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MDP
• Sequential decision problem for a fully observable, 

stochastic environment with a Markovian transition 
model and additive rewards
• Components

• a set of states ! (with an initial state "#)
• a set $ " of actions in each state
• a transition model % "& ", (
• a reward function )(")
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Further Problems
• Wrong goal formulation
• Hard to specify goal or reward/cost function correctly

• Uncertainty about the world state due to imperfect 
(partial) information
• Noise

• e.g., in sensors
• Limited accuracy 

• e.g., image resolution, geo-location

• Multiple agents controlling an environment jointly
• Each agent is their own entity

• Own observations, own actions
• Joint reward from the environment
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Outline
Provably Beneficial AI
• Hidden goals

Partially Observable Markov Decision Process 
(POMDP)
• POMDP agent, belief state, belief MDP
• Conditional plans, value iteration

Decentralised POMDP (Dec-POMDP)
• Dec-POMDP, local policy, joint policy, value function
• Communication, full observability, Dec-MDP
• Solutions for finite, infinite, indefinite horizon
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Standard Model for AI

10

Maximize 
∑"#$¥ g"%(', ), '*) Righty-ho

Also the standard model for control theory, 
statistics, operations research, economics

King Midas problem:
• Cannot specify R correctly
• Smarter AI => worse outcome



How We Got into this Mess
• Humans are intelligent to the extent that our

actions can be expected to achieve our objectives
• Machines are intelligent to the extent that their

actions can be expected to achieve their objectives
• Machines are beneficial to the extent that their

actions can be expected to achieve our objectives
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New Model: Provably Beneficial AI
1. Robot goal: satisfy human preferences
2. Robot is uncertain about human preferences
3. Human behavior provides evidence of preferences

Þ assistance game with human and machine 
players

Þ Smarter AI => better outcome
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Human behaviour Machine behaviour

AIMA 1,2,3: Objective Given to Machine
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Human objective



Machine behaviour

AIMA 1,2,3: Objective Given to Machine
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Human objective



Human behaviour Machine behaviour

Human objective

AIMA 4: Objective Is a Latent Variable
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Example: Image Classification
• Old: minimize loss with (typically) a uniform loss matrix

• Accidentally classify human as gorilla
• Spend millions fixing public relations disaster

• New: structured prior distribution over loss matrices
• Some examples safe to classify
• Say “don’t know” for others
• Use active learning to gain 

additional feedback from humans

• Other researchers work on similar ideas
• E.g., Kristian Kersting

• Sometimes in conflict with
demands of privacy
• E.g., Esfandiar Mohammadi
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Example: Fetching Coffee
• What does “fetch some coffee” mean?
• If there is so much uncertainty about preferences, 

how does the robot do anything useful?
• Answer: 
• The instruction suggests coffee would have higher value 

than expected a priori, ceteris paribus
• Uncertainty about the value of other aspects of 

environment state doesn’t matter as long as the robot 
leaves them unchanged
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Basic Assistance Game

Preferences θ
Acts roughly according to θ

Maximise unknown human θ
Prior P(θ)

Equilibria:
Human teaches robot
Robot learns, asks questions, permission; defers to human; allows off-switch
Related to inverse RL, but two-way
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The Off-switch Problem
• A robot, given an objective, has an incentive to 

disable its own off-switch
• “You can’t fetch the coffee if you’re dead”

• A robot with uncertainty about objective won’t 
behave this way
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R

R

H

U = Uact

U = Uact U = 0

U = 0

go ahead

wait

Theorem: robot has a positive incentive to allow 
itself to be switched off
Theorem: robot is provably beneficial
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Intermediate Summary
• Provably beneficial AI is possible and desirable

It isn’t “AI safety” or “AI Ethics,” it’s AI

• Continuing theoretical work (AI, CS, economics)
• Initiating practical work (assistants, robots, cars)
• Inverting human cognition (AI, cogsci, psychology)
• Long-term goals (AI, philosophy, polisci, sociology)

21



Outline
Provably Beneficial AI
• Hidden goals

Partially Observable Markov Decision Process 
(POMDP)
• POMDP agent, belief state, belief MDP
• Conditional plans, value iteration

Decentralised POMDP (Dec-POMDP)
• Dec-POMDP, local policy, joint policy, value function
• Communication, full observability, Dec-MDP
• Solutions for finite, infinite, indefinite horizon
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POMDP
• POMDP = Partially Observable MDP
• A sensing operation returns multiple 

states, with a probability distribution
• Sensor model !(#|%)
• Example:

• Sensing number of adjacent walls (1 or 2)
• Return correct value with probability 0.9

• Choosing the action that maximizes the expected utility 
of this state distribution assuming “state utilities” 
computed as before is not good enough, and actually 
does not make sense (i.e., not rational)
• POMDP agent

• Constructing a new MDP in which the current probability 
distribution over states plays the role of the state variable
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Decision cycle of a POMDP agent 

• Given the current belief state !, execute the action 
" = $∗ !

• Receive observation &
• Set the current belief state to '( !, ", & and repeat 

• SE = State Estimation

24

SE $

Agent

World

Observation

Action
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Belief State & Update
• ! " is the probability assigned to the actual state "

by belief state !
• Update !# = %& !, (, )

!# "* = + "*|), (, ! = + )|"*, ( ∑./∈1 + "*|"2, ( ! "2
∑.3∈1 + )|"4, ( ∑./∈1 + "4|"2, ( ! "2

• Initial belief state
• Probability of 0 for terminal 

states
• Uniform distribution for rest 
• ! = 6

7 ,
6
7 ,
6
7 ,
6
7 ,
6
7 ,
6
7 ,
6
7 ,
6
7 ,
6
7 , 0,0
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Belief State & Update
• Update !" = $% !, ', (
!" )* = + )*|(, ', ! = + (|)*, ' ∑./∈1 + )*|)2, ' ! )2

∑.3∈1 + (|)4, ' ∑./∈1 + )4|)2, ' ! )2
• Consider as two stage-update

1. Update for the action
2. Update for the observation
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Belief MDP
• A belief MDP is a tuple !, #, $, %
• ! = infinite set of belief states

• Continuous!
• # = finite set of actions
• Reward function $ &
• Transition function % &' &, (
• Sensor model % ) (, &
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Belief MDP
• Reward function: Sum over all actual states that the agent can be in

="
#
$ % & %

• Transition function: Sum over all possible observations
="

'
( $)|+, -, $ ( +|-, $

="
'
( $)|+, -, $ "

#)
( +|%′ "

#
( %)|%, - $(%)

• where ( $)|+, -, $ = 1 if $) = 23 $, -, + and 0 oth.

• Sensor model: Sum over all actual states that the agent might reach
="

#5
( +|-, %), $ ( %)|-, $ ="

#5
( +|%) ( %)|-, $

="
#5
( +|%) "

#
( %)|%, - $(%)

• ( $) $, - and 6 $ define an observable MDP on the space of belief 
states

28
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Belief MDP
• Optimal action depends only on 

agent’s current belief state
• Does not depend on actual state the 

agent is in

Þ Solving a POMDP on a physical 
state space is reduced to solving 
an MDP on the corresponding 
belief-state space
• Mapping !∗ # from belief states to 

actions
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Example Scenario
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Conditional Plans
• Example: 
• Two state world 0,1
• Two actions: $%&' ( , )* (

• Actions achieve intended effect with some probability (
• One-step plan )* , $%&'

• Two-step plans are conditional
• [&1, IF +,-.,+% = 0 THEN &2 ELSE &3]
• Shorthand notation: &1, &2/&3

• 3-step plans are trees with 
• Nodes attached with actions and 
• Edges attached with percepts
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Value Iteration for POMDPs
• Cannot compute a single utility value for each state of all 

belief states
• Consider an optimal policy !∗ and its application in belief 

state #
• For this #, the policy is a conditional plan $

• Let the utility of executing a fixed conditional plan $ in % be &' %
• Expected utility (' # = ∑+ # % &' %

• It varies linearly with #, a hyperplane in a belief space
• At any #, the optimal policy will choose the conditional plan with 

the highest expected utility
( # = (,∗ # = max' 0

+
# % &' %

!∗ = argmax
'

0
+
# % &' %

• ((#) is the maximum of a collection of hyperplanes and will be piecewise 
linear and convex
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Example
• Compute the utilities for conditional plans of depth 

2 by 
• considering each possible first action
• each possible subsequent percept
• each way of choosing a depth-1 plan to execute for each 

percept

33

Utility of two one-
step plans as a 
function of ! 1



Example
• Two state world 0,1
• Rewards $ 0 = 0, $ 1 = 1
• Two actions:
&'() 0.9 , ,- 0.9

• Sensor reports correct state 
with probability of 0.6
• Consider the one-step plans &'() and ,-

• / 0123 0 = $ 0 + 0.9$ 0 + 0.1$ 1 = 0.1
• / 0123 1 = $ 1 + 0.9$ 1 + 0.1$ 0 = 1.9
• / 56 0 = $ 0 + 0.9$ 1 + 0.1$ 0 = 0.9
• / 56 1 = $ 1 + 0.9$ 0 + 0.1$ 1 = 1.1
• This is just the direct reward function (taking into account the 

probabilistic transitions)
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35

• 8 distinct depth-2 plans for each state

! "#$%,"#$%/"#$% 0 = * 0 + 0.9 . 0.6 . 0.1 + 0.4 . 0.1 + 0.1 . 0.6 . 1.9 + 0.4 . 1.9 = 0.28
! "#$%,"#$%/"#$% 1 = * 1 + 0.9 . 0.6 . 1.9 + 0.4 . 1.9 + 0.1 . 0.6 . 0.1 + 0.4 . 0.1 = 2.72

! "#$%,56/"#$% 0 , ! "#$%,"#$%/56 0 , ! "#$%,56/56 0
! "#$%,56/"#$% 1 , ! "#$%,"#$%/56 1 , ! "#$%,56/56 1

! 56,"#$%/"#$% 0 = * 0 + 0.9 . 0.6 . 1.9 + 0.4 . 1.9 + 0.1 . 0.6 . 0.1 + 0.4 . 0.1 = 1.72
! 56,"#$%/"#$% 1 = * 1 + 0.9 . 0.6 . 0.1 + 0.4 . 0.1 + 0.1 . 0.6 . 1.9 + 0.4 . 1.9 = 1.28

! 56,56/"#$% 0 , ! 56,"#$%/56 0 , ! 56,56/56 0
! 56,56/"#$% 1 , ! 56,"#$%/56 1 , ! 56,56/56 1

Sum over states reachable 
with first action

Probability of 
next state

Sum over possible percepts

Probability of 
percept

After moving from 
0 to 1, perceive 
false state (0); 

plan says 789: for 
0, so receive

! "#$% 1 = 1.9

Utility of depth-1 plan 
given state, outcome of 
first action, and percept

Reward of state

Utilities of depth-1 plans
! "#$% 0 = 0.1 ! 56 0 = 0.9
! "#$% 1 = 1.9 ! 56 1 = 1.1



Example
• 8 distinct depth-2 plans for state 1

• 4 are suboptimal across the entire belief space (dashed lines)
• With probability "(1) = 0: With probability "(1) = 1:

• ' ()*+,()*+/()*+ 0 = 0.28 ' ()*+,()*+/()*+ 1 = 2.72
• ' 23,()*+/()*+ 0 = 1.72 ' 23,()*+/()*+ 1 = 1.28
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Example
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Utility of four undominated 
two-step plans

Utility function for optimal 
eight step plans



General Formula
• Let ! be a depth-" conditional plan whose initial 

action is # and whose depth-" − 1 subplan for 
percept & is !. &, then
() * = , * +.

/0
1(*3| *, #) .

7
1 & *3 ().7 *3

• This gives us a value iteration algorithm
• The elimination of dominated plans is essential for 

reducing doubly exponential growth: 
• Number of undominated plans with " = 8 is just 144
• Otherwise 2;<< ( = > ? @AB )

• For large POMDPs this approach is highly inefficient
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Value Iteration: Algorithm

• Inputs
• a POMDP, which includes

• States !
• For all " ∈ !, actions $ " , transition model % "&| (. " , sensor model % *| " , rewards + "
• Discount ,

• Maximum error allowed -
• Local variables

• .,.& sets of plans with associated utility vectors 01

39

function value-iteration(pomdp,-)
U’ ← a set containing the empty plan [] with u[](s)=R(s)
repeat

U ← U’
U’ ← the set of all plans consisting of an action and, 

for each possible next percept, a plan in U with 
utility vectors computed as on previous slide

U’ ← Remove-dominated-plans(U’)
until Max-difference(U,U’) < -(1-,)/,
return U



Solutions for POMDP
• Belief MDP has reduced POMDP to MDP
• MDP obtained has a multidimensional continuous state 

space
• Extract a policy from utility function returned by 

value-iteration algorithm
• Policy ! " can be represented as a set of regions of 

belief state space
• Each region associated with a particular optimal action
• Value function associates distinct 

linear function of " with each region
• Each value or policy iteration step 

refines the boundaries of the regions 
and may introduce new regions.
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Intermediate Summary
• POMDP
• Uncertainty about state ➝ belief state
• Solving a POMDP = Solving an MDP on space of belief 

states
• Policy = conditional plans
• Value iteration to find optimal policy

• Very expensive, even with deletion of dominated plans

41

What to do alternatively? Find sub-optimal plans
• Sampling approaches
• In combination with deep learning methods



Outline
Provably Beneficial AI
• Hidden goals

Partially Observable Markov Decision Process 
(POMDP)
• POMDP agent, belief state, belief MDP
• Conditional plans, value iteration

Decentralised POMDP (Dec-POMDP)
• Dec-POMDP, local policy, joint policy, value function
• Communication, full observability, Dec-MDP
• Solutions for finite, infinite, indefinite horizon

42



Multi-agent Scenarios
• Ambulance allocation

• Multiple ambulance services 
• Business oriented operation 
• Competition for government funds and public opinion 

• Given several locations that require medical assistance, how 
many ambulances from which firm will go to which location? 

• Firefighters
• Maintain effort toward saving the building or draw back and 

minimise the spread of fire? 
• Concentrate on a multitude of smaller fires or allow 

controlled unification and deal with only one location? 
• Will transportation routes be endangered? 
• Are there still civilians evacuating from the area/building? 

• Push through the fire to victims or save the fire crew and pull 
out? 
• If multiple crews are on site, which one goes? When? 
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Setting
• Single and repeated interactions with joint rewards: 

traditional game theory

• Part of IFIS module Intelligent Agents
• Interactions involving joint state + reward focus of 

decision-theory inspired approaches to game theory 

• Extensions of single-agent models to multi-agent settings

• Multi-agent setting
• Co-operation of agents (team)

• Vs. self-interested acting 
(all the way to hostile settings)

• Problem: planning how to act

• Joint payoff ! but 
decentralised actions "#
and observations $#

• Joint state, influenced by 
actions, can influence rewards

• Perfect vs. incomplete 
information about others

44
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Decentralised POMDP (Dec-POMDP)
• Dec-POMDP: tuple 
!, #, $% %∈', (% %∈', )*+, ,, )-./
• ! = a finite set of agents indexed 1,… , 2
• # = a finite set of states
• $% = a finite set of actions available to agent 3 ∈ !

• $⃗ = ⨂%∈' $% set of joint actions
• (% = a finite set of observations available to agent 3 ∈ !

• ( = ⨂%∈' (% set of joint observations
• Transition function )*+ = ) 78 7, 9⃗
• Reward function ,(7) or , 9⃗, 7
• Sensor model (observation function) )-./ = ) <⃗ 9⃗, 7

• Co-operative, decision-theoretic setting:
• Joint reward function ,, joint state 7
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Generalising Dec-POMDPs
• Partially observable stochastic game (POSG)
• Dec-POMDP !, #, $% %∈', (% %∈', )*+, ,, )-./ but with 

individual reward functions ,% %∈'
• Reward function ,% for each agent 0 ∈ !

• For self-interested or adversarial acting

46



Policies for Dec-POMDPs
• Local policy !" for agent #
• Representations: Mappings…

• from local histories of observations ℎ" = &"', … , &"* over +" to 
actions in ,"

• from local abstraction of joint state - in . to actions in ,"
• from (generalised) belief states /" to actions in ,"

• Belief MDP
• from internal memory states to actions 

• Joint policy ! = !0,… , !1
• Tuple of local policies, one for each agent in 2

47



Value Functions for Dec-POMDPs
• Value functions work as before given a joint policy
• Value of a joint policy ! for a finite-horizon Dec-POMDP 

with initial state "#
$% "# = ' (

)*#

+,-
. 0⃗), ") |"#, !

• Value of a joint policy ! for a infinite-horizon Dec-
POMDP with initial state "# and discount factor 3 ∈
0,1

$% "# = ' (
)*#

7
3). 0⃗), ") |"#, !

• 0⃗) joint action at time step 8
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Example: Two-agent Grid World
• Agents: two
• States: grid cell pairs
• Actions: move U, D, L, R, 

stay
• Transitions: noisy
• Observations: cell 

occupancy in the directions 
of the red lines
• Rewards: negative unless 

sharing the same square
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Example: The Dec-Tiger Problem
• A toy problem: 

decentralized tiger
• Opening correct door:

both receive treasure
• Opening wrong door:

both get attacked by a tiger
• Agents can open a door, or listen 
• Two noisy observations: 

hear tiger left or right
• Don’t know the other’s actions 

or observations

50



Communication?
• Can make working towards a common goal easier
• Agents in grid world can communicate their intent 

(direction of travel)

• Definitely makes the formalism more complicated
• Dec-POMDP with communication (Dec-POMDP-Com)

• Dec-POMDP !, #, $% %∈', (% %∈', )*+, ,, )-./ extended with 
• Alphabet Σ for communication

• 1% ∈ Σ an atomic message sent by agent 2
• 1⃗ = 15, … , 17 a joint message

• 89 ∈ Σ a null message, sent by an agent 
that does not want to transmit anything 
to the others (no cost of sending 89)

• Cost function :; for transmitting atomic message

• Reward function , <⃗, =>, 1⃗ incorporating joint message

51

New dimensions: 
• Do agents 

always share 
information? 

• Can they 
intentionally 
withhold 
information? 

• Can they lie?



Dec-MDP
• Joint full observability
• Collective observability
• A DEC-POMDP is jointly fully observable if the n-tuple of 

observations made by all the agents uniquely determine 
the current global state
• That is, if ! #⃗ $⃗, &' > 0, then ! &' #⃗ = 1

• Dec-MDP ≙ Dec-POMDP with joint full 
observability
• Same as before: 

MDP ≙ POMDP with full observability
• Alternative name: multi-agent MDP
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Solving Dec-POMDPs
• Problem: No joint belief available
• Only partial information about state available to each 

agent

• Complexity: NEXP-complete
• Optimal solutions using dynamic programming paradigm 

+ exploiting structure if present
• Reduction to NP when agents mostly independent + 

communication can be explicitly modelled and analysed
• Requires that one can factorise the joint state space into a state 

space for each agent that is mostly independent of all others
• The same goes for the observations and the reward function
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Exhaustive Search
• Optimal solution approach for general models with 

a finite horizon ℎ
• Procedure:
• Do a search for each agent to find optimal local policies 

with a limited depth of ℎ
• Prune dominated search paths/strategies locally by 

considering the joint state and other agents’ policies 
(globally)
• Requires central oversight
• Cannot be done locally without a huge amount of 

communication

• Even with pruning, still limited to small problems
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Without Pruning With Pruning
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Exhaustive Search and Pruning



Without Pruning With Pruning
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Without Pruning With Pruning
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Exhaustive Search and Pruning



Without Pruning With Pruning
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Exhaustive Search and Pruning



Without Pruning With Pruning
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Exhaustive Search and Pruning



Without Pruning With Pruning
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Exhaustive Search and Pruning



Without Pruning With Pruning
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Exhaustive Search and Pruning



Joint Equilibrium Search for Policies

• Approximate solution approach for general models 
with a finite horizon ℎ
• Instead of exhaustive search, find best response
• Local optimum
• Convergence criterion needed

• E.g., no change (or only " change) in any policy
• Same worst case complexity, but in practice much faster
• Can include pruning, further heuristics when looking for 

best response policy

62

JESP(dec-pomdp)
while not converged do

for i = 1 to n do
Fix other agent policies
Find a best response policy for agent i



Multi-agent A* (MAA*)
• Optimal solution approach for general models with 

a finite horizon ℎ
• A*-like search over partially specified joint policies
• "# = %&,… , %#)*
• %# = %&#, … , %+#
• %,# ∶ .,# → 0,

• Requires an admissible 
heuristic function 12 "#

63

12 "#
3
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How to get a heuristic function?
• Solve simplified settings, e.g.,
• Solve the underlying MDP (approximately or optimally) 

given assumptions:
• Centralised observations
• Full observability

• Simulate / sample unobserved values
• Solve a belief MDP given assumption

• Centralised observations

• Domain-specific heuristics

64



Memory Bounded Search

• Approximate solution approach for general models 
with a finite horizon ℎ
• Do not keep all policies at each step but a fixed number 

for each agent "#$%&''(
• Select "#$%&''( in a way that "#$%&''( ) * trees fit into 

memory
• Can be difficult to choose; often small in practice

• Select trees by using heuristic (like A*)
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MBDP(+,s0,Sg)
Start with a one-step policy for each agent
for t = h downto 1 do

Backup each agent’s policy
for k = 1 to maxTrees do

Compute heuristic policy and resulting 
belief state b

Chose best set of trees starting at b
Select best set of trees for initial state b0

MBDP = 
Memory 
Bounded 
Dynamic 
Programming



Infinite Horizon
• Approximate using a large enough horizon ℎ
• Neither efficient, nor compact

• Selection of solution approaches based on solution 
approaches already seen for MDPs / POMDPs:
• Policy iteration

• Start with one-step plans, extend further
• Automata-based approaches (Moore/Mealy automata to 

represent policy)
• Intractable for all but the smallest problems

• Best-first search
• Finds optimal fixed-size solutions; use start state info
• High search time ➝ small sizes only

• Further solution approaches use non-linear 
programming
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Indefinite Horizon
• Many natural problems terminate after a goal is 

reached 
• Meeting or catching a target
• Cooperatively completing a task

• Unclear how many steps are needed until 
termination 
• Under certain assumptions can produce an optimal 

solution
• E.g., terminal actions and negative rewards

• Such as the 4x3 grid: 
terminal states, negative rewards for all but one terminal state

• Otherwise, can bound the solution quality by 
sampling 
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Benchmark Problems
• DEC-Tiger

• (Nair et al., 2003) 
• BroadcastChannel

• (Hansen et al., 2004) 
• Meeting on a grid

• (Bernstein et al., 2005) 
• Cooperative Box Pushing 

• (Seuken and Zilberstein, 2007a) 
• Recycling Robots 

• (Amato et al., 2007) 
• FireFighting

• (Oliehoek et al., 2008b) 
• Sensor network problems 

• (Nair et al., 2005; Kumar and Zilberstein, 2009a,b) 
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Software for Dec-POMDPs
• The MADP toolbox aims to provide a software 

platform for research in decision-theoretic 
multiagent planning (Spaan and Oliehoek, 2008)
• Main features:
• Uniform representation for several popular multiagent 

models
• Parser for a file format for discrete Dec-POMDPs
• Shared functionality for planning algorithms
• Implementation of several Dec-POMDP planners

• Released as free software, with special attention to 
the extensibility of the toolbox
• Provides benchmark problems 
• Such as on the previous slide
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agents: 2
discount: 1
values: reward
states: tiger-left tiger-right
start: 
uniform
actions:
listen open-left open-right
listen open-left open-right
observations:
hear-left hear-right
hear-left hear-right

# Transitions 
T: * :
uniform
T: listen listen :
identity
# Observations
O: * :
uniform
O: listen listen : tiger-left : hear-left hear-left : 0.7225
O: listen listen : tiger-left : hear-left hear-right : 0.1275
[...]
O: listen listen : tiger-right : hear-left hear-left : 0.0225
# Rewards
R: listen listen : * : * : * : -2
R: open-left open-left : tiger-left : * : * : -50 
[...]
R: open-left listen: tiger-right : * : * : 9 

#include "ProblemDecTiger.h" 
#include "JESPExhaustivePlanner.h" 
int main()
{ 

ProblemDecTiger dectiger;
JESPExhaustivePlanner jesp(3,&dectiger);
jesp.Plan();
std::cout

<< jesp.GetExpectedReward() 
<< std::endl;

std::cout
<< jesp.GetJointPolicy()->SoftPrint()

<< std::endl;
return(0);

} 

Dec-Tiger Problem Specification and Program



Interim Summary
• Dec-POMDPs
• Local policies, joint policy, value functions
• Communication, full observability, Dec-MDP

• Solutions for
• Finite horizon
• Infinite horizon
• Indefinite horizon

• MADP tool box
• Benchmark problems
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Hierarchy of Formalisms
• Most general: POSG
• Set of agents, individual 

reward functions, environment  
only partially observable

• Specifications
1. Decentralisation

• Joint reward function
2a. Observable environment
2b. Multi to single agent

• Most specific: MDP
• One agent, (therefore) one 

reward function, observable 
environment
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Dec-POMDP

POSG

POMDP Dec-MDPMDP

Propositional 
modelling!



First-order Modelling
• First-order / relational MDPs

• Use representatives while planning
• E.g., it is important that a box with 

medical supplies arrives at a destination 
but not which box in particular that is 
(of a set of boxes with medical supplies)

• Lifting for agents
• Novel propositional situations worth exploring may be 

instances of a well-known context in the relational setting 
➝ exploitation promising 

• E.g., household robot learning water-taps
• Having opened one or two water-taps in a kitchen, one can expect 

other water-taps in kitchens to behave similarly
⇒Priority for exploring water-taps in kitchens in general reduced
⇒ Information gathered likely to carry over to water-taps in other 

places
vHard to model in propositional setting: each water-tap is novel
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Research is not finished; 
first-order / relational/ 
lifted modelling not yet 
fully explored, especially 
regarding multi-agent



Outline
Provably Beneficial AI
• Hidden goals

Partially Observable Markov Decision Process 
(POMDP)
• POMDP agent, belief state, belief MDP
• Conditional plans, value iteration

Decentralised POMDP (Dec-POMDP)
• Dec-POMDP, local policy, joint policy, value function
• Communication, full observability, Dec-MDP
• Solutions for finite, infinite, indefinite horizon

⟹ Next: Human-aware planning
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