# Advanced Topics Data Science and Al Automated Planning and Acting

Probabilistic Models

Tanya Braun



#### Content

- **Deterministic** Models
- 2. Planning and Acting with **Refinement** Methods
- 3. Planning and Acting with **Temporal** Models
- 4. Planning and Acting with **Nondeterministic** Models
- 5. **Standard** Decision Making

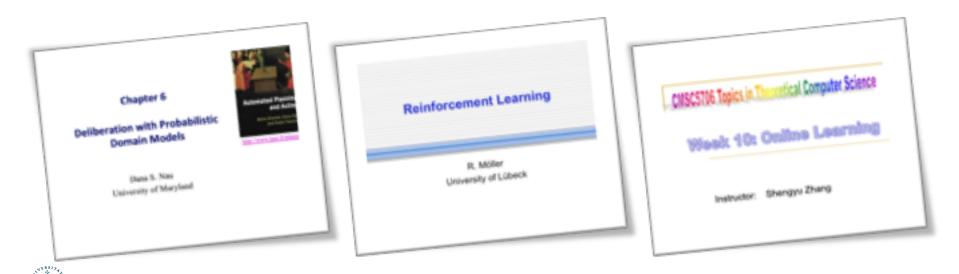
- 1. Planning and Acting with 6. Planning and Acting with **Probabilistic** Models
  - Stochastic Shortest-Path **Problems**
  - Heuristic Search **Algorithms**
  - **Online Approaches Including Reinforcement** Learning
  - 7. Advanced Decision Making
  - **Human-aware** Planning 8.



# Acknowledgements

INIVERSITÄT ZU LÜBECK INSTITUT FÜR INFORMATIONSSYSTEME

- Automated Planning and Acting Chapter 6
- Slides based on material provided by Dana Nau, Ralf Möller, and Shengyu Zhang



#### Outline

#### 6.2 Stochastic shortest path problems

- Safe/unsafe policies
- Optimality
- Policy iteration, value iteration

#### 6.3 Heuristic search algorithms

- Best-first search
- Determinisation

#### 6.4 Online probabilistic planning

- Lookahead
- Reinforcement learning



# Probabilistic Planning Domain

- $\Sigma = (S, A, \gamma, P, cost)$ 
  - S = set of states
  - A = set of actions
  - $\gamma: S \times A \rightarrow 2^S$  a transition function
  - P(s' | s, a) = probability of going to state s' if we perform a in s
    - Require  $P(s' | s, a) \neq 0$  iff  $s' \in \gamma(s, a)$
  - cost:  $S \times A \to \mathbb{R}^{>0}$ 
    - cost(s, a) = cost of action a in state s
    - may omit, default is cost(s, a) = 1

Difference in syntax: MDPs do not have an explicit transition function  $\gamma$ , only a set of applicable actions A(s) per state and the transition model  $P(s' \mid s, a)$ 

Instead of maximising expected utility as before:

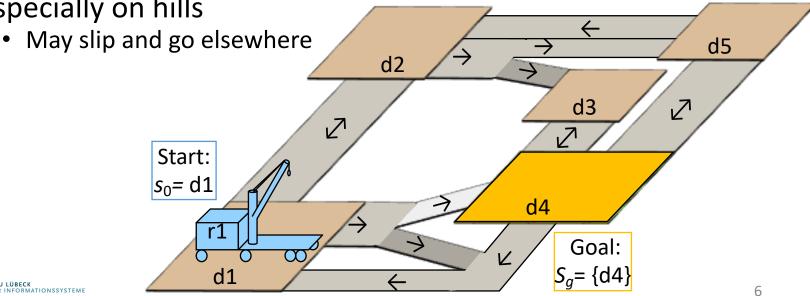
Minimise expected cost



# Example

- Robot r1 starts at d1
- Objective: get to *d*4
- Simplified state names: write  $\{loc(r1) = d2\}$  as d2
- Simplified action names: write move(r1, d2, d3) as m23
- r1 has unreliable steering, especially on hills

- m12:  $P(d2 \mid d1, m12) = 1$
- *m*21, *m*34, *m*41, *m*43, *m*45, *m*52, *m*54: like above
- m14: P(d4 | d1, m14) = 0.5P(d1 | d1, m14) = 0.5
- m23: P(d3 | d2, m23) = 0.8P(d5 | d2, m23) = 0.2

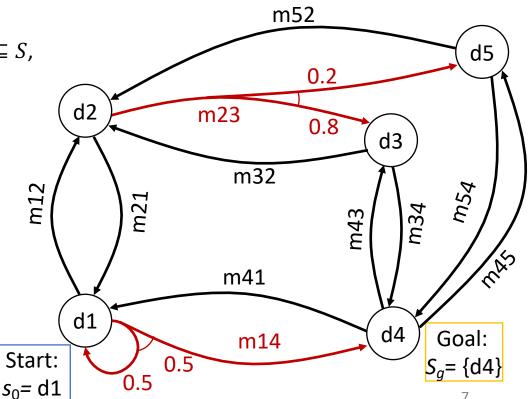




# Policies, Problems, Solutions

- Stochastic shortest path (SSP) problem:
  - a triple  $(\Sigma, s_0, S_g)$
- Policy:
  - partial function  $\pi: S \to A$  s.t.
    - for every  $s \in Dom(\pi) \subseteq S$ ,  $\pi(s) \in Applicable(s)$
- Solution for  $(\Sigma, s_0, S_g)$ :
  - a policy  $\pi$  s.t.
    - $s_0 \in Dom(\pi)$  and
    - $\hat{\gamma}(s_0,\pi) \cap S_g \neq \emptyset$

- m14: P(d4 | d1, m14) = 0.5P(d1 | d1, m14) = 0.5
- m23: P(d3 | d1, m23) = 0.8P(d5 | d1, m23) = 0.2





# Notation and Terminology

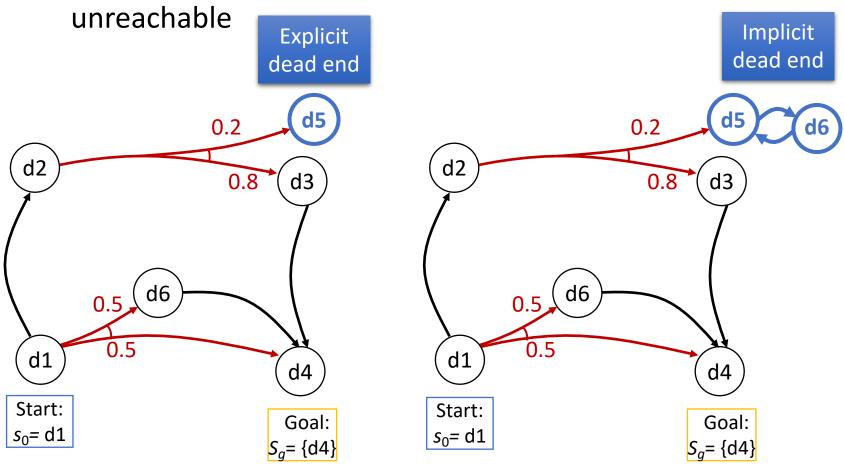
- Transitive closure
  - $\hat{\gamma}(s,\pi) = \{s \text{ and all states reachable from } s \text{ using } \pi\}$
- $Graph(s, \pi)$  = rooted graph induced by  $\pi$  at s
  - Nodes:  $\hat{\gamma}(s,\pi)$
  - Edges: state transitions
- $leaves(s,\pi) = \hat{\gamma}(s,\pi) \backslash Dom(\pi)$
- A solution policy  $\pi$  is closed if it does not stop at nongoal states unless there is no way to continue
  - for every state  $s \in \hat{\gamma}(s, \pi)$ , either
    - $s \in Dom(\pi)$  (i.e.,  $\pi$  specifies an action at s),
    - $s \in S_g$  (i.e., s is a goal state), or
    - $Applicable(s) = \emptyset$  (i.e., there are no applicable actions at s)



#### Dead Ends

#### Dead end

• A state or set of states from which the goal is



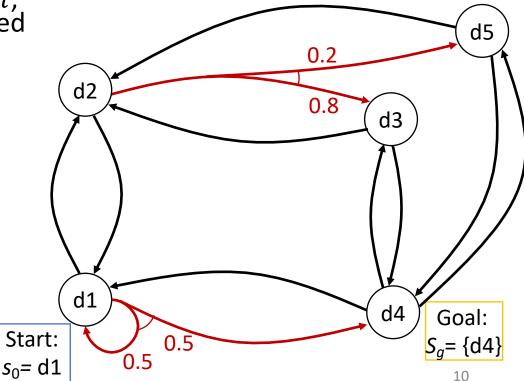
#### Histories

- History: sequence of states  $\sigma = \langle s_0, s_1, s_2, ... \rangle$ 
  - May be finite or infinite
    - $\sigma = \langle d1, d2, d3, d4 \rangle$
    - $\sigma = \langle d1, d2, d1, d2, ... \rangle$
- $H(s,\pi)$  = {all possible histories if we start at s and follow  $\pi$ , stopping if  $\pi(s)$  is undefined or if we reach a goal state}
- If  $\sigma \in H(s,\pi)$ , then  $P(\sigma \mid s,\pi)$   $= \prod_{i} P(s_{i+1} \mid s_{i},\pi(s_{i}))$ 
  - Thus  $\sum_{\sigma \in H(s,\pi)} P(\sigma \mid s,\pi) = 1$

Probability of reaching a goal:

$$P(S_g|s,\pi) = \sum_{\sigma \in H(s,\pi),} P(\sigma \mid s,\pi)$$

 $\sigma$  ends at a state in  $s_q$ 





#### **Unsafe Solutions**

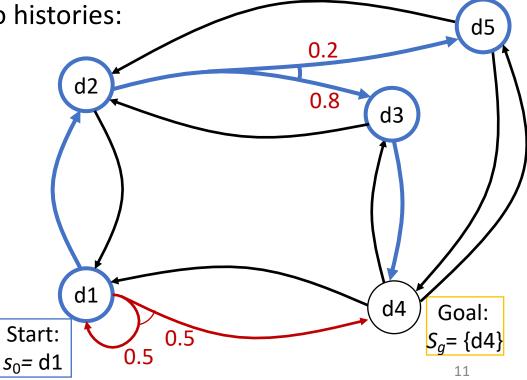
- Unsafe solution:  $0 < P(S_g|s_0,\pi) < 1$
- Example:
  - $\pi_1 = \{(d1, m12), (d2, m23), (d3, m34)\}$

•  $H(s_0, \pi_1)$  contains two histories:

•  $\sigma_1 = \langle d1, d2, d3, d4 \rangle$ 

•  $P(\sigma_1|s_0, \pi_1)$ =  $1 \cdot 0.8 \cdot 1 = 0.8$ 

- $\sigma_2 = \langle d1, d2, d5 \rangle$
- $P(\sigma_2|s_0, \pi_1)$ = 1 · 0.2 = 0.2
- $P(S_g|S_0, \pi_1) = 0.8$





#### **Unsafe Solutions**

• Unsafe solution:  $0 < P(S_g|s_0,\pi) < 1$ 

#### • Example:

•  $\pi_2 = \{(d1, m12), (d2, m23), (d3, m34), (d5, m56), (d6, m65)\}$ 

•  $H(s_0, \pi_2)$  contains two histories:

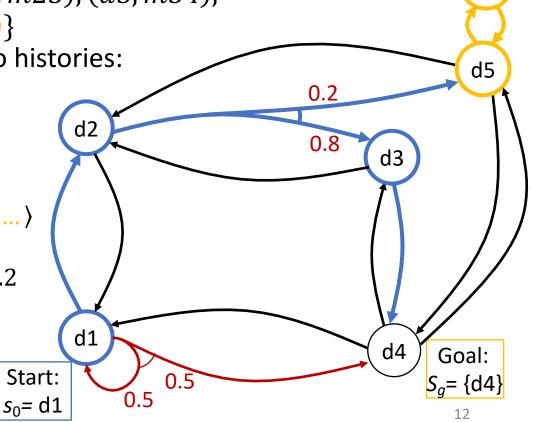
•  $\sigma_1 = \langle d1, d2, d3, d4 \rangle$ 

•  $P(\sigma_1|s_0, \pi_2)$ =  $1 \cdot 0.8 \cdot 1 = 0.8$ 

•  $\sigma_3 = \langle d1, d2, d5, d6, ... \rangle$ 

•  $P(\sigma_3|s_0, \pi_2)$ =  $1 \cdot 0.2 \cdot 1 \cdot \dots = 0.2$ 

 $P(S_g|s_0, \pi_2) = 0.8$ 



d6



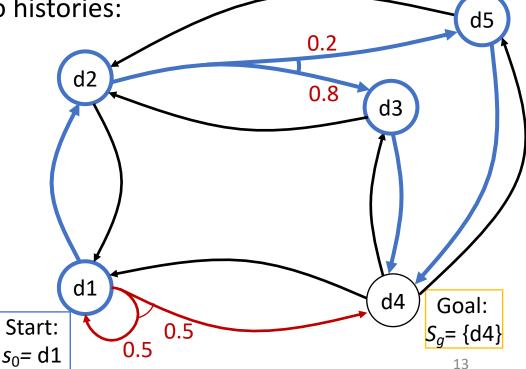
- Safe solution:  $P(S_g|s_0,\pi)=1$
- An acyclic safe solution:
  - $\pi_3 = \{(d1, m12), (d2, m23), (d3, m34), (d5, m54)\}$

•  $H(s_0, \pi_3)$  contains two histories:

•  $\sigma_1 = \langle d1, d2, d3, d4 \rangle$ 

•  $P(\sigma_1|s_0, \pi_3)$ =  $1 \cdot 0.8 \cdot 1 = 0.8$ 

- $\sigma_4 = \langle d1, d2, d5, d4 \rangle$
- $P(\sigma_4|s_0, \pi_3)$ =  $1 \cdot 0.2 \cdot 1 = 0.2$
- $P(S_g|s_0, \pi_3)$ = 0.8 + 0.2 = 1





- Safe solution:  $P(S_g|s_0,\pi)=1$
- A cyclic safe solution:
  - $\pi_4 = \{(d1, m14)\}$
  - $H(s_0, \pi_4)$  contains infinitely many histories:

• 
$$\sigma_5 = \langle d1, d4 \rangle$$

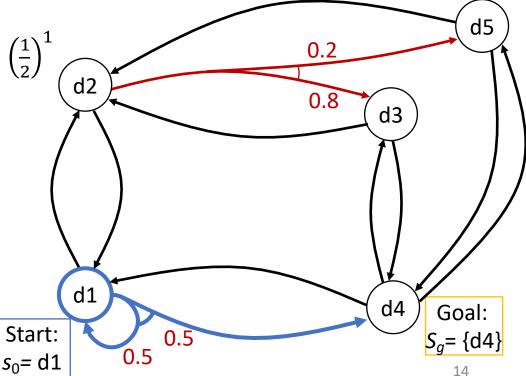
• 
$$P(\sigma_5|s_0, \pi_4) = 0.5 = \left(\frac{1}{2}\right)^1$$

• 
$$\sigma_6 = \langle d1, d1, d4 \rangle$$

• 
$$P(\sigma_6|s_0, \pi_4)$$
  
=  $0.5 \cdot 0.5 = \left(\frac{1}{2}\right)^2$ 

• ...

• 
$$P(S_g|s_0, \pi_4)$$
  
=  $\frac{1}{2} + \frac{1}{4} + \dots = 1$ 





- Safe solution:  $P(S_g|s_0,\pi)=1$
- Another cyclic safe solution:

• 
$$\pi_5 = \{(d1, m14), (d4, m41)\}$$

•  $H(s_0, \pi_5) = H(s_0, \pi_4)$ :

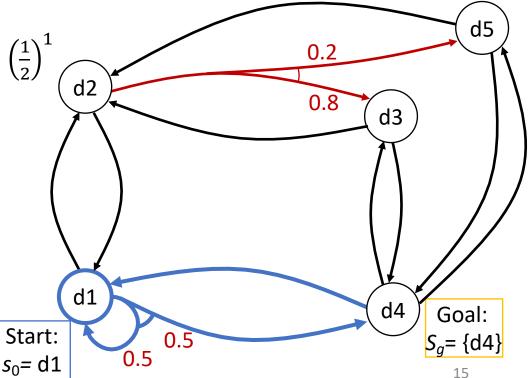
• 
$$\sigma_5 = \langle d1, d4 \rangle$$

• 
$$P(\sigma_5|s_0, \pi_5) = 0.5 = \left(\frac{1}{2}\right)^1$$

• 
$$\sigma_6 = \langle d1, d1, d4 \rangle$$

• 
$$P(\sigma_6|s_0, \pi_6)$$
  
=  $0.5 \cdot 0.5 = \left(\frac{1}{2}\right)^2$ 

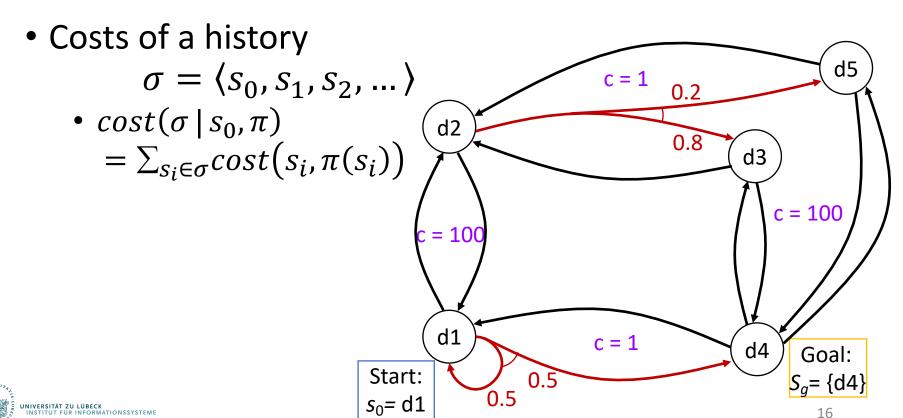
• 
$$P(S_g|s_0, \pi_5)$$
  
=  $\frac{1}{2} + \frac{1}{4} + \dots = 1$ 





# **Expected Cost**

- cost(s, a) = cost of using a in s
  - Example
    - Each "horizontal" action costs 1
    - Each "vertical" action costs 100



# **Expected Cost**

- Let  $\pi$  be a safe solution
- At each state  $s \in Dom(\pi)$ , expected cost of following  $\pi$  to goal:
  - Weighted sum of history costs:

$$V^{\pi}(s) = cost(s, \pi(s)) + \sum_{\sigma \in H(s, \pi)} P(\sigma \mid s, \pi) cost(\sigma \mid s, \pi)$$

Recursive formulation

$$V^{\pi}(s) = \begin{cases} 0 & \text{if } s \in S_g \\ cost(s, \pi(s)) + \sum_{s' \in \gamma(s, \pi(s))} P(s'|s, \pi(s)) V^{\pi}(s') & \text{otherwise} \end{cases}$$

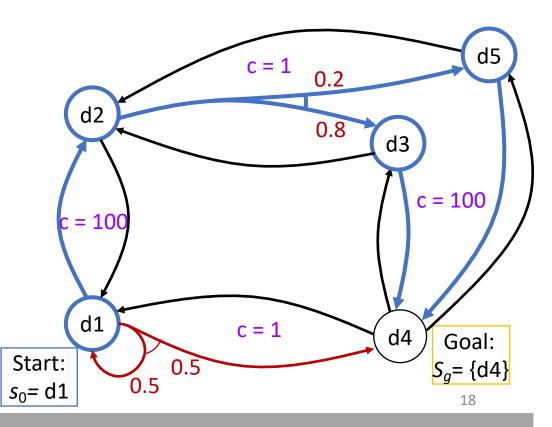
Compare policy evaluation of the policy iteration algorithm of the previous topic



# Example

- $\pi_3 = \{(d1, m12), (d2, m23), (d3, m34), (d5, m54)\}$
- Weighted sum of history cost:
  - $\sigma_1 = \langle d1, d2, d3, d4 \rangle$
  - $P(\sigma_1|s_0,\pi_1) = 0.8$
  - $cost(\sigma_1|s_0, \pi_3)$ = 100 + 1 + 100 = 201
  - $\sigma_4 = \langle d1, d2, d5, d4 \rangle$
  - $P(\sigma_4|s_0,\pi_1) = 0.2$
  - $cost(\sigma_4|s_0,\pi_3)$ = 100 + 1 + 100 = 201
- $V^{\pi_1}(d1)$ = 0.8(201) + 0.2(201) = 201

- Recursive equation
  - $V^{\pi_1}(d1)$ =  $100 + V^{\pi_1}(d2)$ =  $100 + 1 + 0.8V^{\pi_1}(d3) + 0.2V^{\pi_1}(d5)$ = 100 + 1 + 0.8(100) + 0.2(100)= 201

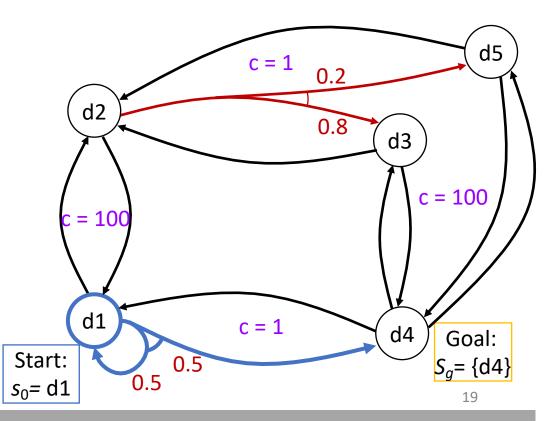




- $\pi_4 = \{(d1, m14)\}$
- Weighted sum of history cost:
  - $\sigma_5 = \langle d1, d4 \rangle$
  - $P(\sigma_5|s_0,\pi_5) = (\frac{1}{2})^T$
  - $cost(\sigma_5|s_0,\pi_5)=1$
  - $\sigma_6 = \langle d1, d1, d4 \rangle$
  - $P(\sigma_6|s_0,\pi_6) = (\frac{1}{2})^2$
  - $cost(\sigma_6|s_0,\pi_5) = 2$
  - •
- $V^{\pi_4}(d1)$ =  $\frac{1}{2}(1) + \frac{1}{4}(2) + \dots$ = 2

Recursive equation

$$V^{\pi_4}(d1)$$
  
= 1 + 0.5(0) + 0.5( $V^{\pi_4}(d1)$ )  
 $\Leftrightarrow 0.5V^{\pi_4}(d1) = 1$   
 $\Leftrightarrow V^{\pi_4}(d1) = 2$ 





# Planning as Optimisation

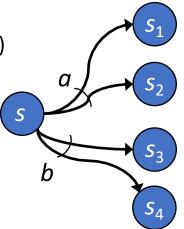
- Let  $\pi$  and  $\pi'$  be safe solutions
  - $\pi$  dominates  $\pi'$  if  $V^{\pi}(s) \leq V^{\pi'}(s)$  for every  $s \in \text{Dom}(\pi) \cap \text{Dom}(\pi')$
- $\pi$  is optimal if  $\pi$  dominates every safe solution
  - If  $\pi$  and  $\pi'$  are both optimal, then  $V^\pi(s) = V^{\pi'}(s)$  at every state where they are both defined
- $V^*(s)$  = expected cost of getting to goal using an optimal safe solution
- Recall expected cost of following  $\pi$  to goal starting in s

$$V^{\pi}(s) = \begin{cases} 0 & \text{if } s \in S_g \\ cost(s, \pi(s)) + \sum_{s' \in \gamma(s, \pi(s))} P(s'|s, \pi(s)) V^{\pi}(s') & \text{otherwise} \end{cases}$$

Optimality principle (Bellman's theorem):

$$V^{*}(s) = \begin{cases} 0 & \text{if } s \in S_{g} \\ \min_{a \in Applicable(S)} \left\{ cost(s, \pi(s)) + \sum_{s' \in \gamma(s, \pi(s))} P(s'|s, \pi(s)) V^{*}(s') \right\} & \text{otherwise} \end{cases}$$

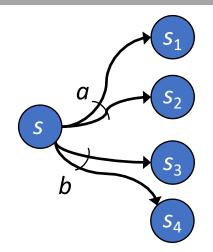




#### Cost to Go

- Let  $(\Sigma, s_0, S_g)$  be a safe SSP
  - I.e.,  $S_g$  is reachable from every state
  - Same as safely explorable in non-deterministic models
- Let  $\pi$  be a safe solution that is defined at all non-goal states
  - I.e.,  $Dom(\pi) = S \setminus S_g$
- Let  $a \in Applicable(s)$
- Cost-to-go  $Q^{\pi}(s,a) = cost(s,a) + \sum_{s' \in \gamma(s,a)} P(s'|s,a) V^{\pi}(s')$ 
  - Expected cost if we start at s, use a, and use  $\pi$  afterward
- For every  $s \in S \setminus S_g$ , let  $\pi'(s) \in \underset{a \in Applicable(s)}{\operatorname{argmin}} Q^{\pi}(s,a)$





# Policy Iteration

 Converges in a finite number of steps

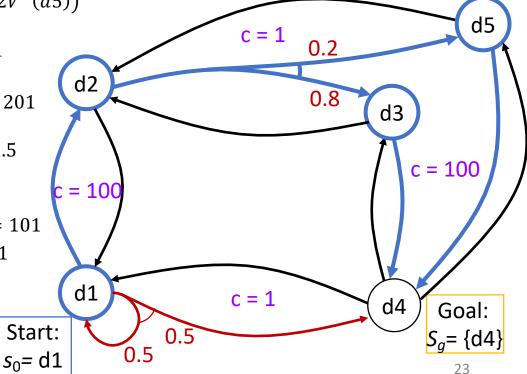
> n equations, n unknowns, where n = |S|



# Example

- Start with
  - $\pi = \pi_0 = \{(d1, m12), (d2, m23), (d3, m34), (d5, m54)\}$
- Expected cost
  - $V^{\pi}(d4) = 0$
  - $V^{\pi}(d3) = 100 + V^{\pi}(d4) = 100$
  - $V^{\pi}(d5) = 100 + V^{\pi}(d4) = 100$
  - $V^{\pi}(d2) = 1 + (0.8V^{\pi}(d3) + 0.2V^{\pi}(d5))$ = 101
  - $V^{\pi}(d1) = 100 + V^{\pi}(d2) = 201$
- Cost-to-go
  - Q(d1, m12) = 100 + 1(101) = 201
  - Q(d1, m14)= 1 + 0.5(201) + 0.5(0) = 101.5
    - argmin = m14
  - Q(d2, m23)= 1 + (0.8(100) + 0.2(100)) = 101
  - Q(d2, m21) = 100 + 201 = 301
    - argmin = m23

- Cost-to-go continued
  - Q(d3, m34) = 100 + 0 = 100
  - Q(d3, m32) = 1 + 101 = 102
    - argmin = m34
  - Q(d5, m54) = 100 + 0 = 100
  - Q(d5, m52) = 1 + 101 = 102
    - argmin = m54



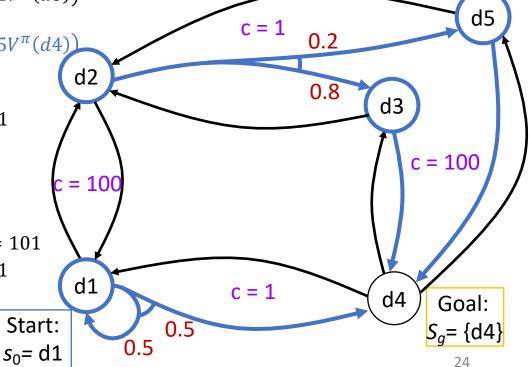


# Example

- Continue with
  - $\pi = \{(d1, m14), (d2, m23), (d3, m34), (d5, m54)\}$
- Expected cost
  - $V^{\pi}(d4) = 0$
  - $V^{\pi}(d3) = 100 + V^{\pi}(d4) = 100$
  - $V^{\pi}(d5) = 100 + V^{\pi}(d4) = 100$
  - $V^{\pi}(d2) = 1 + (0.8V^{\pi}(d3) + 0.2V^{\pi}(d5))$ = 101
  - $V^{\pi}(d1) = 1 + (0.5V^{\pi}(d1) + 0.5V^{\pi}(d4))$ = 2
- Cost-to-go
  - Q(d1, m12) = 100 + 101 = 201
  - Q(d1, m14)= 1 + 0.5(2) + 0.5(0) = 2
    - argmin = m14
  - Q(d2, m23)= 1 + (0.8(100) + 0.2(100)) = 101
  - Q(d2, m21) = 100 + 201 = 301
    - argmin = m23

 $\pi$  unchanged

- Cost-to-go continued
  - Q(d3, m34) = 100 + 0 = 100
  - Q(d3, m32) = 100 + 101 = 201
    - argmin = m34
  - Q(d5, m54) = 100 + 0 = 100
  - Q(d5, m54) = 100 + 101 = 201
    - argmin = m54





#### Value Iteration

- $\eta > 0$ :
  - for testing approx. convergence
- V<sub>0</sub> is a heuristic fct. for initial values
  - $V_0(s) = 0 \ \forall s \in S_g$
  - E.g., adapt a heuristic from Ch. 2
- $V_i$  = values computed at i'th iteration
- $\pi_i$  = plan computed from  $V_i$
- Synchronous version computes  $V_i$  and  $\pi_i$  from old  $V_{i-1}$  and  $\pi_{i-1}$
- Asynchronous version updates V and  $\pi$  in place
  - New values available immediately
  - More efficient than synchronous version

async-value-iteration ( $\Sigma$ ,  $s_0$ ,  $S_{\alpha}$ ,  $V_0$ ,  $\eta$ )

$$\eta = 0.2 
V_0(s) = 0 \,\forall s$$

## Asynchronous

• 
$$Q(d1, m12) = 100 + 0 = 100$$

• 
$$Q(d1, m14) = 1 + (0.5(0) + 0.5(0)) = 1$$
  
•  $V_1(d1) = 1$ ;  $\pi_1(d1) = m14$ 

• 
$$Q(d2, m21) = 100 + 0 = 100$$

• 
$$Q(d2, m23) = 1 + (0.2(0) + 0.8(0)) = 1$$

 $s_0 = d1$ 

• 
$$V_1(d2) = 1$$
;  $\pi_1(d2) = m23$ 

• 
$$Q(d3, m32) = 1 + 0 = 1$$

• 
$$O(d3, m34) = 100 + 0 = 100$$

• 
$$V_1(d3) = 1$$
;  $\pi_1(d3) = m32$ 

• Q(d5, m52) = 1 + 0 = 1

• 
$$Q(d5, m54)$$
  
=  $100 + 0 = 100$ 

• 
$$V_1(d5) = 1;$$
  
 $\pi_1(d5) = m52$ 

• 
$$r = \max(1 - 0, 1 - 0, 1 - 0, 1 - 0, 1 - 0) = 1$$

• 
$$Q(d1, m12) = 100 + 0 = 100$$

• 
$$Q(d1, m14) = 1 + (0.5(0) + 0.5(0)) = 1$$
  
•  $V(d1) = 1$ ;  $\pi(d1) = m14$ 

• 
$$Q(d2, m21) = 100 + 1 = 101$$

• 
$$Q(d2, m23) = 1 + (0.2(0) + 0.8(0)) = 1$$

• 
$$V(d2) = 1$$
;  $\pi(d2) = m23$ 

• 
$$Q(d3, m32) = 1 + 1 = 2$$

• 
$$Q(d3, m34) = 100 + 0 = 100$$

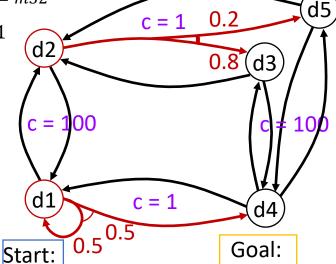
• 
$$V(d3) = 2$$
;  $\pi(d3) = m32$ 

• 
$$Q(d5, m52) = 1 + 1 = 2$$

• 
$$Q(d5, m54) = 100 + 0 = 100$$

• 
$$V(d5) = 2$$
;  $\pi(d5) = m52$ 

• 
$$r = \max(1 - 0, 1 - 0, 2 - 0, 2 - 0) = 2$$



 $S_a = \{d4\}$ 



$$\eta = 0.2$$

## Asynchronous

• 
$$Q(d1, m12) = 100 + 1 = 101$$

• 
$$Q(d1, m14) = 1 + (0.5(1) + 0.5(0)) = 1.5$$
  
•  $V_1(d1) = 1.5$ ;  $\pi_1(d1) = m14$ 

• 
$$Q(d2, m21) = 100 + 1 = 101$$

• 
$$Q(d2, m23) = 1 + (0.2(1) + 0.8(1)) = 2$$

• 
$$V_1(d2) = 2$$
;  $\pi_1(d2) = m23$ 

• 
$$Q(d3, m32) = 1 + 1 = 2$$

• 
$$Q(d3, m34) = 100 + 0 = 100$$

• 
$$V_1(d3) = 2$$
;  $\pi_1(d3) = m32$ 

• 
$$Q(d5, m52) = 1 + 1 = 2$$

• Q(d5, m54) = 100 + 0 = 100

• 
$$V_1(d5) = 1;$$
  
 $\pi_1(d5) = m52$ 

• 
$$r = \max(1.5 - 1, 2 - 1, 2 - 1, 2 - 1) = 1$$

$$V(d1) = 1$$
  
 $V(d2) = 1$   
 $V(d3) = 1$   
 $V(d5) = 1$ 

• 
$$Q(d1, m12) = 100 + 1 = 101$$

• 
$$Q(d1, m14) = 1 + (0.5(1) + 0.5(0)) = 1.5$$
  
•  $V(d1) = 1.5$ ;  $\pi(d1) = m14$ 

• 
$$Q(d2, m21) = 100 + 1.5 = 101.5$$

• 
$$Q(d2, m23) = 1 + (0.2(2) + 0.8(2)) = 3$$
  
•  $V(d2) = 3$ ;  $\pi(d2) = m23$ 

• 
$$O(d3, m32) = 1 + 3 = 4$$

100

0.8 (d3)

• 
$$Q(d3, m34) = 100 + 0 = 100$$

• 
$$V(d3) = 4$$
;  $\pi(d3) = m32$ 

• 
$$Q(d5, m52) = 1 + 3 = 4$$

• 
$$Q(d5, m54) = 100 + 0 = 100$$

• 
$$V(d5) = 4$$
;  $\pi(d5) = m52$ 

• 
$$r = \max(1.5 - 1, 3 - 1, 4 - 2, 4 - 2) = 2$$

$$V(d1) = 1$$
  
 $V(d2) = 1$   
 $V(d3) = 2$   
 $V(d5) = 2$ 



Start:  $s_0 = d1$ 

d1

c = 100

rt:  $0.5^{0.5}$  Goal:  $S_a = \{d4\}$ 

c = 1

$$\eta = 0.2$$

## Asynchronous

• 
$$Q(d1, m12) = 100 + 2 = 102$$

• 
$$Q(d1, m14) = 1 + (0.5(1.5) + 0.5(0)) = 1.75$$
 •  $Q(d1, m14) = 1 + (0.5(1.5) + 0.5(0)) = 1.75$ 

• 
$$V_1(d1) = 1.75$$
;  $\pi_1(d1) = m14$ 

• 
$$Q(d2, m21) = 100 + 1.5 = 101.5$$

• 
$$Q(d2, m23) = 1 + (0.2(2) + 0.8(2)) = 3$$

• 
$$V_1(d2) = 3$$
;  $\pi_1(d2) = m23$ 

• 
$$Q(d3, m32) = 1 + 2 = 3$$

• 
$$Q(d3, m34) = 100 + 0 = 100$$

• 
$$V_1(d3) = 3$$
;  $\pi_1(d3) = m32$ 

• 
$$Q(d5, m52) = 1 + 2 = 3$$

• Q(d5, m54) = 100 + 0 = 102

• 
$$V_1(d5) = 3;$$
  
 $\pi_1(d5) = m52$ 

• 
$$r = \max(1.75 - 1.5, 3 - 2, 3 - 2, 3 - 2) = 1$$

$$V(d1) = 1.5$$
  
 $V(d2) = 2$   
 $V(d3) = 2$   
 $V(d5) = 2$ 

• 
$$Q(d1, m12) = 100 + 3 = 103$$

• 
$$Q(d1, m14) = 1 + (0.5(1.5) + 0.5(0)) = 1.75$$

• 
$$V(d1) = 1.75$$
;  $\pi(d1) = m14$ 

• 
$$Q(d2, m21) = 100 + 1.75 = 101.75$$

• 
$$Q(d2, m23) = 1 + (0.2(4) + 0.8(4)) = 5$$

• 
$$V(d2) = 5$$
;  $\pi(d2) = m23$ 

• 
$$Q(d3, m32) = 1 + 5 = 6$$

100

• 
$$O(d3, m34) = 100 + 0 = 100$$

$$(34) = 100 + 0 = 100$$

$$Q(d5, m52) = 1 + 5 = 6$$

• 
$$Q(d5, m54) = 100 + 0 = 100$$

• 
$$V(d5) = 6$$
;  $\pi(d5) = m52$ 

• V(d3) = 6;  $\pi(d3) = m32$ 

$$r = \max(1.75 - 1.5, 5 - 3, 6 - 4, 6 - 4) = 2$$

$$V(d1) = 1.5$$
  
 $V(d2) = 3$   
 $V(d3) = 4$   
 $V(d5) = 4$ 



0.5 Start:  $s_0 = d1$ 

c = 100

d1

Goal:  $S_a = \{d4\}$ 

c = 1

0.8 (d3)

$$\eta = 0.2$$

## Asynchronous

- Q(d1, m12) = 100 + 3 = 103
- Q(d1, m14) = 1 + (0.5(1.75) + 0.5(0)) = 1.875
  - $V_1(d1) = 1.875$ ;  $\pi_1(d1) = m14$
- Q(d2, m21) = 100 + 1.75 = 101.75
- Q(d2, m23) = 1 + (0.2(3) + 0.8(3)) = 4
  - $V_1(d2) = 4$ ;  $\pi_1(d2) = m23$
- Q(d3, m32) = 1 + 3 = 4
- Q(d3, m34) = 100 + 0 = 100
  - $V_1(d3) = 4$ ;  $\pi_1(d3) = m32$
- Q(d5, m52) = 1 + 3 = 4
- Q(d5, m54) = 100 + 0 = 100
  - $V_1(d5) = 4$ ;  $\pi_1(d5) = m52$
- $r = \max(1.875 1.75, 4 3,4 3,4 3) = 1$

$$V(d1) = 1.75$$
  
 $V(d2) = 3$   
 $V(d3) = 3$   
 $V(d5) = 3$ 

Start:  $s_0 = d1$ 

d1

c = 100

 $S_g = \{d4\}$ 

c = 1

- How long before  $r \le \eta$ ?

  How long, if the "vertical" actions cost 10 instead of 100? 0.5(0) = 1.875
- y = 3 + 1.875 = 101.875
- Q(d2 23) = 1 + (0.2(6) + 0.8(6)) = 7• V(d2) = 7;  $\pi(d2) = m23$
- Q(d3, m32) = 1 + 7 = 8

100

0.8(d3)

- Q(d3, m34) = 100 + 0 = 100
  - V(d3) = 8;  $\pi(d3) = m32$
  - Q(d5, m52) = 1 + 7 = 8
  - Q(d5, m54) = 100 + 0 = 100
    - V(d5) = 8;  $\pi(d5) = m52$
  - $r = \max(1.875 1.75, 7 5, 8 6, 8 6) = 2$

$$V(d1) = 1.75$$
  
 $V(d2) = 5$   
 $V(d3) = 6$   
 $V(d5) = 6$ 



#### Discussion

- Policy iteration
  - Computes new  $\pi$  in each iteration; computes  $V^{\pi}$  from  $\pi$
  - More work per iteration than value iteration
    - Needs to solve a set of simultaneous equations
  - Usually converges in a smaller number of iterations
- Value iteration
  - Computes new V in each iteration; chooses  $\pi$  based on V
  - New V is a revised set of heuristic estimates
    - Not  $V^{\pi}$  for  $\pi$  or any other policy
  - Less work per iteration: does not need to solve a set of equations
  - Usually takes more iterations to converge
- At each iteration, both algorithms need to examine the entire state space
  - Number of iterations polynomial in |S|, but |S| may be quite large
- Next: use search techniques to avoid searching the entire space



# Summary

- SSPs
- Solutions, closed solutions, histories
- Unsafe solutions, acyclic safe solutions, cyclic safe solutions
- Expected cost, planning as optimization
- Policy iteration
- Value iteration (synchronous, asynchronous)
  - Bellman-update



#### Outline

#### 6.2 Stochastic shortest path problems

- Safe/unsafe policies
- Optimality
- Policy iteration, value iteration

#### 6.3 Heuristic search algorithms

- Best-first search
- Determinisation

#### 6.4 Online probabilistic planning

- Lookahead
- Reinforcement learning



#### AO\*

 Best-first search for acyclic domains

Requires acyclic  $\Sigma$ 

not in book

no  $\pi$ -descendants in Z but s itself

ensures bottom-up updates

the states "just above" s

```
AO* (\Sigma s_0, S_g, V_0)

global \pi \leftarrow \emptyset; V(s_0) \leftarrow V_0(s_0) Envelope \leftarrow \{s_0\}

while leaves(s_0,\pi) \setminus S_g \neq \emptyset do

select s \in leaves(s_0,\pi) \setminus S_g

for all a \in Applicable(s) do

for all s' \in \gamma(s,a) \setminus Envelope do

V(s') \leftarrow V_0(s')

Add s' to Envelope

AO-Update(s)

return \pi
```

```
AO-Update(s)
Z \leftarrow \{s\} \quad // \text{ nodes that need updating}
\mathbf{while} \quad Z \neq \emptyset \quad \mathbf{do}
\text{select } s \in Z \text{ s.t. } \widehat{\gamma}(s, \pi(s)) \cap Z = \{s\}
\text{remove } s \text{ from } Z
\text{Bellman-Update}(s)
Z \leftarrow Z \sqcup \{s' \in Envelope \mid s \in \gamma(s', \pi)\}
```

```
Bellman-Update(s)

for every a \in Applicable(s) do

Q(s,a) \leftarrow cost(s,a) + \Sigma_{s' \in S} PR(s' | s,a) V(s')

V(s) \leftarrow \min_{a \in Applicable(s)} Q(s,a)

\pi(s) \leftarrow argmin_{a \in Applicable(s)} Q(s,a)
```

#### LAO\*

 Best-first search for both cyclic and acyclic domains

 $\Sigma$  may be cyclic or acyclic

not in book

all  $\pi$ -ancestors of s in Envelope

Asynchronous value iteration, restricted to Z

Different compared to AO\*



```
LAO* (\Sigma, s_0, S_g, V_0)

global \pi \leftarrow \emptyset; V(s_0) \leftarrow V_0(s_0) Envelope \leftarrow \{s_0\}

loop

if leaves (s_0, \pi) \subseteq S_g \neq \emptyset then

return \pi

select s \in leaves(s_0, \pi) \setminus S_g

for all a \in Applicable(s) do

for all s' \in \gamma(s, a) \setminus Envelope do

V(s') \leftarrow V_0(s')

Add s' to Envelope

LAO-Update (s)

return \pi
```

```
LAO-Update(s)
Z \leftarrow \{s\} \cup \{s' \in Envelope \mid s \in \gamma(s', \pi)\}
loop
r \leftarrow \max_{s \in z} \text{Bellman-Update}(s)
if leaves(s_0, \pi) changed or r \leq \eta then break
```

```
Bellman-Update(s)

v_{old} \leftarrow V(s)

for every a \in Applicable(s) do

Q(s,a) \leftarrow cost(s,a) + \sum_{s' \in s} PR(s'|s,a) V(s')

V(s) \leftarrow \min_{a \in Applicable(s)} Q(s,a)

\pi(s) \leftarrow argmin_{a \in Applicable(s)} Q(s,a)

return |V(s) - V_{old}|
```

# LAO\* Example

#### 1st iteration of main loop:

- Expand d1: add d2 and d4 to Envelope
- Call LAO-Update(d1)
  - $\pi$  is empty, so  $Z = \{d1\}$

#### Iteration 1:

- Q(d1, m12) = 100 + 0 = 100
- Q(d1, m14) = 1 + (0.5(0) + 0.5(0)) = 1
  - V(d1) = 1;  $\pi(d1) = m14$ ; r = 1 0 = 1

#### Iteration 2:

- Q(d1, m12) = 100 + 0 = 100
- Q(d1, m14) = 1 + (0.5(1) + 0.5(0)) = 1.5
  - V(d1) = 1.5;  $\pi(d1) = m14$ ; r = 1.5 1 = 0.5

#### Iteration 3:

- Q(d1, m12) = 100 + 0 = 100
- Q(d1, m14) = 1 + (0.5(1.5) + 0.5(0)) = 1.75
  - $V(d1) = 1.75; \pi(d1) = m14;$ r = 1.75 - 1.5 = 0.25

#### Iteration 4:

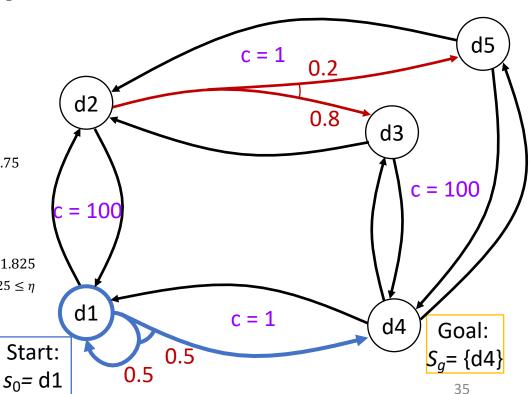
- Q(d1, m12) = 100 + 0 = 100
- Q(d1, m14) = 1 + (0.5(1.75) + 0.5(0)) = 1.825
  - $V(d1) = 1.825; \pi(d1) = m14; r = 0.125 \le \eta$

#### LAO-Update returns

#### 2nd iteration of main loop:

- $leaves(\pi) = \{d4\} \subseteq S_q$
- return  $\pi$

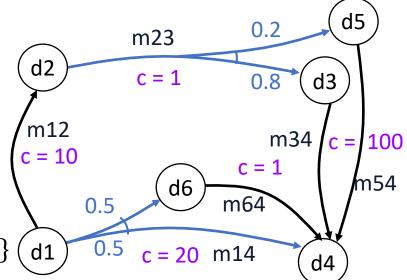
$$\eta = 0.2 
V_0(s) = 0 \,\forall s$$

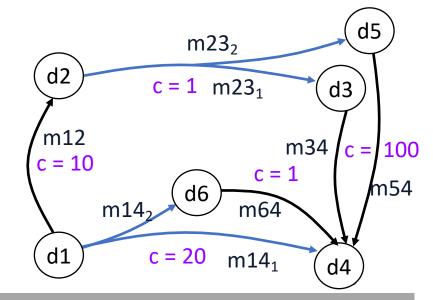




## Heuristics through Determinization

- What to use for  $V_0$ ?
  - One possibility: classical planner
  - Need to convert nondeterministic actions into something the classical planner can use
- Determinise the actions
  - Suppose  $\gamma(s, a) = \{s_1, ..., s_n\}$
  - $Det(s, a) = \{n \text{ actions } a_1, a_2, \dots, a_n\}$ 
    - $\gamma_d(s, a_i) = s_i$
    - $cost_d(s, a_i) = cost(s, a)$
- Classical domain  $\Sigma_d = (S, A_d, \gamma_d, cost_d)$ 
  - $S = \text{same as in } \Sigma$
  - $A_d = \bigcup_{a \in A, s \in S} Det(s, a)$
  - $\gamma_d$  and  $cost_d$  as above

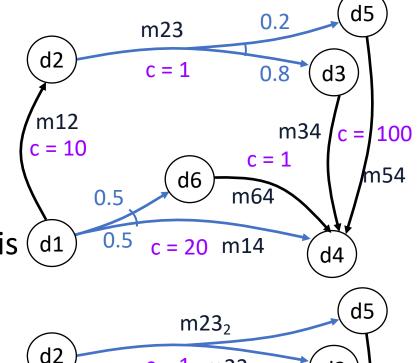






#### Heuristics through Determinization

- Call classical planner on  $(\Sigma_d, S, S_a)$ 
  - Get plan  $p = \langle a_1, a_2, ..., a_n \rangle$
  - Return  $V_0(s) = cost(p) = \sum_{i=1}^{n} cost(a_i)$
- If the classical planner always returns optimal plans, then  $V_0$  is admissible
- Outline of proof:
  - Let  $\pi$  be a safe solution in  $\Sigma$
  - Every acyclic execution of  $\pi$  corresponds to a plan p' in  $\Sigma_d$ 
    - p' must have cost  $\geq V_0(s)$
    - Otherwise the classical planner would have chosen p' instead of p



 $c = 1 m23_1$ 

d6

c = 20

m12

c = 10

m14

d3

d4

c = 1100

m54

m34

m64

m14<sub>1</sub>



# Summary

- AO\*
  - Acyclic
- LAO\*
  - (A)cyclic
- Heuristics through determinisation



#### Outline

#### 6.2 Stochastic shortest path problems

- Safe/unsafe policies
- Optimality
- Policy iteration, value iteration

#### 6.3 Heuristic search algorithms

- Best-first search
- Determinisation

#### 6.4 Online probabilistic planning

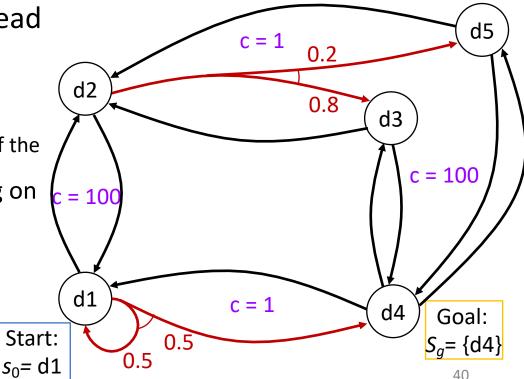
- Lookahead
- Reinforcement learning



# Planning and Acting

- Same as in Ch. 2, except s instead of  $\xi$ 
  - Could use  $s \leftarrow$  abstraction of  $\xi$  as in Ch. 2
- Could also use Run-Lazy-Lookahead or Run-Concurrent-Lookahead
- What to use for Lookahead?
  - AO\*, LAO\*, ...
    - Modify to search part of the space
  - Classical planner running on determinized domain
  - Stochastic sampling algorithms

```
Run-Lookahead (\Sigma, s_0, S_g)
s \leftarrow s_0
\text{while } s \notin S_g \text{ and } Applicable(s) \neq \emptyset \text{ do}
a \leftarrow \text{Lookahead}(s, \theta)
\text{perform action } a
s \leftarrow \text{observe resulting state}
```





# Planning and Acting

- If Lookahead = classical planner on determinized domain
   ⇒ FS-Replan (Ch. 5)
- Problem: Forwardsearch may choose a plan that depends on low-probability outcome
- RFF algorithm (see book) attempts to alleviate this

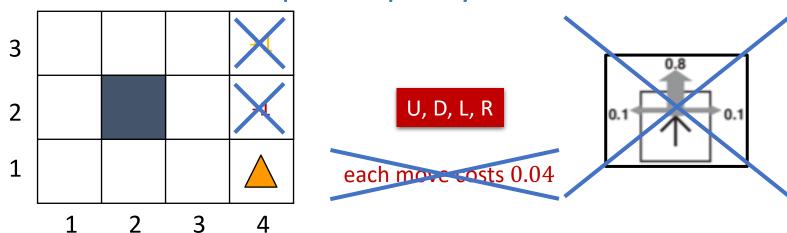
```
Run-Lookahead (\Sigma, s_0, S_g)
s \leftarrow s_0
\text{while } s \notin S_g \text{ and } Applicable(s) \neq \emptyset \text{ do}
a \leftarrow \text{Lookahead}(s, \theta)
\text{perform action } a
s \leftarrow \text{observe resulting state}
```

```
FS-Replan (\Sigma, s, S_{\sigma})
             \pi_{d} \leftarrow \emptyset
             while s \notin S_{\sigma} and Applicable(s) \neq \emptyset do
                  if \pi_d undefined for s then
                        \pi_d \leftarrow \text{Forward-Search}(\Sigma_d, s, S_g)
                        if \pi_d = failure then
                             return failure
                  perform action \pi_{d}(s)
                   s \leftarrow \text{observe resulting state}
          d1
                                c = 1
                                                      d4
                                                              Goal:
Start:
s_0 = d1
```



### Acting as Reinforcement Learning (RL)

- Agent placed in an environment and must learn to act optimally in it
- Assume that the world behaves like an MDP, except
  - Agent can act but does not know the transition model
  - Agent observes its current state and its reward but does not know the reward function
- Goal: learn an optimal policy



#### Factors That Make RL Hard

- Actions have non-deterministic <u>effects</u>
  - which are initially unknown and must be learned
- Rewards / punishments can be infrequent
  - Often at the end of long sequences of actions
  - How do we determine what action(s) were really responsible for reward or punishment?
    - Credit assignment problem
  - World is large and complex



### Passive vs. Active Learning

#### Passive learning

- Agent acts based on a fixed policy  $\pi$  and tries to learn how good the policy is by observing the world go by
- Analogous to policy iteration
- Active learning
  - Agent attempts to find an optimal (or at least good) policy by exploring different actions in the world
  - Analogous to solving the underlying MDP



#### Model-based vs. Model-free RL

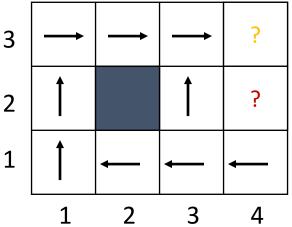
- Model-based approach to RL
  - Learn the MDP model (P(s'|s,a)) and R), or an approximation of it
  - Use it to find the optimal policy
- Model-free approach to RL
  - Derive the optimal policy without explicitly learning the model



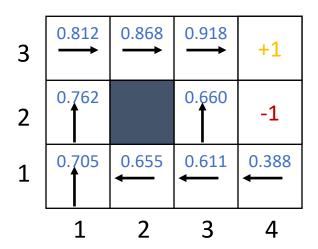
#### Passive RL

- Suppose we are given a policy
- Want to determine how good it is

#### • Given $\pi$ :

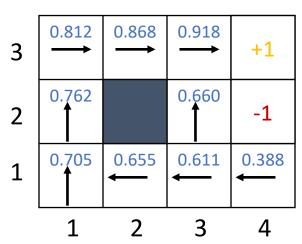


#### Need to learn $U^{\pi}(s)$ :



#### Passive RL

- Given policy  $\pi$ :
  - Estimate  $U^{\pi}(s)$
- Not given
  - Transition model P(s'|s,a)
  - Reward function R(s)



- Simply follow the policy for many epochs
- Epochs: training sequences

$$(1,1) \rightarrow (1,2) \rightarrow (1,3) \rightarrow (1,2) \rightarrow (1,3) \rightarrow (2,3) \rightarrow (3,3) \rightarrow (3,4) + 1$$
  
 $(1,1) \rightarrow (1,2) \rightarrow (1,3) \rightarrow (2,3) \rightarrow (3,3) \rightarrow (3,2) \rightarrow (3,3) \rightarrow (3,4) + 1$   
 $(1,1) \rightarrow (2,1) \rightarrow (3,1) \rightarrow (3,2) \rightarrow (4,2) - 1$ 



# Direct Utility Estimation (DUE)

- Model-free approach
  - Estimate  $U^{\pi}(s)$  as average total reward of epochs containing s
    - Calculating from s to end of epoch
- Reward-to-go of a state s
  - The sum of the (discounted) rewards from that state until a terminal state is reached
- Key: use observed reward-to-go of the state as the direct evidence of the actual expected utility of that state



#### DUE: Example

Suppose we observe the following trial:

• 
$$(1,1)_{-0.04} \rightarrow (1,2)_{-0.04} \rightarrow (1,3)_{-0.04} \rightarrow (1,2)_{-0.04} \rightarrow (1,3)_{-0.04} \rightarrow (2,3)_{-0.04} \rightarrow (3,3)_{-0.04} \rightarrow (3,4)_{+1}$$

- The total reward starting at (1,1) is 0.72
  - Call this a sample of the observed-reward-to-go for (1,1)
- For (1,2), there are two samples for the observed-reward-to-go (assuming  $\gamma=1$ )
  - 1.  $(1,2)_{-0.04} \rightarrow (1,3)_{-0.04} \rightarrow (1,2)_{-0.04} \rightarrow (1,3)_{-0.04} \rightarrow (2,3)_{-0.04} \rightarrow (3,3)_{-0.04} \rightarrow (3,4)_{+1}$  [Total: 0.76]
  - 2.  $(1,2)_{-0.04} \rightarrow (1,3)_{-0.04} \rightarrow (2,3)_{-0.04} \rightarrow (3,3)_{-0.04} \rightarrow (3,4)_{+1}$  [Total: 0.84]



### DUE: Convergence

- Keep a running average of the observed reward-togo for each state
  - E.g., for state (1,2), it stores  $\frac{(0.76+0.84)}{2} = 0.8$
- As the number of trials goes to infinity, the sample average converges to the true utility



#### DUE: Problem

- Big problem: it converges very slowly!
- Why?
  - Does not exploit the fact that utilities of states are not independent
  - Utilities follow the Bellman equation

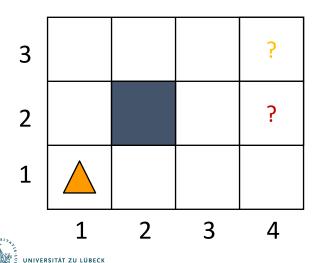
$$U^{\pi}(s_i) = R(s_i) + \gamma \sum_{s_j} P(s_j | \pi(s_i), s_i) U^{\pi}(s_j)$$

Dependence on neighbouring states



#### DUE: Problem

- Using the dependence to your advantage
  - Suppose you know that state (3,3) has a high utility
  - Suppose you are now at (3,2)
  - Bellman equation would be able to tell you that (3,2) is likely to have a high utility because (3,3) is a neighbour
- DUE cannot tell you that until the end of the trial



#### Adaptive Dynamic Programming (ADP)

- Model-based approach
- Basically learns the transition model P(s'|s,a) and the reward function R(s)
  - Takes advantage of constraints in the Bellman equation
- Given policy  $\pi$ :
  - Estimate  $U^{\pi}(s)$
  - Based on P(s'|s,a) and R(s), we can perform policy evaluation (part of policy iteration)



# ADP: Policy Evaluation

- Policy Iteration:
  - Pick a policy  $\pi$  at random
  - Repeat:
    - Policy evaluation: Compute the utility of each state for  $\pi$

• 
$$U_{t+1}(s_i) = R(s_i) + \gamma \sum_{s_j} P(s_j | \pi(s_i), s_i) U_t(s_j)$$

- No longer involves a max operation as action is determined by  $\pi$
- Policy improvement: Compute the policy  $\pi'$  given  $U_{t+1}$

• 
$$\pi'(s_i) = \arg\max_{a} \sum_{s_j} P(s_j | \pi(s_i). s_i) U_t(s_j)$$

• If  $\pi' = \pi$ , then return  $\pi$ 

Can be solved in time  $O(n^3)$ , where n is the number of states

Or solve the set of linear equations:

$$U(s_i) = R(s_i) + \gamma \sum_{s_j} P(s_j | \pi(s_i).s_i) U(s_j)$$

(often a sparse system)



#### ADP: Learn the Model

- Make use of policy evaluation to learn the utilities of states
- To use policy equation

$$U_{t+1}(s_i) = R(s_i) + \gamma \sum_{s_j} P(s_j | \pi(s_i), s_i) U_t(s_j)$$
agent needs to learn  $P(s' | s, a)$  and  $R(s)$ 

How?



#### ADP: Learn the Model

- Learning R(s)
  - Easy because it is deterministic
  - Whenever you see a new state, store the observed reward value as R(s)
- Learning P(s'|s,a)
  - Keep track of how often you get to state s' given that you are in state s and do action a
  - E.g., if you are in s=(1,3) and you execute R three times and you end up in s'=(2,3) twice, then  $P(s'|\mathbf{R},s)=\frac{2}{3}$



### ADP: Algorithm

Update reward function

Update transition model

```
function passive-ADP-agent(percept)
   returns an action
   input: percept, indicating current state s', reward r'
   static:
       \pi, fixed policy
        mdp, MDP with P[s'|s,a], R(s), \gamma
        U, table of utilities, initially empty
       N_{sa}, table of freq. for s-a pairs, initially 0
        N_{\rm sas'}, table of freq. for s-a-s' triples, initially 0
        s, a, previous state and action, initially null
   if s' is new then
       U[s'] \leftarrow r'
       R[s'] \leftarrow r'
   if s is not null then
        increment N_{sa}[s,a] and N_{sas'}[s,a,s']
        for each t s.t. N_{sas'}[s, a, t] \neq 0 do
            P[t|s,a] \leftarrow N_{sas'}[s,a,t] / N_{sa}[s,a]
    U \leftarrow \text{Policy-evaluation}(\pi, U, mdp)
   if Terminal?(s') then
       s, a \leftarrow \text{null}
    else
       s, a \leftarrow s', \pi[s']
    return a
```

#### ADP: Problem

- Need to solve a system of simultaneous equations costs  $O(n^3)$ 
  - Very hard to do if you have  $10^{50}$  states like in Backgammon
  - Could make things a little easier with modified policy iteration
- Can we avoid the computational expense of full policy evaluation?



# Temporal Difference Learning (TD)

- Instead of calculating the exact utility for a state, can we approximate it and possibly make it less computationally expensive?
- Yes, we can! Using TD:

$$U^{\pi}(s_i) = R(s_i) + \gamma \sum_{s_j} P(s_j | \pi(s_i), s_i) U^{\pi}(s_j)$$

- Instead of doing the sum over all successors, only adjust the utility of the state based on the successor observed in the trial
- Does not estimate the transition model model-free



### TD: Example

- Suppose you see that  $U^{\pi}(1,3) = 0.84$  and  $U^{\pi}(2,3) = 0.92$
- If the transition  $(1,3) \rightarrow (2,3)$  happens all the time, you would expect to see:

$$U^{\pi}(1,3) = R(1,3) + U^{\pi}(2,3)$$
  
 $\Rightarrow U^{\pi}(1,3) = -0.04 + U^{\pi}(2,3)$   
 $\Rightarrow U^{\pi}(1,3) = -0.04 + 0.92 = 0.88$ 

• Since you observe  $U^{\pi}(1,3)=0.84$  in the first trial and it is a little lower than 0.88, so you might want to "bump" it towards 0.88



#### Aside: Online Mean Estimation

- Suppose that we want to incrementally compute the mean of a sequence of numbers
  - E.g., to estimate the mean of a random variable from a sequence of samples

$$\widehat{X}_{n+1} = \frac{1}{n+1} \sum_{i=1}^{n+1} x_i = \left(\frac{1}{n+1} \sum_{i=1}^{n} x_i\right) + \frac{1}{n+1} x_{n+1} = \left(\frac{n}{n(n+1)} \sum_{i=1}^{n} x_i\right) + \frac{1}{n+1} x_{n+1}$$

$$= \left(\frac{1}{n}\sum_{i=1}^{n} x_i\right) - \left(\frac{1}{(n+1)} \cdot \frac{1}{n}\sum_{i=1}^{n} x_i\right) + \frac{1}{n+1}x_{n+1} = \left(\frac{1}{n}\sum_{i=1}^{n} x_i\right) + \frac{1}{n+1}\left(x_{n+1} - \frac{1}{n}\sum_{i=1}^{n} x_i\right)$$

$$= \hat{X}_n + \frac{1}{n+1}\left(x_{n+1} - \hat{X}_n\right)$$

learning rate sample n+1

Given a new sample  $x_{n+1}$ , the new mean is the old estimate (for n samples) plus the weighted difference between the new sample and old estimate



### TD Update

• TD update for transition from s to s'

$$U^{\pi}(s) = U^{\pi}(s) + \alpha \Big( R(s) + \gamma U^{\pi}(s') - U^{\pi}(s) \Big)$$
learning rate

new (noisy) sample of utility based on next state

- Similar to one step of value iteration
- Equation called backup
- So, the update is maintaining a "mean" of the (noisy) utility samples
- If the learning rate decreases with the number of samples (e.g., 1/n), then the utility estimates will eventually converge to true values

$$U^{\pi}(s_i) = R(s_i) + \gamma \sum_{s_j} P(s_j | \pi(s_i), s_i) U^{\pi}(s_j)$$



### TD: Convergence

- Since we are using the observed successor s' instead of all the successors, what happens if the transition  $s \rightarrow s'$  is very rare and there is a big jump in utilities from s to s'?
  - How can  $U^{\pi}(s)$  converge to the true equilibrium value?
- Answer: The average value of  $U^{\pi}(s)$  will converge to the correct value
- This means we need to observe enough trials that have transitions from s to its successors
- Essentially, the effects of the TD backups will be averaged over a large number of transitions
- Rare transitions will be rare in the set of transitions observed



### Comparison between ADP and TD

#### Advantages of ADP

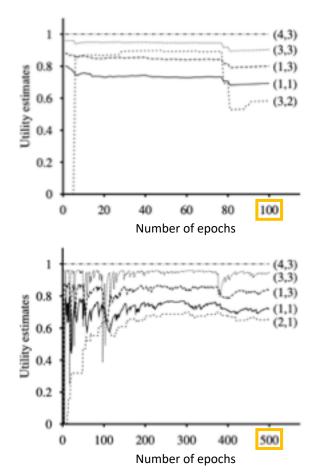
- Converges to true utilities faster
- Utility estimates do not vary as much from the true utilities
- Advantages of TD
  - Simpler, less computation per observation
  - Crude but efficient first approximation to ADP
  - Do not need to build a transition model to perform its updates
    - Important because we can interleave computation with exploration rather than having to wait for the whole model to be built first



#### ADP and TD

- Utility estimates for 4x3 grid
  - ADP, given optimal policy
    - Notice the large changes occurring around the 78th trial—this is the first time that the agent falls into the -1 terminal state at (4,2)
  - TD
    - More epochs required
    - Faster runtime per epoch

Source: AIMA, Russell/Norvig





### Overall comparisons

- DUE (model-free)
  - Simple to implement
  - Each update is fast
  - Does not exploit Bellman constraints and converges slowly
- ADP (model-based)
  - Harder to implement
  - Each update is a full policy evaluation (expensive)
  - Fully exploits Bellman constraints
  - Fast convergence (in terms of epochs)
- TD (model-free)
  - Update speed and implementation similar to direct estimation
  - Partially exploits Bellman constraints adjusts state to "agree" with observed successor
    - Not all possible successors
  - Convergence in between DUE and ADP



### Passive Learning: Disadvantage

- Learning  $U^{\pi}(s)$  does not lead to an optimal policy, why?
- Models are incomplete/inaccurate
- Agent has only tried limited actions, we cannot gain a good overall understanding of P(s'|s,a)
- This is why we need active learning



### Goal of Active Learning

- Let us first assume that we still have access to some sequence of trials performed by the agent
  - Agent is not following any specific policy
  - We can assume for now that the sequences should include a thorough exploration of the space
  - We will talk about how to get such sequences later

- The goal is to learn an optimal policy from such sequences
  - Active RL agents
    - Active ADP agent
    - Q-learner (based on TD algorithm)



### Active ADP Agent

- Model-based approach
- Using the data from its trials, agent learns a transition model  $\widehat{T}$  and a reward function  $\widehat{R}$
- With  $\widehat{T}(s, a, s')$  and  $\widehat{R}(s)$ , it has an estimate of the underlying MDP
- It can compute the optimal policy by solving the Bellman equations using value or policy iteration

$$U(s) = \hat{R}(s) + \gamma \max_{a} \sum_{s'} \hat{T}(s, a, s') U(s')$$

• If  $\widehat{T}$  and  $\widehat{R}$  are accurate estimations of the underlying MDP model, we can find the optimal policy this way



### Issues with ADP Approach

- Need to maintain MDP model
- T can be very large,  $O(|S|^2 \cdot |A|)$
- Also, finding the optimal action requires solving the Bellman equation – time consuming
- Can we avoid this large computational complexity both in terms of time and space?



# Q-learning

- So far, focus on utilities for states
  - U(s) = utility of state s = expected maximum future rewards
- Alternative: store Q-values
  - Q(a,s) = utility of taking action a at state s
     = expected maximum future reward if action a at state s

• Relationship between U(s) and Q(a, s)?

$$U(s) = \max_{a} Q(a, s)$$



# Q-learning can be model-free

• Note that after computing U(s), to obtain the optimal policy, we need to compute

$$\pi(s) = \underset{a}{\operatorname{argmax}} \sum_{s'} T(s, a, s') U(s')$$

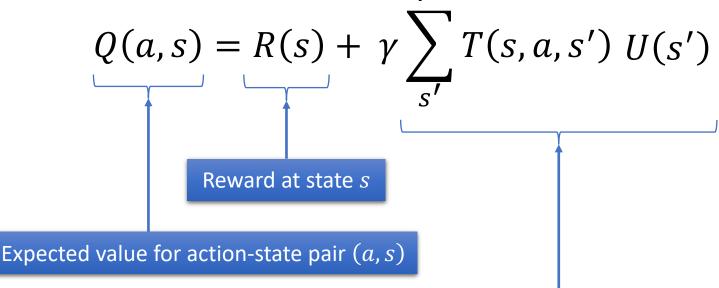
- Requires T, the model of world
- Even if we use TD learning (model-free), we still need the model to get the optimal policy
- However, if you successfully estimate Q(a,s) for all a and s, we can compute the optimal policy without using the model

$$\pi(s) = \operatorname*{argmax}_{a} Q(a, s)$$



# Q-learning

 At equilibrium when Q-values are correct, we can write the constraint equation:

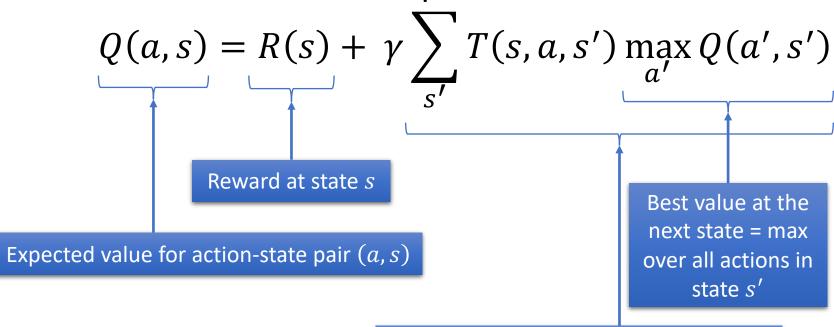


Expected value averaged over all possible states s' that can be reached from s after executing action a



# Q-learning

 At equilibrium when Q-values are correct, we can write the constraint equation:

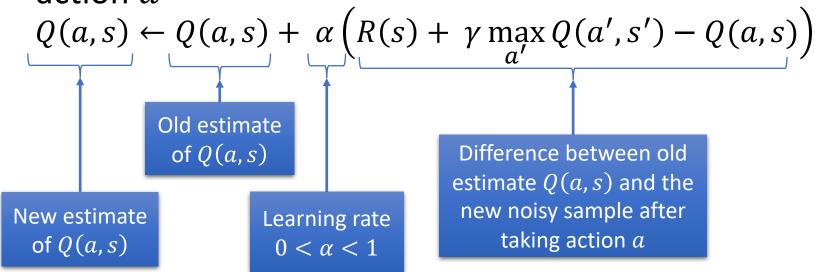


Expected value averaged over all possible states s' that can be reached from s after executing action a



# Q-learning without a Model

• Q-update: after moving from s to state s' using action a



- TD approach
- Transition model does not appear anywhere!
- Once converged, optimal policy can be computed without transition model
  - Completely model-free learning algorithm



# Q-learning: Convergence

- Guaranteed to converge to true Q-values given enough exploration
- Very general procedure
  - Because it is model-free
- Converges slower than ADP agent
  - Because it is completely model-free and it does not enforce consistency among values through the model



### Exploitation vs. Exploration

- Actions are always taken for one of the two following purposes
  - Exploitation: Execute the current optimal policy to get high payoff
  - Exploration: Try new sequences of (possibly random)
    actions to improve the agent's knowledge of the
    environment even though current model does not
    believe they have a high payoff
- Pure exploitation: gets stuck in a rut
- Pure exploration: not much use if you do not put that knowledge into practice

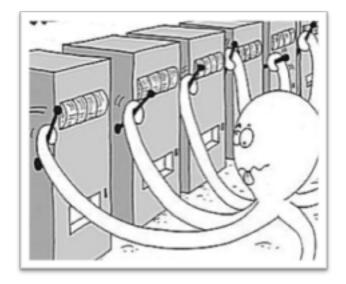


### Multi-Arm Bandit Problem

 So far, we assumed that we have a set of epochs of sufficient exploration

- Multi-arm bandit problem: Statistical model of sequential experiments
  - Name comes from a traditional slot machine (one-armed bandit)
- Question: Which machine to play?







### **Actions**

- n arms, each with a fixed but unknown distribution of reward
  - In terms of actions: Multiple actions  $a_1, a_2, ..., a_n$ 
    - Each  $a_i$  provides a reward from an unknown (but stationary) probability distribution  $p_i$
    - Specifically, expectation  $\mu_i$  of machine i's reward unknown
      - If all  $\mu_i$ 's were known, then the task is easy: just pick argmax  $\mu_i$

• With  $\mu_i$ 's unknown, question is which arm to pull



### Formal Model

- At each time step t = 1, 2, ..., T:
  - Each machine i has a random reward  $X_{i,t}$ 
    - $E[X_{i,t}] = \mu_i$  independent of the past
  - Pick a machine  $I_t$  and get reward  $X_{I_t,t}$
  - Other machines' rewards hidden
- Over T time steps, we have a total reward of  $\sum_{t=1}^{T} X_{I_t,t}$ 
  - If all  $\mu_i$ 's known, we would have selected  $\underset{i}{\operatorname{argmax}} \ \mu_i$  at each time t
    - Expected total reward  $T \cdot \max_{i} \mu_{i}$
- Our "regret":

$$T \cdot \max_{i} \mu_{i} - \sum_{t=1}^{T} X_{I_{t},t}$$

best machine's reward (in expectation)

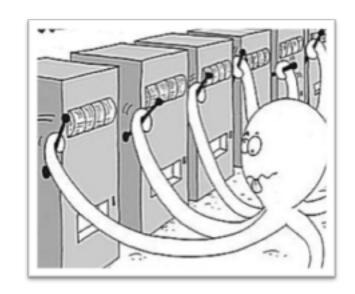
our reward



### Exploitation vs. Exploration Dilemma

- Exploration: to find the best.
  - Overhead: big loss when trying the bad arms.
- Exploitation: to exploit what we've discovered
  - weakness: there may be better ones that we haven't explored and identified.
- Question:

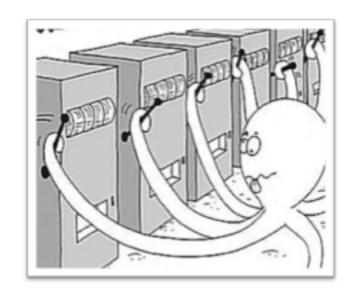
With a fixed budget, how to balance exploration and exploitation such that the total loss (or regret) is small?





### Where does the loss come from?

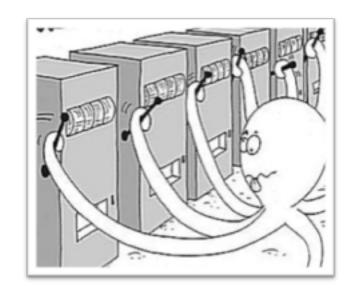
- If  $\mu_i$  is small, trying this arm too many times makes a big loss.
  - So we should try it less if we find the previous samples from it are bad
- But how to know whether an arm is good?
- The more we try an arm i, the more information we get about its distribution
  - In particular, the better estimate to its mean  $\mu_i$





### Where does the loss come from?

- So we want to estimate each  $\mu_i$  precisely, and at the same time, we do not want to try bad arms too often
  - Two competing tasks
    - Exploration vs. exploitation dilemma
- Rough idea: we try an arm if
  - Either we have not tried it often enough
  - Or our estimate of  $\mu_i$  so far looks good



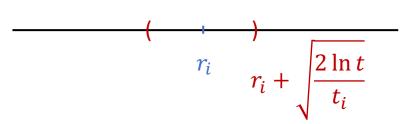


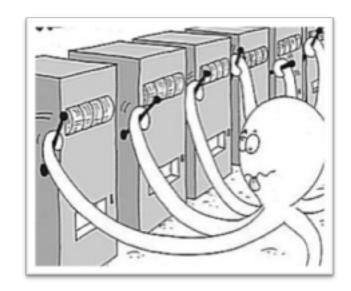
### UCB (Upper Confidence Bound) Algorithm

- Assume rewards between 0 and 1
  - If they are not, normalize them

```
UCB(A)  
Try each action a_i once  
loop  
choose an action a_i that has  
the highest value of r_i + \sqrt{2 \cdot \ln(t) / t_i}  
perform a_i  
update r_i , t_i , t
```

- For each action  $a_i$  , let
  - $r_i$  = average reward from  $a_i$
  - $t_i$  = number of times  $a_i$  tried
- $t = \sum_i t_i$
- Confidence interval around  $r_i$





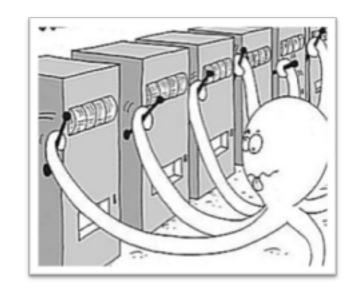


### **UCB**: Performance

• Theorem: If each distribution of reward has support in [0,1], i.e., we have normalised rewards, then the regret of the UCB algorithm is at most

$$O\left(\sum_{i:\mu_i<\mu^*}\frac{\ln T}{\Delta_i}+\sum_{j\in\{1,\ldots,n\}}\Delta_j\right)$$

- $\mu^* = \max_i \mu_i$
- $\Delta_i = \mu^* \mu_i$ 
  - Expected loss of choosing  $a_i$  once
- [without proof]
- Loss grows very slowly with T

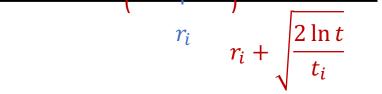




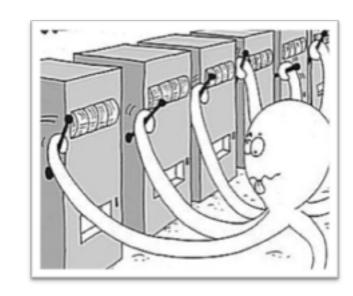
### **UCB**: Performance

- Uses principle of optimism in face of uncertainty
  - We do not have a good estimate  $\hat{\mu}_i$  of  $\mu_i$  before trying it many times
    - We thus give a big confidence interval  $[-c_i, c_i]$  for such i

• 
$$c_i = \sqrt{\frac{2 \ln t}{t_i}}$$



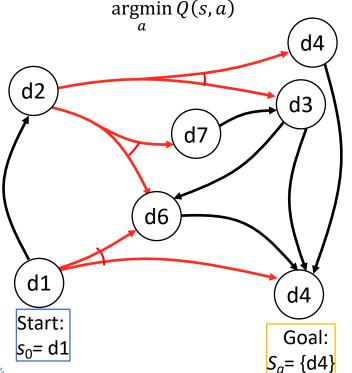
- And select an i with maximum  $\mu_i + c_i$
- If an action has not been tried many times, then the big confidence interval makes it still possible to be tried.
- I.e., in face of uncertainty (of  $\mu_i$ ), we act optimistically by giving chances to those that have not been tried enough





## **UCT** Algorithm

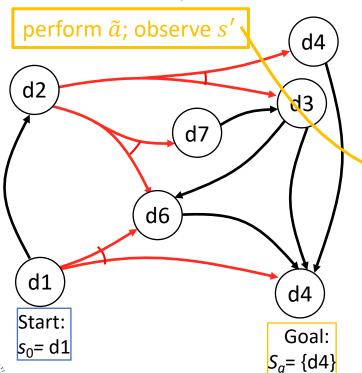
- Recursive UCB computation to compute Q(s,a) for cost
  - Min ops instead of max
  - *h* horizon (steps into the future)
- Anytime algorithm:
  - Call repeatedly until time runs out
  - Then choose action argmin O(s, a)



```
UCT (\Sigma, s, h)
     if s \in S then
           return 0
     if h = 0 then
           return V_0(s)
     if s \notin Envelope then
           add s to Envelope
           n(s) \leftarrow 0
           for all a \in Applicable(s) do
                 Q(s,a) \leftarrow 0
                 n(s,a) \leftarrow 0
     Untried \leftarrow \{a \in Applicable(s) \mid n(s,a)=0\}
     if Untried ≠ Ø then
           \tilde{a} \leftarrow \text{Choose}(\text{Untried})
     else
           \tilde{a} \leftarrow \operatorname{argmin}_{a \in Applicable(s)}
                 \{Q(s,a) - \hat{C} [log(n(s))/n(s,a)]^{\frac{1}{2}}\}
     s' \leftarrow \text{Sample}(\Sigma, s, \tilde{a})
     cost-rollout \leftarrow cost(s, \tilde{a}) + UCT(s', h-1)
     Q(s, \tilde{a}) \leftarrow [n(s, \tilde{a}) \cdot Q(s, \tilde{a}) + cost - rollout]
                      /(1+n(s,\tilde{a}))
     n(s) \leftarrow n(s) + 1
     n(s,\tilde{a}) \leftarrow n(s,\tilde{a}) + 1
     return cost-rollout
```

### UCT as an Acting Procedure

- Suppose probabilities and costs unknown
- Suppose you can restart your actor as many times as you want
- Can modify UCT to be an acting procedure
  - Use it to explore the environment

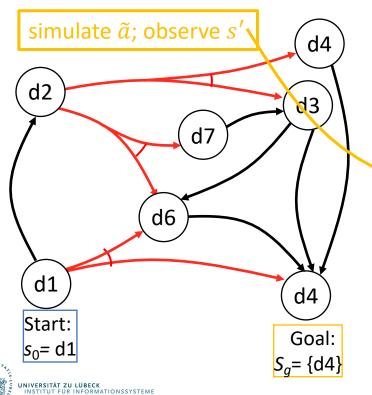


NIVERSITÄT ZU LÜBECK INSTITUT FÜR INFORMATIONSSYSTEME

```
UCT (\Sigma, s, h)
     if s \in S then
           return 0
     if h = 0 then
           return V_0(s)
     if s \notin Envelope then
           add s to Envelope
           n(s) \leftarrow 0
           for all a \in Applicable(s) do
                Q(s,a) \leftarrow 0
                n(s,a) \leftarrow 0
     Untried \leftarrow \{a \in Applicable(s) \mid n(s,a)=0\}
     if Untried ≠ Ø then
           \tilde{a} \leftarrow \text{Choose}(\text{Untried})
     else
           \tilde{a} \leftarrow \operatorname{argmin}_{a \in Applicable(s)}
                \{Q(s,a) - C \cdot [log(n(s))/n(s,a)]^{\frac{1}{2}}\}
     s' \leftarrow Sample(\Sigma, s, \tilde{a})
     cost-rollout \leftarrow cost(s, \tilde{a}) + UCT(s', h-1)
     Q(s, \tilde{a}) \leftarrow [n(s, \tilde{a}) \cdot Q(s, \tilde{a}) + cost - rollout]
                      /(1+n(s,\tilde{a}))
     n(s) \leftarrow n(s) + 1
     n(s,\tilde{a}) \leftarrow n(s,\tilde{a}) + 1
     return cost-rollout
```

# UCT as a Learning Procedure

- Suppose probabilities and costs unknown
  - But you have an accurate simulator for the environment
- Run UCT multiple times in the simulated environment
  - Learn what actions work best



```
UCT (\Sigma, s, h)
     if s \in S then
          return 0
     if h = 0 then
           return V_0(s)
     if s \notin Envelope then
          add s to Envelope
          n(s) \leftarrow 0
           for all a \in Applicable(s) do
                Q(s,a) \leftarrow 0
                n(s,a) \leftarrow 0
     Untried \leftarrow \{a \in Applicable(s) \mid n(s,a)=0\}
     if Untried ≠ Ø then
           \tilde{a} \leftarrow \text{Choose}(\text{Untried})
     else
           \tilde{a} \leftarrow \operatorname{argmin}_{a \in Applicable(s)}
                \{Q(s,a) - \hat{C} [log(n(s))/n(s,a)]^{\frac{1}{2}}\}
     s' \leftarrow Sample(\Sigma, s, \tilde{a})
     cost-rollout \leftarrow cost(s, \tilde{a}) + UCT(s', h-1)
     Q(s, \tilde{a}) \leftarrow [n(s, \tilde{a}) \cdot Q(s, \tilde{a}) + cost - rollout]
                      /(1+n(s,\tilde{a}))
     n(s) \leftarrow n(s) + 1
     n(s,\tilde{a}) \leftarrow n(s,\tilde{a}) + 1
     return cost-rollout
```

# UCT in Two-Player Games

- Generate Monte Carlo rollouts using a modified version of UCT
  - Rollout: game is played out to very end by selecting moves at random, result of each playout used to weight nodes in game tree
- Main differences:
  - Instead of choosing actions that minimize accumulated cost, choose actions that maximize payoff at the end of the game
  - UCT for player 1 recursively calls UCT for player 2
    - Choose opponent's action
  - UCT for player 2 recursively calls UCT for player 1
- Produced the first computer programs to play Go well
  - ≈ 2008–2012
- Monte Carlo rollout techniques similar to UCT were used to train AlphaGo





# Intermediate Summary

- Run-Lookahead
- Reinforcement learning
  - Passive learning
    - DUE
    - ADP
    - TD
  - Active learning
    - Active ADP
    - Q-learning
  - Multi-armed bandit problem
    - UCB, UCT



# Outline per the Book

#### 6.2 Stochastic shortest path problems

- Safe/unsafe policies
- Optimality
- Policy iteration, value iteration

#### 6.3 Heuristic search algorithms

- Best-first search
- Determinisation

#### 6.4 Online probabilistic planning

- Lookahead
- Reinforcement learning

⇒ Next: More on Decision Making

