Intelligent Agents:
Web-mining Agents

Probabilistic Graphical Models

Lifted Inference

Tanya Braun

Probabilistic Graphical Models (PGMs)

1. Recap: Propositional 5. Approximate Inference:
modelling Sampling
* Factor model, Bayesian * Importance sampling
network, Markov network « MCMC methods
* Semantics, inference tasks ia del
+ algorithms + complexity 6 .Sefquentla models &
ege s . interence
2. Probabilistic relational + Dynamic PRMs
models (PRMs) C
. * Semantics, inference tasks
* Parameterised models, Markov + algorithms + complexity
logic networks learning ’
* Semantics, inference tasks . . .
]) 7. Decision making
3. Lifted inference * (Dynamic) Decision PRMs
* LVE, LT, FOKC * Semantics, inference tasks
* Theoretical analysis + algorithms, learning
4. Lifted learning 8. Continuous Space
* Recap: propositional learning * Gaussian distributions and
* From ground to lifted models Bayesian networks

* Direct lifted learning * Probabilistic soft logic

5 REEYT = UNIVERSITAT ZU LOB
wRSse ~ INSTITUT FUR INFORMATIONSSYSTEME
o s

Problem: Many Queries

* Set of queries
* P(Travel(eve)) to precompute parts
* P(Sick(bob))
* P(Treat(eve,mq))
* P(Epid)
 P(Nat(flood))
 P(Man(virus))
* Combinations of

variables

* Under evidence
e Sick(X") = true
« X' € {alice, eve}

* LVE restarts with initial
model for each query

{NeE, -
ZT UNIVERSITAT ZU LUBECK
= W

Outline: 3. Lifted Inference

A. Lifted variable elimination (LVE)
* QOperators
e Algorithm
* Complexity (including first-order dtrees), completeness, tractability
* Variants

B. Lifted junction tree algorithm (LJT)
* First-order junction trees (FO jtrees)
e Algorithm
* Complexity, completeness
* Variants

C. First-order knowledge compilation (FOKC)
* Normal form, circuits
e Algorithm
* Complexity, completeness

D. Most probable assignment queries
e Distribution vs. assignment queries
* Most probable explanation (MPE) , Maximum-a-posteriori (MAP) assighments
* Changes in LVE, LJT, FOKC
* Complexity, completeness

R
SXRSS2 Y INSTITUT FUR INFORMATIONSSYSTEME
o 8

Clustering of Models

* |dea: Find subsets (clusters) of PRVs that are “enough”
for certain queries
* E.g,

* For queries about instances of Nat(D), Man(W), Epid
* Nat(D), Man(W), Epid are enough

* For queries about instances of Travel(X), Sick(X), Epid
* Travel(X), Sick(X), Epid are enough

* For queries about instances of Treat(X, M), Sick(X), Epid
* Treat(X,M), Sick(X), Epid are enough

@ ﬁql Man(W)

4 N\

)

Clustering of Models

e But: If only parfactors used that contain the PRVs of a
cluster, information stored in all other parfactors ignored

* E.g,
* Nat(D), Man(W), Epid: g, — misses g, g3
o Travel(X), Sick(X), Epid: g, — misses g4, g3
* Treat(X,M), Sick(X), Epid: gz — misses g1, g

* Only correct if clusters are independent from each other
 How can we achieve independence?

@ %1 Man(W)

4 N

)

Clustering of Models

« Remember: Global Markov Property

* Any two subsets of variables are conditionally independent
given a separating subset

* E.g,

« Nat(D), Man(W), Epid:
— independent of thgresfgéiven Epid

* Travel(X), Sick(X), Epid: g,
— independent of the rest given Epid, Sick(X)

o Treat(X,M), Sick(X), Epid: g,
— independent of the rest given Epid, Sick(X)

@ !91 Man(W)

4 N

)

qqqqqq

4

Clustering of Models

e Put clusters and their separators into a graph structure where

* Nodes are clusters with parfactors assigned containing the cluster PRVs
(local model)

* Edges are labelled with the separator between neighbouring nodes

* If two nodes contain the same PRV, every node on the path between
the two nodes contain the PRV (runnlng intersection property)

Epid Nat(D) Epid Sick(X) Epid Sick(X)
Man(W) Epid Travel(X) Epid Treat(X M)

Sick(X)

@ *91 Man(W)

4 N

.)

uuuuuuuuuuuuuuuuuuuu

Clustering of Models

* Next: Make clusters actually independent of each other

* Each cluster i asks its neighbours j € nbs(i) for information
about the separator §;; between them
e Other clusters have to collect all the information from the model
that lies behind the separator on its part, eliminate the non-

separator PRVs from that information using LVE, and send the
result in a message mj;, i.e., a set of parfactors, back

* Having the information on the separators to all neighbours
makes a cluster independent from its neighbours and
therefore all other parts of the model

* Ensures that each cluster of PRVs has all model information

needed available for query answering on instances of its cluster
PRVs

Man(W) Epid | Travel(X) Epid |Treat(X,M)
Sick(X)

91 9>

[Epid Nat(D) Epid Sick(X) Epid Sick()g
93
9

Clustering of Models

* Next: Make clusters actually independent of each other
* E.g.,, C3: g3 — independent of the rest given Epid, Sick(X)
* Asks neighbour C, for information on Epid, Sick(X)
e (, asks neighbour C; for information on Epid
e (, sends information on Epid in a message m;,
* Eliminates Nat(D), Man(M) from g; for my,
* (, sends information on Epid, Sick(X) to C5 in a message M5
* Eliminates Travel(X) from g, and m,, for my;

* With m,3, C5 is independent from its neighbour €, and therefore
also from C4

* As C, is independent given mq, from C;

dnG Epid? Epid, Sick(X)?
— e i

Epid Nat(D) Epid Sick(X) Epid Sick(X)
Man(W) Epid | Travel(X) Epid |Treat(X,M)

o —— Sick(X) Mys g
Eliminate l Eliminate
Nat(D), Man(W) Travel(X) /

Epid! 123 Epid, Sick(X)!

Clustering of Models

* With each cluster i independent of the rest, each i can
answer queries about instances of its PRVs based on its
local model and the messages received

* Query terms: grounded instances or parameterised versions
of its PRVs
* Conjunctive queries if terms only concern the cluster PRVs
* E.g., C5: g3 — independent of the rest given Epid, Sick(X)

* Based on g; and m,3, C3 can answer queries about
Epid, Sick(X), Treat(X, M) such as

P(Sick (X)), P(Treat(eve, mz)), P(Epid, Sick (alice))

« Cannot answer any queries about Nat(D), Man(W), Travel(X)
but C; and C, can

Epid Nat(D) Epid Sick(X) Epid Sick(X)
Man(W) Epid | Travel(X) Epid |Treat(X,M)

g1 Ma1 miz goms; Sick(X) m33 9gs

N, -
2 WUAYT & UNIVERSITAT ZU LUBECK

:
3RS T INSTITUT FOR INFORMATIONSSYSTEME

11

Clustering of Models

* Problem left: If each cluster asks for information on
separators, some messages are sent multiple times

* E.g,
* (5 asks C,, which asks C;

* Messages calculated and sent: m,, 17,5
* (C,asks C; and C;
* Messages calculated and sent: m4,, m3,

* (, asks C,, which asks C5

* Messages calculated and sent: m3,, my4
Epid? id, Sick(X)?

Epid Nat(D) Epid Sick(X) Epid Sick(X)
Man(W) Epid | Travel(X) Epid |Treat(X,M)
Sick(X)

mjq ms;

12

Clustering of Models

* Use dynamic programming to organise the order of
asking or rather sending information in messages:

— |f a node i has received all information from neighbours but
one, j, node i sends a message with its information on the
separator §;; to j

— |f a node i has received all messages, then it sends messages
to all neighbours j that have not received a message yet

* When computing the message, i takes into
consideration its local model as well as the messages
received from all other neighbours but the receiving
neighbour j

Epid Nat(D) Epid Sick(X) Epid Sick(X)
Man(W) Travel(X) Treat(X, M)

miz ms,

mjyq mjs

13

Clustering of Models

e Observations:

— |f a node i has received all information from neighbours but
one, j, node i sends a message with its information on the
separator §;; to j

* Trivially true at leaf nodes (periphery), can start sending
immediately to its only neighbour (in parallel!)
* From periphery inbound, new nodes trigger this first condition

— |f a node i has received all messages, then it sends messages
to all neighbours j that have not received a message yet

* As messages are sent further inwards, a first node at the centre
will have received all messages and will start sending messages
outbound, leading to new nodes triggering this second condition

Epid Nat(D) Epid Sick(X) Epid Sick(X)
Man(W) Travel(X) Treat(X,M)

These two passes from periphery inbound and back suffice to distribute
all information and make the clusters independent from each other*

* Shown by Steffen L. Lauritzen and David J. Spiegelhalter: Local Computations with Probabilities on Graphical Structures
and Their Application to Expert Systems. In: Journal of the Royal Statistical Society. Series B: Methodological, 1988.

Foundations of Clustering

 History in propositional probabilistic inference:

* Based on probability propagation introduced by Pearl
(1988)

e I[faBNisapolytreeg, i.e., the
underlying undirected graph
has no trivial cycles, then

* Treat each node ina BN as a
cluster with the random
variables (randvars) of the
accompanying CPT as the
cluster randvars

* Send messages along the
edges (to parents and
children), eliminating
randvars not occurring in the
parent or child nodes

Nz, =
2 WUAYT & UNIVERSITAT ZU LUBECK

2§ T UT FOR INFORMATIONSSYSTEME 15
o
75 g8 %

Foundations of Clustering

 History in propositional probabilistic inference:

* If no polytree, the cycles mess up the message passing
along the edges (information arrives multiple times)
* Send messages nonetheless (exact if polytree, approximate

otherwise): called belief propagation as an algorithm for
approximate inference

e Exact inference required — put the cycles into one cluster

e Graph formed called a junction tree (jtree)
e Afirst-order version of a jtree was induced on the previous slides

* Also known as clique tree (since the cycles often form cliques in
the model graph) or join tree

* Propositional version introduced by Lauritzen and Spiegelhalter
(1988)

* Shenoy and Shafer (1989) introduce three axioms of local
computations to show correctness of doing computations locally

First-order Jtree (FO Jtree)

* As seen on the earlier slides
* Acyclic graph
 Nodes contain PRVs, which form clusters
e Edges are based on the separators between the clusters
* Nodes have parfactors assigned

 Next slides:
 Formal definition

 Construction

e Get an acyclic structure with valid separators and each
parfactor of a model assigned to a local model

Man(W) Epid | Travel(X) Epid |Treat(X,M)
Sick(X)

[Epid Nat(D) Epid Sick(X) Epid Sick()g
17

91 9> 93

Z i
35202 5 INSTITUT FUR INFORMATIONSSYSTEME
5

Parameterised Clusters

* Node of an FO jtree:
Set of PRVs called parameterised cluster (parcluster)

Let X be a set of logvars, 4 a set of PRVs with [v(4) S
X, and (X, Cy) a constraint on X with X being a
sequence of the logvars of X

* Then, a parcluster C is given by
VX € Cx : A|(XJCX)
* Ax,c,) forshort

« Again, (X, Cy) can be omitted if T constraint encoded

* Depicted as a round shape containing A or just A
* Again, constraint usually not depicted

e E.g., parcluster C-

Epid Sick(X)
Travel(X)

vx € D(X) : {Epid,Sick(x),Travel(x)}KX’D(X))

= {Epid, Sick(X), Travel(X)}KX’D(X)) [Epid Sick(Xg
= {Epid, Sick(X), Travel(X)} Travel(X)

18

FO Jtree

* An FO jtree] for a model G is a cycle-free graph (I/, E)

« Set of nodes VV ¢ 27v(&)
* |.e., nodes are sets of PRVs (parclusters)
o 27(6) denotes the power set of rv(G)

» Setofedges E € {{i,j}|i,j €V,i+j},
* Has to be cycle free, which includes no self-loops
* E.g., as depicted on the left

* But at this point in the definition, © O
could be any subsets of PRVs Nat(D) 7 Man(M)

Epld Nat(D)
Man(W)

Epid Sick(X)
Travel(X)

Epid Sick(

)
Treat(X,M)J

19

FO Jtree

* An FO jtree] for a model G is a cycle-free graph (I/, E)

* Has to satisfy three properties:
1. VCeV:Ccrv(G)
2. VgeGg:3ICeV:rv(g)cC
3. If3A€erv(G):A€C; NAEC;withC;,C; €V, then

VC, € V onthe path between Cl, Ci:Ae€ Ck
(running intersection property)

e E.g., as depicted on the left

* Only the following and one with @ 7 @
1

C; at the centre are valid

Epld Nat(D)
Man(W)

Epid Sick(X)
Travel(X)

Epid Sick(X)
Treat(X, M)

)
= Y
3 7
SXRSS2 Y INSTITUT FUR INFORMATIONSSYSTEME 20
o, ¥
5. 518%™

FO Jtree

* An FO jtree] for a model G is a cycle-free graph (I/, E)

* Is minimal if by removing a PRV from a parcluster, the FO
jtree ceases to be an FO jtree, i.e., no longer fulfils at least
one property

e E.g., depicted on the left

e Cannot remove any PRV from
any parcluster

* Otherwise, a parfactor

would no longer have its
arguments in one parcluster Nat(D) J1 Man(M)

Epld Nat(D)
Man(W)

Epid Sick(X)
Travel(X)

Epid Sick(X)
Treat(X, M)

g3 -

FO Jtree

* An FO jtree] for a model G is a cycle-free graph (I/, E)
* Set §;; called separator of edge {i, j} € E, defined by
Sij = Ci N Cj
* Term nbs(i) refers to the neighbours of C;, defined by
nbs(i) ={j | {i,j} € E}
 Each C; has alocal model G; and Vg € G; : rv(g) S C;
* Local models G; partition G, i.e., G = U,y G;

Epld Nat(D)
Man(W)

91 Epid\ Epid Sick(X)
Travel(X)

9> Epid \ Epid Sick(X)
Sick(X)|Treat(X, M)

s
= Y
3 7
SXRSS2 Y INSTITUT FUR INFORMATIONSSYSTEME 22
oy e i

5. 518%™

Construction

* Where do we get the
FO jtree from s.t. the jtree
* is acyclic
e fulfils the three FO jtree
properties

* has the model parfactors
automatically assigned to
fitting parclusters?

— Clusters of an FO dtree »
. Man(w
+ undirected dtree edges Nat(D), Epid

+ minimisation ’
f— I Man(w)
FO Jtree Nat(D), Epid
Epid Nat(D) Epid Sick(X) Epid Sick(X) Man(w) Treii(cgli,(r:)) girccll;zil)(x)
Man(W) Travel(X) Treat(X M) Nat(d), Epid Epid Epid

91 93 9>

T
Y ‘.‘5 UNIVERSITAT ZU LUBECK

Clusters — Parclusters

 Given an FO dtree T for a model G with
clusters for each node

* Given a cluster {44, ..., A,,} of a DPG
node (X, x, C)
* Resulting parcluster C; = {4y, ..., An}|c
* Local model G; = @

* Given a cluster {44, ..., A,,} of a VE node
* Resulting parcluster C; = {4, ..., Ap}T
* Local model G; = 1)

* Given a cluster {44, ..., A, } from a leaf
node with parfactor g;

* Resulting parcluster C; = {4, ..., Ap}T
* Local model G; = {g;}

FO Dtree — FO Jtree

* Forming an FO jtree | from an FO dtree T of a
model G

* Nodes of |

e Parclusters resulting from clusters of T as shown on
previous slide

* Each parcluster has a source node in T

e Edges of |

* Add an edge between two parclusters whenever there is
an edge between the source nodes of the two
parclustersinT

,,,,,
\\\\\

%% INSTITUT FUR INFORMATIONSSYSTEME

FO Dtree — FO Jtree

e Result after transformation
 Fulfils the three jtree properties
e Butis not minimal

Epé)d l Epid I

Nat(D . .
aEv'Zgid) Epid [Epid, Nat(D)lT] @di]
Man(w) Sick(x)
an(w .
Nat(D), Epid [E pid, Nat(D), M an(w)] lEpid, Sick(x)l
1)
Man(w) [Epid,Man(w),Nat(D)|T] [Epid,Sick(x)|-|—]

Nat(D), Epid |
) Treat(x, m) Travel(x) f) (E id, Sick()\ (Epid Sick(x)\
] E 'd, N t d , M pl ,O1LC X),) y
Man(w) Sick(x) Sick(x) 7 at(d) an(w)‘ Treat(x, m) Travel(x)
Nat(d), Epid Epid Epid \. I J \ I J

4 N\ (N\
Epid, Sick(x), Epid, Sick(x),

Treat(x,m) X Travel(x)
\ J

91 93 92

26

g1 g3 92 Epid, Nat(d), Man(w)

FO Dtree — FO Jtree

* Result after transformation FESAEEIERECLE
2. VgeG: 3CeV:rv(g)cC

fulfils the three jtree If3AEerm(G) A€ € AAEC,
properties with C;,C; € V, then VC,, € V on
] the path between C;, C; : A € Cy,

* Hold by construction eD

1. Parclusters can only
contain model PRVs

2. Each parfactor occurs
at a dtree leaf, which is (Epid, Nar(o), Manw) [brid,sicko)
turned into a parcluster

3. Based on how cutset/ [(Epid Mantw) vat®) | [Epid Sick())

context are calculated™ | JE R N
e E.g., Sick(X) Epid, Nat(d), Man(w) Epid, Sick(x), Epid, Sick(x),

Treat(x, m) Travel(x)
y, . J
* Proof for jtrees: Adnan Darwiche: Recursive Conditioning. |

In: Artificial Intelli 2001 f N (l)
n: Artificial Intelligence, . —) Epid, Sick(x), Epid, Sick(x),
Proof for FO jtrees: Tanya B: Rescued from a Sea of Epid, Nat(d), Man(W) p ()

Queries: Exact Inference in Probabilistic Relational \Treat(x' m) J \ Travel(x)
wversimar 20 weecx MOdels. PhD thesis, 2020. gl g3 27,92

S UNIVE
i INSTITUT F UR INFORMATIONSSYSTEME
5§

[Epid, Nat(D)|T] [Epidrr]

FO Dtree — FO Jtree

e Result after transformation not minimal

* Can remove complete parclusters
and still have an FO jtree

* Even if we keep parclusters IEpidI
that carry constraint

information that '
we would otherwise lose [Epld’N“t(D)'T] @

°
E.g.
g ’ [Epid, Nat(D), Man(w)] [%T(x)]

e Parclusters marked

dir

e Observation (Evid, Manw), Nar@)r] (Epid, Sick(oyr]
l
® 4 N\ (N\
Pa rCIUSterS are Epid, Sick(x), Epid, Sick(x),
SuU bsetS Of Other Treat(x, m) N Travel(x))
parclusters ' '
e Use for minimisation

Epid, Nat(d), Man(w)

4 \ (N\

Epid, Sick(x), Epid, Sick(x),
Treat(x, m) Travel(x)

. J . J

91 g3 g2

28

Epid, Nat(d), Man(w)

5 BT & UNIVERSITAT ZU LUBEC
3525 INSTITUT FOR INFORMATIONSSYSTEME

Minimisation
* Merge parclusters C; and C; with local models G;

and G; iff
gr(C;) S gr(Cj) Vgr(Cj) c gr(C;)
e Assuming T constraints and same logvar names if the

same domain is referenced (from normal form of FO

dtree), then the following suffices:
C; < C;jVv(; c(

* Checking on a PRV and logvar level instead of a grounded level

,,,,,
\\\\\

%% INSTITUT FUR INFORMATIONSSYSTEME

Minimisation
* Pre-processing necessary:

* Parclusters may contain a logvar X or a representative x

* For each source DPG node Ty root

* Apply the inverse L
substitution 81

to the one applied T it e T
during FO dtree
ConStrUCtion to a” T, [Epid,Nat(D),Man(w)] Ty Epid,Sick(x)I
parclusters that _ —
come from TD[Epld,Man(w),Nat(D)|T] TM[Epld,Slck(x)|T]
l
descenda nts Of TX : T, rEpid, Nat(d), Man(w)‘ T Epid, Sick(x), Epid, Sick(x),
—1 . J m\Treat(x,m)) . Travel(x))
9 4 I \ (l)\
— -1 (.) Epid, Sick (x), Epid, Sick (%),
_ {X - x} ~Epld' Nat(d), Man(w)‘ \Y?reat(x,m)) X Travel(x)
= {x - X} 91 g3 g2

B s
= ol =
5 QU ¢ UNIVERSITAT ZU ECK
RSS2 » INSTITUT FUR INFORMATIONSSYSTEME 30
oy
25 s1e®

Minimisation

* Merging parclusters C; and C; into parcluster Cy
¢ Ck = Ci U C]
¢ Gk = Gi U G]

* Changes in FO jtree (V,E)
V=V \{C; Ci}uC,

« E=E\{{i, 3| L € nbs()}\{{j, 1} |l € nbs(j)}
U{{k,}|lenbs()VIEnbs(),l+il=+j}

:::::
35202 5 INSTITUT FUR INFORMATIONSSYSTEME

Minimisation
* Possible merging strategy

 Start at the leaves and merge inbound
* Until no further merging is possible

root
* No parcluster is a subset of another | Epid |
» After merging, the
.) Tw[Epid, Nat(D)|T] T, @ch_v]
resulting FO jtree
IS minimal , —
Ty, [Epid, Nat(D), Man(w) T [Epid, Sick(x)
*E.g.,
. TD[Epid,Man(W),Nat(D)|T] TM[Epid,Sick(X)|T]
e Start at leaves with |
* local model o ‘ (kpid, sick(x)) [Epid, sick(x),)
{91} y TaEpid NatD) Man@w)] - o, P10 ok el
* local model {g,} — T — T
o (.) Epid, Sick(X), Epid, Sick(X),
local model {g3} Epid, Nat(D), Man(w) Preatiny)| | travelny”
91 g3 g2

Moz, &
EEEEEEEEEEEEEEEEEEEEEEEEE

Z
SXRSS2 Y INSTITUT FUR INFORMATIONSSYSTEME 32
s 5
75 s18%

Minimisation: Example Continued

* Consider leaf parcluster with local model {g,}
* Letuscallit Cy
* Merge inbound

root

* C{and T, parcluster | Epid |
identical = merge /
(call result €again) TW[Epileat(D)W] . @

T, [Epid, Nat(D), Man(W)] T [Epid, Sick(x)

T, [Epid, Man(W), Nat(D)|-|—] TM[Epid, Sick(X)|-r]
l

4 \ (N\

(. \ Epid, Sick(X), Epid, Sick(X),
Td Fpld; Nat(D)' 1\46”1(VV)J Tm T}jﬁeat(X,](\4)) ?Tavel()g))

. J . J

4 I \ (l N\
Epid, Sick(X), Epid, Sick(X),
Treat(X,M) Travel(X)

. J . J

g1
93 9>
7 & UNIVERSITAT ZU LUBECK

B

PR

3 7

) % & INSTITUT FUR INFORMATIONSSYSTEME 33
s s1ss”

dir

=

Cl Epid, Nat(D), Man(W)

Minimisation: Example Continued

* Consider leaf parcluster with local model {g,}
* Letuscallit Cy
* Merge inbound

root

* C{and T, parcluster | Epid |
identical = merge /
(call result €again) TW[Epileat(D)W] . @

T, [Epid, Nat(D), Man(W)] T [Epid, Sick(x)

T, [Epid, Man(W), Nat(D)|-|—] TM[Epid, Sick(X)|-r]
l

(\ 4 N\
- Epid, Sick(X) Epid, Sick(X),
Epid, Nat(D), Man W] pia,)
Cl[’ (0)) T Treat(X, M) Travel(X)
\\§ J _ J

91) [- [.
Epid, Sick(X), Epid, Sick(X),
Treat(X,M) Travel(X)

. J . J

93 92

D) k)

N, =

Y ‘.{5 UUUUUUUUUUUUUUUUUUU

RSS2 » INSTITUT FUR INFORMATIONSSYSTEME 34
s s1ss”

dir

 C, and Tp parcluster
identical = merge

=

Minimisation: Example Continued

* Consider leaf parcluster with local model {g,}

* Letuscallit Cy

* Merge inbound
* C{and T, parcluster
identical = merge
(call result €C1again)
 C, and Tp parcluster
identical = merge

* C;and T, parcluster
identical = merge

g, -
2 WUAYT & UNIVERSITAT ZU LUBECK
5527 INSTITUT FOR INFORMATIONSSYSTEME
5

TW[Epid, Nat(D) 1]

T, [Epid, Nat(D), Man(W)]

root

/

Ty|Epid,

C .|Epid, Man(W), Nat(D)|T] TM[Epid, Sick(X)|T]

91

Tm

=

Sick(X)

N

4 \
Epid, Sick(X),
Treat(X,M)
|\ J

()\
Epid, Sick(X),
Travel(X)

. J

|

4 \
Epid, Sick(X),

Treat(X,M)
|\ J

4 N\
Epid, Sick(X),
Travel(X)

. J

93

92

35

Minimisation: Example Continued

* Consider leaf parcluster with local model {g,}
* Letuscallit Cy
* Merge inbound

root
* C4and T, parcluster @
identical = merge /
(call result Cagain) SCoTon N @di]
* C4 and Tp parcluster
identical = merge
* C; and T,, parcluster |C1 [evia. Nat @), pancw) Ty [Bpid, sick(x)

identical = merge g1
T\ |Epid, Sick(X)
* Ty parcluster subset M[- llc 'T]

of C; — merge

4 \ (N\
Epid, Sick(X), Epid, Sick(X),
Treat(X,M) Travel(X)

. J . J

(I N e l N
Epid, Sick(X), Epid, Sick(X),
Treat(X,M) Travel(X)

. J . J

/& UNIVERSITAT ZU LUBECK

B
2 UINSTITUT ROR INFORMATIONSSYSTEME 36
g 5»”5

st

Tin

Minimisation: Example Continued

* Consider leaf parcluster with local model {g,}
* Letuscallit Cy
* Merge inbound

root
* C{and T, parcluster | Epid |
identical = merge /
(call result €again) Cl[Epid, — (D)’Man(w)ﬁ] . @dw

 C, and Tp parcluster
identical = merge

* C;and T, parcluster

identical = merge
T |Enid, Sick(X)
* Ty parcluster subset M[- llc 'T]

of C; — merge

* Root parcluster subset
of C; — merge

91

=

Ty |Epid, Sick(X)

4 \ (N\
Epid, Sick(X), Epid, Sick(X),
Treat(X,M) Travel(X)

. J . J

(I N e l N
Epid, Sick(X), Epid, Sick(X),
Treat(X,M) Travel(X)

. J . J

93 92

Sy %

A, =

Bt A‘ﬁ?; UUUUUUUUUUUUUUUUUUU

RSS2 » INSTITUT FUR INFORMATIONSSYSTEME 37
O e

Tin

Minimisation: Example Continued

* Consider leaf parcluster with local model {g,}
* Letuscallit Cy
* Merge inbound

* C{and T, parcluster [Epid.Nat(D),Man(W)n] C,
identical = merge / -
(call result €C1again) r @d

Ty|Epid,

ll

 C, and Tp parcluster
identical = merge

* C;and T, parcluster
identical = merge

t

ick(X)

Tw|Epid, Sick(X)
* Ty, parcluster subset | I J

of C; — merge

* Root parcluster subset
of C; — merge

7

4 \ (N\
Epid, Sick(X), Epid, Sick(X),
Treat(X,M) Travel(X)

. J . J

(I N e l N
Epid, Sick(X), Epid, Sick(X),
Treat(X,M) Travel(X)

. J . J

93 92

Sy %

A, =

Bt A‘ﬁ?; UUUUUUUUUUUUUUUUUUU

RSS2 » INSTITUT FUR INFORMATIONSSYSTEME 38
O e

Tin

Minimisation: Example Continued

* Consider leaf parcluster with local model {g,}
* Letuscallit Cy
* At this point, we have reached

the former root and cannot C | Evid, Nat(D), Man(w) -]
merge further inbound g1
* Also: the Ty parcluster Ty @d'_T]

contains logvar X, which is not
a subset or superset of the .
logvars of C; (D, W) Tx(fpi,

* Merging stops

t

ick(X)

TM[Epid, Sick(X)|T]

4 l \ (N\
Epid, Sick(X), Epid, Sick(X),
Treat(X,M) Travel(X)

. J . J

4 I \ (l N\
Epid, Sick(X), Epid, Sick(X),
Treat(X,M) Travel(X)

. J . J

93 92

7

Tm

R
SXRSS2 Y INSTITUT FUR INFORMATIONSSYSTEME
o 8

Minimisation: Example Continued

* Consider leaf parcluster with local model {g,}
* LetuscallitC,

* Merge inbound

* C, and neighbouring parcluster Cl[Epid.Nat(D),Man(W)n]
identical = merge g1

Ty|Epid, SLck(X

Epld Sle(X)|T \

N
T EpLd SLCk(X) Epld Sick(X),
M Treat(X, M) Travel(X)

. J . J

4 I \ (l N\

Epid, Sick(X), Epid, Sick(X),

Treat(X,M) Travel(X)

. J . J
93 C; 9

/& UNIVERSITAT ZU LUBECK

)
= Y
3 7
SXRSS2 Y INSTITUT FUR INFORMATIONSSYSTEME 40
o, ¥
5. 518%™

Minimisation: Example Continued

* Consider leaf parcluster with local model {g,}
* LetuscallitC,
* Merge inbound

* C, and neighbouring parcluster Cl[Epid.Nat(DmMan(W)n]
identical = merge g1

* T, parcluster is a subset of C, T, @d'_T]
— merge

Ty|Epid, SLck(X

Epld Sle(X)|T \

EpLd SLCk(X) Epld SLCk(X)
Treat(X M) Travel(X)

,_Iﬁ CZ 92
Epid, Sick(X),
Treat(X,M)

-

93

D) k)

A, =

Bt A‘ﬁ?; UUUUUUUUUUUUUUUUUUU

RSS2 » INSTITUT FUR INFORMATIONSSYSTEME 41
O oeks

Tin

Minimisation: Example Continued

* Consider leaf parcluster with local model {g,}

* LetuscallitC,
* Merge inbound

* C, and neighbouring parcluster Cl[Epid.Nat(D),Man(W)n]

identical = merge

* T, parcluster is a subset of C,
— merge

* Ty parcluster is a subset of C,
— merge

51

Ty [vicr | ‘

C2 [Epid, Sick(X), Tr(wel(k)]

TM[Epid, Sick(X)|T]

Tm

SRs22 5 INSTITUT FUR INFORMATIONSSYSTEME
e

—L

Epid, Sick(X),
Treat(X,M)

Epid, Sick(X),

Treat(X,M)
-

93

9>

\

Minimisation: Example Continued

* Consider leaf parcluster with local model {g,}
* LetuscallitC,
* Merge inbound

* C, and neighbouring parcluster Cl[Epid.Nat(D),Man(W)n]
identical = merge g1

* T, parcluster is a subset of C, Cz[Epid,sl-ck(x),vaequw]
— merge 5

* Ty parcluster is a subset of C,
— merge

* Merging cannot move further Tu(Eoia.sick00),)

inbound |

* C, is neither a subset nor a T |Epid, Sick(X),
M Treat(X, M)
superset of C,
* Merging stops b;zz)id,f(i;/c](\;()),
reat(X,

93

SXRSS2 Y INSTITUT FUR INFORMATIONSSYSTEME
oy

43

Minimisation: Example Continued

* Consider leaf parcluster with local model {g5}
* Letuscall it C5

* Merge inbound

* C; and T, parcluster identical Cl[Epid.Nat(DmMan(W)n]
— merge g1

Cz[Epid, Sick(X), Travel(X)|T]

2

11y, [Epid, Sick(X) |T]

—L

Epid, Sick(X),
Treat(X,M)

Tin

C Epid, Sick(X),
3| Treat(X, M)
-

93

D) k)

A, =

Bt A‘ﬁ?; UUUUUUUUUUUUUUUUUUU

RSS2 » INSTITUT FUR INFORMATIONSSYSTEME 44
O oeks

Minimisation: Example Continued

* Consider leaf parcluster with local model {g5}

* Letuscall it C5

* Merge inbound

* C; and T, parcluster identical
— merge

* T,, parcluster is a subset of C;
— merge

SRs22 5 INSTITUT FUR INFORMATIONSSYSTEME
e

C, [Epid. Nat(D), Man(W)|T]

51

CZ[Epid, Sick(X), Travel(X)|T]

2

11y, [Epid, Sick(X) |T]

C Epid, Sick(X),
3| Treat(X, M)

93

45

Minimisation: Example Continued

* Consider leaf parcluster with local model {g5}
* Letuscallit C;
* Merge inbound

* C; and T, parcluster identical Cl[Epid,Nat(D),Man(W)n]
— merge g1

* T, parcluster is a subset of C; Cz[Epl.d,sl.ck(x)’vael(x)|T]
— merge

. 2
* Merging cannot move further
inbound

« C3is neither a subset nor a “C3[Epid,Sick(X),Treat(X,M)|T]

superset of C, Js

* Merging stops

R
SXRSS2 Y INSTITUT FUR INFORMATIONSSYSTEME
o 8

Minimisation: Example Continued

* Resulting FO jtree J from FO dtree T given model G

* If we had started merging from leaf with g5 inbound
before merging from leaf with g,, €, and C5 would be
switched

Man(w)

Nat(D), Epid

Epid Nat(D) Epid Sick(X) Epid Sick(X) Man(w)
Man(W) Travel(X) Treat (X M) Nat(d), Epid

T
Y ‘.‘5 UNIVERSITAT ZU LUBECK

Treat(x, m)
Sick(x)
Epid

91 93 9>

FO Jtree Construction

*/ Given a model G, the following steps are necessary
1. Bring G into the required normal form for FO dtree
construction
2. Construct an FO dtree T for G
3. Translate T into an FO jtree
4. Apply inverse substitutions to parclusters of
descendants of DPG nodes in |
5. Minimise J
* Next?

* FO jtrees for query answering
* Messages need to be passed to ensure independence
 What about evidence?

N, -
2 WUAYT & UNIVERSITAT ZU LUBECK
3REES S INSTITUT FOR INFORMAT

SSSSSSSSSSS

48

Message Passing in FO Jtrees

* Ensure independence between parclusters

e Send messages based on two conditions

— If a node i has received all messages from neighbours
but one, j, node i calculates and sends a message to j

— |f a node i has received all messages, then it calculates
and sends messages to all neighbours j that have not
received a message yet

Man(W) Epid | Travel(X) Epid |Treat(X,M)
Sick(X)

[Epid Nat(D) Epid Sick(X) Epid Sick()g
49

91 9> 93

Message Passing in FO Jtrees

* Message m;; from sender C; to receiver C;
» Set of parfactors {g;};—, withrv(g;) € S;;

 To calculate

e Collect necessary information from local model and received
messages:

Gij =G U U My

kenbs(i),k+j
* Ignore the message that came from C; (if it already exists)

* Call slightly modified LVE with G;; as input model, §;; as query,
and no evidence: LVE*(Gij,Sl-j, (Z))
» Specification of LVE™: next slide

Man(W) Epid | Travel(X) Epid |Treat(X,M)
Sick(X)

91 9>

[Epid Nat(D) Epid Sick(X) Epid Sick()g
93
50

LVE for Message Passing

LVE* (G, Q,{ge}c=1)
G < Shatter G on Q, {g.}o=1, and on itself

G < Absorb {g.}l-,inG
while ¢ contains non-query terms do
if a PRV A fulfils the preconditions of sum—out then
G < Apply sum—outto A in G
else

G < Ap{)ly an enabling operator
(multiply, count—convert, expand,

count—normalise, split, ground)
on some parfactors in G

—g—~—Muttiply-attparfactorsin-Gintooneparfactor——
N ot e

—Feturin-g

return G

D) k)

iz,

2 WUAYT & UNIVERSITAT ZU LUBECK

RSS2 » INSTITUT FUR INFORMATIONSSYSTEME 51
215 sisn”

Message Passing in FO Jtrees

*E.g.,
* Message m, from €, to C,
* Collect G, ={g}U®
* No further neighbours except C,
 Call LVE*({g4}, {Epid}, 0)
* LVE” eliminates Nat(D), Man(W) from {g}
* Count-converting Nat(D) into #p[Nat(D)]
* Summing out Man(W) and then #p[Nat(D)]

* Returning {g;}
« Send {g1}asmq, to C,

Epid Nat(D) Epid Sick(X) Epid Sick(X)
Man (W) Epid | Travel(X) Epid |Treat(X,M)
g1 ~—_ p— Sick(X) gs

miqz

/& UNIVERSITAT ZU LUBECK

LX)
Sy
Z i
) % & INSTITUT FUR INFORMATIONSSYSTEME 52
s 5
5. 518%™

Message Passing in FO Jtrees

*E.g.,
* Message ms, from C5 to €,
* Collect G3, = {g3}U D
* No further neighbours except C,
 Call LVE*({g3}, {Epid, Sick(X)}, ©)
* LVE”" eliminates Treat(X, M) from {g3}

e Summing out Treat(X, M)
* Returning {g3}

« Send {g3}asms, toC,

Epid Nat(D) Epid Sick(X) Epid Sick(X)
Man (W) Epid | Travel(X) Epid |Treat(X,M)
91 92 my, \Sle(X)g3/

ms;

/& UNIVERSITAT ZU LUBECK

B

PR

3 7

) % & INSTITUT FUR INFORMATIONSSYSTEME 53
s s1ss”

Message Passing in FO Jtrees

*E.g,
* Message m,4 from C, to C4

* Collect G,1 = {g,} U ms,
* Further neighbour: C3, sent message mz, = {g3}
» Call LVE*({g2, g3}, {Epid}, 0)
* LVE" eliminates Travel(X), Sick(X) from {g,, g3}
* Summing out Travel(X) from g,, yielding g,
* Summing out Sick(X) from product of g; and g3, yielding g4

 Returning {g;3}
« Send {g53}as m,, to C;

Epid Nat(D) Epid Sick(X) Epid Sick(X)
Man (W) Epid | Travel(X) Epid |Treat(X,M)
91 w ms, Sick(X) g3

mjq

54

Message Passing in FO Jtrees

*E.g.,
* Message m,5 from C, to C5

* Collect Go3 = {g,} Umq,
* Further neighbour: €4, sent message m{, = {g;}
« Call LVE*({g,, g1}, {Epid, Sick(X)}, ©)
« LVE" eliminates Travel(X) from {g2, g1}
* Summing out Travel(X) from g,, yielding g,

* Returning {g5, g1}
« Send {g5, g1} as m,5 to C3

Epid Nat(D) Epid Sick(X) Epid Sick(X)
Man(W) Epid | Travel(X) Epid |Treat(X,M)
g1 my, 9o my, ms; SiCk(X)QB

mj3

55

Message Passing: Overview

*/ Given an FO jtree J, send messages if one of the
two conditions is true

— |f a node i has received all messages from neighbours
but one, j, node i calculates and sends a message to j

— |f a node i has received all messages, then it calculates
and sends messages to all neighbours j that have not
received a message yet

*/ To calculate a message:

e Collect necessary information from local model and received
messages:

Gij =G U U My

kenbs(i),k#j

+ Call VE" (G, 511, 0)

56

qqqqqq

4

Query Answering in FO Jtrees

» After message passing, the parclusters are
independent from each other given the messages

* Prepared for query answering

* Find parcluster C; s.t. Q € C;
e Collect information from local model and messages, i.e,

GQ = Gi U U mjl-
jenbs(i)
e Call LVE(GQ, Q, (Z)) and return or store result of the call

| For each query with query term Q

Epid Nat(D) Epid Sick(X) Epid Sick(X)
Man(W) Epid | Travel(X) Epid |Treat(X,M)
gimyq g2mi2 M3y Sick(X) g3 my3

uuuuuuuuuuuuuuuuuuuu

TTTTTTTTTTTTTTTTTTTTTTTTTTTTTT

57

Query Answering in FO Jtrees

* E.g., P(Epid)
* All parclusters contain Epid, choose one at random,
e.g., C,

* Collect Ggpig = {g2} Umy, Ums, = {92, 91, 93}
 Call LVE({g,, 91, 93}, Epid, @), yielding a parfactor g
containing the probability distribution over Epid

e What about evidence?

Man(W) Epid | Travel(X) Epid |Treat(X,M)

[Epid Nat(D) Epid Sick(X) Epid Sick(X)
gimyq g2mqz M3, Sick(X) g3 my3

5 RUIT © UNIVERSITAT
3582y INSTITUT FUR INFORMATIONSSYSTEME
s

58

Evidence in FO Jtrees

* Evidence applies to PRVs in some parclusters

* Changes the distributions in local models
* Information sent in messages might change

 Even if summed out and therefore hidden from the other
parclusters

* Therefore, handle evidence before sending messages

m
*| Given a set of evidence parfactors {¢e (R(X))w }

* For each ¢, (R(X))
* For each parcluster C; where R(X) € C;
* Shatter G; on R(X)\c,

* Absorb ¢, (R(X))we in G; Evidence Entering

* Only, then send messages

e=1

Epid Nat(D) Epid Sick(X) Epid Sick(X)
Man(W) Epid | Travel(X) Epid |Treat(X,M)
7 AR 91 g, SO T,
L IR NeGiianonssvsTews 59

Evidence in FO Jtrees

* E.g., given Sick(eve) = true as evidence in g,

*InC,
« Shatter G, = {g,} on Sick(eve), yielding {g5, 92}
« Absorb g, in g5, yielding g5’
 Result: G, = {g5', 92}
* In Cq
« Shatter G; = {g3} on Sick(eve), yielding {g5, 93}
 Absorb g, in g5, yielding g5
 Result: G5 = {95, 93}
* Then, send messages based on the local models that
have absorbed the evidence

Man(W) Epid | Travel(X) Epid |Treat(X,M)
Sick(X)

[Epid Nat(D) Epid Sick(X) Epid Sick()g
60

91 9> 93

Evidence in FO Jtrees

* E.g., given Sick(eve) = true as evidence in g,

* Message m, does not change compared to previous
example

* Message m3, calculated based on {g5', g5}

« CallLVE* ({95, g3}, {Epid, Sick(X)}, @), vielding {95, 93 }
* Message 111, calculated based on {g5 , g5} U m >

« CallLVE*({g5', 92, 91}, {Epid, Sick(X)}, ©), yielding

err

93", 92,91}
* Message m,, calculated based on {g5', g5} U ms,

* Call LVE*({g3", 92, 95", 93 }, {Epid }, 0), yielding

erl ers III}

95", 92,95 93

Man(W) Epid | Travel(X) Epid |Treat(X,M)
Sick(X)

[Epid Nat(D) Epid Sick(X) Epid Sick()g
61

91 95, 95 93, g3

Evidence and Queries in FO Jtrees

 After evidence handling

* All queries are answered in an FO jtree with handled
evidence {g,}0%, yield results conditional on {g,}0%,

* So, given evidence {g.}h; and query terms {Q;}}-, for
a model G
* The posed queries are P(Q; |{ge}oz1),1 <i <n,w.rt. P;

* FO jtree constructed without specific evidence

* Reuse for different evidence sets
* As long as model stays the same

* Reset the local models before entering new evidence

Epid Nat(D) Epid Sick(X) Epid Sick(X)
Man(W) Epid | Travel(X) Epid |Treat(X,M)
91 92 Sick(X) g3

D) e

2 WYY & UNIVERSITAT U LO

RSS2 » INSTITUT FUR INFORMATIONSSYSTEME 62
215 sisn”

LIT: Algorithm

LJT(G,{Q;}i=1, {gedet1)
Construct an FO jtree J for G
Enter evidence {g,}h= into]
Pass message in |

Answer queries with query terms {Q;};—, in]

*/ Look for blue boxes on the previous slides to find
the descriptions of each step Step Name

* Constant overhead for FO jtree construction

* Payoff if given multiple queries

| S UNIVERSITAT ZU LUBECK

TTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTT
t§
7, B

63

Comparison to Ground Inference

* Propositional Junction Tree Algorithm (JT)
e Same algorithm, only with propositional model

* E.g., gr(G
& 9 (G) Epid Man.war | fi° fi*
Dis.fire Dis.flood
I

4)

Epid Man. virus fi ff

\DlS. fire Dis. f lood)

4 N 1 3
Epid Sick. alice fz Epid Sick.eve f2 Epid Sick.bob |/2
Travel. alice . Travel. eve) Travel.bob

Epid Sick.bob Epid Sick.bob
2 Treat.bob.m, Treat.bob.m,
3

Epid Sick. eve Epid Sick. eve
Treat.eve.my Treat.eve.m,

Epid Sick.alice| |Epid Sick.alice
Treat.alice.m,| | Treat.alice.m, £
3

TTTTTTTTTTTTTTTTTTTTTTTTTTTTTTT {

J f35 f36

Junction Tree: Messages

* From periphery to and back

{Epid Man. WaT'J f13 f14 Myyqr

Dis.fire Dis.flood
I
fi ff
alwe/e | Mpob ;
Epid Sick. alice fr Epid Sick.eve f2 Epid Sick.bob |/2
Travel. allce Travel.eve Travel bob

mml

[Epid Sick. alice] Epid Sick. allce} [Epld Sick. bob J Epid Sick. bob J
1f1 me

Treat.alice.mq| | Treat. alice.m, Treat.bob.m, Treat.bob.m,

; f4 m43 3 M
3
{Epid Sick.eve } [Epid Sick.eve J

Treat.eve.my Treat.eve.m,

fs

65

Junction Tree: Symmetry — Inefficiency

* |dentical messages incoming
* Information already present

e Calculating identical messages + sending information
partially present

1 £2
s ~ i Ji© Meve Mpob Matice Myyqr
Epid Man. virus

kDis. fire Dis.f lood/
ma,back | 2 m
N f2 My, MyyMe pac b,back

P
Epid Sick. eve
Travel. eve

J

\-
M,ye: Eliminate Travel.eve, Sick.eve

2
from £, my,, ,m,,

. 2 el
M, : Eliminate Mo, bac i f My pack Mm,: Eliminate
Epid Sick. eve } [Epid Sick.eve T'reat.eve.m;

from f.2
Treat.eve.my Treat.eve.m, f3

66

Compact Encoding of Jtrees

Epid Man.war | f©° fi*
Dis.fire Dis.flood

I
4)
Epid Man.virus fi fi
\Dis. fire Dis. f lood)

Travel. alice . Travel. eve) Travel.bob

4 N 1 3
EEpid Sick.alice }fzz Epid Sick.eve |2 {Epid Sick.bob }fZ

—

Epid Sick.alice| |Epid Sick.alice Epid Sick.bob Epid Sick.bob
Treat.alice.my| | Treat. alice.m, aoog Treat.bob.my Treat.bob.m,

Treat.eve.my Treat.eve.my

Epid Nat(D) Epid Sick(X) Epid Sick(X)
M an(W) Travel(X) Treat(X M)

f3 4 3 3 5 6
’ 5 [Epid Sick. eve] [Epid Sick. eve 1 I3 £

Message Calculation Strategies

* Message calculation strategy seen so far

* Eliminate all non-separator PRVs from all messages but the
one that came from receiver and the local model

* Called Shafer-Shenoy architecture after the two researchers
who first presented the scheme

* Another strategy for JT exists, called Hugin architecture
* Multiply the factors of local model G; into one factor g;
* Multiply each incoming message m;; into g;
* Store mj; as well
* Each message consists of only one factor (no longer a set)
* When sending message m;;
* Eliminate all non-separator randvars from n%ll
* le., divide g; by m; first
* If m;; does not exist, then divide by a symbolic 1 (or no division)

:::::
3Rs22 % INSTITUT FUR INFORMATIONSSYSTEME

Message Calculation Strategies

What about a
. . . . o © i i
* Hugin architecture continued Lifted Hugin -

* May enlarge the factors at each node to the worst-case
size of each node

* Eg., G ={pR,9),d(S,T)}— g, =¢R,S,T)
* May lead to more involved multiplications

* E.g., multiplying message m;; = ¢(R) into g; = ¢(R,S,T)
more involved then multlplylng ¢ (R) into an intermediate
result ¢'(R)

* Pays off if the nodes of the jtree have a high degree

. Mapy duplicate muItipIigations \/mm
during message calculation

* E.g., mg;, Myj, Msi, Mg; and g; have >[R,S,T]<
T m m

to be multiplied for both m;, my; s g; ai

* Requires a division operator for factors

R
SXRSS2 Y INSTITUT FUR INFORMATIONSSYSTEME
o 8

Message Calculation Strategies

* Lifted Hugin?
* Arguments pro and con also apply to lifted version

* May enlarge the factors at each node to the worst-case size of
each node

* May lead to more involved multiplications
* Pays off if the nodes of the jtree have a high degree
* Requires a division operator for factors

* Main obstacle: So far, no lifted division operator
* We are working on it @Moritz

* Also, CAUTION: In general, parfactors may be multiplied
with different logvars such that previously unnecessary
count conversions might become necessary

,,,,,
\\\\\

%% INSTITUT FUR INFORMATIONSSYSTEME

In terms of Lifting: Is it that simple?

e Algorithm-induced groundings due to message passing

* For message calculation, non-separator PRVs are eliminated
with separator PRVs as the query terms containing logvars
* Non-separator PRVs have to fulfil sum—out preconditions
1. VBerv(G\{g}): gr(B|C) N 97”(14|(x,cx)) =0
2. VXe{X||nx(Cyx)| >1}:X €lv(4)

3. X<l =[p(A)\ (X \ lv(A)) count-normalised w.r.t. X€°™ =
lv(A) N X in C, with X the set of X’

* Preconditions 1 + 3 fulfilled by construction
* Precondition 2 may not be fulfilled — can cause groundings
* E.g., logvar E added to PRVs Epid, Sick(X), Treat(X, M)

* When calculating 11,5, one has to eliminate Travel(X)

e But: it does not contain both X and £ and a count conversion
does not apply as £ occurs in two PRVs — E gets grounded

Epid(E) Nat(D) Epid(E) Sick(X,E) Epid(E) Sick(X,E)
Man(W) Epid(F)| Travel(X) Epid(E) Treat(X M,E)
Sick(X,E)

\

R
SXRSS2 Y INSTITUT FUR INFORMATIONSSYSTEME
o 8

,,,,,
\\\\\

Epid(E) Nat(D) ' Epld(E) Sick(X,E) Epld(E) Sick(X,E)
Man(W) Epid(E)| Travel(X) Epid(E)| Treat(X,M,E)
% o Sick(X,E)

Conditions on Groundings

* For a lifted calculation of message m;;, it
necessarily has to hold that
* foreach PRV 4 € (Ci \ Sl-j), i.e., A has to be eliminated:

» for each separator PRV S € §;; : [v(5) € [v(4) (Cond. 1)

* If Cond. 1 does not hold, i.e., [v(S) € lv(A4), one
may induce Cond. 1 by count conversion

e If inG;; (Cond. 2)

Epid Nat(D) \/ \/ Epid Sick(X) \/ Epid Sick(X)
Man(W) Epid | Travel(X) Epid |Treat(X, M)
Sick(X)

ij

-~ 15

,,,,,
\\\\\

d =
el =

Conditions on Groundings

* Problem with induced Cond. 1 using count conversions
on the logvars in [v(S) \ lv(4):

* Logvars that were previously not counted are now counted

 All receiving parclusters need to be able to handle the
counted versions, which needs to be checked

* If a newly counted logvar arrives at a parcluster Cy, it has to be
countable in G, as well (Cond. 3)

* For further calculations, since they refer to the same set of randvars,
they have to occur in the same form, i.e., at one point the logvar has
to be counted in Gy, as well

Epid Nat(D) \/ \/Epid Sick(X) \/ \/ Epid Sick(X)
Man(W) Epid | Travel(X) Epid |Treat(X, M)
Sick(X)

Epid(E) Nat(D) Epid(E) Sick(X,E) X \/ Epid(E) Sick(X,E)
Man(W) Epid(E)| Travel(X) Epid(E)| Treat(X,M,E)
Sick(X,E)

IVERSITAT ZU LUBECK

NIV
TTTTTTTTTTTTTTTTTTTTTTTTTTTTTT

Fusion

e Extra step at end of construction called fusion

* Test each possible message m;; for each PRV A to eliminate
and each separator PRV S based on the three conditions
* |f Cond. 1 holds: no groundings for A and S; continue
e Otherwise:
* |f Cond. 2 holds: check Cond. 3
e If Cond. 3 holds: no groundings for A and S; continue
* Otherwise: groundings; mark m;;; continue with next message
* Otherwise: groundings; mark m;;; continue with next message

* For each message m;; marked:

* Merge parclusters C;, C; (as in minimisation)

* E.g.,
* Testing marks ma3 | Epid(E) Nat(D) Epid(E) Sick(X, E)
— merge C,, C3 Man(W) Travel(X)
Treat(X,M,E)

Epid(E) Nat(D) \/ \/Epid(E) Sick(X,E) X \/ Epid(E) Sick(X,E)
Man(W) Travel(X) Treat(X,M,E)

’ S UNIVERSITAT ZU LUBECK

s
= Y
3 7
SXRSS2 Y INSTITUT FUR INFORMATIONSSYSTEME 74
oy e i

5. 518%™

LJT: Complexity

* Uses also the notion of lifted width w, = (W , W#)

* W, largest ground width

* wy largest counting width
* As FO jtree constructed from FO dtree, wr identical
between LVE and LIT

* Fusion may change w7 in terms of the FO jtree

e But in terms of the LVE calculations in the merged parcluster, wy
is still the same with multiple nodes being combined into one

* For simplicity, let us consider models that all fulfil Cond. 1 in
fusion such that wr is identical for both LJT and LVE

LJT: Complexity

* LJT complexity based on complexity of LVE:
O(ng - log,(n) - ra « n"#W#)

* Complexity of individual steps

e Construction: linear in number of nodes, no calculations;
negligible compared to later steps

* Evidence entering: O(n] log,(n) - rWe! -nT#W#)
» Absorbing evidence complexity: 0(log2 (n) - ro=1t. nT#W#)
. Visits% -9 - n"#W# lines, possibly exponentiates the potentials
* Ateachnode = n, - 0(10g2 (n) - rVe~1 -nT#W#)
* n; number of nodes in FO jtree J

* For each e evidence parfactors — e - O(n] -log,(n) - rWo— L.

nT#W#)
* Assuminge < n; — O(n] -log,(n) - r%e~1 -nr#W#)

* First two steps accumulated: O(n] log,(n) - r"eo~t. n’”#W#)

D) k)

A, =

Bt A‘ﬁ?; UUUUUUUUUUUUUUUUUUU

RSS2 » INSTITUT FUR INFORMATIONSSYSTEME 76
O oeks

LJT: Complexity

* Complexity of individual steps
* First two steps accumulated: O(n; - log, (n) - "o~ - n/#Wi)
* Message passing: O(n] -log,(n) - r™e -n’”#W#)
° Calculating one message = answering one query on a parcluster

« Worst-case parfactor size at parcluster: "9 - n"#W#

« Elimination of |C; \ S; } PRVs goes through each line, potentials may
be exponentiated — 0 log,(n) - r"a - nT#W#)

* Two messages per edge, n; — 1 edgesinJ = n; - O(log,(n) -
T-Wg . nT#W#)

* Query answering: O(m - log,(n) - r™9 - n"#"#)

 Each query answered in one parcluster = 0(log,(n) - " -
nT#W#)

* With m query terms = m - O(log,(n) - "9 - n™#"#)
 All four steps accumulated:
0 (("J +m) - log,(n) - " - n’"#W#)

Moz, &
EEEEEEEEEEEEEEEEEEEEEEEEE

2 o
A R AT 77

Comparison to LVE

* For both holds: w,; bounded from below by max_ k
¢(A1,...,Ak)EG

* LVE complexity of one query
= LJT complexity of message passing
« O(ng +log,(n) - r"a - n"#Wi) ys,
« 0(ny - logy(n) - %o - nl#We)
 Actual number of calculations: third query (two queries in
* InLVE: ¢cryp LVE = one message pass)
* For message pass: 2 * C;yg
* For m queries
 WWVE:O(m - ng-log,(n) - r"a . n"#Wi)
« UT: 0 ((n] +m)-log,(n) - "o - n’”#W#)

« Difference inm - ny vs. (n; +m)
* LVE has complexity of O(ny - log,(n) - r"9 - n"#"#) for one query
 LIT only complexity of O(log,(n) - "9 - n"#"#) for one query

LIT only pays off if m > 1,
most likely, starting with

LIT: Completeness

* Completeness results from LVE also hold for LT

* Proof using the FO jtree properties and the fusion conditions
on a case basis regarding separators:
» Separators containing only propositional randvars
* Do not interfere with elimination order for sum—out
» Separators additionally containing one-logvar PRVs
* Do not interfere with elimination order for sum—out
* Two-logvar PRVs within a parcluster eliminable
* One logvar PRVs within a parcluster eliminable
* Given all available counting versions
 (Along the lines of completeness proof for M 1P77)
» Separators additionally containing two-logvar PRVs
* All two-logvar PRVs eliminable

 If inequality constraint between them — same parcluster,
eliminable within one parcluster using group inversion

* Because of fusion, PRVs with less logvars also part of separator or
eliminable (may it be through extra count conversion)

* Else parclusters would have been merged

aaaa
SRS Y INSTITUT FUR INFORMATIONSSYSTEME
C) =4

LIT: Implementation

e Available at:

e https://www.ifis.uni-luebeck.de/index.php?id=518&L=2

* Based on the LVE implementation by Taghipour

e Available at:
e https://dtai.cs.kuleuven.be/software/gcfove

* Includes an implementation of the propositional
junction tree algorithm for comparison

* Input: BLOG files

* Based on Bayesian Logic Programming Language
* https://bayesianlogic.github.io

g, -
2 WUAYT & UNIVERSITAT ZU LUBECK
5527 INSTITUT FOR INFORMATIONSSYSTEME
5

80

https://www.ifis.uni-luebeck.de/index.php?id=518&L=2
https://dtai.cs.kuleuven.be/software/gcfove
https://bayesianlogic.github.io/

Runtimes: Increasing Domain Sizes

* Example model

 All domain sizes €
{24, ..,20,30,...,100,
200, ...,1000}

* No evidence

* Queries: e Test increasing
» P(Travel(x;)) * Ground width wy
R P(Sle(xl)) e Default: 3

Counting width w
) P(Treat(xl,ml)) . DefangItzl i

» P(Nat(dy)) Number of nodes n;
» P(Man(wy)) * Default: 3

. P(Epid) e Domain sizen
e Default: 1000
e Test trade-off (overhead e Based on

,,,,,
\\\\\\\\

vs. faster inference) 0(n, - logy(n) - s - n7#w#)

Ste p'W|Se O(n] -logy(n) - %9 - nr#W#)

10% 10%

—d———— B & 5—8 —§ 5
10% 10%
101 -

o M
—A— Construction

Evidence entering
Message passing
Query answering (LJT)
Query answering (LVE)

o _| —A— Construction 0o _|
10 —<o— Evidence entering 10
—&— Message passing

107" ~&— Query answering (LJT) 107"

—>— Query answering (LVE)

fFooe

2 _| -2 _]
10 10 o— —o—%—o—>%
107 - 103 4
I 1 1 1 I 1 1 1 1 1
10° 10’ 102 10° 1 3 5 7 9 11
n ranging from 2 to 1000 n; ranging from 2 to 11
10% X 10%
102 : 10% ﬁ T e
10" 10" - /
—A— Construction —A— Construction
10° — —>— Evidence entering 10° — —— Evidence entering
—&— 'Message passing —&— 'Message passing
—&— Query answering (LJT) —o— Query answering (LJT)
107" =%—"Query answering (LVE) 107" == Query answering (LVE)
107 0296 o o
107 - 107 -
I 1 1 1 1 1 I 1 1 1 1 1
1 3 5 7 9 11 0 2 4 6 8 10
w, ranging from 2 to 11 wy ranging from 0 to 9

Runtimes in milliseconds
U’;‘IEIVSFIII?LIJTT‘;UZI;JIII.\JUF%ERCJATIONSSYSTEME Default: n) 1000’ n] e 3,W — 3, W# — 1 82

FOKC: see next lecture

QU e rl eS a n SWG rl n g compile: all overhead time

10° 10°

~o— LJT —e— LJT compile
—>»— LVE -—®— FOKC compile
10* A 10*
—k—
10° =B 10°
® - »* ¥ Y —————
10% 10%
101 - 101] /,9,16\9/6\9—@/-9
—o— LJT —o— LJT compile
o _| 10° - —>»— LVE -#®— FOKC compile
10 —=— FOKC
107" - 101 4
[I I 1 [I I I I 1
10° 10" 10? 10° 1 3 5 7 9 11
n ranging from 2 to 1000 n; ranging from 2 to 11
10° 10°
10* 10*
10° " 10° i
102 102 P
10" 10"
—o— LJT —e— LJT compile —o— LJT —e— LJT compile
0 —>»— LVE -®— FOKC compile 0 _| —>»— LVE -#®— FOKC compile
107 T 10 T
—— VE —%— VE
107" - ~5- FOKC 107" — e FOKC% | |
[I I I I 1 [I I
1 3 5 7 9 11 0 2 4 6 8 10
w, ranging from 2 to 11 wy ranging from 0 to 9

Runtimes in milliseconds
U']‘r!lvsgr':-ﬁb"-r‘;[)z#|INUF%ERC,§AT|0NSSYSTEME Default: n= 1000’ n] — 3,W — 3, W# — 1 83

Trade-off Evaluation: Criteria

* For multi-query algorithms
* Overhead to set off (model is compiled into a helper structure)

VS.
e Shorter individual query answering time

* With
* tg,cp1 runtime for answering single query with an algorithm that
uses compilation

. neprfuntime for answering single query with an algorithm
W|t out compilation

* l¢cp1 runtime for compilation with an algorithm that uses
compilation
 What is the ratio between individual query answering times?

tcl
o = a,cp

tq,uncpl
 How many queries does it take to offset the overhead?

,8 . tc,cpl
Lquncpt — Lg,cpl
e Makesonlysenseifa > 1

Tra d e-off FOKC: see next lecture

10° i i AT e R EEERTERTEPPREPERRS 10 iy T S R
LJT LJT FOKC : : “LJT LJT FOKC
Lo [5 a : : : Loa Loa :
AT A e : : —&- & —— n=10 : : :
102 T 102 - ~e —e— < n=100 T
: : : : A : :

—4 % n=1000

10" 10" e e e e
10° 10°
107" 10!
1072 b s 102 -
[I I 1 [I I I I 1
1 10 100 1000 1 3 5 7 9 11
n ranging from 2 to 1000 n; ranging from 2 to 11
408 ik e - T F 10° =4y e T R
LIT LJT FOKC : : ; : (LT LT FOKe Foke
—8- % —— n=10 ‘ ‘ : - £ — n=10 : : :
102 o —o— 102 i~ —O— i B~ =100 R
b \—A— —a— % —&—n=1000 : :
10" 10" 7 T
10° 10°
107" 107"
R oo Rt 102 -
[I I I I 1
1 3 5 7 9 11

w, ranging from 2 to 11

UNIVERSITAT ZU LUBECK

INSTITUT FUR INFORMATIONSSYSTEME Default: n] —_— 3,W = 3’ W# = 1 85

Beyond Standard LIT

e LJT is basically a framework for query answering
that is independent of

 Specific function encoding — calculating algorithm has
to work with the encoding

e Such as lists, tables, ADDs, etc.

e Concrete query language — whatever the calculating
algorithm can handle, LIT can (within parclusters)
* E.g., with LVE, queries with
e Uncertain evidence
* Parameterised query terms
* One exception: conjunctive queries!

= Could use any other query answering algorithm for
calculations as long as the query answering algorithm
can handle message calculations

,,,,,
\\\\\

% INSTITUT FUR INFORMATIONSSYSTEME

LJT for Conjunctive Queries

* Problem if query terms occur outside of one
parcluster
e E.g., with the FO jtree below
. P(Epid, Sick(eve)) v
. P(T ravel(eve), Treat(eve, ml)) X

* Solution:
Temporarily merge parclusters such that the query
terms occur in one parcluster

Epid Nat(D) Epid Sick(X) Epid Sick(X)
Man(W) Travel(X) Treat(X, M)

aaaa
SRS Y INSTITUT FUR INFORMATIONSSYSTEME
/////

Parcluster Merging for Queries

* Find a subgraph /' of the FO jtree J for the query terms
Q such that /' such that Q € rv(J’)

e For query answermg, use a set Gg that consists of local
models in /' and messages from out5|de]

* Why subgraph?
* Allows for ignoring messages within /' and including
messages from outside /' into parclusters of J'

* No duplicate information used
* Messages reused as much as possible

* E.g., consider subgraph of C;, Cy, C; for query on Ry, Ty
* Take all outside messages and local models
* Ignore inside messages my;, My, My, My j

5i

i Ik g; Maj

J

R
SXRSS2 Y INSTITUT FUR INFORMATIONSSYSTEME
o 8

Parcluster Merging for Queries

* Find a subgraph]’ of the FO jtree J for the query
terms Q such that /' such that Q S rv(J')
e Subgraph should be minimal for optimal

performance, i.e., a minimisation problem to solve:
argmln lrv(J")|

st Q crv(]’)

* Trade-off between finding a subgraph fast and finding a
minimal one

* Itis not about the number of parclusters but the number of
PRVs in the parclusters!

,,,,,
\\\\\\

RSS2~ INSTITUT FUR INFORMATIONSSYSTEME
oy
rs

Parcluster Merging for Queries

* Find a subgraph J’ of the FO jtree J for the query
terms Q such that /' such that Q S rv(J')

e Subgraph should be minimal for optimal

performance, i.e., a minimisation problem to solve:
argmln lrv(J")|

S. t Q crv(J')
e Simple heuristics (without guarantees on optimality):
« Start with one parcluster that fulfilsQ N C; # @ as]’
« Q' = Q\ C; remains as not covered by J’
* Perform a breadth-first search starting at C;

* Whenever a newly visited parcluster C; fulfils Q' n C; # @, add

all parclusters on the path between C; and Cj to ' (if not already
partof /') andset Q' = Q' \ C;

s, ° i I —
M» unveRsITAT until Q -

SRs22 5 INSTITUT FUR INFORMATIONSSYSTEME
e —
’s

Query Answering in FO jtrees

* Given an FO jtree | with messages passed

* Prepared for query answering

For each query with query terms Q
* Find subgraph J's.t. Q € rv(J’)

e Collect information from local models and outside
messages, i.e,

GQ = U Gi U U mji
ic)’ JENDs(i)
i)', je)’
e Call LVE(Gq, Q, (Z)) and return or store result of the call

Man(W) Epid | Travel(X) Epid |Treat(X,M)

{ Epid Nat(D) Epid Sick(X) Epid Sick()g
gi1myq gamqp; msy, Sick(X) g3z my3

93

Example

* E.g., P(Travel(eve), Treat(eve, m;))
* Subgraph: C,, C,
* Submodel for query answering: Gg = (g2, g3, M17)

» Call LVE with Gg and Q = {Travel(eve), Treat(eve, m;)}

» Split off query terms
e Eliminate all non-query terms
* Normalise the result

{ Epid Nat(D) Epid Sick(X) Epid Sick()g
94

Man(W) Epid | Travel(X) Epid |Treat(X,M)
gimy, g2112 M3, Sick(X) 93 my3

Complexity & Runtimes

* With conjunctive queries, complexity for answering
a single query depends on the size of the subtree n/

. O(n], log,(n) - ra - nT#We)

e Assumption is that query terms occur close together and
therefore n;s hopefully small

* Runtime behaviour observable in implementation

* Increasing n;s on x-axis] RN
e Runtimes in milliseconds 102_¢ R
* More parclusters needed, - S S G —
runtimes increase . aEenes S el

* Closer to compile time Comple: LT QA: LIT LVE

—+ —=— —#— n=10

. —— —e— n=100
* Closer to LVE time . - 1000

[I I I I I I I I |
1 2 3 4 5 6 7 8 9 10

SXRSS2 Y INSTITUT FUR INFORMATIONSSYSTEME
oy

Interim Summary

* Motivation
* Find clusters that are enough for query answering

FO jtree
* From FO dtree clusters to FO jtree parclusters

LIT algorithm

* Propagation/message passing: Dynamic programming
Complexity

 Compared to LVE

* Overhead for construction, message passing
e Savings during query answering

Completeness
e Results for LVE hold as well

Implementation

Conjunctive queries
* Find subgraph covering the query terms

