Intelligent Agents:
Web-mining Agents

Probabilistic Graphical Models

Lifted Inference

Tanya Braun




Probabilistic Graphical Models (PGMs)

1. Recap: Propositional 5. Approximate Inference:
modelling Sampling
* Factor model, Bayesian * Importance sampling
network, Markov network « MCMC methods
* Semantics, inference tasks ia |
+ algorithms + complexity .Sefquentla models &
cps e . intference
2. Probabilistic relational

* Dynamic PRMs

* Semantics, inference tasks
+ algorithms + complexity,
learning

7. Decision making
e (Dynamic) Decision PRMs
* LVE, LT, FOKC * Semantics, inference tasks
* Theoretical analysis + algorithms, learning

4. Lifted learning 8. Continuous Models
* Recap: propositional learning * Probabilistic soft logic:

e From ground to lifted models modellinlg, semantics, inference
: : : tasks + algorithms
* Direct lifted learning

models (PRMs)

* Parameterised models, Markov
logic networks

* Semantics, inference tasks
3. Lifted inference




Local Symmetries and Structure

e Consider potential function as given by the table on the

right

qb(T'ravel(X), Epid, Sick(X))

 Only two weighted formulas (w, y)
necessary

* (In2, —travel(X) vV —epid V =sick(X))

* (In7,travel(X) A epid A sick(X))
 If potential of 1 instead of 2, would
reduce to
« (In7,travel(X) A epid A sick(X))

e assignments that do not make the

formula true automatically get weight
of 0 =1In1l

* If external knowledge existing,
provide FOL formulas directly

* E.g.,
(In 2, epid A sick(X) = —travel(X))
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2 WUAYT & UNIVERSITAT ZU LUBECK
5527  INSTITUT FOR INFORMATIONSSYSTEME
5

Use for efficient inference

Travel(X) Epid Sick(X) ¢

false false false

false  false true

false true false

false true true

2
2
2
2
true  false false 2
2
2
7

true  false true

true true false

true true true




MLNs: Semantics

* MULIN W = {(w;, ;) }/=,, with w; € R, induces a
probability distribution over possible worlds
w € {true, false}
N =the number of ground atoms in the grounded W

n n

1 1
P(w) = zl_[ exp(w;)l®) = - €Xp z w;n; (w)
i=1

=1

* n;(w) = number of true instances of Y; in w

10 Presents(X,P,C) => Attends(X,C) '

3.75 Publishes(X,C) A FarAway(C) => Attends(X,C) '




Outline: 3. Lifted Inference

A. Lifted variable elimination (LVE)
* QOperators
e Algorithm
* Complexity (including first-order dtrees), completeness, tractability
* Variants

B. Lifted junction tree algorithm (LJT)
First-order junction trees (FO jtrees)
Algorithm

Complexity, completeness

Variants

C. First-order knowledge compilation (FOKC)
* Normal form, circuits
e Algorithm
* Complexity, completeness

D. Beyond Standard Query Answering
* Adaptive inference
* Changing and unknown domains
* Assignment queries

R
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Weighted Model Counting

* Solve query answering problem by solving a weighted
model counting problem

* Weighted model count (WMC) given a sentence @ in
propositional logic and a weight function weight : L = R

associating a non-negative weight to each literal in @ (set L)
defined by

WMC (¢, weight) = Z Hweight(l)

wEQ, lew
* where (), refers to the set of worlds of ¢

* Probability of a world w of a sentence ¢ with weight function
P(w) = [licw weight(l) ~ WMC(¢ A w,weight)
@)= WMC(p,weight)  WMC(@,weight)
* A query for literal g given evidence e is solved by computing
WMC (o Aq Ae weight) |
P(qle) = .
WMC(p A e,weight) |

P(OQ,E
Vel. P(Q|E) = 21eB)

P(E)




Weighted Model Counting: Example

* Sentence
e sun Arain = rainbow Z Hwelght(l)
* Weight function: wEN (€W

* weight(sun) =1

weight(-sun) = 5 m

* weight(rain) = 2 0 7.5
* weight(—rain) =7 0 0 1 7.5.0.1 3.5
. Wel.ght(ram.bow) = 0.1 0 1 0 7.1.10 70
« weight(—rainbow) = 10
0 1 1 7-1-01 0.7
10 0 2.-5-10 100
1 0 1 2-5-0.1 1
Each line a world w € Q, -
1 4+ ) 21316 260
1 1 2-1-0.1 0.2




Weighted Model Counting: Example

 Sentence

* sunArain = rainbow  p(,) = [lie,, weight(D) _ WMC(p A w,weight)

* Weight function:

* weight(sun) =1 (sun A rain = rainbow) A sun A rain A rainbow

* weight(—sun) =5

* weight(—rain) =7 ~16—356

* weight(rainbow) = 0.1 0 0 1 750135

* weight(—rainbow) = 10 0 1 0 7116 76

* Probability of worlds: 8 1 + F~——0+—067

. P(sz,omz, rain, rainbow) 1 9 9 2. C 40 100
=toca 0.00038 1 8 1 25—+ 1

1 3 ) 21316 260




Weighted Model Counting: Example

 Sentence

sun A rain = rainbow

* Weight function:

weight(sun) = 1
weight(—sun) =5
weight(rain) = 2
weight(—rain) =7
weight(rainbow) = 0.1
weight(—rainbow) = 10

* Probability of worlds:

All w € Qq) where rain holds

5 T
Y - ,aﬁ\":z; \\\\\\\\\\\\\\\
oy

P(rain)
B 100+ 1+ 0.2

= 0.1926
525.4

WMC(p A q,weight)

P(q) =

(sun A rain = rainbow) A rain

CK
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0 0 1 7501 35
6 1 0 7116 70
1 0 0 2-5-10 100
1 0 1 2-5-0.1 1

1 1 0 2-1-10 2060
1 1 2-1-0.1 0.2



WMC and Inference

* Solving a WMC problem for a sentence @ as
introduced on previous slides is exponential in
number of worlds with probability > 0 (models)

* To be more efficient, build a helper structure

* Bring sentence into negation normal form (NNF)

 NNF: Formulas contain only negations directly in front of
variables, conjunctions, and disjunctions

* E.g,

e sun Arain = rainbow (ApplyA > B = -AV B)
—(sun A rain) V rainbow  (Apply De Morgan’s law)
—sunV —rain V rainbow  (NNF)

,,,,,
\\\\\
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CIrcults

* Represent the NNF sentence as a directed, acyclic
graph called circuit with leaves labelled with literals
(l or =l) or true, false with inner nodes being

* Deterministic disjunctions

* Only one disjunct (child node) can be true at the same time
* l.e., their conjunction is unsatisfiable

 Decomposable conjunctions

e Each pair of conjuncts (child nodes) must be independent
* l.e., they cannot share any variables

e Circuit is then in d-DNNF

* deterministic Decomposable NNF
e See later why important

,,,,,
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Circuits: Example

* Deterministic disjunctions

* Only one disjunct (child node) can be true at the same time

* l.e., their conjunction is unsatisfiable

 Decomposable conjunctions

e Each pair of conjuncts (child nodes) must be independent

* l.e., they cannot share any variables

* E.g., msun Vv —rain V rainbow

* Zdisjunct> Vv rainbow

* Determinism:
<disjunct> can only be true if
rainbow is not

* Add —rainbow to disjunct:
—rainbow A <disjunct>
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Circuits: Example

* Deterministic disjunctions

* Only one disjunct (child node) can be true at the same time

* l.e., their conjunction is unsatisfiable

* Decomposable conjunctions

e Each pair of conjuncts (child nodes) must be independent

* l.e., they cannot share any variables

* E.g., msun Vv —rain V rainbow

* Zdisjunct> Vv rainbow

* Determinism:
<disjunct> can only be true if
rainbow is not

* Add —rainbow to disjunct:
—rainbow A <disjunct>

rainbow

<disjunct>

* <Zdisjunct> now part of a conjunction with —rainbow
* Decomposability: May not contain Rainbow

R
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Circuits: Example

* Deterministic disjunctions
* Only one disjunct (child node) can be true at the same time
* l.e., their conjunction is unsatisfiable
* Decomposable conjunctions

e Each pair of conjuncts (child nodes) must be independent
* l.e., they cannot share any variables

e E.g., msunV —rain V rainbow

¢ Zdisjunct>V —rain

* Determinism:
<disjunct> can only be true if

rainbow

—rain is not, i.e., if rain is —rainbow

e Add rain to disjunct:
rain A <disjunct>

—rain| <disjunct>

D) e
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Circuits: Example

* Deterministic disjunctions

* Only one disjunct (child node) can be true at the same time
* l.e., their conjunction is unsatisfiable

* Decomposable conjunctions
e Each pair of conjuncts (child nodes) must be independent

* l.e., they cannot share any variables
e E.g., msunV —rain V rainbow

¢ Zdisjunct>V —rain

* Determinism:
<disjunct> can only be true if

rainbow

—rain is not, i.e., if rain is —rainbow

e Add rain to disjunct:
rain A <disjunct>

Srain

» <Zdisjunct> now part of a
conjunction with rain

* Decomposability: May not contain Rain <disjunct>rain




Circuits: Example

* Deterministic disjunctions

* Only one disjunct (child node) can be true at the same time

* l.e., their conjunction is unsatisfiable

* Decomposable conjunctions

e Each pair of conjuncts (child nodes) must be independent

* l.e., they cannot share any variables

e E.g., msun VvV —rain V rainbow

e Add as conjunct

* Decomposability: Does not share
variables with sibling node

R
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SuUn
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Effects of d-DNNF

e Effects of d-DNNF

* Deterministic disjunctions

* Only one disjunct (child node) can be true at the same time

* |.e., their conjunction is unsatisfiable

* Assume children ¢;, ¢; represent probabilities p;, p;

* Node then represents probability of P(ci \Y; cj) 0
« P(c; V) =P +P(g) —P(ci Acy)

* If only ¢; or ¢j can be true at a time,
P(cl- A cj) =0,i.e.,
d P(Ci \Y Cj) = P(Ci) + P(Cj)
* Can replace V with 4+ for inference
calculations

rainbow

—rain

—rainbow

sun

rain




Effects of d-DNNF

o Effects of d-DNNF

* Decomposable conjunctions

e Each pair of conjuncts (child nodes) must be independent

* |.e., they cannot share any variables

* Assume children ¢;, ¢; represent probabilities p;, p;

* Node then represents probability of P(ci A cj) (V)
* If ¢; and ¢j independent (decomposable),

then P(Cl' N Cj) = P(Cl') . P(C])
* Can replace A with - for inference
calculations

R
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Smooth d-DNNF (sd-DNNF)

* Smooth circuits: constant runtime for certain queries
* Any pair of disjuncts mentions the same set of variables

* E.g., msunV —rain VvV rainbow
* Two disjunctions that do not fulfil the smoothness property

* Rules for conversion

* For each negation of a
positive literal [ not
appearing, replace [ by

LV (=LA false)

* For each variable 4 not
~rainbow mentioned in a disjunct
<disjunct>,add a V —a
—rain with a conjunction to
<disjunct>:
<disjunct> A (a V —a)

Does not mention
Rain, Sun

rainbow

Does not mention
Sun

—sun| | rain

5 T
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Smooth d-DNNF (sd-DNNF)

* Add sun V —=sun to —rain, replacing —rain with

—rain A (sun VvV —sun)

Does not mention
Rain, Sun

Does not mention
Rain, Sun

rainbow rainbow

Does not mention —rainbow —rainbow

Sun

rain

—sun| | rain sun ] rain

D) K
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Smooth d-DNNF (sd-DNNF)

 Add sun V =sun and rain V —rain, replacing
rainbow with

rainbow A (sunV —sun) A (rain V —rain)

Does not mention
Rain, Sun

rainbow

—rainbow rainbow —rainbow

sun ] rain




Circuit for Model Counting

* Model counting problem: Count how many models fulfil a
sentence

* Model counting arithmetic circuit
* Replace A with -
* Replace V with +
* Replace leaves with 1’s

rainbow —rainbow 1 +) (+ 1

,,,,,
\\\\\
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sun A rain = rainbow

Circuit for Model Counting

0
) 0 0 1
* Propagate 1’s upwards (from leaves to 5| 1 5
root), using arithmetic operations in 0o 1 1
inner nodes to combine incoming 10 0
numbers 10 1
* Result at root: Model count ,
1 1 1
_I_
4 3
2 3
rainbow —rainbow 1 +) (+ 1
1
_I_
1 1 1 1

,,,,,
\\\\\
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sun A rain = rainbow

Conditioning

0 0 0
. 0 0 1
* To get model count of models fulfilling — )
certain truth values —— :
* Replace 1’s with zeros where literal contradicts 1 0
truth values
* Could minimise circuit LY .
* E.g., condition on i 1 0
3 1 1 1
_I_
3
2 3
rainbow —rainbow +) (+ 1




Circuit for Weighted Model Counting

. . . i weight(sun) = 1
* Replace literals with weights in weight(—sun) = 5

leaves and propagate weights weight(rain) = 2
weight(—rain) =7
UPpWa rds weight(rainbow) = 0.1
° Computes Weight(—lrainbow) =10
525.4
_I_
5.4 520
9 52
rainbow —rainbow 0.1 +) (+ 10
4
. 10
+
1 7 5 2

,,,,,
\\\\\
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Circuit for Weighted Model Counting

* For probabilities of worlds or query p(w = {sun, rain, rainbow?})

terms w, condition on truth values _ WMC(g A », weight)
1. Compute 02
2. Compute WMC (¢ A w,weight) = —— =10.00038

3. Divide the two counts

0.2 0

rainbow —rainbow 0.1 +) (+ 0

R
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Knowledge Compilation

* Solve the weighted model counting problem by
knowledge compilation

*|Given a theory A and a set of queries {P(q;|e)}iz4
Build a circuit for theory A (a conjunction of sentences)

Make the circuit a WMC circuit
* Replace inner nodes with arithmetic operations
* Replace leaves with weights
Condition on given evidence e
* Replace weights with 0 where literals contradict e
Calculate WMC(A A e,weight) in the circuit
* By propagating the weights upwards
For each query P(g;|e) in the circuit
* Compute WMC(A A e A q;,weight)

WMC(AneNng;,weight
* Return or store P(q;|e) = (e ) A
WMC(A/\B,Welght) Comp||at|on

S

5 “
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Propositional — First-order

* If input theory is in FOL-DC ((function-free) first-
order logic with domain constraints), one could
ground the theory given domains and build a circuit
for the grounded theory

 FOL-DS includes intensional conjunctions and
disjunctions (V, 3)
* Leads to repeated structures in circuit

* Combine repeated structures using new inner node
types for intensional conjunctions and disjunctions
(v, 3)

* We are not going into every detail of FOKC;

* For complete description, analysis, and discussion,
see the PhD thesis by Guy Van den Broeck

GERST
\\\\\



Weighted First-order Model Counting

* Define a weighted first-order model counting problem
using a weighted first-order model count (WFOMC)

WFOMC(A, wp, wg) = z 1_[ WT(pred(l)) 1_[ WF(pred(l))

W=WTUWF lEWT lEwFR
(UEQ.A

A a theory in FOL-DC

wr a weight function for predicates being positive
wr a weight function for predicates being negative
Q the set of worlds (i.e., models in logics) of A
pred(l) a function mapping a literal [ to its predicate

* Query can be answered by computing
WFOMC(ANe Aq;,Wr, Wg)
P(g;le) =

WFOMC(A Ne,wr, WF)




* Theory: one sentence m

VX € People : LoZzolloZ

W=WrTUWFr [EwT lewp
WEQ,

smokes(X) = cancer(X) 0 0 0 1 1-2-1-6 12
0 0 1 0 1-2.3.2 12
* People = {xq,x,}
_ . 0 0 1 1 1-2-3-6 36
* Weight functions 0 1 0 0 1.-6-1-2 12
* wy(smokes(X)) = 3 0 1 0 1 1-6-1-6 36
o WF(—.smokes(X)) =1 @ 1 1 6 1-6-3.2 36
. WT(cancer(X)) — 6 0 1 1 1 1-6-3-6 108
1 0 0 0 3.2.1.2 12
. WF(—lcancer(X)) = 2
1 0 0 1 3.2.1.5 36
* Model count: 9 1 0 1 0 3.2.3.2 36
 Worlds that fulfil the 1 0 1 1 3.2.3.5 108
theory 1 1 0 0 3:6-1-2 36
1 1 0 1 3-6-1-6 108
[ [wrtreaw) [ [weorea) 1o g g g g 3isa3.2 108
1

3-6-3-6 324

PN
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* Theory: one sentence s(x) | c0n) [ s0r) [ () | Weight

VX € People :

4

smokes(X) = cancer(X) 0 0 0 21612
_ 0 0 1 0 1.2.3.2 12

* People = {xq,x,} X - 4 R —
* Weight functions - ” . - ———
* wr(smokes(X)) = 3 0 1 0 +———6—+—6—36

* wp(—smokes(X))=1 © & 1 0 1-6-3.-2 36

« wr(cancer(X)) = 6 8 1 1 66168

* wp(—cancer(X)) = 2 - o o L

1 0 0 1 3.2.1.6 36

P(s(x1)) 1 6o 1 o 3.2.3.2 36
_WFOMCAAs(),wrwe) 4 g 4 1 3.2.3.¢ 108
36 + 108 + 324 . 1 0 0 3-6-1-2 36

= 1 1 0 1 3-6-1-6 108
_ 2% _ 1692 1 1 1 0 3.6.3.2 108
1 3-6-3-6 324




First-order (FO) Circuits

* Assume theory in Skolem normal form + CNF
* Sequence of intensional conjunctions in CNF

* E.g., with s = smokes, c = cancer
vX € People :s(X) = c(X)
= VX € People : =s(X) V c(X)

* FO circuit (extract)

* Inner nodes:

» Extensional conjunctions/disjunctions
(as before)

* Set conjunctions
* Leaf nodes
* Positive and negative predicates, true, false

e Full + construction:
see PhD thesis by Guy Van den Broeck

VX
X € People

—|C(X)




Smooth FO d-DNNF Circuits

* Properties
* Deterministic disjunctions
* Only one disjunct (child node) can be true at the same time

 Decomposable conjunctions
* Each pair of conjuncts (child nodes) must be independent

* Smoothness
* Each disjunct contains the same variables

FO d-DNNF VY Smooth FO d-DNNF VY
X € People X € People

=s(X) || =c(X)




Arithmetic FO d-DNNF Circuits

* Replace
* Replace A with -
Replace V with +
Replace V with exponentiation for |Domain
Replace leaves with 1’s
E.g., with |People| = [{x{, x5} = 2

34



WFOMC Circuits

* Replace
* Replace A with - = | [wrterea) [ [ welpreaw)

W=WTUWF lEWT lEwp
Replace V with + e
Replace V with exponentiation for |Domain|

* Replace leaves with wr(smokes(X)) =
: wr(—smokes(X)) =
* E.g., with [People| = [{xq, x,}| = 2 wr(cancer(X)) =
wr(—cancer(X)) =
|People|
_I_

35



WFOMC Circuits

* Given P(q;|e)

* Basically, compile a circuit for A A e A g; reusing
components from the circuitof A A e

* E.g., P(s(xl)) with |People| = |{xq,x,}| = 2

P(s(xl))
2618 _ WFOMC(A A s(x1), wr, W)

26, 468

= —=0.692

|Peopleix,}|
18
+ +
1
3 0
+ - :
0

D) K & o

A, =
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Conditioning in FO Circuits

* Evidence on

* Propositional variables L
* Replace leaf values with 0 where literal contradicts observation
* As in propositional circuits

e Unary variable L(X)

* For each variable L(X) that one wants to condition on,

* Replace FOL-DC formula with three copies with additional domain
constraints, possibly simplify formula based on observation

1. X €D+ for observations [(x)
2. X€ED, for observations =1 (x)
3. Xé&EDtANX¢&D;, noobservations
* Compile a circuit for the extended theory
* Given specific evidence, domains for D+, D, are determined
* Might be empty
* Binary variable L(X,Y)

e Can compile a circuit, no longer polynomial in time
(reduction of #2SAT problem)

R
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Conditioning in FO Circuits

* E.g., VX € People : s(X) = c(X) and S(X)
1. VX € Peoplet :s(X) = c(X) Zvx e Peoplet : c(X)
2. VX € People; :s(X) = c(X) £'VX € People, : true
3. VX € People, X & Peoplet, X € People; : s(X) = c(X)

e Delete Formula 2 as it is
always true

* |f one also wants to
condition on C(X),
theory becomes larger
again:

* Formulas (1) and (3)
contain C(X) and

therefore need to be
replaced by three

VX

X € Peoplet

vX
X € People’

formulas, then simplify 3 —c(X)

,,,,,
xxxxxxx




First-order Knowledge Compilation (FOKC)

* Solve the weighted first-order model counting problem by
knowledge compilation

*| Given

 atheory A in FOL-DC in Skolem NNF

* a weight function wy for predicates being positive

* a weight function wy for predicates being negative

« and a set of queries {P(q;|e)}~, with evidence for variables E

Do

Build a WFOMC circuit Cp for A, also preparing for evidence on E
Conditionon e
Calculate WFOMC (A A e, wy, wy) in Cp
For each query P(g;|e)
* Build a WFOMC circuit C, 4, for A A g; conditioned on e

« Compute WFOMC(A A e A q;, wr,wg) in Cp g,
WFOMC(ANeAqi,WT,WE)

WFOMC(A/\@,WT,WF) FOKC

S O

DY
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* Return or store P(q;|e) =




MLNs for WFOMCs

* Weights in MLNs specified for formulas instead of
single predicates
* E.g., example from the beginning
 (In7,travel(X) A epid A sick(X))
 (In2,—travel(X) v —epid V =sick(X))

e Trick:

* Introduce a new predicate 8; containing all free variables of
; as equivalent to Y;

* E.g,
* VX € People : 6;(X) © (travel(X) A epid A sick(X))
* VX € People : 0,(X) © (—travel(X) V —epid V —sick(X))
* Specify weight functions such that 8; takes the weight of y;
. WT(Hl(X)) =exp(n7) =7

« wr(6,(X)) = exp(In2) =2
* All other predicates and =64, =6, are mapped to 1 by both w4, wg

,,,,,
\\\\\
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WFOMC Reduction

* Formally, given an MLN & = {(w;, ;) }i=,

* Transform each weighted formula (w;, ;) into an FOL-
DC formula
VX csi i 0,(X;) © Yy
* where
* X; are the free variables in Y;

* cs; is the constraint set that enforces the domain constraints as
given by the MLN

* 6;(X;) is a new predicate containing all free variables of ;
* Specify weight functions wr, wr such that for each

« wr(6;(Xy) = exp(w;)
* wr(p;) = 1 for all predicates p; occurring in ¥

« wp(6;(X)) = wp(p) =1

,,,,,
\\\\\
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Example

* Given
» (In7, travel(X) A epid A sick(X))
. (ln 2, —travel(X) V —epid V —|Sick(X))

e Resulting theory
* witht = travel,e = epid, s = sick
* VX € People : 0,(X) & (t(X) Ae /\S(X))
* VX € People : 6,(X) & (=t(X) Ve V =s(X))
e with weight functions
» wr(6:(X)) =7
» wr(62(X)) =2
* Rest mapped to 1 by both wr, wg

 Transform formulas into CNF




Example: Normal Form

* Transform formulas into CNF
» VX € People : 6;(X) © (t(X) AeAs(X))

0,X) & (t(X) AeA S(X)) (resolve ©)
(91(X) = (t(X) AeA S(X))) A (Hl(X) < (tX)AeA S(X))) (De Morgan on =)
(—|91 X)) V(X)) AeA S(X))) A (91 X Vva(tX)Aen S(X))) (move — inward)
(
(

-0: (X)) Vv (t(X) Ae A s(X))) A(0,(X) vV =t(X) v —eVas(X)) (distribute V)

=0:(X) V(X)) A (=8, (X) ve) A(=0:(X) vs(X))
A(6:(X) Vv —t(X)V —eV as(X)) (CNF)

e Result (each conjunct as own formula):
* VX € People : =0,(X) vV t(X)
VX € People : =60,(X) Ve
* VX € People : =0,(X) Vs(X)
* VX € People : 6;(X) Vt(X) V —e V as(X)

aaaa
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Example: Normal Form

* Transform formulas into CNF
* VX € People : 6,(X) & (_It(X) VeV —|S(X))
0,(X) & (~t(X) V eV sX))
= (92 X) = (~t(X) VvV —ev —.s(X))) A (92 X) € (~t(X) Vv —ev —.s(X)))
= (26,0 V =t (X) v me v =s(X)) A (6,0 v (=t (X) v me v ms(X)))
= (=6,(X) V =t(X) V —e V =s(X)) A (92 XV (tX) AeA s(X)))
= (16,(X) vV t(X) VvV —e Vv asX) A (0,(X) VEX)) A (0,(X) ve)A(6,(X) vs(X))

e Result (each conjunct as own formula):
* VX € People : 70,(X) Vt(X) VeV as(X)
* VX € People : 6,(X) vV t(X)
* VX € People : 6,(X) Ve
* VX € People : 6,(X) vVs(X)

aaaa
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Example: FO d-DNNF Circuit

* Given theory in CNF
* VX € People : =0,(X) vV t(X)
VX € People : =60,(X) Ve
* VX € People : =6,(X) Vs(X)
* VX € People : 6;(X) Vt(X) V —eV as(X)
* VX € People : =0,(X) Vt(X) VeV as(X)
* VX € People : 6,(X) Vt(X) “
VX € People : 6,(X) Ve
. VX € People : 6,(X) vs(X) @b (s 0
» Resulting FO d-DNNF 4 @« B

circuit generated by the o
FOKC implementation Q 2 @ o

e Some leaves repeated ~ CeeD ) CeDd W)
for readability 2 w @ @

R
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Example: FO d-DNNF Circuit

* Given theory in CNF
VX € People :
—|92(X) Vat(X)V-as(X)V—e

VX € People :
0.(X) Vv —-t(X)V-eV —s(X)

1.

2.

© N LW

Z
3RS0 5 INSTITUT FUR INFORM

VX € People :
VX € People
VX € People
VX € People
VX € People
VX € People

SSSSSSSSSSSSS

1—|91(X)V€

: =0;(X) vs(X)
. 0,(X) V £(X)
:0,(X) Ve

2 0,(X) V s(X)

—|91(X) V t(X)

t(X)| [=6,(X)
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Example: FO d-DNNF Circuit

* Given theory in CNF

1.

VX € People :

—|02(X) Vat(X)V-as(X)V —e

2.

© N LW

g, -
2 WUAYT & UNIVERSITAT ZU LUBECK
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VX € People :

Hl(X) Vat(X)V—eV -5 (X)

VX € People :
VX € People
VX € People
VX € People
VX € People
VX € People

SSSSSSSSSSSS

—|91(X) V t(X)

=—|91(X)V€

: =0;(X) vs(X)
. 0,(X) V £(X)
:0,(X) Ve

2 0,(X) V s(X)

t(X)

26, (X)
-7




Example: FO d-DNNF Circuit

 Given theory in CNF (V)

1. VX € People :
0,V at(X)Vas(X)v-e e (A)

2. VX € People :
Hl(X) Vat(X)V—eV -5 (X)

VX € People : =0,(X) vV t(X)
VX € People : =60,(X) Ve
VX € People : =6;(X) Vv s(X)
VX € People : 6,(X) vV t(X)
VX € People : 6,(X) Ve
8. VX € People : 6,(X) V s(X)

* Not smooth since

* Right branch of root Vv

misses
s(X), t(X)

A

set conjunction misses
t(X)

D) e

2 WUAYT & UNIVERSITAT ZU LUBECK
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Example: Smoothed FO d-DNNF Circuit

As generated by the
FOKC implementation

(M)
@ Vr,z €
person
()
O
& &
o travel(z) V ~travel(z) —> o
0 —601(X), X € person

X AN

R
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Theoretical Results

* Compilation independent of domain sizes
* Just like construction of FO jtree is also independent of
domain sizes
* Inference

e Polynomial in domain sizes

* Based on the computations that are computed at different
node types

 Completeness as before
o MZlv

* Two-logvar theories with max. two logical variables per formula
o Mlp?’v

* One logvar per variable

,,,,,
\\\\\
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Implementation

e Available at
e https://github.com/UCLA-StarAl/Forclift

* May no longer work according to Guy so you may have to try
* https://github.com/tanyabraun/wfomc
e Officially three input formats
e Based on the normal form required (.wmc)

* Early version of parfactor graphs (.fg)
 MLN version (.mln)
— MLN file format only one | got the compiled version to parse

g, -
2 WUAYT & UNIVERSITAT ZU LUBECK
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Implementation

* Query answering times, trade-off criteria
* Increasing domain size

10° 7 LJT LJT compile 10° 7 LT LT FOKC
—— LVE —=— FOKC compile a B a

10* i JT 102

o] 10' %

107 1 " ... FOKC almost invariant

10" - o \X w.r.t. domain sizes

10° 102

107 - T T T T 1 107 -

10° 10’ 10° 10° 10° 1 10 100 1000 10000
* Increasing counting width
10° 10° 7 LyT LJT FOKC FOKC
4 ﬁ i i n=10
10 10 - —e— —e— —<— —&— n=100
n=1000
10° H
: 10" FOKC does not build

102 1 o

histograms, which blow

10°
10" ST r—=—a_ .
. E?TE o Wreomle o &%w up the representation
VE

10-1 .

Pt

I T
0 2

-
o

oo —
= _
o

o —
N~
-
o —
oo —
= _
o

< %

LX) 3

L I G R Runtimes in milliseconds
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Probabilistic Theorem Proving (PTP)

* Based on theorem proving in logics

* Solves lifted weighted model counting problem

* Similar to the weighted first-order model counting
problem by Guy Van den Broeck

* MLNs as input

* Implementation available: Alchemy
e http://alchemy.cs.washington.edu
* Input format: MLNs

,,,,,
\\\\\\
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http://alchemy.cs.washington.edu/

GERST
\\\\\
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LJT as a Framework

* Remember: LJT only specifies a helper structure
and steps
* |.e., no specific inference algorithm as a subroutine for
its calculations

* Requirements for subroutine

e Lifted evidence handling Calculated lifted?

 Lifted message calculation Evidence
* Message = conj. param’d query Messages v X*
* Lifted query answering Queries v oV
. * Not obvious how parameterised
¢ LJTKC LJT Wlth LVE & FOKC queries are handled in circuits

* LVE for evidence entering and message passing

* FOKC for query answering
* Only for Boolean PRVs

& INSTITUT FUR INFORMATIONSSYSTEME



LITKC: Algorithm

LJTKC(G,{Q;}i=1, {gete=1)
Construct an FO jtree J for G

Enter evidence {g.}o=; into ]
Pass message in J
for each parcluster C; in J do
Transform local model G; into an MLN ¥;

Transform ‘P into a theor A in CNF W|th
welght functions wr, WF

Build a circuit C; for A;
Compute ¢; = WFOMC( ,Wr, Wi ) in G
for each query terms Q; do
Build a circuit Cj 4 for A; A q;
Compute ¢; = WFOMC(A A q;, wr, WF) inCj g4

Return or store = (and possibly 1 — —)
Cj Cj




Summary

* Propositional (weighted) model counting
 WMC definition
* Circuits:
* Inner nodes: conjunctions/disjunctions
* Leaves: literals, true, false
* Properties: d-DNNF, smooth
* Model counts, WMC by propagation
* Knowledge compilation

* Inference in circuits:
Query answering by weighted model counting in circuits

* Lifted (weighted) model counting
« WFOMC definition

* FO circuits
* Inner nodes can also be set conjunctions/disjunctions

* First-order knowledge compilation
* Inference in FO circuits
* Further uses

* WFOMC in PTP
e FOKC for query answering in LJT

5 BT & UNIVERSITAT ZU
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Outline: 3. Lifted Inference

A. Lifted variable elimination (LVE)
* QOperators
e Algorithm
* Complexity (including first-order dtrees), completeness, tractability
* Variants

B. Lifted junction tree algorithm (LJT)
First-order junction trees (FO jtrees)
Algorithm

Complexity, completeness

Variants

C. First-order knowledge compilation (FOKC)
* Normal form, circuits
e Algorithm
* Complexity, completeness

D. Beyond Standard Query Answering
e Adaptive inference
e Changing and unknown domains
* Assignment queries

R
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