Advanced Topics Data Science and AI Automated Planning and Acting

Probabilistic Models

Tanya Braun

1. Planning and Acting with 6. Planning and Acting with Deterministic Models
2. Planning and Acting with Refinement Methods
3. Planning and Acting with Temporal Models
4. Planning and Acting with Nondeterministic Models
5. Standard Decision Making

Probabilistic Models

a. Stochastic Shortest-Path Problems
b. Heuristic Search Algorithms
c. Online Approaches Including Reinforcement Learning
7. Advanced Decision Making
8. Human-aware Planning

Acknowledgements

- Automated Planning and Acting Chapter 6
- Slides based on material provided by Dana Nau, Ralf Möller, and Shengyu Zhang

Outline

6.2 Stochastic shortest path problems

- Safe/unsafe policies
- Optimality
- Policy iteration, value iteration
6.3 Heuristic search algorithms
- Best-first search
- Determinisation
6.4 Online probabilistic planning
- Lookahead
- Reinforcement learning

Probabilistic Planning Domain

- $\Sigma=(S, A, \gamma, P, \cos t)$
- S = set of states
- $A=$ set of actions
- $\gamma: S \times A \rightarrow 2^{S}$ a transition function
- $P\left(s^{\prime} \mid s, a\right)=$ probability of going to state s^{\prime} if we perform a in s
- Require $P\left(s^{\prime} \mid s, a\right) \neq 0$ iff $s^{\prime} \in \gamma(s, a)$
- cost: $S \times A \rightarrow \mathbb{R}^{>0}$
- $\operatorname{cost}(s, a)=$ cost of action a in state s
- may omit, default is $\operatorname{cost}(s, a)=1$

Difference in syntax: MDPs do not have an explicit transition function γ, only a set of applicable actions $A(s)$ per state and the transition model $P\left(s^{\prime} \mid s, a\right)$

Instead of maximising expected utility as before: Minimise expected cost

Example

- Robot $r 1$ starts at $d 1$
- Objective: get to $d 4$
- Simplified state names: write $\{\operatorname{loc}(r 1)=d 2\}$ as $d 2$
- Simplified action names: write move (r1, d2,d3) as m23
- $r 1$ has unreliable steering, especially on hills
- May slip and go elsewhere

- $m 12: \mathrm{P}(d 2 \mid d 1, m 12)=1$
- m21,m34,m41,m43, $m 45, m 52, m 54$: like above
- $m 14: \mathrm{P}(d 4 \mid d 1, m 14)=0.5$ $P(d 1 \mid d 1, m 14)=0.5$
- $m 23: \mathrm{P}(d 3 \mid d 2, m 23)=0.8$
$\mathrm{P}(d 5 \mid d 2, m 23)=0.2$

Policies, Problems, Solutions

- Stochastic shortest path (SSP) problem:
- a triple $\left(\Sigma, S_{0}, S_{g}\right)$
- Policy:
- partial function $\pi: S \rightarrow A$ s.t.
- for every $s \in \operatorname{Dom}(\pi) \subseteq S$, $\pi(s) \in$ Applicable (s)
- Solution for $\left(\Sigma, s_{0}, S_{g}\right)$:
- a policy π s.t.
- $s_{0} \in \operatorname{Dom}(\pi)$ and
- $\hat{\gamma}\left(s_{0}, \pi\right) \cap S_{g} \neq \emptyset$
- $m 14: P(d 4 \mid d 1, m 14)=0.5$
$P(d 1 \mid d 1, m 14)=0.5$
- $m 23: P(d 3 \mid d 1, m 23)=0.8$ $P(d 5 \mid d 1, m 23)=0.2$

Notation and Terminology

- Transitive closure
- $\hat{\gamma}(s, \pi)=\{s$ and all states reachable from s using $\pi\}$
- $\operatorname{Graph}(s, \pi)=$ rooted graph induced by π at s
- Nodes: $\hat{\gamma}(s, \pi)$
- Edges: state transitions
- leaves $(s, \pi)=\hat{\gamma}(s, \pi) \backslash \operatorname{Dom}(\pi)$
- A solution policy π is closed if it does not stop at nongoal states unless there is no way to continue
- for every state $s \in \hat{\gamma}(s, \pi)$, either
- $s \in \operatorname{Dom}(\pi)$ (i.e., π specifies an action at s),
- $s \in S_{g}$ (i.e., s is a goal state), or
- Applicable $(s)=\varnothing$ (i.e., there are no applicable actions at s)

Dead Ends

- Dead end
- A state or set of states from which the goal is

Histories

- History: sequence of states $\sigma=\left\langle s_{0}, s_{1}, s_{2}, \ldots\right\rangle$
- May be finite or infinite

$$
\begin{aligned}
& \text { - } \sigma=\langle d 1, d 2, d 3, d 4\rangle \\
& \text { - } \sigma=\langle d 1, d 2, d 1, d 2, \ldots\rangle
\end{aligned}
$$

- $H(s, \pi)=$ \{all possible histories if we start at s and follow π, stopping if $\pi(s)$ is undefined or if we reach a goal state\}
- If $\sigma \in H(s, \pi)$, then

$$
\begin{aligned}
& P(\sigma \mid s, \pi) \\
& =\prod_{i} P\left(s_{i+1} \mid s_{i}, \pi\left(s_{i}\right)\right)
\end{aligned}
$$

- Thus

$$
\sum_{\sigma \in H(s, \pi)} P(\sigma \mid s, \pi)=1
$$

- Probability of reaching a goal:

$$
\begin{aligned}
& P\left(S_{g} \mid s, \pi\right) \\
& =\sum_{\sigma \in H(s, \pi),} P(\sigma \mid s, \pi)
\end{aligned}
$$

σ ends at a state in s_{g}

Unsafe Solutions

- Unsafe solution: $0<P\left(S_{g} \mid s_{0}, \pi\right)<1$
- Example:
- $\pi_{1}=\{(d 1, m 12),(d 2, m 23),(d 3, m 34)\}$
- $H\left(s_{0}, \pi_{1}\right)$ contains two histories:
- $\sigma_{1}=\langle d 1, d 2, d 3, d 4\rangle$
- $P\left(\sigma_{1} \mid s_{0}, \pi_{1}\right)$
$=1 \cdot 0.8 \cdot 1=0.8$
- $\sigma_{2}=\langle d 1, d 2, d 5\rangle$
- $P\left(\sigma_{2} \mid s_{0}, \pi_{1}\right)$

$$
=1 \cdot 0.2=0.2
$$

- $P\left(S_{g} \mid s_{0}, \pi_{1}\right)$
$=0.8$

Unsafe Solutions

- Unsafe solution: $0<P\left(S_{g} \mid s_{0}, \pi\right)<1$
- Example:
- $\pi_{2}=\{(d 1, m 12),(d 2, m 23),(d 3, m 34)$,
(d5, m56), (d6, m65) \}
- $H\left(s_{0}, \pi_{2}\right)$ contains two histories:
- $\sigma_{1}=\langle d 1, d 2, d 3, d 4\rangle$
- $P\left(\sigma_{1} \mid s_{0}, \pi_{2}\right)$

$$
=1 \cdot 0.8 \cdot 1=0.8
$$

- $\sigma_{3}=\langle d 1, d 2, d 5, d 6, \ldots\rangle$
- $P\left(\sigma_{3} \mid s_{0}, \pi_{2}\right)$

$$
=1 \cdot 0.2 \cdot 1 \cdot \cdots=0.2
$$

- $P\left(S_{g} \mid s_{0}, \pi_{2}\right)$

$$
=0.8
$$

Safe Solutions

- Safe solution: $P\left(S_{g} \mid s_{0}, \pi\right)=1$
- An acyclic safe solution:
- $\pi_{3}=\{(d 1, m 12),(d 2, m 23),(d 3, m 34),(d 5, m 54)\}$
- $H\left(s_{0}, \pi_{3}\right)$ contains two histories:
- $\sigma_{1}=\langle d 1, d 2, d 3, d 4\rangle$
- $P\left(\sigma_{1} \mid s_{0}, \pi_{3}\right)$

$$
=1 \cdot 0.8 \cdot 1=0.8
$$

- $\sigma_{4}=\langle d 1, d 2, d 5, d 4\rangle$
- $P\left(\sigma_{4} \mid s_{0}, \pi_{3}\right)$

$$
=1 \cdot 0.2 \cdot 1=0.2
$$

- $P\left(S_{g} \mid s_{0}, \pi_{3}\right)$

$$
=0.8+0.2=1
$$

Safe Solutions

- Safe solution: $P\left(S_{g} \mid s_{0}, \pi\right)=1$
- A cyclic safe solution:
- $\pi_{4}=\{(d 1, m 14)\}$
- $H\left(s_{0}, \pi_{4}\right)$ contains infinitely many histories:
- $\sigma_{5}=\langle d 1, d 4\rangle$
- $P\left(\sigma_{5} \mid s_{0}, \pi_{4}\right)=0.5=\left(\frac{1}{2}\right)^{1}$
- $\sigma_{6}=\langle d 1, d 1, d 4\rangle$
- $P\left(\sigma_{6} \mid s_{0}, \pi_{4}\right)$

$$
=0.5 \cdot 0.5=\left(\frac{1}{2}\right)^{2}
$$

- $P\left(S_{g} \mid s_{0}, \pi_{4}\right)$

$$
=\frac{1}{2}+\frac{1}{4}+\ldots=1
$$

Safe Solutions

- Safe solution: $P\left(S_{g} \mid s_{0}, \pi\right)=1$
- Another cyclic safe solution:
- $\pi_{5}=\{(d 1, m 14),(d 4, m 41)\}$
- $H\left(s_{0}, \pi_{5}\right)=H\left(s_{0}, \pi_{4}\right)$:
- $\sigma_{5}=\langle d 1, d 4\rangle$
- $P\left(\sigma_{5} \mid s_{0}, \pi_{5}\right)=0.5=\left(\frac{1}{2}\right)^{1}$
- $\sigma_{6}=\langle d 1, d 1, d 4\rangle$
- $P\left(\sigma_{6} \mid s_{0}, \pi_{6}\right)$

$$
=0.5 \cdot 0.5=\left(\frac{1}{2}\right)^{2}
$$

- $P\left(S_{g} \mid s_{0}, \pi_{5}\right)$

$$
=\frac{1}{2}+\frac{1}{4}+\ldots=1
$$

Expected Cost

- $\operatorname{cost}(s, a)=$ cost of using a in s
- Example
- Each "horizontal" action costs 1
- Each "vertical" action costs 100
- Costs of a history

$$
\sigma=\left\langle s_{0}, s_{1}, s_{2}, \ldots\right\rangle
$$

- $\operatorname{cost}\left(\sigma \mid s_{0}, \pi\right)$

$$
=\sum_{s_{i} \in \sigma} \operatorname{cost}\left(s_{i}, \pi\left(s_{i}\right)\right)
$$

Expected Cost

- Let π be a safe solution
- At each state $s \in \operatorname{Dom}(\pi)$, expected cost of following π to goal:
- Weighted sum of history costs:

$$
V^{\pi}(s)=\operatorname{cost}(s, \pi(s))+\sum_{\sigma \in H(s, \pi)} P(\sigma \mid s, \pi) \operatorname{cost}(\sigma \mid s, \pi)
$$

- Recursive formulation

$$
= \begin{cases}V^{\pi}(s) & \text { if } s \in S_{g} \\ 0 & \\ \operatorname{cost}(s, \pi(s))+\sum_{s^{\prime} \in \gamma(s, \pi(s))} P\left(s^{\prime} \mid s, \pi(s)\right) V^{\pi}\left(s^{\prime}\right) & \text { otherwise }\end{cases}
$$

Example

- $\pi_{3}=\{(d 1, m 12),(d 2, m 23)$, (d3, m34), (d5, m54) \}
- Weighted sum of history cost:
- $\sigma_{1}=\langle d 1, d 2, d 3, d 4\rangle$
- $\mathrm{P}\left(\sigma_{1} \mid s_{0}, \pi_{1}\right)=0.8$
- $\operatorname{cost}\left(\sigma_{1} \mid s_{0}, \pi_{3}\right)$

$$
=100+1+100=201
$$

- $\sigma_{4}=\langle d 1, d 2, d 5, d 4\rangle$
- $\mathrm{P}\left(\sigma_{4} \mid s_{0}, \pi_{1}\right)=0.2$
- $\operatorname{cost}\left(\sigma_{4} \mid s_{0}, \pi_{3}\right)$

$$
=100+1+100=201
$$

- $V^{\pi_{1}}(d 1)$

$$
=0.8(201)+0.2(201)
$$

$$
=201
$$

Safe Solutions

- $\pi_{4}=\{(d 1, m 14)\}$
- Weighted sum of history cost:
- $\sigma_{5}=\langle d 1, d 4\rangle$
- $\mathrm{P}\left(\sigma_{5} \mid s_{0}, \pi_{5}\right)=\left(\frac{1}{2}\right)^{1}$
- $\operatorname{cost}\left(\sigma_{5} \mid s_{0}, \pi_{5}\right)=1$
- $\sigma_{6}=\langle d 1, d 1, d 4\rangle$
- $\mathrm{P}\left(\sigma_{6} \mid s_{0}, \pi_{6}\right)=\left(\frac{1}{2}\right)^{2}$
- $\operatorname{cost}\left(\sigma_{6} \mid s_{0}, \pi_{5}\right)=2$
- $V^{\pi_{4}}(d 1)$
$=\frac{1}{2}(1)+\frac{1}{4}(2)+\ldots$
$=2$

Planning as Optimisation

- Let π and π^{\prime} be safe solutions
- π dominates π^{\prime} if $V^{\pi}(s) \leq V^{\pi^{\prime}}(s)$ for every $s \in \operatorname{Dom}(\pi) \cap \operatorname{Dom}\left(\pi^{\prime}\right)$
- π is optimal if π dominates every safe solution
- If π and π^{\prime} are both optimal, then $V^{\pi}(s)=V^{\pi^{\prime}}(s)$ at every state where they are both defined
- $V^{*}(s)=$ expected cost of getting to goal using an optimal safe solution
- Recall expected cost of following π to goal starting in s

$$
V^{\pi}(s)= \begin{cases}0 & \text { if } s \in S_{g} \\ \operatorname{cost}(s, \pi(s))+\sum_{s^{\prime} \in \gamma(s, \pi(s))} P\left(s^{\prime} \mid s, \pi(s)\right) V^{\pi}\left(s^{\prime}\right) & \text { otherwise }\end{cases}
$$

- Optimality principle (Bellman’s theorem):

$$
=\left\{\begin{array}{cl}
0 & \text { if } s \in S_{g} \\
\min _{a \in \text { Applicable }(S)}\left\{\operatorname{cost}(s, \pi(s))+\sum_{s^{\prime} \in \gamma(s, \pi(s))} P\left(s^{\prime} \mid s, \pi(s)\right) V^{*}\left(s^{\prime}\right)\right\} & \text { otherwise }
\end{array}\right.
$$

Cost to Go

- Let $\left(\Sigma, s_{0}, S_{g}\right)$ be a safe SSP
- I.e., S_{g} is reachable from every state
- Same as safely explorable in non-deterministic models
- Let π be a safe solution that is defined at all non-goal states
- l.e., $\operatorname{Dom}(\pi)=S \backslash S_{g}$

- Let $a \in$ Applicable(s)
- Cost-to-go

$$
Q^{\pi}(s, a)=\operatorname{cost}(s, a)+\sum_{s^{\prime} \in \gamma(s, a)} P\left(s^{\prime} \mid s, a\right) V^{\pi}\left(s^{\prime}\right)
$$

- Expected cost if we start at s, use a, and use π afterward
- For every $s \in S \backslash S_{g}$, let

$$
\pi^{\prime}(s) \in \underset{a \in \text { Applicable }(s)}{\operatorname{argmin}} Q^{\pi}(s, a)
$$

Policy Iteration

- Converges in a finite number of steps
n equations,
n unknowns, where $n=|S|$

```
policy-iteration( }\Sigma,\mp@subsup{s}{0}{},\mp@subsup{S}{g}{},\mp@subsup{\pi}{0}{}
```

policy-iteration(}\Sigma,\mp@subsup{s}{0}{},\mp@subsup{S}{g}{},\mp@subsup{\pi}{0}{}
\pi}\leftarrow\mp@subsup{\pi}{0}{
\pi}\leftarrow\mp@subsup{\pi}{0}{
loop
loop
compute{\mp@subsup{V}{}{\pi}(s)|s\inS}
compute{\mp@subsup{V}{}{\pi}(s)|s\inS}
compute{\mp@subsup{V}{}{\pi}(s)|s\inS}
compute{\mp@subsup{V}{}{\pi}(s)|s\inS}
for every state s E S \ Sg do
for every state s E S \ Sg do
for every state s E S \ Sg do
for every state s E S \ Sg do
A}\leftarrow\mp@subsup{\operatorname{argmin}}{a\inApplicable(s)}{}\mp@subsup{Q}{}{\pi}(s,a
A}\leftarrow\mp@subsup{\operatorname{argmin}}{a\inApplicable(s)}{}\mp@subsup{Q}{}{\pi}(s,a
A}\leftarrow\mp@subsup{\operatorname{argmin}}{a\inApplicable(s)}{}\mp@subsup{Q}{}{\pi}(s,a
A}\leftarrow\mp@subsup{\operatorname{argmin}}{a\inApplicable(s)}{}\mp@subsup{Q}{}{\pi}(s,a
if \pi(s) \in A then
\mp@subsup{\pi}{}{\prime}(s)}\leftarrow\pi(s
\mp@subsup{\pi}{}{\prime}(s)}\leftarrow\pi(s
\mp@subsup{\pi}{}{\prime}(s)}\leftarrow\pi(s
\mp@subsup{\pi}{}{\prime}(s)}\leftarrow\pi(s
else
else
else
else
\mp@subsup{\pi}{}{\prime}}(s)\leftarrow\mathrm{ any action in A
if }\mp@subsup{\pi}{}{\prime}=\pi\mathrm{ then
if }\mp@subsup{\pi}{}{\prime}=\pi\mathrm{ then
if }\mp@subsup{\pi}{}{\prime}=\pi\mathrm{ then
if }\mp@subsup{\pi}{}{\prime}=\pi\mathrm{ then
return \pi
return \pi
return \pi
return \pi
\pi}\leftarrow\mp@subsup{\pi}{}{\prime

```
    \pi}\leftarrow\mp@subsup{\pi}{}{\prime
```

 \pi}\leftarrow\mp@subsup{\pi}{}{\prime
    ```

\section*{Example}
- Start with
- \(\pi=\pi_{0}=\{(d 1, m 12)\), (d2, m23), \((d 3, m 34),(d 5, m 54)\}\)
- Expected cost
- \(V^{\pi}(d 4)=0\)
- \(V^{\pi}(d 3)=100+V^{\pi}(d 4)=100\)
- \(V^{\pi}(d 5)=100+V^{\pi}(d 4)=100\)
- \(V^{\pi}(d 2)=1+\left(0.8 V^{\pi}(d 3)+0.2 V^{\pi}(d 5)\right)\) \(=101\)
- \(V^{\pi}(d 1)=100+V^{\pi}(d 2)=201\)
- Cost-to-go
- \(Q(d 1, m 12)=100+1(101)=201\)
- \(Q(d 1, m 14)\)
\[
=1+0.5(201)+0.5(0)=101.5
\]
- \(\operatorname{argmin}=m 14\)
- \(Q(d 2, m 23)\)
\[
=1+(0.8(100)+0.2(100))=101
\]
- \(Q(d 2, m 21)=100+201=301\)
- \(\operatorname{argmin}=m 23\)
- Cost-to-go continued
- \(Q(d 3, m 34)=100+0=100\)
- \(Q(d 3, m 32)=1+101=102\)
- \(\operatorname{argmin}=m 34\)
- \(Q(d 5, m 54)=100+0=100\)
- \(Q(d 5, m 52)=1+101=102\)
- \(\operatorname{argmin}=m 54\)


\section*{Example}
- Continue with
- \(\pi=\{(d 1, m 14),(d 2, m 23),(d 3, m 34)\), ( \(d 5, m 54\) ) \(\}\)
- Expected cost
- \(V^{\pi}(d 4)=0\)
- \(V^{\pi}(d 3)=100+V^{\pi}(d 4)=100\)
- \(V^{\pi}(d 5)=100+V^{\pi}(d 4)=100\)
- \(V^{\pi}(d 2)=1+\left(0.8 V^{\pi}(d 3)+0.2 V^{\pi}(d 5)\right)\) \(=101\)
- \(V^{\pi}(d 1)=1+\left(0.5 V^{\pi}(d 1)+0.5 V^{\pi}(d 4)\right)\)
\[
=2
\]
- Cost-to-go
- \(Q(d 1, m 12)=100+101=201\)
- \(Q(d 1, m 14)\)
\[
=1+0.5(2)+0.5(0)=2
\]
- \(\operatorname{argmin}=m 14\)
- \(Q(d 2, m 23)\)
\[
=1+(0.8(100)+0.2(100))=101
\]
- \(Q(d 2, m 21)=100+201=301\)
- \(\operatorname{argmin}=m 23\)
- Cost-to-go continued
- \(Q(d 3, m 34)=100+0=100\)
- \(Q(d 3, m 32)=100+101=201\)
- \(\operatorname{argmin}=m 34\)
- \(Q(d 5, m 54)=100+0=100\)
- \(Q(d 5, m 54)=100+101=201\)
- \(\operatorname{argmin}=m 54\)

\section*{Value Iteration}
- \(\eta>0\) :
- for testing approx. convergence
- \(V_{0}\) is a heuristic fct. for initial values
- \(V_{0}(s)=0 \forall s \in S_{g}\)
- E.g., adapt a heuristic from Ch. 2
- \(V_{i}=\) values computed at \(i^{\prime}\) th iteration
- \(\pi_{i}=\) plan computed from \(V_{i}\)
- Synchronous version computes \(V_{i}\) and \(\pi_{i}\) from old \(V_{i-1}\) and \(\pi_{i-1}\)
- Asynchronous version updates \(V\) and \(\pi\) in place
- New values available immediately
- More efficient than synchronous version
```

sync-value-iteration (}\Sigma,\mp@subsup{s}{0}{},\mp@subsup{S}{g}{},\mp@subsup{V}{0}{},\eta
for i = 1,2,··· do
for every state s \inS \ Sg do
for every a E Applicable(s) do
Q(s,a)}\leftarrow\operatorname{cost}(s,a)+\mp@subsup{\sum}{\mp@subsup{s}{}{\prime}\inS}{}P(\mp@subsup{s}{}{\prime}|s,a)\mp@subsup{V}{i-1}{}(\mp@subsup{s}{}{\prime}
Vi}(s)\leftarrow\mp@subsup{min}{a\inApplicable(s)}{}Q(s,a
\pi
if max }\mp@subsup{m}{s\inS}{}|\mp@subsup{V}{i}{}(s)-\mp@subsup{V}{i-1}{}(s)|\leq\eta the
return }\mp@subsup{\pi}{i}{

```
async-value-iteration \(\left(\boldsymbol{\Sigma}, s_{0}, S_{g}, V_{0}, \eta\right)\)
    global \(\pi \leftarrow \varnothing\)
    global \(V(s) \leftarrow V_{0}(s) \forall s\)
    loop
        \(r \leftarrow \max _{s \in S \backslash S q} \operatorname{Bellman}-\operatorname{Update}(s)\)
if \(r \leq \eta\) then
\(\quad\) return \(\pi\)
Bellman-Update ( \(s\) )
    \(v_{\text {old }} \leftarrow V(s)\)
    for every a \(\in\) Applicable(s) do
        \(Q(s, a) \leftarrow \operatorname{cost}(s, a)+\sum_{s^{\prime} \in S} P\left(s^{\prime} \mid s, a\right) V\left(s^{\prime}\right)\)
    \(V(s) \leftarrow \min _{a \in \text { Applicable }(s)} Q(s, a)\)
    \(\pi(s) \leftarrow \operatorname{argmin}_{a \in A p p l i c a b l e(s)} Q(s, a)\)
    return \(\left|V(s)-v_{\text {old }}\right|\)

\section*{Synchronous \\ Asynchronous}
- \(Q(d 1, m 12)=100+0=100\)
- \(Q(d 1, m 14)=1+(0.5(0)+0.5(0))=1\)
- \(V_{1}(d 1)=1 ; \pi_{1}(d 1)=m 14\)
- \(Q(d 2, m 21)=100+0=100\)
- \(Q(d 2, m 23)=1+(0.2(0)+0.8(0))=1\)
- \(V_{1}(d 2)=1 ; \pi_{1}(d 2)=m 23\)
- \(Q(d 1, m 12)=100+0=100\)
- \(Q(d 1, m 14)=1+(0.5(0)+0.5(0))=1\)
- \(V(d 1)=1 ; \pi(d 1)=m 14\)
- \(Q(d 2, m 21)=100+1=101\)
- \(Q(d 2, m 23)=1+(0.2(0)+0.8(0))=1\)
- \(V(d 2)=1 ; \pi(d 2)=m 23\)
- \(Q(d 3, m 32)=1+1=2\)
- \(Q(d 3, m 34)=100+0=100\)
- \(V_{1}(d 3)=1 ; \pi_{1}(d 3)=m 32\)
- \(Q(d 5, m 52)=1+0=1\)
- \(Q(d 5, m 54)\)
\(=100+0=100\)
- \(\quad V_{1}(d 5)=1\);
\[
\pi_{1}(d 5)=m 52
\]
- \(r=\max (1-0\),
\[
1-0,1-0,1-0)=1
\]

Start:
Goal:
\(s_{0}=\mathrm{d} 1\)
- \(V(d 3)=2 ; \pi(d 3)=m 32\)
- \(Q(d 5, m 52)=1+1=2\)
- \(Q(d 5, m 54)=100+0=100\)
- \(V(d 5)=2 ; \pi(d 5)=m 52\)
- \(\begin{aligned} r= & \max (1-0,1-0, \\ & 2-0,2-0)=2\end{aligned}\)
\(S_{g}=\{\mathrm{d} 4\}\)

\section*{Synchronous \\ \(\eta=0.2\) \\ Asynchronous}
- \(Q(d 1, m 12)=100+1=101\)
- \(Q(d 1, m 12)=100+1=101\)
- \(Q(d 1, m 14)=1+(0.5(1)+0.5(0))=1.5\)
- \(V_{1}(d 1)=1.5 ; \pi_{1}(d 1)=m 14\)
- \(Q(d 1, m 14)=1+(0.5(1)+0.5(0))=1.5\)
- \(V(d 1)=1.5 ; \pi(d 1)=m 14\)
- \(Q(d 2, m 21)=100+1=101\)
- \(Q(d 2, m 21)=100+1.5=101.5\)
- \(Q(d 2, m 23)=1+(0.2(1)+0.8(1))=2\)
- \(V_{1}(d 2)=2 ; \pi_{1}(d 2)=m 23\)
- \(Q(d 2, m 23)=1+(0.2(2)+0.8(2))=3\)
- \(V(d 2)=3 ; \pi(d 2)=m 23\)
- \(Q(d 3, m 32)=1+1=2\)
- \(Q(d 3, m 32)=1+3=4\)
- \(Q(d 3, m 34)=100+0=100\)
- \(Q(d 3, m 34)=100+0=100\)
- \(V_{1}(d 3)=2 ; \pi_{1}(d 3)=m 32\)
- \(Q(d 5, m 52)=1+1=2\)
- \(Q(d 5, m 54)=100+0=1\)
- \(\quad V_{1}(d 5)=1\);
\(\pi_{1}(d 5)=m 52\)
- \(r=\max (1.5-1\),
\[
2-1,2-1,2-1)=1
\]
\[
\begin{aligned}
& V(d 1)=1 \\
& V(d 2)=1 \\
& V(d 3)=1 \\
& V(d 5)=1
\end{aligned}
\]

Start:

Goal:
\(S_{g}=\{\mathrm{d} 4\}\)
- \(V(d 3)=4 ; \pi(d 3)=m 32\)
\(Q(d 5, m 52)=1+3=4\)
- \(Q(d 5, m 54)=100+0=100\)
- \(V(d 5)=4 ; \pi(d 5)=m 52\)
- \(r=\max (1.5-1,3-1\), \(4-2,4-2)=2\)
\[
\begin{aligned}
& V(d 1)=1 \\
& V(d 2)=1 \\
& V(d 3)=2 \\
& V(d 5)=2
\end{aligned}
\]

\section*{Synchronous \\ \(\eta=0.2\)}
- \(Q(d 1, m 12)=100+2=102\)
- \(Q(d 1, m 12)=100+3=103\)
- \(Q(d 1, m 14)=1+(0.5(1.5)+0.5(0))=1.75\) - \(V_{1}(d 1)=1.75 ; \pi_{1}(d 1)=m 14\)
- \(V(d 1)=1.75 ; \pi(d 1)=m 14\)
- \(Q(d 2, m 21)=100+1.5=101.5\)
- \(Q(d 2, m 21)=100+1.75=101.75\)
- \(Q(d 2, m 23)=1+(0.2(2)+0.8(2))=3\)
- \(V_{1}(d 2)=3 ; \pi_{1}(d 2)=m 23\)
- \(Q(d 2, m 23)=1+(0.2(4)+0.8(4))=5\)
- \(V(d 2)=5 ; \pi(d 2)=m 23\)
- \(Q(d 3, m 32)=1+2=3\)
- \(Q(d 3, m 32)=1+5=6\)
- \(Q(d 3, m 34)=100+0=100\)
- \(Q(d 3, m 34)=100+0=100\)
- \(V_{1}(d 3)=3 ; \pi_{1}(d 3)=m 32\)
- \(Q(d 5, m 52)=1+2=3\)
- \(Q(d 5, m 54)=100+0=\)
- \(\quad V_{1}(d 5)=3\);
\(\pi_{1}(d 5)=m 52\)
- \(r=\max (1.75-1.5\), \(3-2,3-2,3-2)=1\)
\[
\begin{gathered}
V(d 1)=1.5 \\
V(d 2)=2 \\
V(d 3)=2 \\
V(d 5)=2
\end{gathered}
\]

- \(Q(d 5, m 54)=100+0=100\)
- \(V(d 5)=6 ; \pi(d 5)=m 52\)
- \(r=\max (1.75-1.5,5-3\),
\begin{tabular}{c}
\(6-4,6-4)=2\) \\
\hline\(V(d 1)=1.5\) \\
\(V(d 2)=3\) \\
\(V(d 3)=4\) \\
\(V(d 5)=4\) \\
\hline
\end{tabular}

\section*{Synchronous \\ Asynchronous}
- \(Q(d 1, m 12)=100+3=103\)
- \(Q(d 1, m 14)=1+(0.5(1.75)+0.5(0))=\) 1.875
- \(V_{1}(d 1)=1.875 ; \pi_{1}(d 1)=m 14\)

How long before \(r \leq \eta\) ?
How long, if the
\[
0.5(0))=1.875
\]
"vertical" actions cost 10 instead of 100 ?
- \(Q(d 2, m 21)=100+1.75=101.75\)
- \(Q(d 2, m 23)=1+(0.2(3)+0.8(3))=4\)
- \(V_{1}(d 2)=4 ; \pi_{1}(d 2)=m 23\)

\section*{How long, if the}
- \(Q(d 223)=1+(0.2(6)+0.8(6))=7\)
\(-\mathrm{O} V(d 2)=7 ; \pi(d 2)=m 23\)
- \(Q(d 3, m 32)=1+7=8\)
- \(Q(d 3, m 32)=1+3=4\)
- \(Q(d 3, m 34)=100+0=100\)
- \(Q(d 3, m 34)=100+0=100\)
- \(V_{1}(d 3)=4 ; \pi_{1}(d 3)=m 32\)
- \(Q(d 5, m 52)=1+3=4\)
- \(Q(d 5, m 54)=100+0=\)
- \(\quad V_{1}(d 5)=4\);
\[
\pi_{1}(d 5)=m 52
\]
- \(r=\max (1.875-1.75\), \(4-3,4-3,4-3)=1\)
\[
V(d 1)=1.75
\]
\[
V(d 2)=3
\]
\[
V(d 3)=3
\]
- \(Q(d 5, m 52)=1+7=8\)
- \(Q(d 5, m 54)=100+0=100\)
- \(V(d 5)=8 ; \pi(d 5)=m 52\)
- \(r=\max (1.875-1.75,7-5\),
\[
V(d 5)=3
\]
\[
\begin{gathered}
8-6,8-6)=2 \\
\hline V(d 1)=1.75 \\
V(d 2)=5 \\
V(d 3)=6 \\
V(d 5)=6
\end{gathered}
\]

\section*{Discussion}
- Policy iteration
- Computes new \(\pi\) in each iteration; computes \(V^{\pi}\) from \(\pi\)
- More work per iteration than value iteration
- Needs to solve a set of simultaneous equations
- Usually converges in a smaller number of iterations
- Value iteration
- Computes new \(V\) in each iteration; chooses \(\pi\) based on \(V\)
- New \(V\) is a revised set of heuristic estimates
- Not \(V^{\pi}\) for \(\pi\) or any other policy
- Less work per iteration: does not need to solve a set of equations
- Usually takes more iterations to converge
- At each iteration, both algorithms need to examine the entire state space
- Number of iterations polynomial in \(|S|\), but \(|S|\) may be quite large
- Next: use search techniques to avoid searching the entire space

\section*{Summary}
- SSPs
- Solutions, closed solutions, histories
- Unsafe solutions, acyclic safe solutions, cyclic safe solutions
- Expected cost, planning as optimization
- Policy iteration
- Value iteration (synchronous, asynchronous)
- Bellman-update

\section*{Outline}
6.2 Stochastic shortest path problems
- Safe/unsafe policies
- Optimality
- Policy iteration, value iteration
6.3 Heuristic search algorithms
- Best-first search
- Determinisation
6.4 Online probabilistic planning
- Lookahead
- Reinforcement learning

\section*{AO*}
- Best-first search for acyclic domains

\section*{Requires acyclic \(\Sigma\)}

\section*{not in book}
```

$$
A O^{*}\left(\boldsymbol{\Sigma} \mid s_{0}, S_{g}, V_{0}\right)
$$

global $\Pi \leftarrow \varnothing, V\left(s_{0}\right) \leftarrow V_{0}\left(s_{0}\right)$ Envelope $\leftarrow\left\{s_{0}\right\}$ while leaves $\left(S_{0}, \Pi\right) \backslash S_{g} \neq \emptyset$ do
AO* (\Sigma|, so, Sg, 涼)
global }\Pi\leftarrow\emptyset,V(\mp@subsup{s}{0}{})\leftarrow\mp@subsup{V}{0}{}(\mp@subsup{s}{0}{})\mathrm{ . Envelope }\leftarrow{\mp@subsup{S}{0}{}
select s G leaves(So,\Pi)\ \Sg
for all a E Applicable(s) do
for all s' \in \gamma(s,a) \Envelope do
V(s')}\leftarrow\mp@subsup{V}{0}{\prime}(\mp@subsup{s}{}{\prime}
Add s' to Envelope
AO-Update(s)
return п

```

AO-Update (s)
\(Z \leftarrow\{s\}\) // nodes that need updating
while \(Z \neq \emptyset\) do
select \(s \in Z, \hat{r}(s, \Pi(s)) \cap Z=\{s\}\)
remove \(s\) from \(Z\)
Bellman-Update (s)
\(Z \leftarrow Z u\left\{s^{\prime} \in\right.\) Envelope \(\left.\mid s \in \gamma\left(s^{\prime}, \pi\right)\right\}\)
Bellman-Update (s)
```

 for every a }\in\mathrm{ Applicable(s) do
 Q(s,a) \leftarrow cost(s,a)+\mp@subsup{\sum}{\mp@subsup{s}{}{\prime}\ins}{}PR(\mp@subsup{s}{}{\prime}|s,a)V(\mp@subsup{s}{}{\prime})
 V(s)}\leftarrow\mp@subsup{min}{a\inApplicable(s)Q (s,a)}{
 \pi(s)}\leftarrow\mp@subsup{\operatorname{argmin}}{a\inApplicable(s)}{Q}(s,a
    ```

\section*{LAO*}
- Best-first search for both cyclic and acyclic domains
\(\Sigma\) may be cyclic or acyclic
    giobal \(\Pi \leftarrow \emptyset_{j}, V\left(s_{0}\right) \leftarrow V_{0}\left(s_{0}\right)\) Envelope \(\leftarrow\left\{s_{0}\right\}\)
    loop
        if lgaves \(\left(S_{0}, \Pi\right) \subseteq S_{g} \neq \emptyset\) then
                                return \(\Pi\)
            Select \(s \in \operatorname{leaves}\left(S_{0}, \Pi\right) \backslash S_{g}\)
            for all \(a \in\) Applicable(s) do
                                for all \(s^{\prime} \in Y(s, a) \\) Envelope do
                                    \(V\left(s^{\prime}\right) \leftarrow V_{0}\left(s^{\prime}\right)\)
                                    Add \(s^{\prime}\) to Envelope
        LAO-Update (s)
    return \(\Pi\)

\section*{all \(\pi\)-ancestors of \(s\) in Envelope}


Bellman-Update (s)
```

vold}\leftarrowV(s
for every a E Applicable(s) do
Q(s,a)\leftarrow\operatorname{cost}(s,a)+\mp@subsup{\sum}{\mp@subsup{s}{}{\prime}\ins}{}PR(\mp@subsup{s}{}{\prime}|s,a)V(\mp@subsup{s}{}{\prime})
V(s)}\leftarrow\mp@subsup{min}{a\in\mathrm{ Applicable(s)}}{}Q(s,a
\pi(s)}\leftarrow\mp@subsup{\operatorname{argmin}}{a\inApplicable(s)}{Q}(s,a
return |V(s)-vold

```

\section*{LAO* Example}

\section*{1st iteration of main loop:}
- Expand d1: add d2 and d4 to Envelope
- Call LAO-Update(d1)
- \(\pi\) is empty, so \(Z=\{d 1\}\)

Iteration 1:
- \(Q(d 1, m 12)=100+0=100\)
- \(Q(d 1, m 14)=1+(0.5(0)+0.5(0))=1\)

2nd iteration of main loop:
- leaves \((\pi)=\{d 4\} \subseteq S_{g}\)
- return \(\pi\)
- \(V(d 1)=1 ; \pi(d 1)=m 14 ; r=1-0=1\)

Iteration 2:
- \(Q(d 1, m 12)=100+0=100\)
- \(Q(d 1, m 14)=1+(0.5(1)+0.5(0))=1.5\)
- \(\quad V(d 1)=1.5 ; \pi(d 1)=m 14 ;\) \(r=1.5-1=0.5\)
Iteration 3:
- \(Q(d 1, m 12)=100+0=100\)
- \(\quad Q(d 1, m 14)=1+(0.5(1.5)+0.5(0))=1.75\)
- \(\quad V(d 1)=1.75 ; \pi(d 1)=m 14\);

Iteration 4:
- \(Q(d 1, m 12)=100+0=100\)
- \(Q(d 1, m 14)=1+(0.5(1.75)+0.5(0))=1.825\)
\(\cdot V(d 1)=1.825 ; \pi(d 1)=m 14 ; r=0.125 \leq \eta\)
LAO-Update returns
\[
r=1.75-1.5=0.25
\]
\[
\begin{gathered}
\eta=0.2 \\
V_{0}(s)=0 \forall s
\end{gathered}
\]


\section*{Heuristics through Determinization}
- What to use for \(V_{0}\) ?
- One possibility: classical planner
- Need to convert nondeterministic actions into something the classical planner can use
- Determinise the actions
- Suppose \(\gamma(s, a)=\left\{s_{1}, \ldots, s_{n}\right\}\)
- \(\operatorname{Det}(s, a)=\left\{n\right.\) actions \(\left.a_{1}, a_{2}, \ldots, a_{n}\right\}\)
- \(\gamma_{d}\left(s, a_{i}\right)=s_{i}\)
- \(\operatorname{cost}_{d}\left(s, a_{i}\right)=\operatorname{cost}(s, a)\)
- Classical domain \(\Sigma_{d}=\) \(\left(S, A_{d}, \gamma_{d}, \operatorname{cost}_{d}\right)\)
- \(S=\) same as in \(\Sigma\)
- \(A_{d}=\bigcup_{a \in A, s \in S} \operatorname{Det}(s, a)\)
- \(\gamma_{d}\) and \(\operatorname{cost}_{d}\) as above


\section*{Heuristics through Determinization}
- Call classical planner on \(\left(\Sigma_{d}, s, S_{g}\right)\)
- Get plan \(p=\left\langle a_{1}, a_{2}, \ldots, a_{n}\right\rangle\)
\[
V_{0}(s)=\operatorname{cost}(p)=\sum_{i=1}^{n} \operatorname{cost}\left(a_{i}\right)
\]
- If the classical planner always returns optimal plans, then \(V_{0}\) is admissible


\section*{Summary}
- AO*
- Acyclic
- LAO*
- (A)cyclic
- Heuristics through determinisation

\section*{Outline}
6.2 Stochastic shortest path problems
- Safe/unsafe policies
- Optimality
- Policy iteration, value iteration
6.3 Heuristic search algorithms
- Best-first search
- Determinisation
6.4 Online probabilistic planning
- Lookahead
- Reinforcement learning

\section*{Planning and Acting}
- Same as in Ch. 2, except \(s\) instead of \(\xi\)
- Could use \(s \leftarrow\) abstraction of \(\xi\) as in Ch. 2

Run-Lookahead ( \(\Sigma, s_{0}, S_{g}\) )
```

 s}\leftarrow\mp@subsup{s}{0}{
 while s }\not\in\mp@subsup{S}{g}{}\mathrm{ and Applicable(s) }\not=\emptyset\mathrm{ do
 a \leftarrowLookahead (s,0)
 perform action a
 s \leftarrowobserve resulting state
    ```
- Could also use Run-Lazy-Lookahead or Run-Concurrent-Lookahead
- What to use for Lookahead?
- AO*, LAO*, ...
- Modify to search part of the space
- Classical planner running on determinized domain
- Stochastic sampling algorithms


\section*{Planning and Acting}
- If Lookahead = classical planner on determinized domain
\(\Rightarrow\) FS-Replan (Ch. 5)
```

Run-Lookahead (}\Sigma,\mp@subsup{s}{0}{},\mp@subsup{S}{g}{}
S}\leftarrow\mp@subsup{S}{0}{
while s \& Sg and Applicable(s) \not= \emptyset do
a \leftarrowLookahead (}s,0
perform action a
s}\leftarrow observe resulting stat

```
- Problem: Forwardsearch may choose a plan that depends on low-probability outcome
- RFF algorithm (see book) attempts to alleviate this
```

FS-Replan (}\Sigma,s,\mp@subsup{S}{g}{}
\pi
while s }\ddagger\mp@subsup{S}{g}{}\mathrm{ and Applicable(s) }\not=\emptyset\mathrm{ do
if }\mp@subsup{\pi}{d}{}\mathrm{ undefined for }s\mathrm{ then
\mp@subsup{\pi}{d}{}\leftarrow\mathrm{ Forward-Search (}\mp@subsup{\Sigma}{dr}{},S,\mp@subsup{S}{g}{})
if }\mp@subsup{\pi}{d}{}=\mathrm{ failure then
return failure
perform action }\mp@subsup{\pi}{d}{}(s
s}\leftarrow observe resulting stat

```


\section*{Acting as Reinforcement Learning (RL)}
- Agent placed in an environment and must learn to act optimally in it
- Assume that the world behaves like an MDP, except
- Agent can act but does not know the transition model
- Agent observes its current state and its reward but does not know the reward function
- Goal: learn an optimal policy


\section*{Factors That Make RL Hard}
- Actions have non-deterministic effects
- which are initially unknown and must be learned
- Rewards / punishments can be infrequent
- Often at the end of long sequences of actions
- How do we determine what action(s) were really responsible for reward or punishment?
- Credit assignment problem
- World is large and complex

\section*{Passive vs. Active Learning}
- Passive learning
- Agent acts based on a fixed policy \(\pi\) and tries to learn how good the policy is by observing the world go by
- Analogous to policy iteration
- Active learning
- Agent attempts to find an optimal (or at least good) policy by exploring different actions in the world
- Analogous to solving the underlying MDP

\section*{Model-based vs. Model-free RL}
- Model-based approach to RL
- Learn the MDP model ( \(P\left(s^{\prime} \mid s, a\right)\) and \(R\) ), or an approximation of it
- Use it to find the optimal policy
- Model-free approach to RL
- Derive the optimal policy without explicitly learning the model

\section*{Passive RL}
- Suppose we are given a policy
- Want to determine how good it is
- Given \(\pi\) :

Need to learn \(U^{\pi}(s)\) :



\section*{Passive RL}
- Given policy \(\pi\) :
- Estimate \(U^{\pi}(s)\)
- Not given
- Transition model \(P\left(s^{\prime} \mid s, a\right)\)
- Reward function \(R(s)\)

- Simply follow the policy for many epochs
- Epochs: training sequences
\((1,1) \rightarrow(1,2) \rightarrow(1,3) \rightarrow(1,2) \rightarrow(1,3) \rightarrow(2,3) \rightarrow(3,3) \rightarrow(3,4)+1\)
\((1,1) \rightarrow(1,2) \rightarrow(1,3) \rightarrow(2,3) \rightarrow(3,3) \rightarrow(3,2) \rightarrow(3,3) \rightarrow(3,4)+1\)
\((1,1) \rightarrow(2,1) \rightarrow(3,1) \rightarrow(3,2) \rightarrow(4,2)-1\)

\section*{Direct Utility Estimation (DUE)}
- Model-free approach
- Estimate \(U^{\pi}(s)\) as average total reward of epochs containing \(s\)
- Calculating from \(s\) to end of epoch
- Reward-to-go of a state \(s\)
- The sum of the (discounted) rewards from that state until a terminal state is reached
- Key: use observed reward-to-go of the state as the direct evidence of the actual expected utility of that state

\section*{DUE: Example}
- Suppose we observe the following trial:
\(\cdot(1,1)_{-0.04} \rightarrow(1,2)_{-0.04} \rightarrow(1,3)_{-0.04} \rightarrow(1,2)_{-0.04} \rightarrow\) \((1,3)_{-0.04} \rightarrow(2,3)_{-0.04} \rightarrow(3,3)_{-0.04} \rightarrow(3,4)_{+1}\)
- The total reward starting at \((1,1)\) is 0.72
- Call this a sample of the observed-reward-to-go for \((1,1)\)
- For \((1,2)\), there are two samples for the observed-reward-to-go (assuming \(\gamma=1\) )
1. \((1,2)_{-0.04} \rightarrow(1,3)_{-0.04} \rightarrow(1,2)_{-0.04} \rightarrow(1,3)_{-0.04} \rightarrow\) \((2,3)_{-0.04} \rightarrow(3,3)_{-0.04} \rightarrow(3,4)_{+1}\) [Total: 0.76 ]
2. \((1,2)_{-0.04} \rightarrow(1,3)_{-0.04} \rightarrow(2,3)_{-0.04} \rightarrow(3,3)_{-0.04} \rightarrow\) \((3,4)_{+1}\) [Total: 0.84\(]\)

\section*{DUE: Convergence}
- Keep a running average of the observed reward-togo for each state
- E.g., for state ( 1,2 ), it stores \(\frac{(0.76+0.84)}{2}=0.8\)
- As the number of trials goes to infinity, the sample average converges to the true utility

\section*{DUE: Problem}
- Big problem: it converges very slowly!
- Why?
- Does not exploit the fact that utilities of states are not independent
- Utilities follow the Bellman equation
\[
U^{\pi}\left(s_{i}\right)=R\left(s_{i}\right)+\gamma \sum_{s_{j}} P\left(s_{j} \mid \pi\left(s_{i}\right), s_{i}\right) U_{\uparrow}^{\pi}\left(s_{j}\right)
\]

\section*{DUE: Problem}
- Using the dependence to your advantage
- Suppose you know that state \((3,3)\) has a high utility
- Suppose you are now at \((3,2)\)
- Bellman equation would be able to tell you that \((3,2)\) is likely to have a high utility because \((3,3)\) is a neighbour
- DUE cannot tell you that until the end of the trial


\section*{Adaptive Dynamic Programming (ADP)}
- Model-based approach
- Basically learns the transition model \(P\left(s^{\prime} \mid s, a\right)\) and the reward function \(R(s)\)
- Takes advantage of constraints in the Bellman equation
- Given policy \(\pi\) :
- Estimate \(U^{\pi}(s)\)
- Based on \(P\left(s^{\prime} \mid s, a\right)\) and \(R(s)\), we can perform policy evaluation (part of policy iteration)

\section*{ADP: Policy Evaluation}
- Policy Iteration:
- Pick a policy \(\pi\) at random
- Repeat:
- Policy evaluation: Compute the utility of each state for \(\pi\)
- \(U_{t+1}\left(s_{i}\right)=R\left(s_{i}\right)+\gamma \sum_{s_{j}} P\left(s_{j} \mid \pi\left(s_{i}\right), s_{i}\right) U_{t}\left(s_{j}\right)\)
- No longer involves a max operation as action is determined by \(\pi\)
- Policy improvement: Compute the policy \(\pi^{\prime}\) given \(U_{t+1}\)
- \(\pi^{\prime}\left(s_{i}\right)=\arg \max _{a} \sum_{s_{j}} P\left(s_{j} \mid \pi\left(s_{i}\right) . s_{i}\right) U_{t}\left(s_{j}\right)\)
- If \(\pi^{\prime}=\pi\), then return \(\pi\)

Can be solved in time \(O\left(n^{3}\right)\), where \(n\) is the number of states

Or solve the set of linear equations:

(often a sparse system)

\section*{ADP: Learn the Model}
- Make use of policy evaluation to learn the utilities of states
- To use policy equation
\[
U_{t+1}\left(s_{i}\right)=R\left(s_{i}\right)+\gamma \sum_{c} P\left(s_{j} \mid \pi\left(s_{i}\right), s_{i}\right) U_{t}\left(s_{j}\right)
\]
agent needs to learn \(P\left(s^{s_{j}} \mid s, a\right)\) and \(R(s)\)
- How?

\section*{ADP: Learn the Model}
- Learning \(R(s)\)
- Easy because it is deterministic
- Whenever you see a new state, store the observed reward value as \(R(s)\)
- Learning \(P\left(s^{\prime} \mid s, a\right)\)
- Keep track of how often you get to state \(s^{\prime}\) given that you are in state \(s\) and do action \(a\)
- E.g., if you are in \(s=(1,3)\) and you execute R three times and you end up in \(s^{\prime}=(2,3)\) twice, then \(P\left(s^{\prime} \mid R, s\right)=\frac{2}{3}\)

\section*{ADP: Algorithm}


\section*{ADP: Problem}
- Need to solve a system of simultaneous equations costs \(O\left(n^{3}\right)\)
- Very hard to do if you have \(10^{50}\) states like in Backgammon
- Could make things a little easier with modified policy iteration
- Can we avoid the computational expense of full policy evaluation?

\section*{Temporal Difference Learning (TD)}
- Instead of calculating the exact utility for a state, can we approximate it and possibly make it less computationally expensive?
- Yes, we can! Using TD:
\[
U^{\pi}\left(s_{i}\right)=R\left(s_{i}\right)+\gamma \sum_{s_{j}} P\left(s_{j} \mid \pi\left(s_{i}\right), s_{i}\right) U^{\pi}\left(s_{j}\right)
\]
- Instead of doing the sum over all successors, only adjust the utility of the state based on the successor observed in the trial
- Does not estimate the transition model - model-free

\section*{TD: Example}
- Suppose you see that \(U^{\pi}(1,3)=0.84\) and \(U^{\pi}(2,3)=0.92\)
- If the transition \((1,3) \rightarrow(2,3)\) happens all the time, you would expect to see:
\[
\begin{aligned}
U^{\pi}(1,3) & =R(1,3)+U^{\pi}(2,3) \\
\Rightarrow U^{\pi}(1,3) & =-0.04+U^{\pi}(2,3) \\
\Rightarrow U^{\pi}(1,3) & =-0.04+0.92=0.88
\end{aligned}
\]
- Since you observe \(U^{\pi}(1,3)=0.84\) in the first trial and it is a little lower than 0.88 , so you might want to "bump" it towards 0.88

\section*{Aside: Online Mean Estimation}
- Suppose that we want to incrementally compute the mean of a sequence of numbers
- E.g., to estimate the mean of a random variable from a sequence of samples
\[
\hat{X}_{n+1}=\frac{1}{n+1} \sum_{i=1}^{n+1} x_{i}=\left(\frac{1}{n+1} \sum_{i=1}^{n} x_{i}\right)+\frac{1}{n+1} x_{n+1}=\left(\frac{n}{n(n+1)} \sum_{i=1}^{n} x_{i}\right)+\frac{1}{n+1} x_{n+1}
\]
average
of \(n+1\) samples
\[
\begin{gathered}
=\left(\frac{n+1-1}{n(n+1)} \sum_{i=1}^{n} x_{i}\right)+\frac{1}{n+1} x_{n+1}=\left(\frac{n+1}{n(n+1)} \sum_{i=1}^{n} x_{i}\right)-\left(\frac{1}{n(n+1)} \sum_{i=1}^{n} x_{i}\right)+\frac{1}{n+1} x_{n+1} \\
=\left(\frac{1}{n} \sum_{i=1}^{n} x_{i}\right)-\left(\frac{1}{(n+1)} \cdot \frac{1}{n} \sum_{i=1}^{n} x_{i}\right)+\frac{1}{n+1} x_{n+1}=\left(\frac{1}{n} \sum_{i=1}^{n} x_{i}\right)+\frac{1}{n+1}\left(x_{n+1}-\frac{1}{n} \sum_{i=1}^{n} x_{i}\right) \\
=\hat{X}_{n}+\frac{1}{n+1}\left(x_{n+1}-\hat{X}_{n}\right) \\
\text { learning rate }
\end{gathered}
\]
- Given a new sample \(x_{n+1}\), the new mean is the old estimate (for \(n\) samples) plus the weighted difference between the new sample and old estimate

\section*{TD Update}
- TD update for transition from \(s\) to \(s^{\prime}\)
\[
U^{\pi}(s)=U^{\pi}(s)+\alpha(\underbrace{\left.R(s)+\gamma U^{\pi}\left(s^{\prime}\right)-U^{\pi}(s)\right)}_{\text {learning rate }}
\]
- Similar to one step of value iteration
- Equation called backup
- So, the update is maintaining a "mean" of the (noisy) utility samples
- If the learning rate decreases with the number of samples (e.g., \(1 / n\) ), then the utility estimates will eventually converge to true values
\[
U^{\pi}\left(s_{i}\right)=R\left(s_{i}\right)+\gamma \sum_{s_{j}} P\left(s_{j} \mid \pi\left(s_{i}\right), s_{i}\right) U^{\pi}\left(s_{j}\right)
\]

\section*{TD: Convergence}
- Since we are using the observed successor \(s^{\prime}\) instead of all the successors, what happens if the transition \(s \rightarrow\) \(s^{\prime}\) is very rare and there is a big jump in utilities from \(s\) to \(s^{\prime}\) ?
- How can \(U^{\pi}(s)\) converge to the true equilibrium value?
- Answer: The average value of \(U^{\pi}(s)\) will converge to the correct value
- This means we need to observe enough trials that have transitions from \(s\) to its successors
- Essentially, the effects of the TD backups will be averaged over a large number of transitions
- Rare transitions will be rare in the set of transitions observed

\section*{Comparison between ADP and TD}
- Advantages of ADP
- Converges to true utilities faster
- Utility estimates do not vary as much from the true utilities
- Advantages of TD
- Simpler, less computation per observation
- Crude but efficient first approximation to ADP
- Do not need to build a transition model to perform its updates
- Important because we can interleave computation with exploration rather than having to wait for the whole model to be built first

\section*{ADP and TD}
- Utility estimates for \(4 \times 3\) grid
- ADP, given optimal policy
- Notice the large changes occurring around the 78th trial-this is the first time that the agent falls into the -1 terminal state at \((4,2)\)

- TD
- More epochs required
- Faster runtime per epoch
- Source: AIMA, Russell/Norvig


\section*{Overall comparisons}
- DUE (model-free)
- Simple to implement
- Each update is fast
- Does not exploit Bellman constraints and converges slowly
- ADP (model-based)
- Harder to implement
- Each update is a full policy evaluation (expensive)
- Fully exploits Bellman constraints
- Fast convergence (in terms of epochs)
- TD (model-free)
- Update speed and implementation similar to direct estimation
- Partially exploits Bellman constraints - adjusts state to "agree" with observed successor
- Not all possible successors
- Convergence in between DUE and ADP

\section*{Passive Learning: Disadvantage}
- Learning \(U^{\pi}(s)\) does not lead to an optimal policy, why?
- Models are incomplete/inaccurate
- Agent has only tried limited actions, we cannot gain a good overall understanding of \(P\left(s^{\prime} \mid s, a\right)\)
- This is why we need active learning

\section*{Goal of Active Learning}
- Let us first assume that we still have access to some sequence of trials performed by the agent
- Agent is not following any specific policy
- We can assume for now that the sequences should include a thorough exploration of the space
- We will talk about how to get such sequences later
- The goal is to learn an optimal policy from such sequences
- Active RL agents
- Active ADP agent
- Q-learner (based on TD algorithm)

\section*{Active ADP Agent}
- Model-based approach
- Using the data from its trials, agent learns a transition model \(\hat{T}\) and a reward function \(\hat{R}\)
- With \(\hat{T}\left(s, a, s^{\prime}\right)\) and \(\hat{R}(s)\), it has an estimate of the underlying MDP
- It can compute the optimal policy by solving the Bellman equations using value or policy iteration
\[
U(s)=\hat{R}(s)+\gamma \max _{a} \sum_{s^{\prime}} \hat{T}\left(s, a, s^{\prime}\right) U\left(s^{\prime}\right)
\]
- If \(\hat{T}\) and \(\hat{R}\) are accurate estimations of the underlying MDP model, we can find the optimal policy this way

\section*{Issues with ADP Approach}
- Need to maintain MDP model
- \(T\) can be very large, \(O\left(|S|^{2} \cdot|A|\right)\)
- Also, finding the optimal action requires solving the Bellman equation - time consuming
- Can we avoid this large computational complexity both in terms of time and space?

\section*{Q-learning}
- So far, focus on utilities for states
- \(U(s)=\) utility of state \(s=\) expected maximum future rewards
- Alternative: store Q-values
- \(Q(a, s)=\) utility of taking action \(a\) at state \(s\) = expected maximum future reward if action \(a\) at state \(s\)
- Relationship between \(U(s)\) and \(Q(a, s)\) ?
\[
U(s)=\max _{a} Q(a, s)
\]

\section*{Q-learning can be model-free}
- Note that after computing \(U(s)\), to obtain the optimal policy, we need to compute
\[
\pi(s)=\underset{a}{\operatorname{argmax}} \sum_{s^{\prime}} T\left(s, a, s^{\prime}\right) U\left(s^{\prime}\right)
\]
- Requires \(T\), the model of world
- Even if we use TD learning (model-free), we still need the model to get the optimal policy
- However, if you successfully estimate \(Q(a, s)\) for all \(a\) and \(s\), we can compute the optimal policy without using the model
\[
\pi(s)=\underset{a}{\operatorname{argmax}} Q(a, s)
\]

\section*{Q-learning}
- At equilibrium when Q-values are correct, we can write the constraint equation:


Expected value for action-state pair \((a, s)\)

Expected value averaged over all possible states \(s^{\prime}\) that can be reached
from \(s\) after executing action \(a\)

\section*{Q-learning}
- At equilibrium when Q -values are correct, we can write the constraint equation:


\section*{Q-learning without a Model}
- Q-update: after moving from \(s\) to state \(s^{\prime}\) using action \(a\)

- TD approach
- Transition model does not appear anywhere!
- Once converged, optimal policy can be computed without transition model
- Completely model-free learning algorithm

\section*{Q-learning: Convergence}
- Guaranteed to converge to true Q-values given enough exploration
- Very general procedure
- Because it is model-free
- Converges slower than ADP agent
- Because it is completely model-free and it does not enforce consistency among values through the model

\section*{Exploitation vs. Exploration}
- Actions are always taken for one of the two following purposes
- Exploitation: Execute the current optimal policy to get high payoff
- Exploration: Try new sequences of (possibly random) actions to improve the agent's knowledge of the environment even though current model does not believe they have a high payoff
- Pure exploitation: gets stuck in a rut
- Pure exploration: not much use if you do not put that knowledge into practice

\section*{Multi-Arm Bandit Problem}
- So far, we assumed that we have a set of epochs of sufficient exploration
- Multi-arm bandit problem: Statistical model of sequential experiments
- Name comes from a traditional slot machine (one-armed bandit)
- Question: Which machine to play?


\section*{Actions}
- \(n\) arms, each with a fixed but unknown distribution of reward
- In terms of actions: Multiple actions \(a_{1}, a_{2}, \ldots, a_{n}\)
- Each \(a_{i}\) provides a reward from an unknown (but stationary) probability distribution \(p_{i}\)
- Specifically, expectation \(\mu_{i}\) of machine \(i\) 's reward unknown
- If all \(\mu_{i}\) 's were known, then the task is easy: just pick argmax \(\mu_{i}\)
- With \(\mu_{i}\) 's unknown, question is which arm to pull


\section*{Formal Model}
- At each time step \(t=1,2, \ldots, T\) :
- Each machine \(i\) has a random reward \(X_{i, t}\)
- \(E\left[X_{i, t}\right]=\mu_{i}\) independent of the past
- Pick a machine \(I_{t}\) and get reward \(X_{I_{t}, t}\)
- Other machines' rewards hidden
- Over \(T\) time steps, we have a total reward of \(\sum_{t=1}^{T} X_{I_{t}, t}\)
- If all \(\mu_{i}\) 's known, we would have selected \(\operatorname{argmax} \mu_{i}\) at each time \(t\)
- Expected total reward \(T \cdot \max _{i} \mu_{i}\)
- Our "regret":
\(T \cdot \max _{i} \mu_{i}-\sum_{t=1}^{T} X_{I t, t}\)
best machine's our reward
reward
(in expectation)

\section*{Exploitation vs. Exploration Dilemma}
- Exploration: to find the best.
- Overhead: big loss when trying the bad arms.
- Exploitation: to exploit what we've discovered
- weakness: there may be better ones that we haven't explored and identified.
- Question:

With a fixed budget, how to balance exploration and exploitation such that the total loss (or regret) is small?


\section*{Where does the loss come from?}
- If \(\mu_{i}\) is small, trying this arm too many times makes a big loss.
- So we should try it less if we find the previous samples from it are bad
- But how to know whether an arm is good?
- The more we try an arm \(i\), the more information we get about its distribution
- In particular, the better estimate to its mean \(\mu_{i}\)


\section*{Where does the loss come from?}
- So we want to estimate each \(\mu_{i}\) precisely, and at the same time, we do not want to try bad arms too often
- Two competing tasks
- Exploration vs. exploitation dilemma
- Rough idea: we try an arm if
- Either we have not tried it often enough
- Or our estimate of \(\mu_{i}\) so far looks good


\section*{UCB (Upper Confidence Bound) Algorithm}
- Assume rewards between 0 and 1
- If they are not, normalize them
```

UCB (A)
Try each action a a once
100p
choose an action a }\mp@subsup{a}{i}{}\mathrm{ that has
the highest value of r}\mp@subsup{r}{i}{}+\sqrt{}{2\cdot\operatorname{ln}(t)/\mp@subsup{t}{i}{}
perform a }\mp@subsup{i}{}{\prime
update r ri, ti,t

```
- For each action \(a_{i}\), let
- \(r_{i}=\) average reward from \(a_{i}\)
- \(t_{i}=\) number of times \(a_{i}\) tried
- \(t=\sum_{i} t_{i}\)
- Confidence interval around \(r_{i}\)


\section*{UCB: Performance}
- Theorem: If each distribution of reward has support in \([0,1]\), i.e., we have normalised rewards, then the regret of the UCB algorithm is at most
\[
O\left(\sum_{i: \mu_{i}<\mu^{*}} \frac{\ln T}{\Delta_{i}}+\sum_{j \in\{1, \ldots, n\}} \Delta_{j}\right)
\]
- \(\mu^{*}=\max _{i} \mu_{i}\)
- \(\Delta_{i}=\mu^{*}-\mu_{i}\)
- Expected loss of choosing \(a_{i}\) once
- [without proof]
- Loss grows very slowly with \(T\)


\section*{UCB: Performance}
- Uses principle of optimism in face of uncertainty
- We do not have a good estimate \(\hat{\mu}_{i}\) of \(\mu_{i}\) before trying it many times
- We thus give a big confidence interval \(\left[-c_{i}, c_{i}\right.\) ] for such \(i\)
\[
\text { - } c_{i}=\sqrt{\frac{2 \ln t}{t_{i}}}
\]

- And select an \(i\) with maximum \(\mu_{i}+c_{i}\)
- If an action has not been tried many times, then the big confidence interval makes it still possible to be tried.
- I.e., in face of uncertainty (of \(\mu_{i}\) ), we act optimistically by giving chances to those that have not been tried enough


\section*{UCT Algorithm}
- Recursive UCB computation to compute \(Q(s, a)\) for cost
- Min ops instead of max
- \(h\) horizon (steps into the future)
- Anytime algorithm:
- Call repeatedly until time runs out
- Then choose action
\(\operatorname{argmin} Q(s, a)\)

```

```
UCT (\Sigma,s,h)
```

```
UCT (\Sigma,s,h)
    if s G S then
    if s G S then
        return 0
        return 0
    if h = 0 then
    if h = 0 then
        return Vo(s)
        return Vo(s)
    if s # Envelope then
    if s # Envelope then
        add s to Envelope
        add s to Envelope
        n(s) \leftarrow0
        n(s) \leftarrow0
        for all a E Applicable(s) do
        for all a E Applicable(s) do
        Q(s,a)}\leftarrow
        Q(s,a)}\leftarrow
        n}(s,a)\leftarrow
        n}(s,a)\leftarrow
    Untried \leftarrow {a E Applicable(s)| n(s,a)=0}
    Untried \leftarrow {a E Applicable(s)| n(s,a)=0}
    if Untried \not= \emptyset then
    if Untried \not= \emptyset then
    a}\leftarrow Choose(Untried
    a}\leftarrow Choose(Untried
    else
    else
        a}\leftarrow\mp@subsup{\operatorname{argmin}}{a\inADplicable(s)}{
        a}\leftarrow\mp@subsup{\operatorname{argmin}}{a\inADplicable(s)}{
        {Q(s,a)-C\cdot[\operatorname{log}(n(s))/n(s,a) ]}\mp@subsup{]}{}{\frac{1}{2}}
        {Q(s,a)-C\cdot[\operatorname{log}(n(s))/n(s,a) ]}\mp@subsup{]}{}{\frac{1}{2}}
    s' \leftarrowSample( }\Sigma,s,a\tilde{)
    s' \leftarrowSample( }\Sigma,s,a\tilde{)
    cost-rollout \leftarrow cost(s,ã) + UCT(s',h-1)
    cost-rollout \leftarrow cost(s,ã) + UCT(s',h-1)
    Q(s,\tilde{a})\leftarrow[n(s,\tilde{a})\cdotQ(s,\tilde{a})+cost-rollout]
    Q(s,\tilde{a})\leftarrow[n(s,\tilde{a})\cdotQ(s,\tilde{a})+cost-rollout]
        /(1+n(s,\tilde{a}))
        /(1+n(s,\tilde{a}))
    n(s) \leftarrown(s) + 1
    n(s) \leftarrown(s) + 1
    n(s,ã) \leftarrown(s,\tilde{a})+1
    n(s,ã) \leftarrown(s,\tilde{a})+1
    return cost-rollout
```

```
    return cost-rollout
```

```

\section*{UCT as an Acting Procedure}
- Suppose probabilities and costs unknown
- Suppose you can restart your actor as many times as you want
- Can modify UCT to be an acting procedure
- Use it to explore the environment

```

UCT (\Sigma,s,h)

```
UCT (\Sigma,s,h)
    if s G S then
    if s G S then
        return 0
        return 0
    if h = 0 then
    if h = 0 then
        return Vo(s)
        return Vo(s)
    if s # Envelope then
    if s # Envelope then
        add s to Envelope
        add s to Envelope
        n(s) \leftarrow0
        n(s) \leftarrow0
        for all a \in Applicable(s) do
        for all a \in Applicable(s) do
        Q(s,a)}\leftarrow
        Q(s,a)}\leftarrow
        n}(s,a)\leftarrow
        n}(s,a)\leftarrow
    Untried \leftarrow {a E Applicable(s)| n(s,a)=0}
    Untried \leftarrow {a E Applicable(s)| n(s,a)=0}
    if Untried \not= \emptyset then
    if Untried \not= \emptyset then
        a}\leftarrowChoose(Untried
        a}\leftarrowChoose(Untried
    else
    else
        a}\leftarrow\mp@subsup{\operatorname{argmin}}{\mathrm{ a APplicable(s)}}{
        a}\leftarrow\mp@subsup{\operatorname{argmin}}{\mathrm{ a APplicable(s)}}{
    s' & {Qample(\Sigma,s,\tilde{a})
    s' & {Qample(\Sigma,s,\tilde{a})
    s'\leftarrowSample( 
    s'\leftarrowSample( 
    Q(s,\tilde{a})\leftarrow[n(s,\tilde{a})\cdotQ(s,\tilde{a})+cost-rollout]
    Q(s,\tilde{a})\leftarrow[n(s,\tilde{a})\cdotQ(s,\tilde{a})+cost-rollout]
        /(1+n(s,\tilde{a}))
        /(1+n(s,\tilde{a}))
    n(s) \leftarrown(s) + 1
    n(s) \leftarrown(s) + 1
    n(s,\tilde{a})\leftarrown(s,\tilde{a})+1
    n(s,\tilde{a})\leftarrown(s,\tilde{a})+1
    return cost-rollout
```

 return cost-rollout
    ```

\section*{UCT as a Learning Procedure}
- Suppose probabilities and costs unknown
- But you have an accurate simulator for the environment
- Run UCT multiple times in the simulated environment
- Learn what actions work best

```

```
UCT (\Sigma,s,h)
```

```
UCT (\Sigma,s,h)
    if s E S then
    if s E S then
        return 0
        return 0
    if h = 0 then
    if h = 0 then
        return }\mp@subsup{V}{0}{(s)
        return }\mp@subsup{V}{0}{(s)
    if s £ Envelope then
    if s £ Envelope then
        add s to Envelope
        add s to Envelope
        n(s) \leftarrow0
        n(s) \leftarrow0
        for all a E Applicable(s) do
        for all a E Applicable(s) do
        Q(s,a)}\leftarrow
        Q(s,a)}\leftarrow
        n(s,a)\leftarrow0
        n(s,a)\leftarrow0
    Untried \leftarrow {a E Applicable(s)| n(s,a)=0}
    Untried \leftarrow {a E Applicable(s)| n(s,a)=0}
    if Untried \not= \emptyset then
    if Untried \not= \emptyset then
        a}\leftarrowChoose(Untried
        a}\leftarrowChoose(Untried
    else
    else
        ã}\leftarrow\mp@subsup{\operatorname{argmin}}{a\inApplicable(s)}{
        ã}\leftarrow\mp@subsup{\operatorname{argmin}}{a\inApplicable(s)}{
    s'&
    s'&
    s' \leftarrowSample( }\Sigma,s,\tilde{a}
    s' \leftarrowSample( }\Sigma,s,\tilde{a}
    cost-rollout \leftarrow cost (s,ã) + UCT(s',h-1)
    cost-rollout \leftarrow cost (s,ã) + UCT(s',h-1)
    Q(s,\tilde{a})\leftarrow[n(s,\tilde{a})\cdotQ(s,\tilde{a})+cost-rollout]
    Q(s,\tilde{a})\leftarrow[n(s,\tilde{a})\cdotQ(s,\tilde{a})+cost-rollout]
        /(1+n(s,\tilde{a}))
        /(1+n(s,\tilde{a}))
    n(s) \leftarrown(s) + 1
    n(s) \leftarrown(s) + 1
    n(s,\tilde{a})\leftarrown(s,\tilde{a})+1
    n(s,\tilde{a})\leftarrown(s,\tilde{a})+1
    return cost-rollout
```

```
    return cost-rollout
```

```

\section*{UCT in Two-Player Games}
- Generate Monte Carlo rollouts using a modified version of UCT
- Rollout: game is played out to very end by selecting moves at random, result of each playout used to weight nodes in game tree
- Main differences:
- Instead of choosing actions that minimize accumulated cost, choose actions that maximize payoff at the end of the game
- UCT for player 1 recursively calls UCT for player 2
- Choose opponent's action
- UCT for player 2 recursively calls UCT for player 1
- Produced the first computer programs to play Go well
- \(\approx 2008\)-2012
- Monte Carlo rollout techniques similar to UCT were used to train AlphaGo


\section*{Intermediate Summary}
- Run-Lookahead
- Reinforcement learning
- Passive learning
- DUE
- ADP
- TD
- Active learning
- Active ADP
- Q-learning
- Multi-armed bandit problem
- UCB, UCT

\section*{Outline per the Book}
6.2 Stochastic shortest path problems
- Safe/unsafe policies
- Optimality
- Policy iteration, value iteration
6.3 Heuristic search algorithms
- Best-first search
- Determinisation
6.4 Online probabilistic planning
- Lookahead
- Reinforcement learning
\(\Rightarrow\) Next: More on Decision Making```

