[t_{s},t_{2}]$ uncover(c1,p'1) $[t_3, t_4]$ load(k1, r, c1, p'1) $[t_5, t_6]$ move(*r*, d3) $[t_7, t_e]$ unload(k3, r, c1, p3) $[t'_{s}, t'_{1}]$ move(r', d2) $[t'_{s},t'_{2}]$ uncover(c2,p'2) $[t'_{3},t'_{4}]$ load(k4,r',c2,p'2) $[t'_{5}, t'_{6}]$ move(r', d4) $[t'_{7},t'_{e}]$ unload(k2,r',c2,p'2) supported: [0] loc(r1)=d3 [0] freight(r1)=empty [0] pile(c1)=p'1 assertions: $[t_s, t_3]$ pile(c1) = p'1 $[t_{s},t_{3}]$ freight(r) = empty $[t'_{s},t'_{3}]$ pile(c2) = p'2 $[t'_{s}t'_{1}]$ freight(r') = empty constraints: $t_s < t_1 \le t_3$, $t_s < t_2 \le t_3$, $t_4 \le t_5$, $t_6 \le t_7$, $t'_{s} < t'_{1} \le t'_{3}, t'_{s} < t'_{2} \le t'_{3}, t'_{4} \le t'_{5}, t'_{6} \le t'_{7},$ adj(d1,w12), adj(d1,w13), . . .

Example of Conflicts

- Refining tasks into actions will produce possibly-conflicting assertions
 - move(r2,d4) must go through d3
 - Conflict: occupant(d3)=r1, occupant(d3)=r2
- Resolvers:
 - Separation constraints to ensure r2 only goes through d3 while r1 away from d3

 ϕ_2 : tasks: [0, t_1] move(r1,d1) $[0,t_2]$ uncover(c1,p'1) $[t_3, t_4]$ load(k1,r1,c1,p'1) $[t_{5}, t_{6}]$ move(r1,d3) $[t_7, t_e]$ unload(k3,r1,c1,p3) $[t'_{s},t'_{1}]$ move(r2,d2) $[t'_{s},t'_{2}]$ uncover(c2,p'2) $[t'_{3},t'_{4}]$ load(k4,r2,c2,p'2) [*t*′₅,*t*′₆] move(r2,d4) [*t*′₇,*t*′_e] unload(k2,r2,c2,p′2) supported: [0] loc(r1)=d3 [0] freight(r1)=empty [0] pile(c1)=p'1 $[0,t_3]$ pile(c1) = p'1 $[0,t_3]$ freight(r1) = empty $[0,t'_{s}]$ pile(c2)=p'2 $[t'_{s},t'_{3}]$ pile(c2) = p'2 $[0,t'_{s}]$ freight(r2)=empty $[t'_{s}t'_{1}]$ freight(r2) = empty assertions: (none) constraints: $0 < t_1 \le t_3$, $0 < t_2 \le t_3$, $t_4 \le t_5$, $t_6 \le t_7$, $t'_{s} < t'_{1} \le t'_{3}, t'_{s} < t'_{2} \le t'_{3}, t'_{4} \le t'_{5}, t'_{6} \le t'_{7},$ adj(d1,w12),adj(d1,w13), . . .

Heuristics for Guiding TemPlan

- Flaw selection, resolver selection heuristics similar to those in PSP
 - Select the flaw with the smallest number of resolvers
 - Choose the resolver that rules out the fewest resolvers for the other flaws
- There is also a problem with constraint management
 - We ignored it when discussing PSP
 - We discuss it next

```
TemPlan(\phi, \Sigma)

Flaws \leftarrow set of flaws of \phi

if Flaws = \emptyset then

return \phi

arbitrarily select f \in Flaws

Resolvers \leftarrow set of resolvers of f

if Resolvers = \emptyset then

return failure

nondeterministically choose \rho \in Resolvers

\phi \leftarrow Transform(\phi, \rho)

TemPlan(\phi, \Sigma)
```

```
PSP(\Sigma, \pi)

loop

if Flaws(\pi) = \emptyset then

return \pi

arbitrarily select f \in Flaws(\pi)

R \leftarrow \{all \ feasible \ resolvers \ for \ f\}

if R = \emptyset then

return failure

nondeterministically choose \rho \in R

\pi \leftarrow \rho(\pi)

return \pi
```


Intermediate Summary

- Planning problems
 - Three kinds of flaws and their resolvers:
 - tasks (that need to be refined),
 - causal support (for assertions),
 - security (of instantiations)
 - Partial plans, solution plans
- Planning: TemPlan
 - Like PSP but with tasks, temporal assertions, temporal constraints

Outline per the Book

4.2 Representation

- Timelines
- Actions and tasks
- Chronicles

4.3 Temporal Planning

- Resolvers and flaws
- Search space

4.4 Constraint Management

- Consistency of object constraints and time constraints
- Controlling the actions when we do not know how long they will take

4.5 Acting with Temporal Models

- Acting with atemporal refinement
- Dispatching
- Observation actions

Constraint Management

- Each time TemPlan applies a resolver, it modifies $(\mathcal{T}, \mathcal{C})$
 - Some resolvers will make $(\mathcal{T}, \mathcal{C})$ inconsistent
 - No solution in this part of the search space
 - Detect inconsistency => prune this part of the search space
 - Do not detect it => waste time looking for a solution
- Analogy: PSP checks simple cases of inconsistency
 - E.g., cannot create a constraint $a \prec b$ if there is already a constraint $b \prec a$
 - Ignores more complicated cases
 - Example:
 - $c_1, c_2, c_3 \in Containers = \{c1, c2\}$
 - Threats involving c_1, c_2, c_3
 - For resolvers, suppose PSP chooses
 - $c_1 \neq c_2, c_2 \neq c_3, c_1 \neq c_3$
 - No solutions in this part of the search space, but PSP searches it anyway

Constraint Management in TemPlan

- At various points, check consistency of ${\mathcal C}$
 - If \mathcal{C} is inconsistent, then $(\mathcal{T}, \mathcal{C})$ is inconsistent
 - Can prune this part of the search space
- If C is consistent, then (T, C) may or may not be consistent
 - Example:
 - $\mathcal{T} = \{[t_1, t_2] loc(r1) = loc1, [t_3, t_4] loc(r1) = loc2\}$
 - $C = (t_1 < t_3 < t_4 < t_2)$
 - Gives loc(r1) two values during $[t_3, t_4]$

An instance is consistent if

- it satisfies all constraints in ${\mathcal C}$ and
- does not specify two different values

Consistency of ${\mathcal C}$

- ${\mathcal C}$ contains two kinds of constraints
 - Object constraints
 - $loc(r) \neq l_2$, $l \in \{loc3, loc4\}$, r = r1, $o \neq o'$
 - Temporal constraints
 - $t_1 < t_3$, a < t, t < t', $a \le t' t \le b$
- Assume object constraints are independent of temporal constraints and vice versa
 - Exclude things like t < f(l, r)
- Then two separate subproblems:
 - 1. Check consistency of object constraints
 - 2. Check consistency of temporal constraints
 - \mathcal{C} is consistent iff both are consistent

Object Constraints

- Constraint-satisfaction problem NP-complete
- Can write an algorithm that is complete but runs in exponential time
 - If there is an inconsistency, always finds it
 - Might prune a lot, but spends lots of time at each node
- Instead, use a technique that is incomplete but takes polynomial time,
 - Detects some inconsistencies but not others
 - Runs much faster, but prunes fewer nodes

Time Constraints: Representation

- Simple Temporal Networks (STNs)
 - Networks of constraints on time points
- Synthesise an STN incrementally starting from ϕ_0
 - TemPlan can check time constraints in time $O(n^3)$

- Incrementally instantiated at acting time
- Kept consistent throughout planning and acting

Simple Temporal Networks

- STN: a pair $(\mathcal{V}, \mathcal{E})$, where
 - $\mathcal{V} = \{ a \text{ set of temporal variables } t_1, \dots, t_n \}$
 - $\mathcal{E} \subseteq \mathcal{V} \times \mathcal{V}$ is a set of edges
- Each edge (t_i, t_j) is labelled with an interval [a, b]
 - Shorthand: represents constraint $a \le t_i t_i \le b$
 - Equivalently, $-b \leq t_i t_j \leq -a$
- Representing unary constraints
 - Dummy variable $t_0 = 0$
 - Edge (t_0, t_i) labelled with [a, b] represents $a \le t_i 0 \le b$
- Solution to an STN
 - Integer value for each t_i
 - All constraints satisfied
- Consistent STN
 - Has a solution

Book says:

- Solution
 - Integer value for each t_i
- Consistent:
 - Has a solution
 - All constraints satisfied

Is this network

3,4]

[3,4]

consistent?

[2,3]

[-3, -2]

[1,2]

[1,2]

Time Constraints

- Minimal STN:
 - For every edge (t_i, t_j) with label [a, b]
 - For every $t \in [a, b]$
 - There is at least one solution such that $t_j t_i = t$
 - Cannot make any of the time intervals shorter without excluding some solutions

Operations on STNs

- Intersection, ∩ • $t_i - t_i \in r_{ii} = |a_{ii}, b_{ii}|$ • $t_i - t_i \in r'_{ii} = [a'_{ii}, b'_{ii}]$ Infer $t_{i} - t_{i} \in r_{ij} \cap r_{ij}' = [\max(a_{ij}, a_{ij}'), \min(b_{ij}, b_{ij}')]$ Composition, *r*_{ik} • $t_k - t_i \in r_{ik} = [a_{ik}, b_{ik}]$ • $t_i - t_k \in r_{ki} = [a_{ki}, b_{ki}]$ • Infer $t_i - t_i \in r_{ik} \circ r_{ki} = [a_{ik} + a_{ki}, b_{ik} + b_{ki}]$
 - Reasoning: shortest and longest times of the two intervals
- Consistency checking
 - Three constraints r_{ik}, r_{kj}, r_{ij} are consistent only if $r_{ij} \cap (r_{ik} \circ r_{kj}) \neq \emptyset$ (empty interval)

$$t_{i} \xrightarrow{r_{ij}} t_{j}$$

$$r'_{ij}$$

$$r'_{ij} \cap r'_{ij}$$

Two Examples

- STN $(\mathcal{V}, \mathcal{E})$, where
 - $\mathcal{V} = \{t_1, t_2, t_3\}$
 - $\mathcal{E} = \{r_{12} = [1,2], r_{23} = [3,4], r_{13} = [2,3]\}$
- Composition
 - $r'_{13} = r_{12} \circ r_{23} = [4,6]$
- Cannot satisfy both r_{13} and r'_{13}
 - $r_{13} \cap r'_{13} = [2,3] \cap [4,6] = \emptyset$
- $(\mathcal{V}, \mathcal{E})$ is inconsistent

• STN $(\mathcal{V}, \mathcal{E})$, where

•
$$\mathcal{V} = \{t_1, t_2, t_3\}$$

- $\mathcal{E} = \{r_{12} = [1,2], r_{23} = [3,4], r_{13} = [2,5]\}$
- Composition (as before)

•
$$r'_{13} = r_{12} \circ r_{23} = [4,6]$$

- $(\mathcal{V}, \mathcal{E})$ is consistent
 - $r_{13} \cap r'_{13} = [2,5] \cap [4,6] = [4,5]$
- Minimal network • $r_{13} = [4,5]$ [1,2] [3,4] t_1 [4,5] [4,5]

49

Operations on STNs

- PC (*Path Consistency*) algorithm:
 - Consistency checking on all triples
 - If an edge has no constraint, use [-∞, +∞]
 - n constraints => n^3 triples => time $O(n^3)$
- Example:
 - k = 2, i = 1, j = 4
 - $r_{12} = [1,2]$
 - $r_{24} = [3,4]$
 - $r_{14} = [-\infty, \infty]$
 - $r_{12} \circ r_{24} = [1+3, 2+4] = [4, 6]$
 - $r_{14} \leftarrow [\max(-\infty, 4), \min(\infty, 6)] = [4, 6]$

$$c(\mathbf{\mathcal{V}}, \mathbf{\mathcal{E}})$$
for $1 \leq k \leq n$ do
for $1 \leq i < j \leq n, i \neq j, j \neq k$ do
 $r_{ij} \leftarrow r_{ij} \cap [r_{ik} \circ r_{kj}]$
if $r_{ij} = \emptyset$ then
return inconsistent
return consistent

Operations on STNs

- PC makes network minimal
 - Shrinks each r_{ij} to exclude values that are not in any solution
 - Doing so, it detects inconsistent networks
 - $r_{ij} = [a_{ij}, b_{ij}] \text{ empty}$ $\Rightarrow \text{ inconsistent}$
- Graph: dashed lines
 - Constraints that were shrunk
- Can modify PC to make it incremental
 - Input
 - A consistent, minimal STN
 - A new constraint r'_{ij}
 - Incorporate r'_{ij} in time $O(n^2)$

Pruning TemPlan's search space

- Take the time constraints in $\ensuremath{\mathcal{C}}$
 - Write them as an STN
 - Use PC to check whether STN is consistent
 - If it is inconsistent, TemPlan can backtrack

Constraint Management with Uncertain Durations

- Suppose TemPlan gives you a chronicle and you want to execute it
 - Constraints on time points
 - Need to reason about these in order to decide when to start each action

- Solid lines: duration constraints
 - Robot will do bring&move, will take 30 to 50 time units
 - Crane will do uncover, will take 5 to 10 time units
- Dashed line: synchronization constraint
 - Do not want either the crane or robot to wait long
 - At most 5 seconds between the two ending times
- Objective
 - Choose time points that will satisfy all the constraints

- Suppose we run PC
- PC returns a minimal and consistent network
- There *exist* time points that satisfy all the constraints
- Would work if we could choose all four time points
 - But we cannot choose t_2 and t_4
- t_1 and t_3 are controllable
 - Actor can control when each action starts
- t_2 and t_4 are contingent
 - Cannot control how long the actions take
 - Random variables that are known to satisfy the duration constraints
 - $t_2 \in [t_1 + 30, t_1 + 50]$
 - $t_4 \in [t_3 + 5, t_3 + 10]$

- Cannot guarantee that all constraints will be satisfied
- Start bring&move at time $t_1 = 0$
- Suppose the durations are
 - bring&move 30, uncover 10
 - $t_2 = t_1 + 30 = 30$
 - $t_4 = t_3 + 10$
 - $t_4 t_2 = t_3 20$
- Constraint r₂₄:
 - $-5 \le t_4 t_2 \le 5$ $-5 \le t_3 - 20 \le 5$ $15 \le t_3 \le 25$
- Must start uncover at $t_3 \leq 25$
- UNIVERSITÄT ZU LÜBECK INSTITUT FÜR INFORMATIONSSYSTEME

- But if we start uncover at t₃ ≤ 25, neither action has finished yet
 - We do not yet know how long they will take
- Durations might instead be
 - bring&move 50, uncover 5

•
$$t_2 = t_1 + 50 = 50$$

•
$$t_4 = t_3 + 5 \le 25 + 5 = 30$$

$$t_4 - t_2 \le 30 - 50 = -20$$

• Violates r₃₄

STNUs

- STNU (Simple Temporal Network with Uncertainty):
 - A 4-tuple $(\mathcal{V}, \tilde{\mathcal{V}}, \mathcal{E}, \tilde{\mathcal{E}})$
 - $\mathcal{V} = \{ \text{controllable time points} \}$
 - E.g., starting times of actions
 - $\tilde{\mathcal{V}} = \{ \text{contingent time points} \}$
 - E.g., ending times of actions

- *E* ={controllable constraints}
- $\tilde{\mathcal{E}} = \{ \text{contingent constraints} \}$
- Controllable and contingent constraints:
 - Synchronization between two starting times: controllable
 - Duration of an action: contingent
 - Synchronization between ending points of two actions: *contingent*
 - Synchronization between end of one action, start of another:
 - Controllable if the new action starts after the old one ends
 - *Contingent* if the new action starts before the old one ends
- Want a way for the actor to choose time points in ${\cal V}$ (starting times) that guarantee that constraints are satisfied

Three kinds of controllability

- $(\mathcal{V}, \tilde{\mathcal{V}}, \mathcal{E}, \tilde{\mathcal{E}})$ is strongly controllable if the actor can choose values for \mathcal{V} such that success will occur for all values of $\tilde{\mathcal{V}}$ that satisfy $\tilde{\mathcal{E}}$
 - Actor can choose the values for $\ensuremath{\mathcal{V}}$ offline
 - The right choice will work regardless of $\tilde{\mathcal{V}}$
- $(\mathcal{V}, \tilde{\mathcal{V}}, \mathcal{E}, \tilde{\mathcal{E}})$ is weakly controllable if the actor can choose values for \mathcal{V} such that success will occur for *at least one* combination of values for $\tilde{\mathcal{V}}$
 - Actor can choose the values for ${\mathcal V}$ only if the actor knows in advance what the values of $\tilde{{\mathcal V}}$ will be
- Dynamic controllability:
 - Game-theoretic model: actor vs. environment
 - A player's strategy: a function σ telling what to do in every situation
 - Choices may differ depending on what has happened so far
 - $(\mathcal{V}, \tilde{\mathcal{V}}, \mathcal{E}, \tilde{\mathcal{E}})$ is dynamically controllable if \exists strategy for an actor that will guarantee success regardless of the environment's strategy

60

 $r_{ij} = [l, u]$ is violated

if t_i and t_j have values

and $t_i - t_i \notin [l, u]$

Dynamic Execution

- For *t* = 0, 1, 2, ...
 - 1. Actor chooses an unassigned set of variables $\mathcal{V}_t \subseteq \mathcal{V}$ that all can be assigned the value t without violating any constraints in \mathcal{E}
 - ≈ actions the actor chooses to start at time t
 - 2. Simultaneously, environment chooses an unassigned set of variables $\tilde{\mathcal{V}}_t \subseteq \tilde{\mathcal{V}}$ that all can be assigned the value t without violating any constraints in $\tilde{\mathcal{E}}$
 - \approx actions that finish at time t
 - 3. Each chosen time point v is assigned $v \leftarrow t$
 - 4. Failure if any of the constraints in $\mathcal{E} \cup \tilde{\mathcal{E}}$ are violated
 - There might be violations that neither \mathcal{V}_t nor $\tilde{\mathcal{V}}_t$ caused individually
 - 5. Success if all variables in $\mathcal{V} \cup \tilde{\mathcal{V}}$ have values and no constraints are violated
- Dynamic execution strategies σ_A for actor, σ_E for environment
 - $\sigma_A(h_{t-1}) = \{ \text{what events in } \mathcal{V} \text{ to trigger at time } t, \text{ given } h_{t-1} \}$
 - $\sigma_E(h_{t-1}) = \{ \text{what events in } \tilde{\mathcal{V}} \text{ to trigger at time } t, \text{ given } h_{t-1} \}$

• $h_t = h_{t-1} \cdot \left(\sigma_A(h_{t-1}) \cup \sigma_E(h_{t-1})\right)$

• $(\mathcal{V}, \tilde{\mathcal{V}}, \mathcal{E}, \tilde{\mathcal{E}})$ is dynamically controllable if $\exists \sigma_A$ that will guarantee success $\forall \sigma_E$

Example

 Instead of a single bring&move task, two separate bring and move tasks

- Actor's dynamic execution strategy
 - Trigger t_1 at whatever time you want
 - Wait and observe t
 - Trigger t' at any time from t to t + 5
 - Trigger $t_3 = t' + 10$
 - For every $t_2 \in [t' + 15, t' + 20]$ and $t_4 \in [t_3 + 5, t_3 + 10]$
 - $t_4 \in [t' + 15, t' + 20]$
 - So, $t_4 t_2 \in [-5, 5]$
 - Thus, all constraints are satisfied

Dynamic Controllability Checking

- For a chronicle $\phi = (\mathcal{A}, \mathcal{S}, \mathcal{T}, \mathcal{C})$
 - Temporal constraints in ${\mathcal C}$ correspond to an STNU
 - Adapt TemPlan to test not only consistency but also dynamic controllability (*) of the STNU
 - If we detect cases where it is not dynamically controllable, then backtrack
- * Use PC as well
 - If $PC(\mathcal{V} \cup \tilde{\mathcal{V}}, \mathcal{E} \cup \tilde{\mathcal{E}})$ reduces a contingent constraint, then $(\mathcal{V}, \tilde{\mathcal{V}}, \mathcal{E}, \tilde{\mathcal{E}})$ is not dynamically controllable \Rightarrow Can prune this branch
 - If it *does not* reduce any contingent constraints, we do not know whether $(\mathcal{V}, \tilde{\mathcal{V}}, \mathcal{E}, \tilde{\mathcal{E}})$ is dynamically controllable
 - Only necessary, not sufficient condition
 - Two options
 - Either continue down this branch and backtrack later if necessary, or
 - Extend PC to detect more cases where $(\mathcal{V}, \tilde{\mathcal{V}}, \mathcal{E}, \tilde{\mathcal{E}})$ is not dynamically controllable
 - Additional constraint propagation rules

Additional Constraint Propagation Rules

Case 1: u ≥ 0

t must come before t_e

Add a composition constraint [a', b']
Find [a', b'] such that [a', b'] ∘ [u, v] = [a, b]

[a' + u, b' + v] = [a, b]

•
$$a' = a - u, b' = b - v$$

Additional Constraint Propagation Rules

- Case 2: u < 0 and $v \ge 0$
 - t may be before or after t_e
- Add a wait constraint $\langle t_e, \alpha \rangle$
 - α defined w.r.t. some controllable time point t_s
 - Wait until either t_e occurs or current time is $t_s + \alpha$, whichever comes first

 t_e

[*u,* v

[*a*, *b*]

Extended Version of PC

- We want a fast algorithm that TemPlan can run at each node, to decide whether to backtrack
- There is an extended version of PC that runs in polynomial time, but it has high overhead
- Possible compromise: use ordinary PC most of the time
 - Run extended version occasionally, or at end of search before returning plan

Intermediate Summary

- Constraint management
 - Consistency of object constraints
 - Constraint-satisfaction problem
 - Consistency of time constraints
 - STN, solution, minimality, consistency
 - PC
- Controllability
 - STNU, controllable, contingent
 - Dynamic controllability

Outline per the Book

4.2 Representation

- Timelines
- Actions and tasks
- Chronicles

4.3 Temporal Planning

- Resolvers and flaws
- Search space

4.4 Constraint Management

- Consistency of object constraints and time constraints
- Controlling the actions when we do not know how long they will take

4.5 Acting with Temporal Models

- Acting with atemporal refinement
- Dispatching
- Observation actions

Atemporal Refinement of Primitive Actions

- TemPlan's action templates may correspond to compound tasks
 - In RAE, refine into commands with refinement methods
 - TemPlan's leave(*r*,*d*,*w*) action template assertions: $[t_s, t_e] \log(r)$: (d, w) $[t_s, t_e]$ occupant(*d*): (*r*, empty) (descriptive model) constraints: $t_e \leq t_s + \delta_1$ adj(*d*,*w*) • RAE's m-leave(*r*,*d*,*w*,*e*) task: leave(*r*,*d*,*w*) refinement method loc(r)=d, adj(d,w), exit(e,d,w)pre: (operational model) body: until empty(*e*) wait(1) goto(*r*,*e*)

Discussion

- Pros
 - Simple online refinement with RAE
 - Avoids breaking down uncertainty of contingent duration
 - Can be augmented with temporal monitoring functions in RAE
 - E.g., watchdogs, methods with duration preferences
- Cons
 - Does not handle temporal requirements at the command level,
 - E.g., synchronise two robots that must act concurrently
- Can augment RAE to include temporal reasoning
 - Call it eRAE
 - One essential component: a dispatching function

Acting With Temporal Models

- Dispatching procedure: a dynamic execution strategy
 - Controls when to start each action
 - Given a dynamically controllable plan with executable primitives, it triggers corresponding commands from online observations

Dispatching

- Let (V, V, E, E) be a controllable STNU that is grounded
 - Different from a grounded expression in logic
 - At least one time point t^* is instantiated
 - Bounds each time point t within an interval $[l_t, u_t]$

Dispatch ($\mathcal{V}, \tilde{\mathcal{V}}, \mathcal{E}, \tilde{\mathcal{E}}$) initialise the network while there are time points in \mathcal{V} that have not been triggered do update now update the time points in $\tilde{\mathcal{V}}$ that have been newly observed update enabled trigger every $t \in enabled \text{ s.t. } now=u_t$ arbitrarily choose other time points in enabled and trigger them propagate values of triggered timepoints (change $[l_t, u_t]$ for each future timepoint t)

- Controllable time point *t* in the future:
 - t is alive if current time $now \in [l_t, u_t]$
 - *t* is enabled if

VERSITÄT ZU LÜBECK

- It is alive
- For every precedence constraint t' < t, t' has occurred
- For every wait constraint $\langle t_e, \alpha \rangle$, t_e has occurred or α has expired
 - α has expired if t_s has occurred and $t_s + \alpha \le now$

Example

- Trigger t_1 , observe leave finish
- Enable and trigger t_2 , this enables t_3, t_4
- Trigger t_3 soon enough to allow enter(r1, d2) at time t_5
- Trigger t_4 soon enough to allow stack(k, c') at time t_6
- Rest of plan is linear:
 - Choose each t_i after the previous action ends

Dispatch ($\boldsymbol{\mathcal{V}}, \tilde{V}, \boldsymbol{\mathcal{E}}, \tilde{E}$) initialise the network while there are time points in ${\mathcal V}$ that have not been triggered do update now update the time points in $ilde{V}$ that have been newly observed update enabled trigger every $t \in enabled$ s.t. $now=u_{t}$ arbitrarily choose other time points in *enabled* and trigger them propagate values of triggered timepoints (change $[l_t, u_t]$ for each future timepoint t)

Example from Slide 61

- Trigger t_1 at time 0
- Wait and observe t; this enables t'
- Trigger t' at any time from t to t + 5
- Trigger t_3 at time t' + 10
 - $t_2 \in [t' + 15, t' + 20]$
 - $t_4 \in [t_3 + 5, t_3 + 10] = [t' + 15, t' + 20]$
 - so $t_4 t_2 \in [-5, 5]$

Dispatch ($\mathcal{V}, \tilde{\mathcal{V}}, \mathcal{E}, \tilde{\mathcal{E}}$) initialise the network while there are time points in \mathcal{V} that have not been triggered do update now update the time points in $\tilde{\mathcal{V}}$ that have been newly observed update enabled trigger every $t \in enabled$ s.t. $now=u_t$ arbitrarily choose other time points in enabled and trigger them propagate values of triggered timepoints (change $[l_t, u_t]$ for each future timepoint t)

Dispatching

- Propagation step most costly one
 - $O(n^3)$
 - n the number of remaining future time points in network

Dispatch ($\mathcal{V}, \tilde{\mathcal{V}}, \mathcal{E}, \tilde{\mathcal{E}}$) initialise the network while there are time points in \mathcal{V} that have not been triggered do update now update the time points in $\tilde{\mathcal{V}}$ that have been newly observed update enabled trigger every $t \in enabled$ s.t. now= u_t arbitrarily choose other time points in enabled and trigger them propagate values of triggered timepoints (change $[l_t, u_t]$ for each future timepoint t)

 Ideally propagation fast enough to allow iterations and updates of *now* consistent with temporal granularity of plan

Deadline Failures

- Suppose something makes it impossible to start an action on time
- Do one of the following:

RMATIONSSYSTEME

- Stop the delayed action, and look for new plan
- Let the delayed action finish, try to repair the plan by resolving violated constraints at the STNU propagation level
 - E.g., accommodate a delay in navigate by delaying the whole plan
- Let the delayed action finish, try to repair the plan some other way

Partial Observability

- Tacit assumption: All occurrences of contingent events are observable
 - Observation needed for dynamic controllability
- In general, not all events are observable
- POSTNU (Partially Observable STNU)
 - STNU where the contingent time points are given by a set of invisible and a set of observable timepoints
 - POSTNU = STNU if Invisible = Ø
 - Dynamically controllable?

Controllable

Contingent

Invisible

Observable

Observation Actions

• Example

Arthur Bit-Monnot, Malik Ghallab, Félix Ingrand: "Which Contingent Events to Observe for the Dynamic Controllability of a Plan", IJCAI-16

Dynamic Controllability

- A POSTNU is dynamically controllable if
 - there exists an execution strategy that chooses future controllable points to meet all the constraints, given the observation of past visible points
- Check dynamic controllability
 - Map an POSTNU to an STNU by deleting invisible time points and adding corresponding constraints on controllable and observable time points
 - Check dynamic controllability of the mapped STNU
 - E.g., using the extended PC algorithm
 - More details in the paper

Dynamic Controllability

- A POSTNU is dynamically controllable if
 - there exists an execution strategy that chooses future controllable points to meet all the constraints, given the observation of past visible points
- Observable ≠ visible

NIVERSITÄT ZU LÜBECK

INFORMATIONSSYSTEME

Observable means it will be known when observed

Intermediate Summary

- Acting
 - Atemporal refinement
 - eRAE
 - Dispatching
 - Alive, enabled
 - Deadline failures
 - Partial observability
 - Invisible, observable (hidden/visible)

Outline per the Book

4.2 Representation

- Timelines
- Actions and tasks
- Chronicles

4.3 Temporal Planning

- Resolvers and flaws
- Search space

4.4 Constraint Management

- Consistency of object constraints and time constraints
- Controlling the actions when we do not know how long they will take

4.5 Acting with Temporal Models

- Acting with atemporal refinement
- Dispatching
- Observation actions

⇒ Next: Planning and Acting with Nondeterministic Models

