
Intelligent Agents:
Web-mining Agents

Probabilistic Graphical Models

Lifted Inference

Tanya Braun

Probabilistic Graphical Models (PGMs)
1. Recap: Propositional

modelling
• Factor model, Bayesian

network, Markov network
• Semantics, inference tasks

+ algorithms + complexity
2. Probabilistic relational

models (PRMs)
• Parameterised models, Markov

logic networks
• Semantics, inference tasks

3. Lifted inference
• LVE, LJT, FOKC
• Theoretical analysis

4. Lifted learning
• Recap: propositional learning
• From ground to lifted models
• Direct lifted learning

5. Approximate Inference:
Sampling
• Importance sampling
• MCMC methods

6. Sequential models &
inference
• Dynamic PRMs
• Semantics, inference tasks

+ algorithms + complexity,
learning

7. Decision making
• (Dynamic) Decision PRMs
• Semantics, inference tasks

+ algorithms, learning
8. Continuous Space

• Gaussian distributions and
Bayesian networks

• Probabilistic soft logic

2

Problem: Many Queries
• Set of queries
• ! "#$%&'(&%&)
• ! *+,-(./.)
• ! "#&$0(&%&,23)
• ! 45+6
• ! 7$0(8'//6)
• ! 9$:(%+#;<)
• Combinations of

variables
• Under evidence
• *+,- => = 0#;&
• => ∈ {$'+,&, &%&}

3

• LVE restarts with initial
model for each query

45+6

7$0 C 9$: 9

"#$%&' =

*+,- =

"#&$0 =, !

D3

DE DF

Build a helper structure
to precompute parts

Outline: 3. Lifted Inference
A. Lifted variable elimination (LVE)

• Operators
• Algorithm
• Complexity (including first-order dtrees), completeness, tractability
• Variants

B. Lifted junction tree algorithm (LJT)
• First-order junction trees (FO jtrees)
• Algorithm
• Complexity, completeness
• Variants

C. First-order knowledge compilation (FOKC)
• Normal form, circuits
• Algorithm
• Complexity, completeness

D. Most probable assignment queries
• Distribution vs. assignment queries
• Most probable explanation (MPE) , Maximum-a-posteriori (MAP) assignments
• Changes in LVE, LJT, FOKC
• Complexity, completeness

4

Clustering of Models
• Idea: Find subsets (clusters) of PRVs that are “enough”

for certain queries
• E.g.,

• For queries about instances of !"# $, %"& ' , ()*+
• !"# $, %"& ' , ()*+ are enough

• For queries about instances of ,-"./0 1 , 2*34 1 , ()*+
• ,-"./0 1 , 2*34 1 , ()*+ are enough

• For queries about instances of ,-/"# 1,% , 2*34 1 , ()*+
• ,-/"# 1,% , 2*34 1 , ()*+ are enough

5

()*+

!"# $ %"& '

,-"./0 1

2*34 1

,-/"# 1,%

67

68 69

Clustering of Models
• But: If only parfactors used that contain the PRVs of a

cluster, information stored in all other parfactors ignored
• E.g.,

• !"# $, %"& ' , ()*+: ,- ➝ misses ,., ,/
• 01"234 5 , 6*78 5 , ()*+: ,. ➝ misses ,-, ,/
• 013"# 5,% , 6*78 5 , ()*+: ,/ ➝ misses ,-, ,.

• Only correct if clusters are independent from each other
• How can we achieve independence?

6

()*+

!"# $ %"& '

01"234 5

6*78 5

013"# 5,%

,-

,. ,/

Clustering of Models
• Remember: Global Markov Property

• Any two subsets of variables are conditionally independent
given a separating subset

• E.g.,
• !"# $, %"& ' , ()*+: ,-➝ independent of the rest given ()*+
• ./"012 3 , 4*56 3 , ()*+: ,7➝ independent of the rest given ()*+, 4*56 3
• ./1"# 3,% , 4*56 3 , ()*+: ,9➝ independent of the rest given ()*+, 4*56 3

7

()*+

!"# $ %"& '

./"012 3

4*56 3

,-

,7 ,9 ./1"# 3,%

Clustering of Models
• Put clusters and their separators into a graph structure where

• Nodes are clusters with parfactors assigned containing the cluster PRVs
(local model)

• Edges are labelled with the separator between neighbouring nodes
• If two nodes contain the same PRV, every node on the path between

the two nodes contain the PRV (running intersection property)

8

!"#$

%&' ()&* +

,-&./0 1

2#34 1

56

57 58

57

!"#$ 2#34 1
,-&./0 1

58

!"#$ 2#34 1
,-/&' 1,)

56

!"#$ %&' (
)&* + !"#$!"#$

2#34 1

,-/&' 1,)

Clustering of Models
• Next: Make clusters actually independent of each other

• Each cluster ! asks its neighbours " ∈ $%& ! for information
about the separator '() between them
• Other clusters have to collect all the information from the model

that lies behind the separator on its part, eliminate the non-
separator PRVs from that information using LVE, and send the
result in a message *)(, i.e., a set of parfactors, back

• Having the information on the separators to all neighbours
makes a cluster independent from its neighbours and
therefore all other parts of the model
• Ensures that each cluster of PRVs has all model information

needed available for query answering on instances of its cluster
PRVs

9
+,

-.!/ 0!12 3
456789 3

+:

-.!/ 0!12 3
4586; 3,=

+>

-.!/ ?6; @
=6$ A -.!/ -.!/

0!12 3
B> B, B:

Clustering of Models
• Next: Make clusters actually independent of each other

• E.g., !": #"➝ independent of the rest given $%&',)&*+ ,
• Asks neighbour !- for information on $%&',)&*+ ,

• !- asks neighbour !. for information on $%&'
• !. sends information on $%&' in a message /.-

• Eliminates 012 3 , 415 4 from #. for /.-
• !- sends information on $%&',)&*+ , to !" in a message /-"

• Eliminates 67189: , from #- and /.- for /-"
• With /-", !" is independent from its neighbour !- and therefore

also from !.
• As !- is independent given /.- from !.

10

$%&',)&*+ , ?$%&'?

#-

$%&')&*+ ,
67189: ,

#"

$%&')&*+ ,
67912 ,,4

#.

$%&' 012 3
415 ; $%&' $%&'

)&*+ ,
!. !- !"

/.-

/.-

$%&'! /-"

/-"

$%&',)&*+ , !

Eliminate
012 3 ,415 ;

Eliminate
67189: ,

The same has
to be done for
!- and !.

Clustering of Models
• With each cluster ! independent of the rest, each ! can

answer queries about instances of its PRVs based on its
local model and the messages received
• Query terms: grounded instances or parameterised versions

of its PRVs
• Conjunctive queries if terms only concern the cluster PRVs

• E.g., "#: $#➝ independent of the rest given %&!',)!*+ ,
• Based on $# and -.#, "# can answer queries about
%&!',)!*+ , , /0123 ,,4 such as
5)!*+ , , 5 /0123 161,-. , 5 %&!',)!*+ 27!*1
• Cannot answer any queries about 823 9 ,42: ; , /02617 ,

but "< and ". can

11

$.

%&!')!*+ ,
/02617 ,

$#

%&!')!*+ ,
/0123 ,,4

$<

%&!' 823 9
42: ; %&!' %&!'

)!*+ ,
"< ". "#

-<. -.#-.< -#.

Clustering of Models
• Problem left: If each cluster asks for information on

separators, some messages are sent multiple times
• E.g.,

• !" asks !#, which asks !$
• Messages calculated and sent: %$#,%#"

• !# asks !$ and !"
• Messages calculated and sent: %$#,%"#

• !$ asks !#, which asks !"
• Messages calculated and sent: %"#,%#$

12

'()* +),- .
/01234 .

'()* +),- .
/0315 .,6

'()* 715 8
619 : '()* '()*

+),- .
!$!# !"

'()*, +),- . ?'()*?

%$# %#"

Organise in way that messages
are calculated only once

'()*, +),- . ?'()*?

%$# %"#

'()*, +),- . ?'()*?

%#$ %"#

Clustering of Models
• Use dynamic programming to organise the order of

asking or rather sending information in messages:
➝ If a node ! has received all information from neighbours but

one, ", node ! sends a message with its information on the
separator #$% to "

➝ If a node ! has received all messages, then it sends messages
to all neighbours " that have not received a message yet

• When computing the message, ! takes into
consideration its local model as well as the messages
received from all other neighbours but the receiving
neighbour "

13

&'!()!*+ ,
-./012 ,

&'!()!*+ ,
-.1/3 ,,5

&'!(6/3 7
5/8 9 :; :< :=

>;< >=<
><=><;

Clustering of Models
• Observations:

➝ If a node ! has received all information from neighbours but
one, ", node ! sends a message with its information on the
separator #$% to "
• Trivially true at leaf nodes (periphery), can start sending

immediately to its only neighbour (in parallel!)
• From periphery inbound, new nodes trigger this first condition

➝ If a node ! has received all messages, then it sends messages
to all neighbours " that have not received a message yet
• As messages are sent further inwards, a first node at the centre

will have received all messages and will start sending messages
outbound, leading to new nodes triggering this second condition

14

&'!()!*+ ,
-./012 ,

&'!()!*+ ,
-.1/3 ,,5

&'!(6/3 7
5/8 9 :; :< :=

These two passes from periphery inbound and back suffice to distribute

all information and make the clusters independent from each other*

* Shown by Steffen L. Lauritzen and David J. Spiegelhalter: Local Computations with Probabilities on Graphical Structures

and Their Application to Expert Systems. In: Journal of the Royal Statistical Society. Series B: Methodological, 1988.

Foundations of Clustering
• History in propositional probabilistic inference:
• Based on probability propagation introduced by Pearl

(1988)
• If a BN is a polytree, i.e., the

underlying undirected graph
has no trivial cycles, then
• Treat each node in a BN as a

cluster with the random
variables (randvars) of the
accompanying CPT as the
cluster randvars

• Send messages along the
edges (to parents and
children), eliminating
randvars not occurring in the
parent or child nodes

15
Judea Pearl: Reverend Bayes on Inference Engines: A Distributed Hierarchical Approach. In: AAAI-82 Proceedings of the
2nd National Conference on Artificial Intelligence, 1982.

!

"#

!$!#

"$

% "#, !

% !, !$
% !, !#

% "$, !
' !, "$

' !#, !

' !$, !

' !, "#

Foundations of Clustering
• History in propositional probabilistic inference:
• If no polytree, the cycles mess up the message passing

along the edges (information arrives multiple times)
• Send messages nonetheless (exact if polytree, approximate

otherwise): called belief propagation as an algorithm for
approximate inference

• Exact inference required ➝ put the cycles into one cluster
• Graph formed called a junction tree (jtree)

• A first-order version of a jtree was induced on the previous slides
• Also known as clique tree (since the cycles often form cliques in

the model graph) or join tree
• Propositional version introduced by Lauritzen and Spiegelhalter

(1988)
• Shenoy and Shafer (1989) introduce three axioms of local

computations to show correctness of doing computations locally

16

Steffen L. Lauritzen and David J. Spiegelhalter: Local Computations with Probabilities on Graphical Structures and Their
Application to Expert Systems. In: Journal of the Royal Statistical Society. Series B: Methodological, 1988.
Prakash P. Shenoy and Glenn R. Shafer: Axioms for Probability and Belief-Function Propagation. In: Uncertainty in
Artificial Intelligence 4, 1990.

First-order Jtree (FO Jtree)
• As seen on the earlier slides
• Acyclic graph
• Nodes contain PRVs, which form clusters
• Edges are based on the separators between the clusters
• Nodes have parfactors assigned

• Next slides:
• Formal definition
• Construction

• Get an acyclic structure with valid separators and each
parfactor of a model assigned to a local model

17
!"

#$%& '%() *
+,-./0 *

!1

#$%& '%() *
+,/-2 *,4

!5

#$%& 6-2 7
4-8 9 #$%& #$%&

'%() *
:5 :" :1

Parameterised Clusters
• Node of an FO jtree:

Set of PRVs called parameterised cluster (parcluster)
• Let ! be a set of logvars, " a set of PRVs with #$ " ⊆
!, and &, (& a constraint on ! with & being a
sequence of the logvars of !
• Then, a parcluster) is given by

∀+ ∈ (& ∶ "| &,/&
• "| &,/& for short
• Again, &,(& can be omitted if ⊤ constraint encoded
• Depicted as a round shape containing " or just "

• Again, constraint usually not depicted
• E.g., parcluster)1

∀2 ∈ 3 4 ∶ 5678, 97:; 2 , <=>$?# 2 | @,3 @
= 5678, 97:; 4 , <=>$?# 4 | @,3 @
= 5678, 97:; 4 , <=>$?# 4

18

5678 97:; 4
<=>$?# 4)1

5678 97:; 4
<=>$?# 4

FO Jtree
• An FO jtree ! for a model " is a cycle-free graph #, %

• Set of nodes # ⊆ 2() *
• I.e., nodes are sets of PRVs (parclusters)
• 2() * denotes the power set of +, "

• Set of edges % ⊆ -, . | -, . ∈ #, - ≠ . ,
• Has to be cycle free, which includes no self-loops

• E.g., as depicted on the left
• But at this point in the definition,

could be any subsets of PRVs

19

%2-3

456 7 859 8

:+5,;< =

>-?@ =

:+;56 =, A

BC

BD BE%2-3 >-?@ =
:+5,;< =

%2-3 >-?@ =
:+;56 =,8

%2-3 456 7
859 F GC

GD

GE

FO Jtree
• An FO jtree ! for a model " is a cycle-free graph #, %

• Has to satisfy three properties:
1. ∀' ∈ # ∶ ' ⊆ +, "
2. ∀- ∈ " ∶ ∃' ∈ # ∶ +, - ⊆ '
3. If ∃/ ∈ +, " ∶ / ∈ '0 ∧ / ∈ '2 with '0, '2 ∈ #, then

∀'3 ∈ # on the path between '0, '2 ∶ / ∈ '3
(running intersection property)

• E.g., as depicted on the left
• Only the following and one with
'4 at the centre are valid

20

%567 869: ;
<+=,>? ;

%567 869: ;
<+>=@ ;,A

%567 B=@ C
A=D E 'F

'G

'4

%567

B=@ C A=D A

<+=,>? ;

869: ;

<+>=@ ;, H

-F

-G -4

-G

-4

-F

FO Jtree
• An FO jtree ! for a model " is a cycle-free graph #, %

• Is minimal if by removing a PRV from a parcluster, the FO
jtree ceases to be an FO jtree, i.e., no longer fulfils at least
one property

• E.g., depicted on the left
• Cannot remove any PRV from

any parcluster
• Otherwise, a parfactor

would no longer have its
arguments in one parcluster

21

%&'()'*+ ,
-./012 ,

%&'()'*+ ,
-.1/3 ,,4

%&'(5/3 6
4/7 8 9:

9;

9<

%&'(

5/3 6 4/7 4

-./012 ,

)'*+ ,

-.1/3 ,, =

>:

>; ><

>;

><

>:

FO Jtree
• An FO jtree ! for a model " is a cycle-free graph #, %

• Set &'(called separator of edge), * ∈ %, defined by
&'(= -' ∩ -(

• Term /01) refers to the neighbours of -', defined by
/01) = * |), * ∈ %

• Each -' has a local model "' and ∀4 ∈ "' ∶ 67 4 ⊆ -'
• Local models "' partition ", i.e., " = ⋃'∈: "'

22

%;)<

=>? @ A>/ A

B6>7CD E

F)GH E

B6C>? E, I

4J

4K 4L%;)< F)GH E
B6>7CD E

%;)< F)GH E
B6C>? E,A

%;)< =>? @
A>/ M -J

-K

-L

4K

4L

4J %;)<

%;)<
F)GH E

Construction
• Where do we get the

FO jtree from s.t. the jtree
• is acyclic
• fulfils the three FO jtree

properties
• has the model parfactors

automatically assigned to
fitting parclusters?

➝Clusters of an FO dtree
+ undirected dtree edges
+ minimisation
= FO jtree

23

!"!#

$%&'(),+

,-./

0.12)
,-./

3'4 5
6'(/ , ,-./

!7

∀+ ∶ ⊤

$%';&<)
0.12)
,-./

0.12)
,-./

0.12)
,-./

∅

∀) ∶ ⊤ ,-./

∅

∅

∀/:⊤

∀5 ∶ ⊤

∅

3'4 5
6'(? , ,-./

∅

6'(? , ,-./
3'4 5

,-./
6'(?

,-./

6'((?) 3'4(B)

$%';&<(C)

0.12(C)

$%&'((C,3)

!7

!" !#

!"

,-./ 0.12 C
$%';&< C

!#

,-./ 0.12 C
$%&'(C,3

!7

,-./ 6'(?
3'4 B D7 D" D#

Clusters ➝ Parclusters
• Given an FO dtree ! for a model " with

clusters for each node
• Given a cluster #$,… , #' of a DPG

node (,), *
• Resulting parcluster +, = #$,… , #' |/

• Local model ", = ∅
• Given a cluster #$,… , #' of a VE node
• Resulting parcluster +, = #$,… , #' |1

• Local model ", = ∅
• Given a cluster #$,… , #' from a leaf

node with parfactor 23
• Resulting parcluster +, = #$,… , #' |1

• Local model ", = 23
24

∀) ∶ ⊤ 789:

789:|1

Let’s carry the
constraint around for a
bit to make it explicit

789:, ;9<=)

;9<=)
789:

2>

2>

789:, ;9<=) ,
!?@ABC)

FO Dtree ➝ FO Jtree
• Forming an FO jtree ! from an FO dtree " of a

model #
• Nodes of !
• Parclusters resulting from clusters of " as shown on

previous slide
• Each parcluster has a source node in "

• Edges of !
• Add an edge between two parclusters whenever there is

an edge between the source nodes of the two
parclusters in "

25

FO Dtree ➝ FO Jtree
• Result after transformation
• Fulfils the three jtree properties
• But is not minimal

26

!"!#

$%&'(),+

,-./

0.12)
,-./

3'4 5
6'(/ , ,-./

!7

∀+ ∶ ⊤

$%';&<)
0.12)
,-./

0.12)
,-./

0.12)
,-./

∅

∀) ∶ ⊤ ,-./

∅

∅

∀/:⊤

∀5 ∶ ⊤

∅

3'4 5
6'(? , ,-./

∅

6'(? , ,-./
3'4 5

,-./
6'(?

!"!#!7

,-./, 0.12) |A

,-./|A

,-./,3'4 5 ,6'(? |A

,-./, 6'(? |A

,-./, 0.12)

,-./, 0.12) ,
$%';&<)

,-./, 0.12) ,
$%&'(),+

,-./

,-./, 6'(? ,3'4 5

,-./, 6'(/ ,3'4 5

,-./, 6'(/ ,3'4 5 ,-./, 0.12) ,
$%';&<)

,-./, 0.12) ,
$%&'(),+

FO Dtree ➝ FO Jtree
• Result after transformation

fulfils the three jtree
properties
• Hold by construction

1. Parclusters can only
contain model PRVs

2. Each parfactor occurs
at a dtree leaf, which is
turned into a parcluster

3. Based on how cutset/
context are calculated*
• E.g., !"#$ %

27

1. ∀) ∈ + ∶) ⊆ ./ 0
2. ∀2 ∈ 0 ∶ ∃) ∈ + ∶ ./ 2 ⊆)
3. If ∃4 ∈ ./ 0 ∶ 4 ∈)5 ∧ 4 ∈)7

with)5,)7 ∈ +, then ∀)9 ∈ + on
the path between)5,)7 ∶ 4 ∈)9

2:2;2<

=>"?, !"#$ @ |B

=>"?|B

=>"?,CDE F ,GDH I |B

=>"?, GDH I |B

=>"?, !"#$ @

=>"?, !"#$ @ ,
J.D/KL @

=>"?, !"#$ @ ,
J.KDH @,M

=>"?

=>"?, GDH I ,CDE F

=>"?, GDH ? ,CDE F

=>"?, GDH ? ,CDE F
=>"?, !"#$ @ ,
J.D/KL @

=>"?, !"#$ @ ,
J.KDH @,M

* Proof for jtrees: Adnan Darwiche: Recursive Conditioning.
In: Artificial Intelligence, 2001.
Proof for FO jtrees: Tanya B: Rescued from a Sea of
Queries: Exact Inference in Probabilistic Relational
Models. PhD thesis, 2020.

FO Dtree ➝ FO Jtree
• Result after transformation not minimal
• Can remove complete parclusters

and still have an FO jtree
• Even if we keep parclusters

that carry constraint
information that
we would otherwise lose

• E.g.,
• Parclusters marked

• Observation
• Parclusters are

subsets of other
parclusters
• Use for minimisation

28

!"!#!$

%&'(, *'+, - |/

%&'(|/

%&'(,012 3 ,415 6 |/

%&'(, 415 6 |/

%&'(, *'+, -

%&'(, *'+, - ,
7819:; -

%&'(, *'+, - ,
78:15 -,<

%&'(

%&'(, 415 6 ,012 3

%&'(, 415 (,012 3

%&'(, 415 (,012 3 %&'(, *'+, - ,
7819:; -

%&'(, *'+, - ,
78:15 -,<

Minimisation
• Merge parclusters !" and !# with local models $"

and $# iff
%& !" ⊆ %& !# ∨ %& !# ⊆ %& !"

• Assuming ⊤ constraints and same logvar names if the
same domain is referenced (from normal form of FO
dtree), then the following suffices:

!" ⊆ !# ∨ !# ⊆ !"
• Checking on a PRV and logvar level instead of a grounded level

29

Minimisation
• Pre-processing necessary:
• Parclusters may contain a logvar ! or a representative "

• For each source DPG node #$
• Apply the inverse

substitution %&'
to the one applied
during FO dtree
construction to all
parclusters that
come from
descendants of #$:

30

()(*
('

+,-., 0-12 " |4

+,-.|4

+,-.,567 8 ,96: ; |4

+,-., 96: ; |4

+,-., 0-12 "

+,-., 0-12 " ,
#<6=>? "

+,-., 0-12 " ,
#<>6: ",@

+,-.

+,-., 96: ; ,567 8

+,-., 96: . ,567 8

+,-., 96: . ,567 8
+,-., 0-12 " ,
#<6=>? "

+,-., 0-12 " ,
#<>6: ",@

#$#A

#B #C

#D

#E

#F

#G

root

%&'

= ! → " &'

= " → !

Minimisation
• Merging parclusters !" and !# into parcluster !$
• !$ = !" ∪ !#
• '$ = '" ∪ '#

• Changes in FO jtree (, *
• (= (∖ !", !# ∪ !$
• * = * ∖ ,, - | - ∈ 012 , ∖ 3, - | - ∈ 012 3

∪ 4, - | - ∈ 012 , ∨ - ∈ 012 3 , - ≠ ,, - ≠ 3

31

Minimisation
• Possible merging strategy
• Start at the leaves and merge inbound
• Until no further merging is possible

• No parcluster is a subset of another

• After merging, the
resulting FO jtree
is minimal
• E.g.,
• Start at leaves with

• local model !"
• local model !#
• local model !$

32

!#!$!"

%&'(, *'+, - |/

%&'(|/

%&'(,012 3 ,415 6 |/

%&'(, 415 6 |/

%&'(, *'+, -

%&'(, *'+, - ,
7819:; -

%&'(, *'+, - ,
78:15 -,0

%&'(

%&'(, 415 6 ,012 3

%&'(, 415 6 ,012 3

%&'(, 415 6 ,012 3 %&'(, *'+, - ,
7819:; -

%&'(, *'+, - ,
78:15 -,0

7<7=

7> 7?

7@

7A

7B

7C

root

Minimisation: Example Continued
• Consider leaf parcluster with local model !"
• Let us call it #"
• Merge inbound

• #" and $% parcluster
identical ➝ merge
(call result #"again)

33

!&!'!"

()*+, -*./ 0 |2

()*+|2

()*+,345 6 ,748 9 |2

()*+, 748 9 |2

()*+, -*./ 0

()*+, -*./ 0 ,
$:4;<= 0

()*+, -*./ 0 ,
$:<48 0,3

()*+

()*+, 748 9 ,345 6

()*+, 748 9 ,345 6

()*+, 748 9 ,345 6 ()*+, -*./ 0 ,
$:4;<= 0

()*+, -*./ 0 ,
$:<48 0,3

$>$?

$@ $A

$B

$%

$C

$D

root

#"

Minimisation: Example Continued
• Consider leaf parcluster with local model !"
• Let us call it #"
• Merge inbound

• #" and $% parcluster
identical ➝ merge
(call result #"again)

• #" and $& parcluster
identical ➝ merge

34

!'!(

!"

)*+,, .+/0 1 |3

)*+,|3

)*+,,456 7 ,859 : |3

)*+,, 859 : |3

)*+,, .+/0 1

)*+,, .+/0 1 ,
$;5<=> 1

)*+,, .+/0 1 ,
$;=59 1,4

)*+,

)*+,, 859 : ,456 7

)*+,, 859 : ,456 7

)*+,, .+/0 1 ,
$;5<=> 1

)*+,, .+/0 1 ,
$;=59 1,4

$?$@

$& $A

$B $C

$D

root

#"

Minimisation: Example Continued
• Consider leaf parcluster with local model !"
• Let us call it #"
• Merge inbound

• #" and $% parcluster
identical ➝ merge
(call result #"again)

• #" and $& parcluster
identical ➝ merge

• #" and $' parcluster
identical ➝ merge

35

!(!)

!"
*+,-, /,01 2 |4

*+,-|4

*+,-,567 8 ,96: ; |4

*+,-, 96: ; |4

*+,-, /,01 2

*+,-, /,01 2 ,
$<6=>? 2

*+,-, /,01 2 ,
$<>6: 2,5

*+,-

*+,-, 96: ; ,567 8

*+,-, /,01 2 ,
$<6=>? 2

*+,-, /,01 2 ,
$<>6: 2,5

$@$A

$B

$' $C

$D

root

#"

Minimisation: Example Continued
• Consider leaf parcluster with local model !"
• Let us call it #"
• Merge inbound

• #" and $% parcluster
identical ➝ merge
(call result #"again)

• #" and $& parcluster
identical ➝ merge

• #" and $' parcluster
identical ➝ merge

• $(parcluster subset
of #"➝ merge

36

!)!*

!"
+,-., 0-12 3 |5

+,-.|5+,-., 678 9 |5

+,-., 0-12 3

+,-., 0-12 3 ,
$:7;<= 3

+,-., 0-12 3 ,
$:<78 3,>

+,-.

+,-., 678 9 ,>7? @

+,-., 0-12 3 ,
$:7;<= 3

+,-., 0-12 3 ,
$:<78 3,>

A(

$B

$C

$D

root

#"

Minimisation: Example Continued
• Consider leaf parcluster with local model !"
• Let us call it #"
• Merge inbound

• #" and $% parcluster
identical ➝ merge
(call result #"again)

• #" and $& parcluster
identical ➝ merge

• #" and $' parcluster
identical ➝ merge

• $(parcluster subset
of #"➝ merge

• Root parcluster subset
of #"➝ merge

37

!)!*

!"

+,-., 0-12 3 |5

+,-.|5+,-., 678 9 ,:7; < |5

+,-., 0-12 3

+,-., 0-12 3 ,
$=7>?@ 3

+,-., 0-12 3 ,
$=?78 3,:

+,-.

+,-., 0-12 3 ,
$=7>?@ 3

+,-., 0-12 3 ,
$=?78 3,:

$A

$B

$C

$D

root

#"

Minimisation: Example Continued
• Consider leaf parcluster with local model !"
• Let us call it #"
• Merge inbound

• #" and $% parcluster
identical ➝ merge
(call result #"again)

• #" and $& parcluster
identical ➝ merge

• #" and $' parcluster
identical ➝ merge

• $(parcluster subset
of #"➝ merge

• Root parcluster subset
of #"➝ merge

38

!)!*

!"

+,-., 0-12 3 |5

+,-.|5

+,-., 0-12 3

+,-., 0-12 3 ,
$6789: 3

+,-., 0-12 3 ,
$697; 3,<

+,-., =7; > ,<7? @ |5

+,-., 0-12 3 ,
$6789: 3

+,-., 0-12 3 ,
$697; 3,<

$A

$B

$C

$D

#"

Minimisation: Example Continued
• Consider leaf parcluster with local model !"
• Let us call it #"
• At this point, we have reached

the former root and cannot
merge further inbound
• Also: the $% parcluster

contains logvar &, which is not
a subset or superset of the
logvars of #" (',))

• Merging stops

39

!*!+

!"

,-./, 0.12 & |4

,-./|4

,-./, 0.12 &

,-./, 0.12 & ,
$56789 &

,-./, 0.12 & ,
$586: &,;

,-./, <6: ' ,;6=) |4

,-./, 0.12 & ,
$56789 &

,-./, 0.12 & ,
$586: &,;

$%

$>

$?

$@

#"

Minimisation: Example Continued
• Consider leaf parcluster with local model !"
• Let us call it #"
• Merge inbound

• #" and neighbouring parcluster
identical ➝ merge

40

!"!$

!%

&'(), +(,- . |0

&'()|0

&'(), +(,- .

&'(), +(,- . ,
123456 .

&'(), +(,- . ,
12537 .,8

&'(), 937 : ,83; < |0

&'(), +(,- . ,
123456 .

&'(), +(,- . ,
12537 .,8

1=

1>

1?

1@

#"

#%

Minimisation: Example Continued
• Consider leaf parcluster with local model !"
• Let us call it #"
• Merge inbound

• #" and neighbouring parcluster
identical ➝ merge

• $% parcluster is a subset of #"➝ merge

41

!"

!&

!'

()*+, -*./ 0 |2

()*+|2

()*+, -*./ 0

()*+, -*./ 0 ,
$34567 0

()*+, -*./ 0 ,
$3648 0,9

()*+, :48 ; ,94< = |2

()*+, -*./ 0 ,
$3648 0,9

$>

$?

$%

$@
#"

#'

Minimisation: Example Continued
• Consider leaf parcluster with local model !"
• Let us call it #"
• Merge inbound

• #" and neighbouring parcluster
identical ➝ merge

• $% parcluster is a subset of #"➝ merge
• $& parcluster is a subset of #"➝ merge

42

!"

!'

!(

)*+,, .+/0 1 |3

)*+,|3

)*+,, .+/0 1 , $45678 1

)*+,, .+/0 1 ,
$4759 1,:

)*+,, ;59 < ,:5= > |3

)*+,, .+/0 1 ,
$4759 1,:

$&

$?

$@

#"

#(

Minimisation: Example Continued
• Consider leaf parcluster with local model !"
• Let us call it #"
• Merge inbound

• #" and neighbouring parcluster
identical ➝ merge

• $% parcluster is a subset of #"➝ merge
• $& parcluster is a subset of #"➝ merge

• Merging cannot move further
inbound
• #' is neither a subset nor a

superset of #"
• Merging stops

43

!"

!(

!'

)*+,, .+/0 1 |3

)*+,, .+/0 1 , $45678 1 |3

)*+,, .+/0 1 ,
$4759 1,:

)*+,, ;59 < ,:5= > |3

)*+,, .+/0 1 ,
$4759 1,:

$?

$@

#"

#'

Minimisation: Example Continued
• Consider leaf parcluster with local model !"
• Let us call it #"
• Merge inbound

• #" and $% parcluster identical
➝ merge

44

!&

!"

!'

()*+, -*./ 0 |2

()*+, -*./ 0 , $34567 0 |2

()*+, -*./ 0 ,
$3648 0,9

()*+, :48 ; ,94< = |2

()*+, -*./ 0 ,
$3648 0,9

$>

$%

#&

#'

#"

Minimisation: Example Continued
• Consider leaf parcluster with local model !"
• Let us call it #"
• Merge inbound

• #" and $% parcluster identical
➝ merge

• $% parcluster is a subset of #"➝ merge

45

!&

!"

!'

()*+, -*./ 0 |2

()*+, -*./ 0 , $34567 0 |2

()*+, -*./ 0 ,
$3648 0,9

()*+, :48 ; ,94< = |2

$>

#&

#'

#"

Minimisation: Example Continued
• Consider leaf parcluster with local model !"
• Let us call it #"
• Merge inbound

• #" and $% parcluster identical
➝ merge

• $% parcluster is a subset of #"➝ merge
• Merging cannot move further

inbound
• #" is neither a subset nor a

superset of #&
• Merging stops

46

!&

!"

!'

()*+, -*./ 0 , $1234 0,5 |7

()*+, -*./ 0 , $13829 0 |7

()*+, :34 ; ,53< = |7

#&

#'

#"

Minimisation: Example Continued
• Resulting FO jtree ! from FO dtree " given model #
• If we had started merging from leaf with $% inbound

before merging from leaf with $&, '& and '% would be
switched

47

$&$%

"()*+ ,,.

/012

3145 ,
/012

6*7 8
9*+ 2 , /012

$:

∀. ∶ ⊤

"(*>)? ,
3145 ,
/012

3145 ,
/012

3145 ,
/012

∅

∀, ∶ ⊤ /012

∅

∅

∀2:⊤

∀8 ∶ ⊤

∅

6*7 8
9*+ B , /012

∅

9*+ B , /012
6*7 8

/012
9*+ B

/012

9*+(B) 6*7(E)

"(*>)?(F)

3145(F)

"()*+(F,6)

$:

$& $%

$&

/012 3145 F
"(*>)? F

$%

/012 3145 F
"()*+ F,6

$:

/012 9*+ B
6*7 E ': '& '%

FO Jtree Construction
• Given a model !, the following steps are necessary

1. Bring ! into the required normal form for FO dtree
construction

2. Construct an FO dtree " for !
3. Translate " into an FO jtree #
4. Apply inverse substitutions to parclusters of

descendants of DPG nodes in #
5. Minimise #

• Next?
• FO jtrees for query answering
• Messages need to be passed to ensure independence
• What about evidence?

48

Construction

Message Passing in FO Jtrees
• Ensure independence between parclusters
• Send messages based on two conditions

➝ If a node ! has received all messages from neighbours
but one, ", node ! calculates and sends a message to "

➝ If a node ! has received all messages, then it calculates
and sends messages to all neighbours " that have not
received a message yet

49
#$

%&!' (!)* +
,-./01 +

#2

%&!' (!)* +
,-0.3 +,5

#6

%&!' 7.3 8
5.9 : %&!' %&!'

(!)* +
;6 ;$;2

Message Passing in FO Jtrees
• Message !"# from sender $" to receiver $#
• Set of parfactors %& &'() with *+ %& ⊆ -"#
• To calculate

• Collect necessary information from local model and received
messages:

."# = ." ∪ 1

2∈)45 " ,27#

!2"

• Ignore the message that came from $# (if it already exists)
• Call slightly modified LVE with ."# as input model, -"# as query,

and no evidence: LVE∗ ."#, -"#, ∅
• Specification of LVE∗: next slide

50
%=

>?@A B@CD E

F*G+HI E

%J

>?@A B@CD E

F*HGK E,L

%(

>?@A MGK N

LGO P >?@A >?@A

B@CD E
$($= $J

LVE for Message Passing
LVE∗ %, ', ())*+,

% ← Shatter % on ', ())*+, , and on itself
% ← Absorb ())*+, in %
while % contains non-query terms do

if a PRV . fulfils the preconditions of sum−out then
% ← Apply sum−out to . in %

else
% ← Apply an enabling operator

(multiply, count−convert, expand,
count−normalise, split, ground)
on some parfactors in %

(←Multiply all parfactors in % into one parfactor
(← Normalise the potentials in (
return (
return %

51

Message Passing in FO Jtrees
• E.g.,
• Message !"# from $" to $#

• Collect %"# = '" ∪ ∅
• No further neighbours except $#

• Call LVE∗ '" , /012 , ∅
• LVE∗ eliminates 345 6 ,748 9 from '"

• Count-converting 345 6 into #; 345 6
• Summing out 748 9 and then #; 345 6
• Returning '"<

• Send '"< as !"# to $#

52

/012 =1>? @
AB4CDE @

/012 =1>? @
ABD45 @,7

/012 345 6
748 9 $" $# $F

!"#

'# 'F'"
/012 /012

=1>? @

Message Passing in FO Jtrees
• E.g.,
• Message !"# from $" to $#

• Collect %"# = '" ∪ ∅
• No further neighbours except $#

• Call LVE∗ '" , /012, 3145 6 , ∅
• LVE∗ eliminates 789:; 6,< from '"

• Summing out 789:; 6,<
• Returning '"=

• Send '"= as !"# to $#

53

/012 3145 6
78:>9? 6

/012 3145 6
789:; 6,<

/012 @:; A
<:B C $D $# $"

!D#
!"#

'# '"'D
/012 /012

3145 6

Message Passing in FO Jtrees
• E.g.,
• Message !"# from $" to $#

• Collect %"# = '" ∪ !)"
• Further neighbour: $), sent message !)" = ')*

• Call LVE∗ '", ')* , 0123 , ∅
• LVE∗ eliminates 56789: ; , <2=> ; from '", ')*

• Summing out 56789: ; from '", yielding '"*
• Summing out <2=> ; from product of '"* and ')* , yielding '")*
• Returning '")*

• Send '")* as !"# to $#

54

0123 <2=> ;
56789: ;

0123 <2=> ;
5697? ;,@

0123 A7? B
@7C D $# $" $)

!#" !)"

!"#

'" ')'#
0123 0123

<2=> ;

Message Passing in FO Jtrees
• E.g.,
• Message !"# from $" to $#

• Collect %"# = '" ∪ !)"
• Further neighbour: $), sent message !)" = ')*

• Call LVE∗ '", ')* , 0123, 4256 7 , ∅
• LVE∗ eliminates 9:;<=> 7 from '", ')*

• Summing out 9:;<=> 7 from '", yielding '"*
• Returning '"* , ')*

• Send '"* , ')* as !"# to $#

55

0123 4256 7
9:;<=> 7

0123 4256 7
9:=;? 7,@

0123 A;? B
@;C D $) $" $#

!)" !#"

!"#

!") '" '#')
0123 0123

4256 7

Message Passing: Overview
• Given an FO jtree !, send messages if one of the

two conditions is true
➝ If a node " has received all messages from neighbours

but one, #, node " calculates and sends a message to #
➝ If a node " has received all messages, then it calculates

and sends messages to all neighbours # that have not
received a message yet

• To calculate a message:
• Collect necessary information from local model and received

messages:

$%& = $% ∪)
*∈,-. % ,*0&

1*%

• Call LVE∗ $%&, 6%&, ∅

56

Message Passing

Query Answering in FO Jtrees
• After message passing, the parclusters are

independent from each other given the messages
• Prepared for query answering

• For each query with query term !
• Find parcluster "# s.t. ! ∈ "#
• Collect information from local model and messages, i.e,

%& = %# ∪)
*∈+,- #

.*#

• Call LVE %&, !, ∅ and return or store result of the call

57

4567 869: ;
<=>?@A ;

4567 869: ;
<=@>B ;,C

4567 D>B E
C>F G "H "I "J

.HI .JI .IJ.IH KI KJKH

4567 4567
869: ;

Query Answering

Query Answering in FO Jtrees
• E.g., ! "#$%
• All parclusters contain "#$%, choose one at random,

e.g., &'
• Collect ()*+, = .' ∪ 01' ∪ 02' = .', .14 , .24

• Call LVE .', .14 , .24 , "#$%, ∅ , yielding a parfactor .
containing the probability distribution over "#$%

• What about evidence?

58

"#$% 9$:; <
=>?@AB <

"#$% 9$:; <
=>A?C <,D

"#$% E?C F
D?G H &1 &' &2

01' 02' 0'20'1 .' .2.1

"#$% "#$%
9$:; <

Evidence in FO Jtrees
• Evidence applies to PRVs in some parclusters

• Changes the distributions in local models
• Information sent in messages might change

• Even if summed out and therefore hidden from the other
parclusters

• Therefore, handle evidence before sending messages
• Given a set of evidence parfactors !" # $ |&' "()

*

• For each !" # $
• For each parcluster +, where # $ ∈ +,

• Shatter ., on # $ |&'
• Absorb !" # $ |&' in .,

• Only, then send messages

59
/0

1234 5367 8
9:;<=> 8

/?

1234 5367 8
9:=;@ 8,B

/)

1234 C;@ D
B;E F 1234 1234

5367 8
+) +0 +?

Evidence Entering

Evidence in FO Jtrees
• E.g., given !"#$ %&% = ()*% as evidence in +,
• In -.

• Shatter /. = +. on !"#$ %&% , yielding +.,, +.1
• Absorb +, in +.,, yielding +.,1
• Result: /. = +.,1, +.1

• In -2
• Shatter /2 = +2 on !"#$ %&% , yielding +2,, +21
• Absorb +, in +2,, yielding +2,1
• Result: /2 = +2,1, +21

• Then, send messages based on the local models that
have absorbed the evidence

60
+.

34"5 !"#$ 6
7)8&%9 6

+2

34"5 !"#$ 6
7)%8(6,:

+;

34"5 <8(=
:8> ? 34"5 34"5

!"#$ 6
-; -. -2

Evidence in FO Jtrees
• E.g., given !"#$ %&% = ()*% as evidence in +,
• Message -./ does not change compared to previous

example
• Message -0/ calculated based on +0,1, +01

• Call LVE∗ +0,1, +01 , 78"9, !"#$: , ∅ , yielding +0,11, +011
• Message -/0 calculated based on +/,1, +/1 ∪ -./

• Call LVE∗ +/,1, +/1 , +.1 , 78"9, !"#$: , ∅ , yielding
+/,11, +/11, +.1

• Message -/. calculated based on +/,1, +/1 ∪ -0/
• Call LVE∗ +/,1, +/1 , +0,11, +011 , 78"9 , ∅ , yielding
+/,11, +/11, +0,11, +0111

61
+/,1, +/1

78"9 !"#$:
=)>&%? :

+0,1, +01

78"9 !"#$:
=)%>(:,@

+.

78"9 A>(B
@>C D 78"9 78"9

!"#$:
E. E/ E0

Evidence and Queries in FO Jtrees
• After evidence handling
• All queries are answered in an FO jtree with handled

evidence !" "#$% yield results conditional on !" "#$%

• So, given evidence !" "#$% and query terms &' '#$(for
a model)
• The posed queries are * &' | !" "#$% , 1 ≤ / ≤ 0, w.r.t. *1

• FO jtree constructed without specific evidence
• Reuse for different evidence sets

• As long as model stays the same
• Reset the local models before entering new evidence

62
!2

34/5 6/78 9
:;<=>? 9

!@

34/5 6/78 9
:;><A 9,B

!$

34/5 C<A D
B<0 E 34/5 34/5

6/78 9
F$ F2 F@

LJT: Algorithm
!"# $, &' '()

* , +, ,()
-

Construct an FO jtree . for $
Enter evidence +, ,()

- into .
Pass message in .
Answer queries with query terms &' '()

* in .

• Look for blue boxes on the previous slides to find
the descriptions of each step

• Constant overhead for FO jtree construction
• Payoff if given multiple queries

63

Step Name

Comparison to Ground Inference
• Propositional Junction Tree Algorithm (JT)
• Same algorithm, only with propositional model
• E.g., !" #

64

$%& $%'

$%% $%(

$(($(% $(&

$&& $&' $&) $&*
$&% $&(

+,-. /01.30"
4-5.$-"64-5.$788.

+,-. /01. 9-":5
4-5.$-"64-5.$788.

+,-. ;-<=. 07-<6
>"0967. 07-<6

+,-. ;-<=. 696
>"0967. 696

+,-. ;-<=. ?8?
>"0967. ?8?

+,-. ;-<=. 07-<6
>"60@. 07-<6.A1

+,-. ;-<=. 07-<6
>"60@. 07-<6.A2

+,-. ;-<=. 696
>"60@. 696.A1

+,-. ;-<=. 696
>"60@. 696.A2

+,-. ;-<=. ?8?
>"60@. ?8?.A1

+,-. ;-<=. ?8?
>"60@. ?8?.A2

Junction Tree: Messages
• From periphery to centre and back

65

!"#

!"#

!"#
!"$

!"$

!"$

!%&'

!&()*+ !+,+ !-.-

!,)'/0!&,-&*2

!+,-&*2!-,-&*2

!"#,-&*2
!"$,-&*2

!"#,-&*2
!"$,-&*2

!"#,-&*2
!"$,-&*2

34
5 34

6

34
4 34

7

37
7 37

4 37
5

35
5 35

6 35
8 35

9
35
4 35

7

:;<= >?@.B?C
D<E.3<CFD<E.3GHH=

:;<= >?@. I<CJE
D<E.3<CFD<E.3GHH=

:;<= K<LM. ?G<LF
NC?IFG. ?G<LF

:;<= K<LM. FIF
NC?IFG. FIF

:;<= K<LM. OHO
NC?IFG. OHO

:;<= K<LM. ?G<LF
NCF?P. ?G<LF.!1

:;<= K<LM. ?G<LF
NCF?P. ?G<LF.!2

:;<= K<LM. FIF
NCF?P. FIF.!1

:;<= K<LM. FIF
NCF?P. FIF.!2

:;<= K<LM. OHO
NCF?P. OHO.!1

:;<= K<LM. OHO
NCF?P. OHO.!2

Junction Tree: Symmetry ➝ Inefficiency

• Identical messages incoming
• Information already present
• Calculating identical messages + sending information

partially present

66

!"
" !"#

!#
#

!$
!$

%&'(: Eliminate
*+,-..,0,.&"

from !$"

&'1: Eliminate
*+,-..,0,.&#

from !$#

&'(&'

&232

&'(,5678 &'1,5678

&2,5678

&232: Eliminate *+-0,9.,0,, :;<=.,0,
from !##,&>(,&>1

&5?5 &6@A72 &B6C
DE;F G-H. 0;+IJ
K;J.!;+,K;J.!9LLF

DE;F :;<=. ,0,
*+-0,9. ,0,

DE;F :;<=. ,0,
*+,-.. ,0,.&1

DE;F :;<=. ,0,
*+,-.. ,0,.&2

&5,5678
&6,5678

Compact Encoding of Jtrees

67

!"# !"$

!"" !"%

!%% !%" !%#

!## !#$!#& !#'
!#" !#%

()*+ ,-..0-1
2*3.!*142*3.!566+

()*+ ,-.. 7*183
2*3.!*142*3.!566+

()*+ 9*:;. -5*:4
<1-745. -5*:4

()*+ 9*:;. 474
<1-745. 474

()*+ 9*:;. =6=
<1-745. =6=

()*+ 9*:;. -5*:4
<14->. -5*:4.?1

()*+ 9*:;. -5*:4
<14->. -5*:4.?2

()*+ 9*:;. 474
<14->. 474.?1

()*+ 9*:;. 474
<14->. 474.?2

()*+ 9*:;. =6=
<14->. =6=.?1

()*+ 9*:;. =6=
<14->. =6=.?2

B%

()*+ 9*:; C
<1-745 C

B#

()*+ 9*:; C
<14-> C,,

B"

()*+ E-> 2
,-. F G" G% G#

Message Calculation Strategies
• Message calculation strategy seen so far

• Eliminate all non-separator PRVs from all messages but the

one that came from receiver and the local model

• Called Shafer-Shenoy architecture after the two researchers

who first presented the scheme

• Another strategy for JT exists, called Hugin architecture

• Multiply the factors of local model !" into one factor #"
• Multiply each incoming message $%" into #"

• Store $%" as well

• Each message consists of only one factor (no longer a set)

• When sending message $"%
• Eliminate all non-separator randvars from

&'
()'

• I.e., divide #" by $%" first

• If $%" does not exist, then divide by a symbolic 1 (or no division)

68

Message Calculation Strategies
• Hugin architecture continued
• May enlarge the factors at each node to the worst-case

size of each node
• E.g., !" = $ %, ' , $ ', (➝)" = $ %, ', (

• May lead to more involved multiplications
• E.g., multiplying message *"+ = $ % into)" = $ %, ', (

more involved then multiplying $ % into an intermediate
result $, %

• Pays off if the nodes of the jtree have a high degree
• Many duplicate multiplications

during message calculation
• E.g., *-",*.",*/",*0" and)" have

to be multiplied for both *1",*2"
• Requires a division operator for factors

69

%, ', (
*0"

*/"

*-"

*."

*1" *2"

)"

What about a
Lifted Hugin?

Message Calculation Strategies
• Lifted Hugin?
• Arguments pro and con also apply to lifted version

• May enlarge the factors at each node to the worst-case size of
each node

• May lead to more involved multiplications
• Pays off if the nodes of the jtree have a high degree
• Requires a division operator for factors

• Main obstacle: So far, no lifted division operator
• We are working on it @Moritz

• Also, CAUTION: In general, parfactors may be multiplied
with different logvars such that previously unnecessary
count conversions might become necessary

70

In terms of Lifting: Is it that simple?
• Algorithm-induced groundings due to message passing

• For message calculation, non-separator PRVs are eliminated
with separator PRVs as the query terms containing logvars
• Non-separator PRVs have to fulfil sum−out preconditions

1. ∀(∈ *+ , ∖ . ∶ .* (|1 ∩ .* 3| 4,14 = ∅
2. ∀8 ∈ 8 | 9: ;4 > 1 ∶ 8 ∈ >+ 3

3. ?@ABC = >+ 3 ∖ ? ∖ >+ 3 count-normalised w.r.t. ?BDE =
>+ 3 ∩ ? in ;, with ? the set of 4

• Preconditions 1 + 3 fulfilled by construction

• Precondition 2 may not be fulfilled ➝ can cause groundings
• E.g., logvar F added to PRVs FGHI, JHKL 8 , M*NOP 8,Q

• When calculating RST, one has to eliminate M*O+N> 8
• But: it does not contain both 8 and F and a count conversion

does not apply as F occurs in two PRVs ➝ F gets grounded

71

FGHI F JHKL 8, F
M*O+N> 8

FGHI F JHKL 8, F
M*NOP 8,Q, F

FGHI F UOP V
QOW X YZ YS YT

FGHI F
JHKL 8, F

FGHI F

RST

Conditions on Groundings
• For a lifted calculation of message !"#, it

necessarily has to hold that
• for each PRV $ ∈ &" ∖ ("# , i.e., $ has to be eliminated:

• for each separator PRV) ∈ ("# ∶ +,) ⊆ +, $ (Cond. 1)

• If Cond. 1 does not hold, i.e., +,) ⊈ +, $, one
may induce Cond. 1 by count conversion
• If +,) ∖ +, $ are countable in /"# (Cond. 2)

72

0123 0)245 6, 0
89:,;+ 6

0123 0)245 6, 0
89;:< 6,=, 0

0123 0 >:< ?
=:@ A &B &C &D0123 0

)245 6, 0
0123 0

0123)245 6
89:,;+ 6

0123)245 6
89;:< 6,=

0123 >:< ?
=:@ A &B &C &D0123

)245 6
0123
✓

✗✓
✓ ✓✓

✗ ✗ ✓✓

Conditions on Groundings
• Problem with induced Cond. 1 using count conversions

on the logvars in !" # ∖ !" % :
• Logvars that were previously not counted are now counted
• All receiving parclusters need to be able to handle the

counted versions, which needs to be checked
• If a newly counted logvar arrives at a parcluster &', it has to be

countable in (' as well (Cond. 3)
• For further calculations, since they refer to the same set of randvars,

they have to occur in the same form, i.e., at one point the logvar has
to be counted in (' as well

73

)*+,) #+-. /,)
123"4! /

)*+,) #+-. /,)
12435 /,6,)

)*+,) 735 8
639 : &; &< &=)*+,)

#+-. /,)
)*+,)

)*+, #+-. /
123"4! /

)*+, #+-. /
12435 /,6

)*+, 735 8
639 : &; &< &=)*+,

#+-. /
)*+,
✓

✓

✓ ✓✓
✓ ✗ ✓

Fusion
• Extra step at end of construction called fusion

• Test each possible message !"# for each PRV $ to eliminate
and each separator PRV % based on the three conditions
• If Cond. 1 holds: no groundings for $ and %; continue
• Otherwise:

• If Cond. 2 holds: check Cond. 3
• If Cond. 3 holds: no groundings for $ and %; continue
• Otherwise: groundings; mark !"# ; continue with next message

• Otherwise: groundings; mark !"# ; continue with next message
• For each message !"# marked:

• Merge parclusters &", &# (as in minimisation)
• E.g.,

• Testing marks !()➝ merge &(, &)

74

*+,- * %,./ 0, *
123456 0

*+,- * %,./ 0, *
12537 0,8, *

*+,- * 937 :
83; < &= &(&)

✓ ✓ ✗ ✓

*+,- * %,./ 0, *
123456 0

12537 0,8, *
*+,- * 937 :
83; < &= &(>

Fusion

LJT: Complexity
• Uses also the notion of lifted width !" = !$,!#
• !$ largest ground width
• !# largest counting width
• As FO jtree constructed from FO dtree, !" identical

between LVE and LJT
• Fusion may change !" in terms of the FO jtree

• But in terms of the LVE calculations in the merged parcluster, !"
is still the same with multiple nodes being combined into one

• For simplicity, let us consider models that all fulfil Cond. 1 in
fusion such that !" is identical for both LJT and LVE

75

LJT: Complexity
• LJT complexity based on complexity of LVE:

! "# $ log(" $)*+ $ ",#*#
• Complexity of individual steps

• Construction: linear in number of nodes, no calculations;
negligible compared to later steps

• Evidence entering: ! ". $ log(" $)*+/0 $ ",#*#
• Absorbing evidence complexity: ! log(" $)*+/0 $ ",#*#

• Visits 0, $)
+ $ ",## lines, possibly exponentiates the potentials

• At each node ➝ ". $! log(" $)*+/0 $ ",#*#
• ". number of nodes in FO jtree 1

• For each 2 evidence parfactors ➝ 2 $!3
4

". $ log(" $)*+/0 $
",#*#
• Assuming 2 ≪ ". ➝ ! ". $ log(" $)*+/0 $ ",#*#

• First two steps accumulated: ! ". $ log(" $)*+/0 $ ",#*#

76

LJT: Complexity
• Complexity of individual steps

• First two steps accumulated: ! "# $ log(" $)*+,- $ ".#*#
• Message passing: ! "# $ log(" $)*+ $ ".#*#

• Calculating one message = answering one query on a parcluster
• Worst-case parfactor size at parcluster:)*+ $ ".#*#
• Elimination of 01 ∖ 314 PRVs goes through each line, potentials may

be exponentiated ➝ ! log(" $)*+ $ ".#*#
• Two messages per edge, "# − 1 edges in 7➝ "# $!()

log(" $
)*+ $ ".#*#

• Query answering: ! : $ log(" $)*+ $ ".#*#
• Each query answered in one parcluster ➝ !(

)
log(" $)*+ $

".#*#
• With : query terms ➝: $! log(" $)*+ $ ".#*#

• All four steps accumulated:
! "# + : $ log(" $)*+ $ ".#*#

77

Comparison to LVE
• For both holds: !" bounded from below by max& '(,…,'+ ∈- .
• LVE complexity of one query

= LJT complexity of message passing
• / 01 2 log6 0 2 789 2 0:#8# vs.
• / 0< 2 log6 0 2 789 2 0:#8#
• Actual number of calculations:

• In LVE: =>?@
• For message pass: 2 2 =>?@

• For B queries
• LVE: / B 2 01 2 log6 0 2 789 2 0:#8#
• LJT: / 0< + B 2 log6 0 2 789 2 0:#8#
• Difference in B 2 01 vs. 0< + B

• LVE has complexity of / 01 2 log6 0 2 789 2 0:#8# for one query
• LJT only complexity of / log6 0 2 789 2 0:#8# for one query

78

LJT only pays off if B > 1,
most likely, starting with
third query (two queries in
LVE = one message pass)

LJT: Completeness
• Completeness results from LVE also hold for LJT

• Proof using the FO jtree properties and the fusion conditions
on a case basis regarding separators:
• Separators containing only propositional randvars

• Do not interfere with elimination order for sum−out
• Separators additionally containing one-logvar PRVs

• Do not interfere with elimination order for sum−out
• Two-logvar PRVs within a parcluster eliminable
• One logvar PRVs within a parcluster eliminable

• Given all available counting versions
• (Along the lines of completeness proof for ℳ()*+)

• Separators additionally containing two-logvar PRVs
• All two-logvar PRVs eliminable

• If inequality constraint between them ➝ same parcluster,
eliminable within one parcluster using group inversion

• Because of fusion, PRVs with less logvars also part of separator or
eliminable (may it be through extra count conversion)
• Else parclusters would have been merged

79

LJT: Implementation
• Available at:
• https://www.ifis.uni-luebeck.de/index.php?id=518&L=2
• Based on the LVE implementation by Taghipour

• Available at:
• https://dtai.cs.kuleuven.be/software/gcfove

• Includes an implementation of the propositional
junction tree algorithm for comparison

• Input: BLOG files
• Based on Bayesian Logic Programming Language

• https://bayesianlogic.github.io

80

https://www.ifis.uni-luebeck.de/index.php?id=518&L=2
https://dtai.cs.kuleuven.be/software/gcfove
https://bayesianlogic.github.io/

Runtimes: Increasing Domain Sizes
• Example model
• All domain sizes ∈
{2,4, … , 20, 30,… , 100,
200,… , 1000}

• No evidence
• Queries:

• + ,-./01 23
• + 4567 23
• + ,-0.8 23,93

• + :.8 ;3
• + <.= >3
• + ?@5;

• Test trade-off (overhead
vs. faster inference)

• Test increasing
• Ground width >A

• Default: 3
• Counting width >#

• Default: 1
• Number of nodes =C

• Default: 3
• Domain size =

• Default: 1000
• Based on

81

?@5;

:.8(E) <.=(G)

,-./01(H)

4567(H)

,-0.8(H,<)

I3

IJ IK

L =C M logJ = M -QR M =S#Q#

Step-wise

82
Runtimes in milliseconds

Default: ! = 1000, !& = 3,() = 3,(# = 1

!& ranging from 2 to 11

(# ranging from 0 to 9() ranging from 2 to 11

10−3

10−2

10−1

100

101

102

103

1 3 5 7 9 11

Construction
Evidence entering
Message passing
Query answering (LJT)
Query answering (LVE)

10−3

10−2

10−1

100

101

102

103

1 3 5 7 9 11

Construction
Evidence entering
Message passing
Query answering (LJT)
Query answering (LVE)

10−3

10−2

10−1

100

101

102

103

100 101 102 103

Construction
Evidence entering
Message passing
Query answering (LJT)
Query answering (LVE)

! ranging from 2 to 1000

10−3

10−2

10−1

100

101

102

103

0 2 4 6 8 10

Construction
Evidence entering
Message passing
Query answering (LJT)
Query answering (LVE)

- !& . log2 ! . 345 . !6#4#

Queries answering

83
Runtimes in milliseconds

Default: ! = 1000, !& = 3,() = 3,(# = 1

!& ranging from 2 to 11

(# ranging from 0 to 9() ranging from 2 to 11

! ranging from 2 to 1000

10−1

100

101

102

103

104

105

0 2 4 6 8 10

LJT
LVE
JT
VE
FOKC

LJT compile
FOKC compile

10−1

100

101

102

103

104

105

100 101 102 103

LJT
LVE
JT
VE
FOKC

LJT compile
FOKC compile

10−1

100

101

102

103

104

105

1 3 5 7 9 11

LJT
LVE
JT
VE
FOKC

LJT compile
FOKC compile

10−1

100

101

102

103

104

105

1 3 5 7 9 11

LJT
LVE
FOKC

LJT compile
FOKC compile

FOKC: see next lecture
compile: all overhead time

Trade-off Evaluation: Criteria
• For multi-query algorithms

• Overhead to set off (model is compiled into a helper structure)
vs.
• Shorter individual query answering time

• With
• !",$%& runtime for answering single query with an algorithm that

uses compilation
• !",'($%&runtime for answering single query with an algorithm

without compilation
• !$,$%& runtime for compilation with an algorithm that uses

compilation
• What is the ratio between individual query answering times?

) = !",$%&
!",'($%&

• How many queries does it take to offset the overhead?
+ = !$,$%&

!",'($%& − !",$%&
• Makes only sense if) > 1

84

Trade-off

85Default: !" = 3,&' = 3,&# = 1

!" ranging from 2 to 11

&# ranging from 0 to 9&' ranging from 2 to 11

! ranging from 2 to 1000

FOKC: see next lecture

10−2

10−1

100

101

102

103

1 3 5 7 9 11

n=10
n=100
n=1000

α β α
LJT LJT FOKC

10−2

10−1

100

101

102

103

1 3 5 7 9 11

n=10
n=100
n=1000

α β α
LJT LJT FOKC

10−2

10−1

100

101

102

103

1 10 100 1000

α β α
LJT LJT FOKC

10−2

10−1

100

101

102

103

0 2 4 6 8 10

n=10
n=100
n=1000

α β α β
LJT LJT FOKC FOKC

Beyond Standard LJT
• LJT is basically a framework for query answering

that is independent of
• Specific function encoding ➝ calculating algorithm has

to work with the encoding
• Such as lists, tables, ADDs, etc.

• Concrete query language ➝ whatever the calculating
algorithm can handle, LJT can (within parclusters)
• E.g., with LVE, queries with

• Uncertain evidence
• Parameterised query terms

• One exception: conjunctive queries!
⇒ Could use any other query answering algorithm for

calculations as long as the query answering algorithm
can handle message calculations

86

LJT for Conjunctive Queries
• Problem if query terms occur outside of one

parcluster
• E.g., with the FO jtree below

• ! "#$%, '$() *+* ✓
• ! ,-.+*/ *+* , ,-*.0 *+*,12 ✗

• Solution:
Temporarily merge parclusters such that the query
terms occur in one parcluster

87

"#$% '$() 3
,-.+*/ 3

"#$% '$() 3
,-*.0 3,4

"#$% 5.0 6
4.7 8 92 9: 9;

Parcluster Merging for Queries
• Find a subgraph !" of the FO jtree ! for the query terms
such that !" such that # ⊆ %& !"
• For query answering, use a set '# that consists of local

models in !" and messages from outside !"
• Why subgraph?

• Allows for ignoring messages within !" and including
messages from outside !" into parclusters of !"
• No duplicate information used
• Messages reused as much as possible

• E.g., consider subgraph of (), (+, (, for query on -., /.
• Take all outside messages and local models
• Ignore inside messages 0+),0)+,0,+,0+,

88

-., -1, -2
03)

04)
0+)

0.) 01)

5)
/., /1, /20+,

02,

04,

0., 01,

5,
6., 61, 620)+ 0,+

0.+ 01+

5+

Parcluster Merging for Queries
• Find a subgraph !" of the FO jtree ! for the query

terms # such that !" such that # ⊆ %& !"
• Subgraph should be minimal for optimal

performance, i.e., a minimisation problem to solve:
argmin

-.
|%& !" |

s. t. # ⊆ %& !"
• Trade-off between finding a subgraph fast and finding a

minimal one
• It is not about the number of parclusters but the number of

PRVs in the parclusters!

91

Parcluster Merging for Queries
• Find a subgraph !" of the FO jtree ! for the query

terms # such that !" such that # ⊆ %& !"
• Subgraph should be minimal for optimal

performance, i.e., a minimisation problem to solve:
argmin

-.
|%& !" |

s. t. # ⊆ %& !"
• Simple heuristics (without guarantees on optimality):

• Start with one parcluster that fulfils # ∩ 45 ≠ ∅ as !"
• #" = # ∖ 45 remains as not covered by !"

• Perform a breadth-first search starting at 45
• Whenever a newly visited parcluster 4: fulfils #" ∩ 4: ≠ ∅, add

all parclusters on the path between 45 and 4: to !" (if not already
part of !") and set #" = #" ∖ 45

• until #" = ∅
92

Query Answering in FO jtrees
• Given an FO jtree ! with messages passed
• Prepared for query answering

• For each query with query terms "
• Find subgraph !# s.t. " ⊆ %& !#

• Collect information from local models and outside
messages, i.e,

'" =)
*∈,-

'* ∪)
/∈012 *
*∈,-,/∉,-

5/*

• Call LVE '",", ∅ and return or store result of the call

93

:;<= ><?@ A
B%C&DE A

:;<= ><?@ A
B%DCF A,G

:;<= HCF I
GCJ K LM LN LO

5MN 5ON 5NO5NM PN POPM

:;<= :;<=
><?@ A

Query Answering

Example
• E.g., ! "#$%&' &%& , "#&$) &%&,*+
• Subgraph: ,-, ,.
• Submodel for query answering: /0 = 2-, 2.,*+-

• Call LVE with /0 and 0 = "#$%&' &%& , "#&$) &%&,*+
• Split off query terms
• Eliminate all non-query terms
• Normalise the result

94

3456 7589 :
"#$%&' :

3456 7589 :
"#&$) :,;

3456 <$) =
;$> ? ,+ ,- ,.

*+- *.- *-.*-+ 2- 2.2+
3456 3456

7589 :

3456

"#$%&' :

7589 :

2-

2+@

2.
"#&$) :,;

Complexity & Runtimes
• With conjunctive queries, complexity for answering

a single query depends on the size of the subtree !"#
• $!"# % log) ! % *+, % !-#+#
• Assumption is that query terms occur close together and

therefore !"# hopefully small

• Runtime behaviour observable in implementation
• Increasing !"# on x-axis
• Runtimes in milliseconds
• More parclusters needed,

runtimes increase
• Closer to compile time
• Closer to LVE time

95

100

101

102

103

1 2 3 4 5 6 7 8 9 10

 n=10
 n=100
 n=1000

LJT LVELJT QA:Compile:

Interim Summary
• Motivation

• Find clusters that are enough for query answering
• FO jtree

• From FO dtree clusters to FO jtree parclusters
• LJT algorithm

• Propagation/message passing: Dynamic programming
• Complexity

• Compared to LVE
• Overhead for construction, message passing
• Savings during query answering

• Completeness
• Results for LVE hold as well

• Implementation
• Conjunctive queries

• Find subgraph covering the query terms

96

