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Literature

e We now switch from

e Automated Planning and Acting
 Malik Ghallab, Dana Nau, Paolo Traverso

e Main source
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Automated Planning
and Acting

o to Malik Ghallab, Dana Nau
and Paolo Traverso

* Artificial Intelligence:
A Modern Approach (37 ed.)
e Stuart Russell, Peter Norvig

* Decision theory
e Ch.16+17

The first half of this lecture covers utility theory,

A Modern Approach
Third Edition

which is also part of the module Intelligent Agents.
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Decision Making under Uncertainty

* Many environments have multiple possible outcomes

* Some of these outcomes may be good;
others may be bad

* Some may be very likely;
others unlikely ( Agent

Sensors -

‘ Pcu'cpl\
?

Actuators s
_ — )
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Nondeterministic vs. Probabilistic Uncertainty

Nondeterministic model Probabilistic model
*{a,b,c} * {a(pg), b(py), c(pc)}
e Decision that is e Decision that

best for worst case maximises expected

utility value




Expected Utility

* Random variable X with n range values x4, ..., x,,
and distribution (p4, ..., p,,)

* E.g.: X is the state reached after doing an action A = a
under uncertainty

* Function U of X
e E.g., U is the utility of a state

* The expected utility of A = a is

EU[A =a] = ZP(X =x;j|lA=a) UX = x;)

R
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One State/One Action Example

U(sy) = 100-0.2450-0.7+70-0.1
=20+35+7
= 62




One State/Two Actions Example

U, (sq) = 62

U(sg) = max{U;(sq), U,(sp)}
=74




Introducing Action Costs

Uy(sp) = 74

U(sg) = max{U;(sq), U,(sp)}
=57




MEU Principle

* A rational agent should choose the action that
maximizes agent’s expected utility

* This is the basis of the field of decision theory

* The MEU principle provides a normative criterion
for rational choice of action

Al is solved!!!
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Not quite...

* Must have complete model of:
* Actions
 Utilities
e States

* Even if you have a complete model, it might be
computationally intractable

* In fact, a truly rational agent takes into account the
utility of reasoning as well — bounded rationality

* Nevertheless, great progress has been made in this
area, and we are able to solve much more complex
decision-theoretic problems than ever before




Setting

e Agent can perform actions in an environment

* Environment
* Time: episodic or sequential

* Episodic: Next episode does not depend on the previous episode
* Sequential: Next episode depends on previous episodes

* Non-deterministic
* Qutcomes of actions not unique
* Associated with probabilities (— probabilistic model)
* Partially observable
e Latent, i.e., not observable, random variables
« Agent has preferences over states/action outcomes

* Encoded in utility or utility function — Utility theory

e “Decision theory = Utility theory + Probability theory”
* Model the world with a probabilistic model
* Model preferences with a utility (function)

* Find action that leads to the maximum expected utility, also
called decision making

R
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Outline

Utility Theory — mainly Ch. 16.1-16.4
* Preferences
e Utilities
* Dominance
e Preference structure

Markov Decision Process (MDP)
* Markov property
e Sequence of actions, history, policy
* Value iteration, policy iteration
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Preferences

* An agent chooses among prizes (4, B, etc.) and
lotteries, i.e., situations with uncertain prizes

e Outcome of a nondeterministic action is a lottery

* Lottery L = [p,4; (1 — p), B]
* A and B can be lotteries again
* Prizes are special lotteries: [1, R; 0, not R]

* More than two outcomes:
* L= [P1;51}P2;52} "°;pann]r 7i1=1pi =1

 Notation
e A>B ApreferredtoB
e A ~ B indifference between A and B

e AZ B B notpreferredto A

5 QAP © UNIVERSITAT ZU LUBECK
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Rational preferences

* |dea: preferences of a rational agent must obey
constraints

e Rational preferences = behaviour describable as
maximisation of expected utility

,,,,,
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Rational preferences contd.

* Violating constraints leads to self-evident
irrationality

* Example
* An agent with intransitive preferences can be induced to

give away all its money

* If B > C, then an agent who has C A
would pay (say) 1 cent to get B . .
* If A > B, then an agent who has B

would pay (say) 1 cent to get A y

* If C > A, then an agent who has A4 B\
would pay (say) 1 cent to get C N

5 AT = UNIVERSITAT ZU LUBEC
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Axioms of Utility Theory

1. Orderability 6. Decomposability
* (A> B)v(4 < B)v(A~B) * |p.4;1-p,1q,B; 1—¢q,Cl]~
- {<,>, ~}(jpi_n’gly exhaustive, [p,4; 1—p)q,B;(1—p)(1—-q),C]
palrwise ISjOInt

2. Transitivity
e A>BA(B>C)=(A>=0C)

3. Continuity

e A>B>(C=
dp[p, A 1—p,Cl~B

4. Substitutability

- ANB=>
[p,4;1—=p,Cl~[p,B; 1 —p, (] p__ A
e Also holds if replacing ~ with >
5. Monotonicity A-p) g
e A>B=
> q <
bal—p8 a-pa-o ¢

z [q,4;1—q,B)])

Decomposability: There is no fun in gambling.



And Then There Was Utility

* Theorem (Ramsey, 1931; von Neumann and
Morgenstern, 1944):

* Given preferences satisfying the constraints, there exists a
real-valued function U such that

UA)>UB)=AZB
U([p1, Si5 -3PnSaD) = ) piU(S)

* MEU principle

* Choose the action that maximises expected utility

* Note: an agent can be entirely rational (consistent with
MEU) without ever representing or manipulating
utilities and probabilities

* E.g., alookup table for perfect tictactoe

aaaa
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Utilities

 Utilities map states to real numbers.
Which numbers?

e Standard approach to assessment of human utilities:

* Compare a given state A to a standard lottery L,, that has

* “best possible outcome” T with probability p
 ”worst possible catastrophe” L with probability (1 — p)

* Adjust lottery probability p until A~L,,

0.999999 continue as before

pay-$30-and-
continue-as- ~
before

0.000001 instant death

,,,,,
\\\\\
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Utility Scales

* Normalised utilities: u+ = 1.0,u; = 0.0
 Utility of lottery L ~ (pay-$30-and-continue-as-before):
U(L) = ut+0.999999 + u, - 0.000001 = 0.999999
* Micromorts: one-millionth chance of death
e Useful for Russian roulette, paying to reduce product
risks, etc.
* QALYs: quality-adjusted life years

e Useful for medical decisions involving substantial risk

* Behaviour is invariant w.r.t. positive linear
transformation
U,(T) — klU(T') + kz
* No unique utility function; U'(r) and U(r) yield same
behaviour

,,,,,
\\\\\\
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Ordinal Utility Functions

* With deterministic prizes only (no lottery choices),
only ordinal utility can be determined, i.e., total
order on prizes

* Ordinal utility function also called value function

* Provides a ranking of alternatives (states), but not a
meaningful metric scale (numbers do not matter)

R
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Money

* Money does not behave as a utility function

* Given a lottery L with expected monetary value
EMV (L), usually U(L) < U(SEMV(L)), i.e., people
are risk-averse

e §,,: state of possessing total wealth Sn

 Utility curve

* For what probability p am | indifferent between a prize x and a
lottery [p, $M; (1 — p), $0] for large M?

e Right: Typical empirical +k’ .
data, extrapolated with o
risk-prone behaviour aas

for negative wealth ~150,000 800,000

ER
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Money Versus Utility

* Money # Utility
* More money is better, but not always in a linear
relationship to the amount of money
* Expected Monetary Value
* Risk-averse
« U(L) < U(Semvy)
* Risk-seeking
« U(L) > U(Semvy)
* Risk-neutral

« U(L) = U(Semvy)
* Linear curve

* For small changes in wealth
relative to current wealth




Multi-attribute Utility Theory

* A given state may have multiple utilities
* ...because of multiple evaluation criteria

e ...because of multiple agents (interested parties) with
different utility functions

 We will look at

e Cases in which decisions can be made without
combining the attribute values into a single utility value
e Strict dominance
e Stochastic dominance

e Cases in which the utilities of attribute combinations can
be specified very concisely

R
SXRSS2 Y INSTITUT FUR INFORMATIONSSYSTEME
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Strict Dominance

» Typically define attributes such that U is monotonic
in each dimension

e Strict dominance
e Choice B strictly dominates choice A iff
Vi:X;(B) = X;(A) (and hence U(B) = U(A))

X5 This region X5
dominates A A |

Deterministic attributes Uncertain attributes

D) e

2 WUAYT & UNIVERSITAT ZU LUBECK
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Stochastic Dominance

* Cumulative distribution p; first-order stochastically dominates
distribution p, iff
Vx i pp(x) < py(x)
* With a strict inequality for some interval
* Then, E,, > E, (E referring to expected value)

* The reverse is not necessarily true

* Does not imply that every possible return of the superior distribution is
larger than every possible return of the inferior distribution

* Example:
* As we have negative costs, S2 dominates S1 with Vx : pg (x) < ps, (x)

12 T ! L] T T T T T 1
Lr 08 |
. 08 r .
2 Z 06
g 06 | . E
£ b — | £ 04}
04 + S2 —
02 02
1 1 1 1 0 1 1 1 1 1 1
S5 45 4 35 -3 25 -2 6 55 -5 45 4 35 -3 -25 -2
Negative cost Negative cost

27



https://people.duke.edu/~dgraham/ECO_463/Handouts/StochasticDominance.pdf

Example

* Product P
1
Profit (Sm) Probability 0.9
O tounder 5 0.2 .. 038
5tounder10 0.3 B
2 0.6
10to under 15 0.4 S 05
15 to under 20 0.1 § 0.4
g 0.3
© 02
* Product Q o
Profit (Sm) Probablllty 0
0 5 10 15 20 25
O to under 5 Profit (Smillions)
5 to under 10 0.1 —e—Product P —s—Product Q

10 tounder 15 0.5
15 tounder20 0.3
20tounder 25 0.1

P first-order stochastically dominates Q




Stochastic Dominance

* Cumulative distribution p; second-order stochastically dominates
distribution p, iff

Vit: jt pz(x)dxsft p1(x) dx

— 00 — 00

t

c or:D(t) = J__p1(x) —pp(x)dx =0

* With a strict inequality for some interval

* Then, E,, = E, (E referring to expected value)

* Example:

* Second-order stochastic dominance * No dominance
14 10 1 - 8
09 —optiona|T @ 091 /c:tio:_" ]
ED.El 1 —— optionB|T 8 =08 Option B
8077 —Dw |17 07 it 4
© o] Dit)
50.8‘ “BDt gD.B- - - - -Zerolevel || 5
S0 Lo 205 D(t)
'*_% 04 4 % [ N N 0
203 +3 203 L 5
3 0.2 T2 3 0.2
0.11 11 014 -4
0 ¢ ' . . . 0 0 : : ; ; ' i
0 50 100 150 200 250 300 0 50 100 150 200 250 300
Profit Profit

R Nag, &
SRR & UNIVERSITAT ZU LUBECK
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https://www.vosesoftware.com/riskwiki/Stochasticdominancetests.php
https://people.duke.edu/~dgraham/ECO_463/Handouts/StochasticDominance.pdf

Preference Structure

* To specify the complete utility function U(r, ..., 13,), we
need d™ values in the worst case
e n attributes
* each attribute with d distinct possible values

* Worst case meaning: Agent’s preferences have no regularity
at all

* Supposition in multi-attribute utility theory
* Preferences of typical agents have much more structure

e Approach
* Identify regularities in the preference behaviour

* Use so-called representation theorems to show that an agent
with a certain kind of preference structure has a utility
function

U(rlr )T'Tl) — F[fl(rl)) ;fn(rn)]
* where F is hopefully a simple function such as addition

,,,,,
\\\\\
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Preference structure: Deterministic

* Ry and R, preferentially independent (PI) of Ry iff

* Preference between (ry, 1y, 73) and (r{, 15, r3) does not
depend on ;3

* E.g.,(Noise, Cost,Safety)
* (20,000 suffer,$4.6 billion, 0.06 deaths/month)
* (70,000 suffer,$4.2 billion, 0.06 deaths/month)

* Theorem (Leontief, 1947)

* If every pair of attributes is Pl of its complement, then every
subset of attributes is Pl of its complement

* Called mutual PI (MPI)

* Theorem (Debreu, 1960):
* MPI = 3 additive value function

V(ry, e, m) = Z-Vi(ri)

* Hence assess n single-attribute functions
* Often a good approximation




Preference structure: Stochastic

* Need to consider preferences over lotteries
* R is utility-independent (Ul) of S iff

e Preferences over lotteries in R do not depend on s

* Mutual Ul (Keeney, 1974): each subset is Ul of its
complement = 3 multiplicative utility function

* Forn = 3:
U — k1U1 + kZUZ + k3U3
* |.e., requires only n single-attribute utility functions and
n constants

aaaa
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Intermediate Summary

* Preferences

* Preferences of a rational agent must obey constraints
* Utilities

* Rational preferences = describable as maximisation of

expected utility

 Utility axioms

 MEU principle
* Dominance

* Strict dominance
* First-order + second-order stochastic dominance

* Preference structure
e (Mutual) preferential independence
e (Mutual) utility independence

:::::
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Outline

Utility Theory
* Preferences
 Utilities
* Dominance
* Preference structure

Markov Decision Process (MDP) — Ch. 17.1-17.3
* Markov property
* Sequence of actions, history, policy
* Value iteration, policy iteration




Simple Robot Navigation Problem

* |[n each state, the possible actions are U, D, R, and L

* The effect of U is as follows (transition model):
* With probability 0.8, move up one square

 |f already in top row or blocked, no move 08
* With probability 0.1, move right one square - .

* |f already in rightmost row or blocked, no move o ‘ /]\ \ o
* With probability 0.1, move left one square

* |f already in leftmost row or blocked, no move

e Same transition model holds for D, R, and L and their
respective directions

3 %

B )
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Markov Property

The transition properties depend only

on the current state, not on previous
history (how that state was reached).

e Also known as Markov-k with k = 1
e k<t
PQxpyq | 2, s x0) = P(xpgal Xy o) Xe—ie1)

P(x¢iq | xg) s x0) = PQxeyq | x¢)




Sequence of Actions

* In each state, the possible actions
are U, D, R, and L; transition model:

e Current position: [3,2]

* Planned sequence of actions: (U, R)

3,2]

2 WUAYT & UNIVERSITAT ZU LUBECK
el 5=~  INSTITUT FUR INFORMATIONSSYSTEME
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Sequence of Actions

* In each state, the possible actions
are U, D, R, and L; transition model:

e Current position: [3,2]

* Planned sequence of actions: (U, R)
* U is executed

3,2]
3 A
3,2 3,3 4,2
, Al A 3,21 ]| 13,31 || [4,2]
1

N, -
2 WUAYT & UNIVERSITAT ZU LUBECK
3595 INSTITUT FOR INFORMATIONSSYSTEME
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Sequence of Actions

* In each state, the possible actions
are U, D, R, and L; transition model:

e Current position: [3,2]

* Planned sequence of actions: (U, R)

U has been executed
e Ris executed

3,2]

3,2]

3,3]

4,2]

3,1]

3,2]

3,3]

[4,1]

4,2]

uuuuuuuuuuuuuu
sssssssssssssssssssssssssssssss

~| B> P> [
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Historlies

* In each state, the possible actions a
are U, D, R, and L; transition model: 01 o1

* Current position: [3,2]

* Planned sequence of actions: (U, R)
VR L WNETNETo ] © possible sequences of states, called

* Ris executed histories, and 6 possible final states
[3,2]
3 A
, [3,2] || [3,3] || [4,2]

[3,1] || [3,2] || [3,3] || [4,1] || [4,2]




Probability of Reaching the Goal

* In each state, the possible actions n
are U, D, R, and L; transition model: 01 0.1
P([4,3] | (U,R).[3,2]) =

P([4,3] | R.[3,3]) - P([3,3] | U.[3,2]) + P([4,3] | R.[4,2]) - P([4,2] | U.[3,2])

P([4,3]|R.[3,3) =08  P([3,3]|U.[3,2]) = 0.8 BCI=Nla]sleIa=Tale=Rel M\ ETy )
P([4,3]| R.[4,2]) = 0.1 P([4,2]|U.[3,2]) = 0.1 property in this derivation
P([4,3] | (U,R).[3,2]) =0.8:0.8+0.1-0.1 =0.65
[3,2]
3 A [ A
3,2 3,3 4,2
1 A A [3,1] [ [3,2] |1 [3,3] || [4,1] || [4,2]
3 4




Utility Function

* [4,3]:
* [4,2] : sand area the robot cannot escape

: robot needs to recharge its batteries
* [4,3] and [4,2] are terminal states

* In this example, we define the utility of a history by

* the utility of the last state (+1 or —1)
minus 0.04 - n

3 * nis the number of moves
* |.e., each move costs 0.04, which
2 -1 provides an incentive to reach the goal
fast
1

D) K

A, =

B a‘ﬁ?; UUUUUUUUUUUUUUUUUUU
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Utility of an Action Sequence

e Consider the action sequence (U,R) from [3,2]

* A run produces one among 7 possible histories, each
with some probability

* Utility of the sequence is the expected utility of

histories h: Is the optimal
h
0= Unph) o
h ®
* Optimal sequence = the one with maximum utility
[3,2]
3
1 3,111(13,211| 13,31 || 14,21 || 14,2]

’ S UNIVERSITAT ZU LUBECK

s
= Y
3 7
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Reactive Agent Algorithm

if s is terminal then

exit
a « choose action (given s)
perform a

(jﬁxm, *Tm"ﬁ\
What the world
1s like now

m
=
=.
=]
:
y 2

C('ondnmn-.tlmn mk‘\)—’ \\:::: d":,::‘::i

< UNIVERSITAT ZU LUBECK
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Policy (Reactive/Closed-loop Strategy)

* Policy Act ()
repeat

* Complete mapping from states s « sensed state

to actions

if s 1s terminal then

exit

e Optimal policy a — m(s)

* Always yields a history (ending perform a
at terminal state) with
maximum expected utility

* Due to Markov property

How to compute m™?
Solving a Markov Decision Process (MDP)




qqqqqq

4

-
2 -1 UI D) L; R 0.1‘1_"=-¢"|=“ 0.1

1 A each move costs 0.04

MDP

» Sequential decision problem for a fully observable,
stochastic environment with a Markovian transition
model and additive rewards (next slide)

* Components
e aset of states S (with an initial state sg)
* aset A(s) of actions in each state
* atransition model P(s'|s, a)
* areward function R(s)

uuuuuuuuuuuuuuuuuuuu

TTTTTTTTTTTTTTTTTTTTTTTTTTTTTT
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Additive Utility

* History H = (sg,S1, .-+»Sn)
* In each state s, agent receives reward R(s)
e Utility of H is additive iff )

U(Sg,S1, +»Sn) = R(sg) + U(sy, ., 80) = ) 0R(Sl-)
i=0
* Discount factor y €]0,1]: U(sq, S1, «+» Sp) = Xizo V' R(5;)
* Close to O: future rewards insignificant
« Corresponds to an interest rate of 77/,

3 * Robot navigation example:
* R(s,) = +1ifs, =[4,3]

2 -1 * R(s,) =—1ifs, =[4,2]

. * R(s;) =—-0.04ifi=0,..,n—1
ey =1

47



Principle of MEU

* History h = (Sg,Sq, «+)Sp)
« Utility of h: U(sg, S1, «+» Sp) = Dizo R(s;)

* Bellman equation:

* U(sy) = R(sp) + ymaaXZSjP(Sjl a.s;)U(s;)
* Optimal policy:

e T*(s;) = arggnaxZSjP(sﬂ a.s;)U(s;)

X * Bellman equation for [1,1]
« U(1,1) = —0.04 + ymaxy ;pr
, 1 1 {0.8U(1,2) + 0.1U(2,1) + 0.1U(1,1),  (U)
0.8U(1,1) + 0.1U(1,1) + 0.1U(1,2), (L)
1t . 0.8U(1,1) + 0.1U(2,1) + 0.1U(1,1), (D)
0.8U(2,1) + 0.1U(1,2) + 0.1U(1,1) } (R)

1 2 3 4  withy =1 as discount factor

48



Value lteration

* Initialise the utility of each non-terminal state s; to
Up(s;) =0

Fort=20,1,2,.., do
* Uppa(s) < R(s)) +y maxE, P(s; a.5:)Ue(s;)

e So called Bellman update

0 0 0
3
0 0
p) -1
0 0 0
1

g, -
2 WUAYT & UNIVERSITAT ZU LUBECK
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Value Iteration

* Initialise the utility of each non-terminal state s; to
Up(s;) =0
Fort=20,1,2,.., do
* Upy1(si) = R(sp) + )’mélXZsjP(Sﬂ a. Si)Ut(Sj)

* So called Bellman update Note the importance
of terminal states and

connectivity of the

U.([3,1]) 4 state-transition graph
0.812 | 0.868 | 0.918
3 > > > 0.611 F---mmmmmmmm oo e
0.5(
2
0




Value Iteration: Algorithm

function value-iteration (mdp,€)
U <« 0
repeat
U~ U
8<—O

for each state s € S do
U' [s] « R(8) + Y maX, e 525 P(s’1a.s)Uls’]
[s]

if |U' [s] - s]| > & then
§ « |U [s] - Uls]|
until 6 < €(1-y)/y
* |Inputs
 an MDP, which includes
* States S

* Forall s € S, actions A(s), transition model P(s’| a.s), rewards R(s)
* Discounty

e Maximum error allowed €

* Local variables
« U, U’ vectors of utilities for states in S, initially O
* & maximum change in utility of any state in an iteration




Evolution of Utilities

Fort=20,1,2,.. do
* Upra(s) = R(sp) +y maxZ, P(s51] @ 50)Ue(s;)

 Value iteration = information propagation

| 4.3)
-------------------------------------- (3.3)
08 (L1
N - T )
3 0.81:2 0.86:8 o.91§ ‘.§ 0.6 31
S 049 e @.1)
-
= 02 1 )
2 -
04 '/
N/
0.2 e
4 0 5 0 15 20 25 30

Number of iterations




Argmax Action

Fort=20,1,2,..,do
* Upea(s) = R(sp) +y maxE, P(s51] @ 5:)Ue(s;)

* Argmax action may change over iterations

* Bellman equation for [1,1]

0.812 | 0.868 | 0.918 « U(1,1)=-0.04+y Uf,rLl%,(R

{0.8U(1,2) + 0.1U(2,1) + 0.1U(1,1), (V)
0.8U(1,1) + 0.1U(1,1) + 0.1U(1,2), (L)
0.8U(1,1) +0.1U(2,1) + 0.1U(1,1), (D)

0.705 | 0.655 | 0.611 0.8U(2,1)+0.1U(1,2) + 0.1U(1,1) } (R)

0.762

 withy = 1 as discount factor

ST O

5 >
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Effect of Rewards

Fort=20,1,2,.. do
* Upra(s) = R(sp) +y maxZ, P(s51] @ 50)Ue(s;)
e Optimal policies for
different rewards -|=|=|=2 -| ==\

e For R(s) = —0.04, 1 - |1 b b 3
see below ({) . P _"‘ b | - "__

R(s) < —1.6284 —0.4278 < R(s) < —0.0850

1: ~|==3 |[+]|+=|=

4 4 |
1 | < < < ‘ .

~|t] [

3 4 —0.0221 < R(s) <0 R(s) >0
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Effect of Allowed Error & Discount
Fort=20,1,2,.. do
* Upr1(s) = R(sy) + VmngZsjP(Sﬂ a. Si)Ut(Sj)

 Right figure: Iterations required to ensure a maximum
errorofe = c - R4

* Rmax maximum reward le407 4
| c=0000] =
in the example le406 1 = 00001 ——
Z c=10.0I
S 100000 1 =001
;lf’ 10000
3 <
2 1000 1
2 I : _2 100 1
10 §m
| l

0.5055060650.70.750808509095 1
3 4 Discount factor y
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Policy Iteration

* Pick a policy Ty at random

* Repeat:
* Policy evaluation: Compute the utility of each state for m;
*|Ue(s;) = R(sp) + v X, P(sjlme (s0). 5:)Ue(s5)

* No longer involves a miax operation as action is determined by ¢
* Policy improvement: Compute the policy 4,1 given Uy

* Tiyq (5;) = arg m(;lXZsjP(Sjiﬂt(si)-si)Ut(Sj)
e If Ty 1 = ¢, then return

R
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Policy Iteration: Algorithm

function policy-iteration (mdp)
repeat
U « policy-evaluation (m, U, mdp)
unchanged « true
for each state s € S do

if max, e, 52 P(s' la.s)Uls"] > 5,,P(s’" |m[s].s)U[s"] then
M[s] « argmax,e, 25 P(s’ la.s)Uls’]
unchanged « false
until unchanged
return w

* Inputs

 an MDP, which includes
e States S

* Foralls € S, actions A(s), transition model P(s’| a.s),
rewards R(s)

* Local variables
» U vectors of utilities for states in S, initially O
* 1T a policy vector indexed by state, initially random




Policy Evaluation

 Compute the utility of each state for
» Up(s) = R(sp) +v Xs; P(sjlme (). 5:) Ue(s))

« Complexity of policy evaluation: 0(n3)
* For n states, n linear equations with n unknowns
* Prohibitive for large n

* Approximation of utilities
* Perform k value iteration steps with fixed policy ¢,
return utilities
 Simplified Bellman update: Us41(s;) = R(s;) +
v Zs; P(sj1m(s:)- 5:) Ut (s))
* Asynchronous policy iteration (next slide)
* Pick any subset of states

:::::
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Asynchronous Policy Iteration

* Further approximation of policy iteration

* Pick any subset of states and do one of the following
e Update utilities
* Using simplified value iteration as described on previous slide
e Update the policy
e Policy improvement as before

* |s not guaranteed to converge to an optimal policy
* Possible if each state is still visited infinitely often,
knowledge about unimportant states, etc.

* Freedom to work on any states allows for design of
domain-specific heuristics

e Update states that are likely to be reached by a good
policy

aaaa
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Intermediate Summary

* MDP

* Markov property
e Current state depends only on previous state
e Sequence of actions, history, policy

e Sequence of actions may yield multiple histories, i.e.,
sequences of states, with a utility

* Policy: complete mapping of states to actions
e Optimal policy: policy with maximum expected utility
* Value iteration, policy iteration
e Algorithms for calculating an optimal policy for an MDP




Online Decision Making

* Decision making based on probabilistic graphical
models (PGMs)

* Do not precompute a policy beforehand but decide on an
action (sequence) online given current observations

e Static case (episodic, without effects on next state)

* PGMs extended with action and utility nodes

 MEU query: Calculate expected utility for each action, decide
to execute action with highest expected utility

* Dynamic case (temporal, with effects on next state)

* Dynamic PGMs extended with action and utility nodes

* MEU query: Calculate expected utility for sequence of
actions, decide to execute action sequence with highest
expected utility

 More in module Intelligent Agents (IFIS, winter term)




Outline

Utility Theory
* Preferences
 Utilities
* Dominance
e Preference structure

Markov Decision Process (MDP)

* Markov property
e Sequence of actions, history, policy
* Value iteration, policy iteration

—> Next: Probabilistic Models




