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Probabilistic Graphical Models (PGMs)
1. Recap: Propositional 

modelling
• Factor model, Bayesian 

network, Markov network
• Semantics, inference tasks 

+ algorithms + complexity
2. Probabilistic relational 

models (PRMs)
• Parameterised models, Markov 

logic networks
• Semantics, inference tasks

3. Lifted inference
• LVE, LJT, FOKC
• Theoretical analysis

4. Lifted learning 
• Recap: propositional learning
• From ground to lifted models
• Direct lifted learning

5. Approximate Inference: 
Sampling
• Importance sampling
• MCMC methods

6. Sequential models & 
inference
• Dynamic PRMs
• Semantics, inference tasks 

+ algorithms + complexity, 
learning

7. Decision making
• (Dynamic) Decision PRMs
• Semantics, inference tasks 

+ algorithms, learning
8. Continuous Space

• Gaussian distributions and 
Bayesian networks

• Probabilistic soft logic
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Problem: Many Queries
• Set of queries
• ! "#$%&'(&%&)
• ! *+,-(./.)
• ! "#&$0(&%&,23 )
• ! 45+6
• ! 7$0(8'//6)
• ! 9$:(%+#;<)
• Combinations of 

variables
• Under evidence
• *+,- => = 0#;&
• => ∈ {$'+,&, &%&}
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• LVE restarts with initial 
model for each query

45+6

7$0 C 9$: 9

"#$%&' =

*+,- =

"#&$0 =, !

D3

DE DF

Build a helper structure 
to precompute parts



Outline: 3. Lifted Inference
A. Lifted variable elimination (LVE)

• Operators
• Algorithm
• Complexity (including first-order dtrees), completeness, tractability
• Variants

B. Lifted junction tree algorithm (LJT)
• First-order junction trees (FO jtrees)
• Algorithm
• Complexity, completeness
• Variants

C. First-order knowledge compilation (FOKC)
• Normal form, circuits
• Algorithm
• Complexity, completeness

D. Most probable assignment queries
• Distribution vs. assignment queries
• Most probable explanation (MPE) , Maximum-a-posteriori (MAP) assignments
• Changes in LVE, LJT, FOKC
• Complexity, completeness
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Clustering of Models
• Idea: Find subsets (clusters) of PRVs that are “enough” 

for certain queries
• E.g.,

• For queries about instances of !"# $ , %"& ' , ()*+
• !"# $ , %"& ' , ()*+ are enough

• For queries about instances of ,-"./0 1 , 2*34 1 , ()*+
• ,-"./0 1 , 2*34 1 , ()*+ are enough

• For queries about instances of ,-/"# 1,% , 2*34 1 , ()*+
• ,-/"# 1,% , 2*34 1 , ()*+ are enough
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Clustering of Models
• But: If only parfactors used that contain the PRVs of a 

cluster, information stored in all other parfactors ignored
• E.g.,

• !"# $ , %"& ' , ()*+: ,- ➝ misses ,., ,/
• 01"234 5 , 6*78 5 , ()*+: ,. ➝ misses ,-, ,/
• 013"# 5,% , 6*78 5 , ()*+: ,/ ➝ misses ,-, ,.

• Only correct if clusters are independent from each other
• How can we achieve independence?
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Clustering of Models
• Remember: Global Markov Property

• Any two subsets of variables are conditionally independent 
given a separating subset

• E.g.,
• !"# $ , %"& ' , ()*+: ,-➝ independent of the rest given ()*+
• ./"012 3 , 4*56 3 , ()*+: ,7➝ independent of the rest given ()*+, 4*56 3
• ./1"# 3,% , 4*56 3 , ()*+: ,9➝ independent of the rest given ()*+, 4*56 3
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Clustering of Models
• Put clusters and their separators into a graph structure where

• Nodes are clusters with parfactors assigned containing the cluster PRVs 
(local model)

• Edges are labelled with the separator between neighbouring nodes
• If two nodes contain the same PRV, every node on the path between 

the two nodes contain the PRV (running intersection property)
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Clustering of Models
• Next: Make clusters actually independent of each other

• Each cluster ! asks its neighbours " ∈ $%& ! for information 
about the separator '() between them
• Other clusters have to collect all the information from the model 

that lies behind the separator on its part, eliminate the non-
separator PRVs from that information using LVE, and send the 
result in a message *)(, i.e., a set of parfactors, back

• Having the information on the separators to all neighbours 
makes a cluster independent from its neighbours and 
therefore all other parts of the model
• Ensures that each cluster of PRVs has all model information 

needed available for query answering on instances of its cluster 
PRVs
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Clustering of Models
• Next: Make clusters actually independent of each other

• E.g., !": #"➝ independent of the rest given $%&', )&*+ ,
• Asks neighbour !- for information on $%&', )&*+ ,

• !- asks neighbour !. for information on $%&'
• !. sends information on $%&' in a message /.-

• Eliminates 012 3 , 415 4 from #. for /.-
• !- sends information on $%&', )&*+ , to !" in a message /-"

• Eliminates 67189: , from #- and /.- for /-"
• With /-", !" is independent from its neighbour !- and therefore 

also from !.
• As !- is independent given /.- from !.
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!- and !.



Clustering of Models
• With each cluster ! independent of the rest, each ! can 

answer queries about instances of its PRVs based on its 
local model and the messages received
• Query terms: grounded instances or parameterised versions 

of its PRVs
• Conjunctive queries if terms only concern the cluster PRVs

• E.g., "#: $#➝ independent of the rest given %&!', )!*+ ,
• Based on $# and -.#, "# can answer queries about 
%&!', )!*+ , , /0123 ,,4 such as 
5 )!*+ , , 5 /0123 161,-. , 5 %&!', )!*+ 27!*1
• Cannot answer any queries about 823 9 ,42: ; , /02617 ,

but "< and ". can

11

$.

%&!' )!*+ ,
/02617 ,

$#

%&!' )!*+ ,
/0123 ,,4

$<

%&!' 823 9
42: ; %&!' %&!'

)!*+ ,
"< ". "#

-<. -.#-.< -#.



Clustering of Models
• Problem left: If each cluster asks for information on 

separators, some messages are sent multiple times
• E.g., 

• !" asks !#, which asks !$
• Messages calculated and sent: %$#,%#"

• !# asks !$ and !"
• Messages calculated and sent: %$#,%"#

• !$ asks !#, which asks !"
• Messages calculated and sent: %"#,%#$
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'()* +),- .
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Organise in way that messages 
are calculated only once
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Clustering of Models
• Use dynamic programming to organise the order of 

asking or rather sending information in messages:
➝ If a node ! has received all information from neighbours but 

one, ", node ! sends a message with its information on the 
separator #$% to "

➝ If a node ! has received all messages, then it sends messages 
to all neighbours " that have not received a message yet

• When computing the message, ! takes into 
consideration its local model as well as the messages 
received from all other neighbours but the receiving 
neighbour "
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Clustering of Models
• Observations:

➝ If a node ! has received all information from neighbours but 
one, ", node ! sends a message with its information on the 
separator #$% to "
• Trivially true at leaf nodes (periphery), can start sending 

immediately to its only neighbour (in parallel!)
• From periphery inbound, new nodes trigger this first condition

➝ If a node ! has received all messages, then it sends messages 
to all neighbours " that have not received a message yet
• As messages are sent further inwards, a first node at the centre 

will have received all messages and will start sending messages 
outbound, leading to new nodes triggering this second condition
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These two passes from periphery inbound and back suffice to distribute 

all information and make the clusters independent from each other*

* Shown by  Steffen L. Lauritzen and David J. Spiegelhalter: Local Computations with Probabilities on Graphical Structures 

and Their Application to Expert Systems. In: Journal of the Royal Statistical Society. Series B: Methodological, 1988.



Foundations of Clustering
• History in propositional probabilistic inference:
• Based on probability propagation introduced by Pearl 

(1988)
• If a BN is a polytree, i.e., the 

underlying undirected graph 
has no trivial cycles, then 
• Treat each node in a BN as a 

cluster with the random 
variables (randvars) of the 
accompanying CPT as the 
cluster randvars

• Send messages along the 
edges (to parents and 
children), eliminating 
randvars not occurring in the 
parent or child nodes
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Foundations of Clustering
• History in propositional probabilistic inference:
• If no polytree, the cycles mess up the message passing 

along the edges (information arrives multiple times)
• Send messages nonetheless (exact if polytree, approximate 

otherwise): called belief propagation as an algorithm for 
approximate inference

• Exact inference required ➝ put the cycles into one cluster
• Graph formed called a junction tree (jtree) 

• A first-order version of a jtree was induced on the previous slides 
• Also known as clique tree (since the cycles often form cliques in 

the model graph) or join tree
• Propositional version introduced by Lauritzen and Spiegelhalter

(1988)
• Shenoy and Shafer (1989) introduce three axioms of local 

computations to show correctness of doing computations locally
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Steffen L. Lauritzen and David J. Spiegelhalter: Local Computations with Probabilities on Graphical Structures and Their 
Application to Expert Systems. In: Journal of the Royal Statistical Society. Series B: Methodological, 1988.
Prakash P. Shenoy and Glenn R. Shafer: Axioms for Probability and Belief-Function Propagation. In: Uncertainty in 
Artificial Intelligence 4, 1990.



First-order Jtree (FO Jtree)
• As seen on the earlier slides
• Acyclic graph 
• Nodes contain PRVs, which form clusters
• Edges are based on the separators between the clusters
• Nodes have parfactors assigned

• Next slides:
• Formal definition
• Construction

• Get an acyclic structure with valid separators and each 
parfactor of a model assigned to a local model
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Parameterised Clusters
• Node of an FO jtree: 

Set of PRVs called parameterised cluster (parcluster)
• Let ! be a set of logvars, " a set of PRVs with #$ " ⊆
!, and &, (& a constraint on ! with & being a 
sequence of the logvars of !
• Then, a parcluster ) is given by 

∀+ ∈ (& ∶ "| &,/&
• "| &,/& for short
• Again, &,(& can be omitted if ⊤ constraint encoded
• Depicted as a round shape containing " or just "

• Again, constraint usually not depicted
• E.g., parcluster )1

∀2 ∈ 3 4 ∶ 5678, 97:; 2 , <=>$?# 2 | @,3 @
= 5678, 97:; 4 , <=>$?# 4 | @,3 @
= 5678, 97:; 4 , <=>$?# 4
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FO Jtree
• An FO jtree ! for a model " is a cycle-free graph #, %

• Set of nodes # ⊆ 2() *
• I.e., nodes are sets of PRVs (parclusters)
• 2() * denotes the power set of +, "

• Set of edges % ⊆ -, . | -, . ∈ #, - ≠ . , 
• Has to be cycle free, which includes no self-loops

• E.g., as depicted on the left
• But at this point in the definition, 

could be any subsets of PRVs
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FO Jtree
• An FO jtree ! for a model " is a cycle-free graph #, %

• Has to satisfy three properties:
1. ∀' ∈ # ∶ ' ⊆ +, "
2. ∀- ∈ " ∶ ∃' ∈ # ∶ +, - ⊆ '
3. If ∃/ ∈ +, " ∶ / ∈ '0 ∧ / ∈ '2 with '0, '2 ∈ #, then 

∀'3 ∈ # on the path between '0, '2 ∶ / ∈ '3
(running intersection property)

• E.g., as depicted on the left
• Only the following and one with 
'4 at the centre are valid
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FO Jtree
• An FO jtree ! for a model " is a cycle-free graph #, %

• Is minimal if by removing a PRV from a parcluster, the FO 
jtree ceases to be an FO jtree, i.e., no longer fulfils at least 
one property

• E.g., depicted on the left
• Cannot remove any PRV from 

any parcluster 
• Otherwise, a parfactor

would no longer have its 
arguments in one parcluster

21

%&'( )'*+ ,
-./012 ,

%&'( )'*+ ,
-.1/3 ,,4

%&'( 5/3 6
4/7 8 9:

9;

9<

%&'(

5/3 6 4/7 4

-./012 ,

)'*+ ,

-.1/3 ,, =

>:

>; ><

>;

><

>:



FO Jtree
• An FO jtree ! for a model " is a cycle-free graph #, %

• Set &'( called separator of edge ), * ∈ %, defined by
&'( = -' ∩ -(

• Term /01 ) refers to the neighbours of -', defined by
/01 ) = * | ), * ∈ %

• Each -' has a local model "' and ∀4 ∈ "' ∶ 67 4 ⊆ -'
• Local models "' partition ", i.e., " = ⋃'∈: "'
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Construction
• Where do we get the 

FO jtree from s.t. the jtree 
• is acyclic
• fulfils the three FO jtree 

properties
• has the model parfactors 

automatically assigned to 
fitting parclusters?

➝Clusters of an FO dtree 
+ undirected dtree edges 
+ minimisation
= FO jtree
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Clusters ➝ Parclusters
• Given an FO dtree ! for a model " with 

clusters for each node
• Given a cluster #$,… , #' of a DPG 

node (, ), *
• Resulting parcluster +, = #$,… , #' |/

• Local model ", = ∅
• Given a cluster #$,… , #' of a VE node
• Resulting parcluster +, = #$,… , #' |1

• Local model ", = ∅
• Given a cluster #$,… , #' from a leaf 

node with parfactor 23
• Resulting parcluster +, = #$,… , #' |1

• Local model ", = 23
24
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FO Dtree ➝ FO Jtree
• Forming an FO jtree ! from an FO dtree " of a 

model #
• Nodes of !
• Parclusters resulting from clusters of " as shown on 

previous slide
• Each parcluster has a source node in "

• Edges of !
• Add an edge between two parclusters whenever there is 

an edge between the source nodes of the two 
parclusters in "
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FO Dtree ➝ FO Jtree
• Result after transformation
• Fulfils the three jtree properties
• But is not minimal
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FO Dtree ➝ FO Jtree
• Result after transformation 

fulfils the three jtree 
properties
• Hold by construction

1. Parclusters can only 
contain model PRVs

2. Each parfactor occurs 
at a dtree leaf, which is 
turned into a parcluster

3. Based on how cutset/
context are calculated*
• E.g., !"#$ %
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1. ∀) ∈ + ∶ ) ⊆ ./ 0
2. ∀2 ∈ 0 ∶ ∃) ∈ + ∶ ./ 2 ⊆ )
3. If ∃4 ∈ ./ 0 ∶ 4 ∈ )5 ∧ 4 ∈ )7

with )5, )7 ∈ +, then ∀)9 ∈ + on 
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* Proof for jtrees: Adnan Darwiche: Recursive Conditioning. 
In: Artificial Intelligence, 2001.
Proof for FO jtrees: Tanya B: Rescued from a Sea of 
Queries: Exact Inference in Probabilistic Relational 
Models. PhD thesis, 2020.



FO Dtree ➝ FO Jtree
• Result after transformation not minimal
• Can remove complete parclusters 

and still have an FO jtree
• Even if we keep parclusters

that carry constraint
information that
we would otherwise lose

• E.g., 
• Parclusters marked

• Observation
• Parclusters are

subsets of other
parclusters 
• Use for minimisation
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Minimisation
• Merge parclusters !" and !# with local models $"

and $# iff
%& !" ⊆ %& !# ∨ %& !# ⊆ %& !"

• Assuming ⊤ constraints and same logvar names if the 
same domain is referenced (from normal form of FO 
dtree), then the following suffices:

!" ⊆ !# ∨ !# ⊆ !"
• Checking on a PRV and logvar level instead of a grounded level
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Minimisation
• Pre-processing necessary:
• Parclusters may contain a logvar ! or a representative "

• For each source DPG node #$
• Apply the inverse 

substitution %&'
to the one applied 
during FO dtree 
construction to all 
parclusters that 
come from 
descendants of #$ : 
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Minimisation
• Merging parclusters !" and !# into parcluster !$
• !$ = !" ∪ !#
• '$ = '" ∪ '#

• Changes in FO jtree (, *
• ( = ( ∖ !", !# ∪ !$
• * = * ∖ ,, - | - ∈ 012 , ∖ 3, - | - ∈ 012 3

∪ 4, - | - ∈ 012 , ∨ - ∈ 012 3 , - ≠ ,, - ≠ 3
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Minimisation
• Possible merging strategy
• Start at the leaves and merge inbound
• Until no further merging is possible

• No parcluster is a subset of another

• After merging, the 
resulting FO jtree 
is minimal
• E.g.,
• Start at leaves with

• local model !"
• local model !#
• local model !$
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Minimisation: Example Continued
• Consider leaf parcluster with local model !"
• Let us call it #"
• Merge inbound

• #" and $% parcluster
identical ➝ merge
(call result #"again)
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Minimisation: Example Continued
• Consider leaf parcluster with local model !"
• Let us call it #"
• Merge inbound

• #" and $% parcluster
identical ➝ merge
(call result #"again)

• #" and $& parcluster 
identical ➝ merge
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Minimisation: Example Continued
• Consider leaf parcluster with local model !"
• Let us call it #"
• Merge inbound

• #" and $% parcluster
identical ➝ merge
(call result #"again)

• #" and $& parcluster 
identical ➝ merge 

• #" and $' parcluster
identical ➝ merge

35

!(!)

!"
*+,-, /,01 2 |4

*+,-|4

*+,-,567 8 ,96: ; |4

*+,-, 96: ; |4

*+,-, /,01 2

*+,-, /,01 2 ,
$<6=>? 2

*+,-, /,01 2 ,
$<>6: 2,5

*+,-

*+,-, 96: ; ,567 8

*+,-, /,01 2 ,
$<6=>? 2

*+,-, /,01 2 ,
$<>6: 2,5

$@$A

$B

$' $C

$D

root

#"



Minimisation: Example Continued
• Consider leaf parcluster with local model !"
• Let us call it #"
• Merge inbound

• #" and $% parcluster
identical ➝ merge
(call result #"again)

• #" and $& parcluster 
identical ➝ merge

• #" and $' parcluster
identical ➝ merge

• $( parcluster subset
of #"➝ merge
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Minimisation: Example Continued
• Consider leaf parcluster with local model !"
• Let us call it #"
• Merge inbound

• #" and $% parcluster
identical ➝ merge
(call result #"again)

• #" and $& parcluster 
identical ➝ merge 

• #" and $' parcluster
identical ➝ merge

• $( parcluster subset
of #"➝ merge

• Root parcluster subset
of #"➝ merge
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Minimisation: Example Continued
• Consider leaf parcluster with local model !"
• Let us call it #"
• Merge inbound

• #" and $% parcluster
identical ➝ merge
(call result #"again)

• #" and $& parcluster 
identical ➝ merge

• #" and $' parcluster
identical ➝ merge

• $( parcluster subset
of #"➝ merge

• Root parcluster subset
of #"➝ merge
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Minimisation: Example Continued
• Consider leaf parcluster with local model !"
• Let us call it #"
• At this point, we have reached

the former root and cannot
merge further inbound
• Also: the $% parcluster 

contains logvar &, which is not 
a subset or superset of the 
logvars of #" (',))

• Merging stops
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Minimisation: Example Continued
• Consider leaf parcluster with local model !"
• Let us call it #"
• Merge inbound

• #" and neighbouring parcluster
identical ➝ merge

40

!"!$

!%

&'(), +(,- . |0

&'()|0

&'(), +(,- .

&'(), +(,- . ,
123456 .

&'(), +(,- . ,
12537 .,8

&'(), 937 : ,83; < |0

&'(), +(,- . ,
123456 .

&'(), +(,- . ,
12537 .,8

1=

1>

1?

1@

#"

#%



Minimisation: Example Continued
• Consider leaf parcluster with local model !"
• Let us call it #"
• Merge inbound

• #" and neighbouring parcluster
identical ➝ merge

• $% parcluster is a subset of #"➝ merge
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Minimisation: Example Continued
• Consider leaf parcluster with local model !"
• Let us call it #"
• Merge inbound

• #" and neighbouring parcluster
identical ➝ merge

• $% parcluster is a subset of #"➝ merge
• $& parcluster is a subset of #"➝ merge
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Minimisation: Example Continued
• Consider leaf parcluster with local model !"
• Let us call it #"
• Merge inbound

• #" and neighbouring parcluster
identical ➝ merge

• $% parcluster is a subset of #"➝ merge
• $& parcluster is a subset of #"➝ merge

• Merging cannot move further 
inbound
• #' is neither a subset nor a 

superset of #"
• Merging stops
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Minimisation: Example Continued
• Consider leaf parcluster with local model !"
• Let us call it #"
• Merge inbound

• #" and $% parcluster identical 
➝ merge
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Minimisation: Example Continued
• Consider leaf parcluster with local model !"
• Let us call it #"
• Merge inbound

• #" and $% parcluster identical 
➝ merge

• $% parcluster is a subset of #"➝ merge
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Minimisation: Example Continued
• Consider leaf parcluster with local model !"
• Let us call it #"
• Merge inbound

• #" and $% parcluster identical 
➝ merge

• $% parcluster is a subset of #"➝ merge
• Merging cannot move further 

inbound
• #" is neither a subset nor a 

superset of #&
• Merging stops
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Minimisation: Example Continued
• Resulting FO jtree ! from FO dtree " given model #
• If we had started merging from leaf with $% inbound 

before merging from leaf with $&, '& and '% would be 
switched
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FO Jtree Construction
• Given a model !, the following steps are necessary

1. Bring ! into the required normal form for FO dtree 
construction

2. Construct an FO dtree " for !
3. Translate " into an FO jtree #
4. Apply inverse substitutions to parclusters of 

descendants of DPG nodes in #
5. Minimise #

• Next?
• FO jtrees for query answering
• Messages need to be passed to ensure independence
• What about evidence?
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Message Passing in FO Jtrees
• Ensure independence between parclusters
• Send messages based on two conditions

➝ If a node ! has received all messages from neighbours 
but one, ", node ! calculates and sends a message to "

➝ If a node ! has received all messages, then it calculates 
and sends messages to all neighbours " that have not 
received a message yet
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Message Passing in FO Jtrees
• Message !"# from sender $" to receiver $#
• Set of parfactors %& &'() with *+ %& ⊆ -"#
• To calculate

• Collect necessary information from local model and received 
messages:

."# = ." ∪ 1

2∈)45 " ,27#

!2"

• Ignore the message that came from $# (if it already exists)
• Call slightly modified LVE with ."# as input model, -"# as query, 

and no evidence: LVE∗ ."#, -"#, ∅
• Specification of LVE∗: next slide
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LVE for Message Passing
LVE∗ %, ', () )*+,

% ← Shatter % on ', () )*+, , and on itself
% ← Absorb () )*+, in %
while % contains non-query terms do

if a PRV . fulfils the preconditions of sum−out then
% ← Apply sum−out to . in %

else
% ← Apply an enabling operator 

(multiply, count−convert, expand,
count−normalise, split, ground) 
on some parfactors in %

( ←Multiply all parfactors in % into one parfactor
( ← Normalise the potentials in (
return (
return %
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Message Passing in FO Jtrees
• E.g.,
• Message !"# from $" to $#

• Collect %"# = '" ∪ ∅
• No further neighbours except $#

• Call LVE∗ '" , /012 , ∅
• LVE∗ eliminates 345 6 ,748 9 from '"

• Count-converting 345 6 into #; 345 6
• Summing out 748 9 and then #; 345 6
• Returning '"<

• Send '"< as !"# to $#
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Message Passing in FO Jtrees
• E.g.,
• Message !"# from $" to $#

• Collect %"# = '" ∪ ∅
• No further neighbours except $#

• Call LVE∗ '" , /012, 3145 6 , ∅
• LVE∗ eliminates 789:; 6,< from '"

• Summing out 789:; 6,<
• Returning '"=

• Send '"= as !"# to $#
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Message Passing in FO Jtrees
• E.g.,
• Message !"# from $" to $#

• Collect %"# = '" ∪ !)"
• Further neighbour: $), sent message !)" = ')*

• Call LVE∗ '", ')* , 0123 , ∅
• LVE∗ eliminates 56789: ; , <2=> ; from '", ')*

• Summing out 56789: ; from '", yielding '"*
• Summing out <2=> ; from product of '"* and ')* , yielding '")*
• Returning '")*

• Send '")* as !"# to $#
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Message Passing in FO Jtrees
• E.g.,
• Message !"# from $" to $#

• Collect %"# = '" ∪ !)"
• Further neighbour: $), sent message !)" = ')*

• Call LVE∗ '", ')* , 0123, 4256 7 , ∅
• LVE∗ eliminates 9:;<=> 7 from '", ')*

• Summing out 9:;<=> 7 from '", yielding '"*
• Returning '"* , ')*

• Send '"* , ')* as !"# to $#
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Message Passing: Overview
• Given an FO jtree !, send messages if one of the 

two conditions is true
➝ If a node " has received all messages from neighbours 

but one, #, node " calculates and sends a message to #
➝ If a node " has received all messages, then it calculates 

and sends messages to all neighbours # that have not 
received a message yet

• To calculate a message:
• Collect necessary information from local model and received 

messages:

$%& = $% ∪ )
*∈,-. % ,*0&

1*%

• Call LVE∗ $%&, 6%&, ∅
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Query Answering in FO Jtrees
• After message passing, the parclusters are 

independent from each other given the messages
• Prepared for query answering

• For each query with query term !
• Find parcluster "# s.t. ! ∈ "#
• Collect information from local model and messages, i.e, 

%& = %# ∪ )
*∈+,- #

.*#

• Call LVE %&, !, ∅ and return or store result of the call
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Query Answering in FO Jtrees
• E.g., ! "#$%
• All parclusters contain "#$%, choose one at random, 

e.g., &'
• Collect ()*+, = .' ∪ 01' ∪ 02' = .', .14 , .24

• Call LVE .', .14 , .24 , "#$%, ∅ , yielding a parfactor .
containing the probability distribution over "#$%

• What about evidence?
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Evidence in FO Jtrees
• Evidence applies to PRVs in some parclusters

• Changes the distributions in local models
• Information sent in messages might change

• Even if summed out and therefore hidden from the other 
parclusters

• Therefore, handle evidence before sending messages
• Given a set of evidence parfactors !" # $ |&' "()

*

• For each !" # $
• For each parcluster +, where # $ ∈ +,

• Shatter ., on # $ |&'
• Absorb !" # $ |&' in .,

• Only, then send messages
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Evidence in FO Jtrees
• E.g., given !"#$ %&% = ()*% as evidence in +,
• In -.

• Shatter /. = +. on !"#$ %&% , yielding +.,, +.1
• Absorb +, in +.,, yielding +.,1
• Result: /. = +.,1, +.1

• In -2
• Shatter /2 = +2 on !"#$ %&% , yielding +2,, +21
• Absorb +, in +2,, yielding +2,1
• Result: /2 = +2,1, +21

• Then, send messages based on the local models that 
have absorbed the evidence
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Evidence in FO Jtrees
• E.g., given !"#$ %&% = ()*% as evidence in +,
• Message -./ does not change compared to previous 

example
• Message -0/ calculated based on +0,1, +01

• Call LVE∗ +0,1, +01 , 78"9, !"#$ : , ∅ , yielding +0,11, +011
• Message -/0 calculated based on +/,1, +/1 ∪ -./

• Call LVE∗ +/,1, +/1 , +.1 , 78"9, !"#$ : , ∅ , yielding 
+/,11, +/11, +.1

• Message -/. calculated based on +/,1, +/1 ∪ -0/
• Call LVE∗ +/,1, +/1 , +0,11, +011 , 78"9 , ∅ , yielding 
+/,11, +/11, +0,11, +0111
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Evidence and Queries in FO Jtrees
• After evidence handling
• All queries are answered in an FO jtree with handled 

evidence !" "#$% yield results conditional on !" "#$%

• So, given evidence !" "#$% and query terms &' '#$( for 
a model )
• The posed queries are * &' | !" "#$% , 1 ≤ / ≤ 0, w.r.t. *1

• FO jtree constructed without specific evidence
• Reuse for different evidence sets

• As long as model stays the same
• Reset the local models before entering new evidence

62
!2

34/5 6/78 9
:;<=>? 9

!@

34/5 6/78 9
:;><A 9,B

!$

34/5 C<A D
B<0 E 34/5 34/5

6/78 9
F$ F2 F@



LJT: Algorithm
!"# $, &' '()

* , +, ,()
-

Construct an FO jtree . for $
Enter evidence +, ,()

- into .
Pass message in .
Answer queries with query terms &' '()

* in .

• Look for blue boxes on the previous slides to find 
the descriptions of each step

• Constant overhead for FO jtree construction
• Payoff if given multiple queries
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Comparison to Ground Inference
• Propositional Junction Tree Algorithm (JT)
• Same algorithm, only with propositional model
• E.g., !" #
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Junction Tree: Messages
• From periphery to centre and back
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Junction Tree: Symmetry ➝ Inefficiency

• Identical messages incoming
• Information already present
• Calculating identical messages + sending information 

partially present
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Compact Encoding of Jtrees
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Message Calculation Strategies
• Message calculation strategy seen so far 

• Eliminate all non-separator PRVs from all messages but the 

one that came from receiver and the local model

• Called Shafer-Shenoy architecture after the two researchers 

who first presented the scheme

• Another strategy for JT exists, called Hugin architecture

• Multiply the factors of local model !" into one factor #"
• Multiply each incoming message $%" into #"

• Store $%" as well

• Each message consists of only one factor (no longer a set)

• When sending message $"%
• Eliminate all non-separator randvars from 

&'
()'

• I.e., divide #" by $%" first

• If $%" does not exist, then divide by a symbolic 1 (or no division)
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Message Calculation Strategies
• Hugin architecture continued
• May enlarge the factors at each node to the worst-case 

size of each node
• E.g., !" = $ %, ' , $ ', ( ➝ )" = $ %, ', (

• May lead to more involved multiplications
• E.g., multiplying message *"+ = $ % into )" = $ %, ', (

more involved then multiplying $ % into an intermediate 
result $, %

• Pays off if the nodes of the jtree have a high degree
• Many duplicate multiplications 

during message calculation
• E.g., *-",*.",*/",*0" and )" have 

to be multiplied for both *1",*2"
• Requires a division operator for factors
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Message Calculation Strategies
• Lifted Hugin?
• Arguments pro and con also apply to lifted version

• May enlarge the factors at each node to the worst-case size of 
each node

• May lead to more involved multiplications
• Pays off if the nodes of the jtree have a high degree
• Requires a division operator for factors

• Main obstacle: So far, no lifted division operator
• We are working on it @Moritz

• Also, CAUTION: In general, parfactors may be multiplied 
with different logvars such that previously unnecessary 
count conversions might become necessary
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In terms of Lifting: Is it that simple?
• Algorithm-induced groundings due to message passing

• For message calculation, non-separator PRVs are eliminated 
with separator PRVs as the query terms containing logvars
• Non-separator PRVs have to fulfil sum−out preconditions

1. ∀( ∈ *+ , ∖ . ∶ .* (|1 ∩ .* 3| 4,14 = ∅
2. ∀8 ∈ 8 | 9: ;4 > 1 ∶ 8 ∈ >+ 3

3. ?@ABC = >+ 3 ∖ ? ∖ >+ 3 count-normalised w.r.t. ?BDE =
>+ 3 ∩ ? in ;, with ? the set of 4

• Preconditions 1 + 3 fulfilled by construction

• Precondition 2 may not be fulfilled ➝ can cause groundings
• E.g., logvar F added to PRVs FGHI, JHKL 8 , M*NOP 8,Q

• When calculating RST, one has to eliminate M*O+N> 8
• But: it does not contain both 8 and F and a count conversion 

does not apply as F occurs in two PRVs ➝ F gets grounded
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Conditions on Groundings
• For a lifted calculation of message !"#, it 

necessarily has to hold that 
• for each PRV $ ∈ &" ∖ ("# , i.e., $ has to be eliminated:

• for each separator PRV ) ∈ ("# ∶ +, ) ⊆ +, $ (Cond. 1)

• If Cond. 1 does not hold, i.e., +, ) ⊈ +, $ , one 
may induce Cond. 1 by count conversion
• If +, ) ∖ +, $ are countable in /"# (Cond. 2)
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0123 0 )245 6, 0
89:,;+ 6

0123 0 )245 6, 0
89;:< 6,=, 0

0123 0 >:< ?
=:@ A &B &C &D0123 0

)245 6, 0
0123 0

0123 )245 6
89:,;+ 6

0123 )245 6
89;:< 6,=

0123 >:< ?
=:@ A &B &C &D0123

)245 6
0123
✓

✗✓
✓ ✓✓

✗ ✗ ✓✓



Conditions on Groundings
• Problem with induced Cond. 1 using count conversions 

on the logvars in !" # ∖ !" % :
• Logvars that were previously not counted are now counted
• All receiving parclusters need to be able to handle the 

counted versions, which needs to be checked
• If a newly counted logvar arrives at a parcluster &', it has to be 

countable in (' as well (Cond. 3)
• For further calculations, since they refer to the same set of randvars, 

they have to occur in the same form, i.e., at one point the logvar has 
to be counted in (' as well
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)*+, ) #+-. /, )
123"4! /

)*+, ) #+-. /, )
12435 /,6, )

)*+, ) 735 8
639 : &; &< &=)*+, )

#+-. /, )
)*+, )

)*+, #+-. /
123"4! /

)*+, #+-. /
12435 /,6

)*+, 735 8
639 : &; &< &=)*+,

#+-. /
)*+,
✓

✓

✓ ✓✓
✓ ✗ ✓



Fusion
• Extra step at end of construction called fusion

• Test each possible message !"# for each PRV $ to eliminate 
and each separator PRV % based on the three conditions
• If Cond. 1 holds: no groundings for $ and %; continue
• Otherwise:

• If Cond. 2 holds: check Cond. 3
• If Cond. 3 holds: no groundings for $ and %; continue
• Otherwise: groundings; mark !"# ; continue with next message

• Otherwise: groundings; mark !"# ; continue with next message
• For each message !"# marked:

• Merge parclusters &", &# (as in minimisation)
• E.g.,

• Testing marks !()➝ merge &(, &)
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*+,- * %,./ 0, *
123456 0

*+,- * %,./ 0, *
12537 0,8, *

*+,- * 937 :
83; < &= &( &)

✓ ✓ ✗ ✓

*+,- * %,./ 0, *
123456 0

12537 0,8, *
*+,- * 937 :
83; < &= &(>

Fusion



LJT: Complexity
• Uses also the notion of lifted width !" = !$,!#
• !$ largest ground width
• !# largest counting width
• As FO jtree constructed from FO dtree, !" identical 

between LVE and LJT
• Fusion may change !" in terms of the FO jtree

• But in terms of the LVE calculations in the merged parcluster, !"
is still the same with multiple nodes being combined into one

• For simplicity, let us consider models that all fulfil Cond. 1 in 
fusion such that !" is identical for both LJT and LVE
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LJT: Complexity
• LJT complexity based on complexity of LVE: 

! "# $ log( " $ )*+ $ ",#*#
• Complexity of individual steps

• Construction: linear in number of nodes, no calculations; 
negligible compared to later steps

• Evidence entering: ! ". $ log( " $ )*+/0 $ ",#*#
• Absorbing evidence complexity: ! log( " $ )*+/0 $ ",#*#

• Visits 0, $ )
*+ $ ",#*# lines, possibly exponentiates the potentials

• At each node ➝ ". $ ! log( " $ )*+/0 $ ",#*#
• ". number of nodes in FO jtree 1

• For each 2 evidence parfactors ➝ 2 $ !3
4

". $ log( " $ )*+/0 $
",#*#
• Assuming 2 ≪ ". ➝ ! ". $ log( " $ )*+/0 $ ",#*#

• First two steps accumulated: ! ". $ log( " $ )*+/0 $ ",#*#
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LJT: Complexity
• Complexity of individual steps

• First two steps accumulated: ! "# $ log( " $ )*+,- $ ".#*#
• Message passing: ! "# $ log( " $ )*+ $ ".#*#

• Calculating one message = answering one query on a parcluster
• Worst-case parfactor size at parcluster: )*+ $ ".#*#
• Elimination of 01 ∖ 314 PRVs goes through each line, potentials may 

be exponentiated ➝ ! log( " $ )*+ $ ".#*#
• Two messages per edge, "# − 1 edges in 7➝ "# $ !()

log( " $
)*+ $ ".#*#

• Query answering: ! : $ log( " $ )*+ $ ".#*#
• Each query answered in one parcluster ➝ !(

)
log( " $ )*+ $

".#*#
• With : query terms ➝: $ ! log( " $ )*+ $ ".#*#

• All four steps accumulated:
! "# + : $ log( " $ )*+ $ ".#*#
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Comparison to LVE
• For both holds: !" bounded from below by max& '(,…,'+ ∈- .
• LVE complexity of one query 

= LJT complexity of message passing
• / 01 2 log6 0 2 789 2 0:#8# vs. 
• / 0< 2 log6 0 2 789 2 0:#8#
• Actual number of calculations:

• In LVE: =>?@
• For message pass: 2 2 =>?@

• For B queries
• LVE: / B 2 01 2 log6 0 2 789 2 0:#8#
• LJT: / 0< + B 2 log6 0 2 789 2 0:#8#
• Difference in B 2 01 vs. 0< + B

• LVE has complexity of / 01 2 log6 0 2 789 2 0:#8# for one query
• LJT only complexity of / log6 0 2 789 2 0:#8# for one query
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LJT only pays off if B > 1, 
most likely, starting with 
third query (two queries in 
LVE = one message pass)



LJT: Completeness
• Completeness results from LVE also hold for LJT

• Proof using the FO jtree properties and the fusion conditions 
on a case basis regarding separators:
• Separators containing only propositional randvars

• Do not interfere with elimination order for sum−out
• Separators additionally containing one-logvar PRVs

• Do not interfere with elimination order for sum−out
• Two-logvar PRVs within a parcluster eliminable
• One logvar PRVs within a parcluster eliminable

• Given all available counting versions
• (Along the lines of completeness proof for ℳ()*+)

• Separators additionally containing two-logvar PRVs 
• All two-logvar PRVs eliminable

• If inequality constraint between them ➝ same parcluster, 
eliminable within one parcluster using group inversion

• Because of fusion, PRVs with less logvars also part of separator or 
eliminable (may it be through extra count conversion)
• Else parclusters would have been merged
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LJT: Implementation
• Available at:
• https://www.ifis.uni-luebeck.de/index.php?id=518&L=2
• Based on the LVE implementation by Taghipour

• Available at:
• https://dtai.cs.kuleuven.be/software/gcfove

• Includes an implementation of the propositional 
junction tree algorithm for comparison

• Input: BLOG files
• Based on Bayesian Logic Programming Language

• https://bayesianlogic.github.io
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Runtimes: Increasing Domain Sizes
• Example model
• All domain sizes ∈
{2,4, … , 20, 30,… , 100,
200,… , 1000}

• No evidence
• Queries: 

• + ,-./01 23
• + 4567 23
• + ,-0.8 23,93

• + :.8 ;3
• + <.= >3
• + ?@5;

• Test trade-off (overhead 
vs. faster inference)

• Test increasing
• Ground width >A

• Default: 3
• Counting width >#

• Default: 1
• Number of nodes =C

• Default: 3
• Domain size =

• Default: 1000
• Based on
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Step-wise
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Runtimes in milliseconds

Default: ! = 1000, !& = 3,() = 3,(# = 1

!& ranging from 2 to 11

(# ranging from 0 to 9() ranging from 2 to 11

10−3

10−2

10−1

100

101

102

103

1 3 5 7 9 11

Construction
Evidence entering
Message passing
Query answering (LJT)
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Evidence entering
Message passing
Query answering (LJT)
Query answering (LVE)
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Queries answering
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Runtimes in milliseconds

Default: ! = 1000, !& = 3,() = 3,(# = 1

!& ranging from 2 to 11

(# ranging from 0 to 9() ranging from 2 to 11

! ranging from 2 to 1000
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LJT
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JT
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LJT compile
FOKC compile
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FOKC compile
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103

104
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1 3 5 7 9 11

LJT
LVE
FOKC

LJT compile
FOKC compile

FOKC: see next lecture
compile: all overhead time



Trade-off Evaluation: Criteria
• For multi-query algorithms

• Overhead to set off (model is compiled into a helper structure)
vs.
• Shorter individual query answering time

• With 
• !",$%& runtime for answering single query with an algorithm that 

uses compilation
• !",'($%&runtime for answering single query with an algorithm 

without compilation
• !$,$%& runtime for compilation with an algorithm that uses 

compilation
• What is the ratio between individual query answering times?

) = !",$%&
!",'($%&

• How many queries does it take to offset the overhead?
+ = !$,$%&

!",'($%& − !",$%&
• Makes only sense if ) > 1

84



Trade-off

85Default: !" = 3,&' = 3,&# = 1

!" ranging from 2 to 11

&# ranging from 0 to 9&' ranging from 2 to 11

! ranging from 2 to 1000

FOKC: see next lecture
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Beyond Standard LJT
• LJT is basically a framework for query answering 

that is independent of
• Specific function encoding ➝ calculating algorithm has 

to work with the encoding
• Such as lists, tables, ADDs, etc.

• Concrete query language ➝ whatever the calculating 
algorithm can handle, LJT can (within parclusters)
• E.g., with LVE, queries with 

• Uncertain evidence
• Parameterised query terms

• One exception: conjunctive queries!
⇒ Could use any other query answering algorithm for 

calculations as long as the query answering algorithm 
can handle message calculations
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LJT for Conjunctive Queries
• Problem if query terms occur outside of one 

parcluster
• E.g., with the FO jtree below

• ! "#$%, '$() *+* ✓
• ! ,-.+*/ *+* , ,-*.0 *+*,12 ✗

• Solution: 
Temporarily merge parclusters such that the query 
terms occur in one parcluster
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Parcluster Merging for Queries
• Find a subgraph !" of the FO jtree ! for the query terms 
# such that !" such that # ⊆ %& !"
• For query answering, use a set '# that consists of local 

models in !" and messages from outside !"
• Why subgraph?

• Allows for ignoring messages within !" and including 
messages from outside !" into parclusters of !"
• No duplicate information used
• Messages reused as much as possible

• E.g., consider subgraph of (), (+, (, for query on -., /.
• Take all outside messages and local models
• Ignore inside messages 0+),0)+,0,+,0+,
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Parcluster Merging for Queries
• Find a subgraph !" of the FO jtree ! for the query 

terms # such that !" such that # ⊆ %& !"
• Subgraph should be minimal for optimal 

performance, i.e., a minimisation problem to solve:
argmin

-.
|%& !" |

s. t. # ⊆ %& !"
• Trade-off between finding a subgraph fast and finding a 

minimal one
• It is not about the number of parclusters but the number of 

PRVs in the parclusters!
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Parcluster Merging for Queries
• Find a subgraph !" of the FO jtree ! for the query 

terms # such that !" such that # ⊆ %& !"
• Subgraph should be minimal for optimal 

performance, i.e., a minimisation problem to solve:
argmin

-.
|%& !" |

s. t. # ⊆ %& !"
• Simple heuristics (without guarantees on optimality): 

• Start with one parcluster that fulfils # ∩ 45 ≠ ∅ as !"
• #" = # ∖ 45 remains as not covered by !"

• Perform a breadth-first search starting at 45
• Whenever a newly visited parcluster 4: fulfils #" ∩ 4: ≠ ∅, add 

all parclusters on the path between 45 and 4: to !" (if not already 
part of !") and set #" = #" ∖ 45

• until #" = ∅
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Query Answering in FO jtrees
• Given an FO jtree ! with messages passed
• Prepared for query answering

• For each query with query terms "
• Find subgraph !# s.t. " ⊆ %& !#

• Collect information from local models and outside 
messages, i.e, 

'" =)
*∈,-

'* ∪ )
/∈012 *
*∈,-,/∉,-

5/*

• Call LVE '",", ∅ and return or store result of the call
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Example
• E.g., ! "#$%&' &%& , "#&$) &%&,*+
• Subgraph: ,-, ,.
• Submodel for query answering: /0 = 2-, 2.,*+-

• Call LVE with /0 and 0 = "#$%&' &%& , "#&$) &%&,*+
• Split off query terms
• Eliminate all non-query terms
• Normalise the result
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Complexity & Runtimes
• With conjunctive queries, complexity for answering 

a single query depends on the size of the subtree !"#
• $ !"# % log) ! % *+, % !-#+#
• Assumption is that query terms occur close together and 

therefore !"# hopefully small

• Runtime behaviour observable in implementation
• Increasing !"# on x-axis 
• Runtimes in milliseconds
• More parclusters needed,

runtimes increase
• Closer to compile time
• Closer to LVE time
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Interim Summary
• Motivation

• Find clusters that are enough for query answering
• FO jtree

• From FO dtree clusters to FO jtree parclusters
• LJT algorithm

• Propagation/message passing: Dynamic programming
• Complexity

• Compared to LVE
• Overhead for construction, message passing
• Savings during query answering

• Completeness
• Results for LVE hold as well

• Implementation
• Conjunctive queries

• Find subgraph covering the query terms
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