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Probabilistic Graphical Models (PGMs)
1. Recap: Propositional 

modelling
• Factor model, Bayesian 

network, Markov network
• Semantics, inference tasks 

+ algorithms + complexity
2. Probabilistic relational 

models (PRMs)
• Parameterised models, Markov 

logic networks
• Semantics, inference tasks

3. Lifted inference
• LVE, LJT, FOKC
• Theoretical analysis

4. Lifted learning 
• Recap: propositional learning
• From ground to lifted models
• Direct lifted learning

5. Approximate Inference: 
Sampling
• Importance sampling
• MCMC methods

6. Sequential models & 
inference
• Dynamic PRMs
• Semantics, inference tasks 

+ algorithms + complexity, 
learning

7. Decision making
• (Dynamic) Decision PRMs
• Semantics, inference tasks 

+ algorithms, learning
8. Continuous Models

• Probabilistic soft logic: 
modelling, semantics, inference 
tasks + algorithms
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Local Symmetries and Structure
• Consider potential function as given by the table on the 

right
! "#$%&' ( , *+,-, .,/0 (

• Only two weighted formulas 1,2
necessary
• ln 2 , ¬7#$%&'(() ∨ ¬&+,- ∨ ¬;,/0 (
• ln 7 , 7#$%&'(() ∧ &+,- ∧ ;,/0 (
• If potential of 1 instead of 2, would 

reduce to 
• ln 7 , 7#$%&'(() ∧ &+,- ∧ ;,/0 (
• assignments that do not make the 

formula true automatically get weight 
of 0 = ln 1

• If external knowledge existing, 
provide FOL formulas directly
• E.g., 
ln 2 , &+,- ∧ ;,/0 ( ⇒ ¬7#$%&'(()
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"#$%&'(() *+,- .,/0(() !
B$';& B$';& B$';& 2
B$';& B$';& 7#C& 2
B$';& 7#C& B$';& 2
B$';& 7#C& 7#C& 2
7#C& B$';& B$';& 2
7#C& B$';& 7#C& 2
7#C& 7#C& B$';& 2
7#C& 7#C& 7#C& 7

Use for efficient inference



MLNs: Semantics
• MLN Ψ = #$, &$ $'(

) , with #$ ∈ ℝ, induces a 
probability distribution over possible worlds 

, ∈ -./0, 12340 5
• 6 = the number of ground atoms in the grounded Ψ

7 , = 1
Z:$'(

)
exp #$ )> ? = 1

Z exp @
$'(

)
#$A$ ,

• A$ , = number of true instances of &$ in ,
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3.75

Presents(X,P,C) => Attends(X,C)10

Publishes(X,C) ∧ FarAway(C) => Attends(X,C)



Outline: 3. Lifted Inference
A. Lifted variable elimination (LVE)

• Operators
• Algorithm
• Complexity (including first-order dtrees), completeness, tractability
• Variants

B. Lifted junction tree algorithm (LJT)
• First-order junction trees (FO jtrees)
• Algorithm
• Complexity, completeness
• Variants

C. First-order knowledge compilation (FOKC)
• Normal form, circuits
• Algorithm
• Complexity, completeness

D. Beyond Standard Query Answering
• Adaptive inference 
• Changing and unknown domains
• Assignment queries
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Weighted Model Counting
• Solve query answering problem by solving a weighted 

model counting problem 
• Weighted model count (WMC) given a sentence ! in 

propositional logic and a weight function "#$%ℎ' ∶ ) → ℝ,-
associating a non-negative weight to each literal in ! (set )) 
defined by

./0 !,"#$%ℎ' = 3
4∈67

8
9∈4

"#$%ℎ' :

• where Ω< refers to the set of worlds of !
• Probability of a world = of a sentence ! with weight function 

> = = ∏9∈4"#$%ℎ' :
./0 !,"#$%ℎ' = ./0 ! ∧ =,"#$%ℎ'

./0 !,"#$%ℎ'
• A query for literal A given evidence # is solved by computing

> A|# = ./0 ! ∧ A ∧ #, "#$%ℎ'
./0 ! ∧ #,"#$%ℎ'
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Vgl. > C D = E F,G
E G

T. Sang, P. Beame, and H. Kautz: Solving Bayesian networks by weighted model counting. In: Proceedings of the 
Twentieth National Conference on Artificial Intelligence, 2005.



Weighted Model Counting: Example
• Sentence

• !"# ∧ %&'# ⇒ %&'#)*+

• Weight function:
• +,'-ℎ/ !"# = 1
• +,'-ℎ/ ¬!"# = 5
• +,'-ℎ/ %&'# = 2
• +,'-ℎ/ ¬%&'# = 7
• +,'-ℎ/ %&'#)*+ = 0.1
• +,'-ℎ/ ¬%&'#)*+ = 10
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%&'# !"# %&'#)*+ Weight
0 0 0 7 8 5 8 10 350

0 0 1 7 8 5 8 0.1 3.5

0 1 0 7 8 1 8 10 70

0 1 1 7 8 1 8 0.1 0.7

1 0 0 2 8 5 8 10 100

1 0 1 2 8 5 8 0.1 1

1 1 0 2 8 1 8 10 20 0

1 1 1 2 8 1 8 0.1 0.2

+ ;<;. =

>?@ A,+,'-ℎ/ = C
D∈FG

H
I∈D

+,'-ℎ/ J

Each line a world K ∈ ΩM



Weighted Model Counting: Example
• Sentence

• !"# ∧ %&'# ⇒ %&'#)*+

• Weight function:
• +,'-ℎ/ !"# = 1
• +,'-ℎ/ ¬!"# = 5
• +,'-ℎ/ %&'# = 2
• +,'-ℎ/ ¬%&'# = 7
• +,'-ℎ/ %&'#)*+ = 0.1
• +,'-ℎ/ ¬%&'#)*+ = 10

• Probability of worlds:
• 8 !"#, %&'#, %&'#)*+

=
0.2

525.4
= 0.00038
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%&'# !"# %&'#)*+ Weight
0 0 0 7 = 5 = 10 350

0 0 1 7 = 5 = 0.1 3.5

0 1 0 7 = 1 = 10 70

0 1 1 7 = 1 = 0.1 0.7

1 0 0 2 = 5 = 10 100

1 0 1 2 = 5 = 0.1 1

1 1 0 2 = 1 = 10 20 0

1 1 1 2 = 1 = 0.1 0.2

+ ?@?. A

B = !"#, %&'#, %&'#)*+ ∈ ΩE

8 B =
∏G∈H+,'-ℎ/ I
JKL M,+,'-ℎ/

=
JKL M ∧ B,+,'-ℎ/
JKL M,+,'-ℎ/

!"# ∧ %&'# ⇒ %&'#)*+ ∧ !"# ∧ %&'# ∧ %&'#)*+



Weighted Model Counting: Example
• Sentence

• !"# ∧ %&'# ⇒ %&'#)*+
• Weight function:

• +,'-ℎ/ !"# = 1
• +,'-ℎ/ ¬!"# = 5
• +,'-ℎ/ %&'# = 2
• +,'-ℎ/ ¬%&'# = 7
• +,'-ℎ/ %&'#)*+ = 0.1
• +,'-ℎ/ ¬%&'#)*+ = 10

• Probability of worlds:
• 8 %&'#
=
100 + 1 + 0.2

525.4
= 0.1926
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%&'# !"# %&'#)*+ Weight
0 0 0 7 = 5 = 10 350

0 0 1 7 = 5 = 0.1 3.5
0 1 0 7 = 1 = 10 70
0 1 1 7 = 1 = 0.1 0.7
1 0 0 2 = 5 = 10 100
1 0 1 2 = 5 = 0.1 1

1 1 0 2 = 1 = 10 20 0
1 1 1 2 = 1 = 0.1 0.2

+ ?@?. A

All B ∈ ΩE where %&'# holds

8 F =
GHI J ∧ F,+,'-ℎ/
GHI J,+,'-ℎ/

!"# ∧ %&'# ⇒ %&'#)*+ ∧ %&'#



WMC and Inference
• Solving a WMC problem for a sentence ! as 

introduced on previous slides is exponential in 
number of worlds with probability > 0 (models)
• To be more efficient, build a helper structure
• Bring sentence into negation normal form (NNF)

• NNF: Formulas contain only negations directly in front of 
variables, conjunctions, and disjunctions

• E.g., 
• $%& ∧ ()*& ⇒ ()*&,-. (Apply / ⇒ 0 ≡ ¬/ ∨ 0)
≡ ¬ $%& ∧ ()*& ∨ ()*&,-. (Apply De Morgan’s law)
≡ ¬$%& ∨ ¬()*& ∨ ()*&,-. (NNF)
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Circuits
• Represent the NNF sentence as a directed, acyclic 

graph called circuit with leaves labelled with literals 
(! or ¬!) or #$%&, ()!*& with inner nodes being
• Deterministic disjunctions

• Only one disjunct (child node) can be true at the same time 
• I.e., their conjunction is unsatisfiable

• Decomposable conjunctions
• Each pair of conjuncts (child nodes) must be independent 

• I.e., they cannot share any variables

• Circuit is then in d-DNNF
• deterministic Decomposable NNF
• See later why important

11Mark Chavira and Adnan Darwiche: On probabilistic inference by weighted model counting. In: Artificial Intelligence, 2008.



Circuits: Example
• Deterministic disjunctions

• Only one disjunct (child node) can be true at the same time 
• I.e., their conjunction is unsatisfiable

• Decomposable conjunctions
• Each pair of conjuncts (child nodes) must be independent 

• I.e., they cannot share any variables

• E.g., ¬"#$ ∨ ¬&'($ ∨ &'($)*+
• <disjunct> ∨ &'($)*+

• Determinism:
<disjunct> can only be true if 
&'($)*+ is not
• Add ¬&'($)*+ to disjunct: 
¬&'($)*+ ∧ <disjunct>

12

∨

&'($)*+ <disjunct>



Circuits: Example
• Deterministic disjunctions

• Only one disjunct (child node) can be true at the same time 
• I.e., their conjunction is unsatisfiable

• Decomposable conjunctions
• Each pair of conjuncts (child nodes) must be independent 

• I.e., they cannot share any variables

• E.g., ¬"#$ ∨ ¬&'($ ∨ &'($)*+
• <disjunct> ∨ &'($)*+

• Determinism:
<disjunct> can only be true if 
&'($)*+ is not
• Add ¬&'($)*+ to disjunct: 
¬&'($)*+ ∧ <disjunct>

• <disjunct> now part of a conjunction with ¬&'($)*+
• Decomposability: May not contain 7'($)*+
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∧

∨

&'($)*+

¬&'($)*+<disjunct>



Circuits: Example
• Deterministic disjunctions

• Only one disjunct (child node) can be true at the same time 
• I.e., their conjunction is unsatisfiable

• Decomposable conjunctions
• Each pair of conjuncts (child nodes) must be independent 

• I.e., they cannot share any variables

• E.g., ¬"#$ ∨ ¬&'($ ∨ &'($)*+
• <disjunct> ∨ ¬&'($

• Determinism:
<disjunct> can only be true if 
¬&'($ is not, i.e., if &'($ is
• Add &'($ to disjunct: 
&'($ ∧ <disjunct>

14

∧

∨

∨

&'($)*+

¬&'($)*+

¬&'($ <disjunct>



Circuits: Example
• Deterministic disjunctions

• Only one disjunct (child node) can be true at the same time 
• I.e., their conjunction is unsatisfiable

• Decomposable conjunctions
• Each pair of conjuncts (child nodes) must be independent 

• I.e., they cannot share any variables

• E.g., ¬"#$ ∨ ¬&'($ ∨ &'($)*+
• <disjunct> ∨ ¬&'($

• Determinism:
<disjunct> can only be true if 
¬&'($ is not, i.e., if &'($ is
• Add &'($ to disjunct: 
&'($ ∧ <disjunct>

• <disjunct> now part of a 
conjunction with &'($
• Decomposability: May not contain 7'($

15

∧

∨

∧

∨

&'($)*+

¬&'($)*+

¬&'($

<disjunct> &'($



Circuits: Example
• Deterministic disjunctions

• Only one disjunct (child node) can be true at the same time 
• I.e., their conjunction is unsatisfiable

• Decomposable conjunctions
• Each pair of conjuncts (child nodes) must be independent 

• I.e., they cannot share any variables

• E.g., ¬"#$ ∨ ¬&'($ ∨ &'($)*+
• Add as conjunct

• Decomposability: Does not share
variables with sibling node
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∧

∨

∧

∨

&'($)*+

&'($

¬&'($)*+

¬"#$

¬&'($



Effects of d-DNNF
• Effects of d-DNNF
• Deterministic disjunctions

• Only one disjunct (child node) can be true at the same time 
• I.e., their conjunction is unsatisfiable

• Assume children !", !$ represent probabilities %", %$
• Node then represents probability of & !" ∨ !$

• & !" ∨ !$ = & !" + & !$ − & !" ∧ !$
• If only !" or !$ can be true at a time,
& !" ∧ !$ = 0, i.e.,
• & !" ∨ !$ = & !" + & !$

• Can replace ∨ with + for inference
calculations

17

∧

∨

∧

∨

-./0123

-./0

¬-./0123

¬560

¬-./0



Effects of d-DNNF
• Effects of d-DNNF
• Decomposable conjunctions

• Each pair of conjuncts (child nodes) must be independent 
• I.e., they cannot share any variables

• Assume children !", !$ represent probabilities %", %$
• Node then represents probability of & !" ∧ !$
• If !" and !$ independent (decomposable),

then & !" ∧ !$ = & !" ) & !$
• Can replace ∧ with ) for inference

calculations
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∧

∨

∧

∨

+,-./01

+,-.

¬+,-./01

¬34.

¬+,-.



Smooth d-DNNF (sd-DNNF)
• Smooth circuits: constant runtime for certain queries
• Any pair of disjuncts mentions the same set of variables
• E.g., ¬"#$ ∨ ¬&'($ ∨ &'($)*+

• Two disjunctions that do not fulfil the smoothness property
• Rules for conversion

• For each negation of a 
positive literal , not 
appearing, replace , by 
, ∨ (¬, ∧ /',"0)

• For each variable 2 not 
mentioned in a disjunct 
<disjunct>, add ' ∨ ¬'
with a conjunction to 
<disjunct>:
<disjunct> ∧ ' ∨ ¬'
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∧

∨

∧

∨

&'($)*+

&'($

¬&'($)*+

¬"#$

¬&'($

Does not mention 
='($, ?#$

Does not mention 
?#$



Smooth d-DNNF (sd-DNNF)
• Add !"# ∨ ¬!"# to ¬&'(#, replacing ¬&'(# with

¬&'(# ∧ (!"# ∨ ¬!"#)
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∧

∨

∧

∨

&'(#,-.

&'(#

¬&'(#,-.

¬!"#

¬&'(#

Does not mention 
/'(#, 1"#

Does not mention 
1"#

∧

∨

∧

∨

&'(#,-.

&'(#

¬&'(#,-.

¬!"#¬&'(#!"#

∧

Does not mention 
/'(#, 1"#

∨



Smooth d-DNNF (sd-DNNF)
• Add !"# ∨ ¬!"# and &'(# ∨ ¬&'(#, replacing 
&'(#)*+ with

&'(#)*+ ∧ (!"# ∨ ¬!"#) ∧ (&'(# ∨ ¬&'(#)
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∧

∨

∧

∨&'(#)*+

&'(#

¬&'(#)*+

¬!"#¬&'(#!"#

∧

∨

∧

∨

∧

∨

&'(#)*+

&'(#

¬&'(#)*+

¬!"#¬&'(#!"#

∧

∨

Does not mention 
/'(#, 1"#

∧

∨



Circuit for Model Counting
• Model counting problem: Count how many models fulfil a 

sentence
• Model counting arithmetic circuit

• Replace ∧ with "
• Replace ∨ with +
• Replace leaves with 1’s
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"

+

"

+1

1

1

111

"

+

"

+

∧

∨

∧

∨&'()*+,

&'()

¬&'()*+,

¬./)¬&'()./)

∧

∨

∧

∨



Circuit for Model Counting
• Propagate 1’s upwards (from leaves to 

root), using arithmetic operations in 
inner nodes to combine incoming 
numbers
• Result at root: Model count
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"

+

"

+1

1

1

111

"

+

"

+

∧

∨

∧

∨&'()*+,

&'()

¬&'()*+,

¬./)¬&'()./)

∧

∨

∧

∨
1

2

2

2

4

3

3

7

&'() ./) &'()*+,
0 0 0
0 0 1
0 1 0
0 1 1
1 0 0
1 0 1
1 1 0
1 1 1

./) ∧ &'() ⇒ &'()*+w



Conditioning
• To get model count of models fulfilling 

certain truth values
• Replace 1’s with zeros where literal contradicts 

truth values 
• Could minimise circuit

• E.g., condition on ¬#$%&'()

24

*

+

*

+0

1

1

111

*

+

*

+

∧

∨

∧

∨#$%&'()

#$%&

¬#$%&'()

¬/0&¬#$%&/0&

∧

∨

∧

∨
1

2

2

2

0

3

3

3

#$%& /0& #$%&'()
0 0 0
0 0 1
0 1 0
0 1 1
1 0 0
1 0 1
1 1 0
1 1 1

/0& ∧ #$%& ⇒ #$%&'(w



Circuit for Weighted Model Counting
• Replace literals with weights in 

leaves and propagate weights 
upwards 
• Computes !"# $,&'()ℎ+

25

,

+

,

+0.1

2

10

571

,

+

,

+

∧

∨

∧

∨67(89:&

67(8

¬67(89:&

¬<=8¬67(8<=8

∧

∨

∧

∨
10

6

42

9

5.4

52

520

525.4

&'()ℎ+ <=8 = 1
&'()ℎ+ ¬<=8 = 5
&'()ℎ+ 67(8 = 2
&'()ℎ+ ¬67(8 = 7
&'()ℎ+ 67(89:& = 0.1
&'()ℎ+ ¬67(89:& = 10



Circuit for Weighted Model Counting
• For probabilities of worlds or query 

terms !, condition on truth values
1. Compute "#$ %,'()*ℎ,
2. Compute "#$ % ∧ !,'()*ℎ,
3. Divide the two counts
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.

+

.

+0.1

2

0

001

.

+

.

+

∧

∨

∧

∨56)789'

56)7

¬56)789'

¬;<7¬56)7;<7

∧

∨

∧

∨
0

1

0

2

0.2

0

0

0.2

= ! = ;<7, 56)7, 56)789'
= "#$ % ∧ !,'()*ℎ,

"#$ %,'()*ℎ,
= 0.2
525.4 = 0.00038

Reuse for 
different 
queries



Knowledge Compilation
• Solve the weighted model counting problem by 

knowledge compilation
• Given a theory Δ and a set of queries " #$|& $'(

)
• Build a circuit for theory Δ (a conjunction of sentences)
• Make the circuit a WMC circuit

• Replace inner nodes with arithmetic operations
• Replace leaves with weights

• Condition on given evidence &
• Replace weights with 0 where literals contradict &

• Calculate +,- Δ ∧ &, 0&12ℎ4 in the circuit
• By propagating the weights upwards

• For each query " #$|& in the circuit
• Compute +,- Δ ∧ & ∧ #$, 0&12ℎ4
• Return or store " #$|& = 678 9∧:∧;<,=:$>?@

678 9∧:,=:$>?@

27

Knowledge 
Compilation



Propositional ➝ First-order
• If input theory is in FOL-DC ((function-free) first-

order logic with domain constraints), one could 
ground the theory given domains and build a circuit 
for the grounded theory
• FOL-DS includes intensional conjunctions and 

disjunctions (∀, ∃)
• Leads to repeated structures in circuit

• Combine repeated structures using new inner node 
types for intensional conjunctions and disjunctions 
(∀, ∃)
• We are not going into every detail of FOKC; 
• For complete description, analysis, and discussion, 

see the PhD thesis by Guy Van den Broeck
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Weighted First-order Model Counting
• Define a weighted first-order model counting problem 

using a weighted first-order model count (WFOMC)
!"#$% Δ,(), (* = ,

-.-/∪-1
-∈34

5
6∈-/

() 789: ; 5
6∈-1

(* 789: ;

• Δ a theory in FOL-DC
• () a weight function for predicates being positive
• (* a weight function for predicates being negative
• Ω= the set of worlds (i.e., models in logics) of Δ
• 789: ; a function mapping a literal ; to its predicate

• Query can be answered by computing
> ?@|9 = !"#$% Δ ∧ 9 ∧ ?@, (), (*

!"#$% Δ ∧ 9,(), (*

29

Guy Van den Broeck, Nima Taghipour, Wannes Meert, Jesse Davis, and Luc De Raedt: Lifted Probabilistic Inference by 
First-order Knowledge Compilation. In: IJCAI-11 Proceedings of the 22nd International Joint Conference on Artificial 
Intelligence, 2011.



30

• Theory: one sentence

• People = '(, '*
• Weight functions
• +, -./01- 2 = 3
• +4 ¬-./01- 2 = 1

• +, 78971: 2 = 6
• +4 ¬78971: 2 = 2

• Model count: 9 
• Worlds that fulfil the 

theory

- '( 7 '( - '* 7 '* Weight
0 0 0 0 1 > 2 > 1 > 2 4

0 0 0 1 1 > 2 > 1 > 6 12

0 0 1 0 1 > 2 > 3 > 2 12

0 0 1 1 1 > 2 > 3 > 6 36

0 1 0 0 1 > 6 > 1 > 2 12

0 1 0 1 1 > 6 > 1 > 6 36

0 1 1 0 1 > 6 > 3 > 2 36

0 1 1 1 1 > 6 > 3 > 6 108

1 0 0 0 3 > 2 > 1 > 2 12

1 0 0 1 3 > 2 > 1 > 6 36

1 0 1 0 3 > 2 > 3 > 2 36

1 0 1 1 3 > 2 > 3 > 6 108

1 1 0 0 3 > 6 > 1 > 2 36

1 1 0 1 3 > 6 > 1 > 6 108

1 1 1 0 3 > 6 > 3 > 2 108

1 1 1 1 3 > 6 > 3 > 6 324

+ BCB

∀2 ∈ People ∶
-./01- 2 ⇒ 78971: 2

HIJKL Δ,+,, +4

= N
OPOQ∪OS
O∈TU

V
W∈OQ

+, X:1Y Z V
W∈OS

+4 X:1Y Z
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• Theory: one sentence

• People = '(, '*
• Weight functions
• +, -./01- 2 = 3
• +4 ¬-./01- 2 = 1
• +, 78971: 2 = 6
• +4 ¬78971: 2 = 2

- '( 7 '( - '* 7 '* Weight
0 0 0 0 1 > 2 > 1 > 2 4

0 0 0 1 1 > 2 > 1 > 6 12

0 0 1 0 1 > 2 > 3 > 2 12

0 0 1 1 1 > 2 > 3 > 6 36

0 1 0 0 1 > 6 > 1 > 2 12

0 1 0 1 1 > 6 > 1 > 6 36

0 1 1 0 1 > 6 > 3 > 2 36

0 1 1 1 1 > 6 > 3 > 6 108

1 0 0 0 3 > 2 > 1 > 2 12

1 0 0 1 3 > 2 > 1 > 6 36

1 0 1 0 3 > 2 > 3 > 2 36

1 0 1 1 3 > 2 > 3 > 6 108

1 1 0 0 3 > 6 > 1 > 2 36

1 1 0 1 3 > 6 > 1 > 6 108

1 1 1 0 3 > 6 > 3 > 2 108

1 1 1 1 3 > 6 > 3 > 6 324

+ BCB

∀2 ∈ People ∶
-./01- 2 ⇒ 78971: 2

H - '(

=
IJKLM Δ ∧ - '( , +,, +4

IJKLM Δ,+,, +4

=
36 + 108 + 324

676

=
468
676

= 0.692



First-order (FO) Circuits
• Assume theory in Skolem normal form + CNF
• Sequence of intensional conjunctions in CNF
• E.g., with ! = !#$%&!, ( = ()*(&+

≡ ∀. ∈ People ∶ ! . ⇒ ( .
≡ ∀. ∈ People ∶ ¬! . ∨ ( .

• FO circuit (extract)
• Inner nodes: 

• Extensional conjunctions/disjunctions 
(as before)

• Set conjunctions
• Leaf nodes

• Positive and negative predicates, 9+:&, ;)<!&
• Full + construction: 

see PhD thesis by Guy Van den Broeck
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∨

( .

¬( .

∀.
. ∈ People

¬! .

∧



Smooth FO d-DNNF Circuits
• Properties
• Deterministic disjunctions

• Only one disjunct (child node) can be true at the same time 
• Decomposable conjunctions

• Each pair of conjuncts (child nodes) must be independent 
• Smoothness

• Each disjunct contains the same variables

33

∨

" #

¬" #

∀#
# ∈ People

¬, #

∧

∨

" # ¬" #

∀#
# ∈ People

∧

, # ¬, #
∧∨

FO d-DNNF Smooth FO d-DNNF



Arithmetic FO d-DNNF Circuits
• Replace
• Replace ∧ with "
• Replace ∨ with +
• Replace ∀ with exponentiation for Domain
• Replace leaves with 1’s
• E.g., with People = 23, 25 = 2

34

∨

7 8 ¬7 8

∀8
8 ∈ People

∧

; 8 ¬; 8
∧∨

+

1 1

. People

"

1 1
"+

2

2

1

3

35



WFOMC Circuits
• Replace
• Replace ∧ with "
• Replace ∨ with +
• Replace ∀ with exponentiation for Domain
• Replace leaves with weights
• E.g., with People = 12, 14 = 2
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WFOMC Circuits
• Given ! "#|%
• Basically, compile a circuit for Δ ∧ % ∧ "# reusing 

components from the circuit of Δ ∧ %
• E.g., ! ( )* with People = )*, )2 = 2
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Conditioning in FO Circuits
• Evidence on 

• Propositional variables !
• Replace leaf values with 0 where literal contradicts observation

• As in propositional circuits
• Unary variable ! #

• For each variable ! # that one wants to condition on, 
• Replace FOL-DC formula with three copies with additional domain 

constraints, possibly simplify formula based on observation
1. # ∈ %& for observations ' (
2. # ∈ %) for observations ¬' (
3. # ∉ %& ∧ # ∉ %) no observations

• Compile a circuit for the extended theory
• Given specific evidence, domains for %&, %) are determined

• Might be empty
• Binary variable ! #, .

• Can compile a circuit, no longer polynomial in time 
(reduction of #2SAT problem)

37
Guy Van den Broeck and Jesse Davis: Conditioning in First-Order Knowledge Compilation and Lifted Probabilistic 
Inference. In: AAAI-12 Proceedings of the 26th AAAI Conference on Artificial Intelligence, 2012.



Conditioning in FO Circuits
• E.g., ∀" ∈ People ∶ * " ⇒ , " and - "

1. ∀" ∈ People. ∶ * " ⇒ , " ≡ ∀" ∈ People. ∶ , "
2. ∀" ∈ People0 ∶ * " ⇒ , " ≡ ∀" ∈ People0 ∶ 1234
3. ∀" ∈ People, " ∉ People., " ∉ People0 ∶ * " ⇒ , "
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• Delete Formula 2 as it is 
always true
• If one also wants to 

condition on 7 " , 
theory becomes larger 
again: 
• Formulas (1) and (3) 

contain 7 " and 
therefore need to be 
replaced by three 
formulas, then simplify , "

∀"
" ∈ People.

∨

, " ¬, "

∀"
" ∈ People:

∧

* " ¬* "
∧∨

* "

¬* "

∧



First-order Knowledge Compilation (FOKC)
• Solve the weighted first-order model counting problem by 

knowledge compilation
• Given 

• a theory Δ in FOL-DC in Skolem NNF
• a weight function "# for predicates being positive
• a weight function "$ for predicates being negative
• and a set of queries % &'|) '*+

, with evidence for variables -
• Do

• Build a WFOMC circuit ./ for Δ, also preparing for evidence on -
• Condition on )
• Calculate 01234 Δ ∧ ), "#, "$ in ./
• For each query % &'|)

• Build a WFOMC circuit ./,78 for Δ ∧ &' conditioned on )
• Compute 01234 Δ ∧ ) ∧ &', "#, "$ in ./,78
• Return or store % &'|) = :$;<= /∧>∧78,?@,?A

:$;<= /∧>,?@,?A

39
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MLNs for WFOMCs
• Weights in MLNs specified for formulas instead of 

single predicates
• E.g., example from the beginning

• ln 7 , %&'()*(,) ∧ )/01 ∧ 2034 ,

• ln 2 , ¬%&'()*(,) ∨ ¬)/01 ∨ ¬2034 ,

• Trick:
• Introduce a new predicate 89 containing all free variables of 
:9 as equivalent to :9
• E.g.,

• ∀, ∈ People ∶ 8B , ⇔ %&'()*(,) ∧ )/01 ∧ 2034 ,

• ∀, ∈ People ∶ 8D , ⇔ ¬%&'()*(,) ∨ ¬)/01 ∨ ¬2034 ,
• Specify weight functions such that 89 takes the weight of :9

• EF 8B , = exp ln 7 = 7

• EF 8D , = exp ln 2 = 2
• All other predicates and ¬8B,¬8D are mapped to 1 by both EF,EJ
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WFOMC Reduction
• Formally, given an MLN ! = #$, &$ $'(

)

• Transform each weighted formula #$, &$ into an FOL-
DC formula

∀+$, ,-$ ∶ /$ +$ ⇔ &$
• where

• +$ are the free variables in &$
• ,-$ is the constraint set that enforces the domain constraints as 

given by the MLN
• /$ +$ is a new predicate containing all free variables of &$

• Specify weight functions #1,#2 such that for each
• #1 /$ +$ = exp #$
• #1 6$ = 1 for all predicates 6$ occurring in !
• #2 /$ +$ = #2 6$ = 1

• Continue with knowledge compilation
41



Example
• Given
• ln 7 , %&'()*(,) ∧ )/01 ∧ 2034 ,
• ln 2 , ¬%&'()*(,) ∨ ¬)/01 ∨ ¬2034 ,

• Resulting theory
• with % = %&'()*, ) = )/01, 2 = 2034

• ∀, ∈ People ∶ @A , ⇔ %(,) ∧ ) ∧ 2 ,
• ∀, ∈ People ∶ @C , ⇔ ¬% , ∨ ¬) ∨ ¬2 ,

• with weight functions
• DE @A , = 7
• DE @C , = 2
• Rest mapped to 1 by both DE,DG

• Transform formulas into CNF
42



Example: Normal Form
• Transform formulas into CNF
• ∀" ∈ People ∶ *+ " ⇔ -(") ∧ 1 ∧ 2 "

• Result (each conjunct as own formula):
• ∀" ∈ People ∶ ¬*+ " ∨ - "
• ∀" ∈ People ∶ ¬*+ " ∨ 1
• ∀" ∈ People ∶ ¬*+ " ∨ 2 "
• ∀" ∈ People ∶ *+ " ∨ ¬-(") ∨ ¬1 ∨ ¬2 "

43

≡ *+ " ⇔ -(") ∧ 1 ∧ 2 " (resolve ⇔)
≡ *+ " ⇒ - " ∧ 1 ∧ 2 " ∧ *+ " ⇐ -(") ∧ 1 ∧ 2 " (De Morgan on ⇒)

≡ ¬*+ " ∨ -(") ∧ 1 ∧ 2 " ∧ *+ " ∨ ¬ -(") ∧ 1 ∧ 2 " (move ¬ inward)

≡ ¬*+ " ∨ - " ∧ 1 ∧ 2 " ∧ *+ " ∨ ¬- " ∨ ¬1 ∨ ¬2 " (distribute ∨)
≡ ¬*+ " ∨ - " ∧ ¬*+ " ∨ 1 ∧ ¬*+ " ∨ 2 "

∧ *+ " ∨ ¬-(") ∨ ¬1 ∨ ¬2 " (CNF)



Example: Normal Form
• Transform formulas into CNF
• ∀" ∈ People ∶ *+ " ⇔ ¬. " ∨ ¬0 ∨ ¬1 "

• Result (each conjunct as own formula):
• ∀" ∈ People ∶ ¬*+ " ∨ ¬. " ∨ ¬0 ∨ ¬1 "
• ∀" ∈ People ∶ *+ " ∨ . "
• ∀" ∈ People ∶ *+ " ∨ 0
• ∀" ∈ People ∶ *+ " ∨ 1 "

44

≡ *+ " ⇔ ¬. " ∨ ¬0 ∨ ¬1 "
≡ *+ " ⇒ ¬. " ∨ ¬0 ∨ ¬1 " ∧ *+ " ⇐ ¬. " ∨ ¬0 ∨ ¬1 "
≡ ¬*+ " ∨ ¬. " ∨ ¬0 ∨ ¬1 " ∧ *+ " ∨ ¬ ¬. " ∨ ¬0 ∨ ¬1 "
≡ ¬*+ " ∨ ¬. " ∨ ¬0 ∨ ¬1 " ∧ *+ " ∨ . " ∧ 0 ∧ 1 "
≡ ¬*+ " ∨ ¬. " ∨ ¬0 ∨ ¬1 " ∧ *+ " ∨ . " ∧ *+ " ∨ 0 ∧ *+ " ∨ 1 "



Example: FO d-DNNF Circuit
• Given theory in CNF

• ∀" ∈ People ∶ ¬+, " ∨ . "
• ∀" ∈ People ∶ ¬+, " ∨ /
• ∀" ∈ People ∶ ¬+, " ∨ 0 "
• ∀" ∈ People ∶ +, " ∨ ¬.(") ∨ ¬/ ∨ ¬0 "
• ∀" ∈ People ∶ ¬+3 " ∨ ¬. " ∨ ¬/ ∨ ¬0 "
• ∀" ∈ People ∶ +3 " ∨ . "
• ∀" ∈ People ∶ +3 " ∨ /
• ∀" ∈ People ∶ +3 " ∨ 0 "

• Resulting FO d-DNNF 
circuit generated by the 
FOKC implementation
• Some leaves repeated

for readability

45

_

^

epid
8x, x 2
person

_

^

sick(x) _

^

travel(x) ^

✓1(x) ¬✓2(x)

^

¬travel(x) ^

✓2(x) ¬✓1(x)

^

¬sick(x) ^

✓2(x) ^

¬✓1(x) >

^

¬epid ^

^

¬✓1(X), X 2 person>

✓2(X), X 2 person



Example: FO d-DNNF Circuit
• Given theory in CNF

1. ∀" ∈ People ∶
¬+, " ∨ ¬. " ∨ ¬/ " ∨ ¬0

2. ∀" ∈ People ∶
+1 " ∨ ¬.(") ∨ ¬0 ∨ ¬/ "

3. ∀" ∈ People ∶ ¬+1 " ∨ . "
4. ∀" ∈ People ∶ ¬+1 " ∨ 0
5. ∀" ∈ People ∶ ¬+1 " ∨ / "
6. ∀" ∈ People ∶ +, " ∨ . "
7. ∀" ∈ People ∶ +, " ∨ 0
8. ∀" ∈ People ∶ +, " ∨ / "
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Example: FO d-DNNF Circuit
• Given theory in CNF

1. ∀" ∈ People ∶
¬+, " ∨ ¬. " ∨ ¬/ " ∨ ¬0

2. ∀" ∈ People ∶
+1 " ∨ ¬.(") ∨ ¬0 ∨ ¬/ "

3. ∀" ∈ People ∶ ¬+1 " ∨ . "
4. ∀" ∈ People ∶ ¬+1 " ∨ 0
5. ∀" ∈ People ∶ ¬+1 " ∨ / "
6. ∀" ∈ People ∶ +, " ∨ . "
7. ∀" ∈ People ∶ +, " ∨ 0
8. ∀" ∈ People ∶ +, " ∨ / "
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∨
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∨
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Example: FO d-DNNF Circuit
• Given theory in CNF

1. ∀" ∈ People ∶
¬+, " ∨ ¬. " ∨ ¬/ " ∨ ¬0

2. ∀" ∈ People ∶
+1 " ∨ ¬.(") ∨ ¬0 ∨ ¬/ "

3. ∀" ∈ People ∶ ¬+1 " ∨ . "
4. ∀" ∈ People ∶ ¬+1 " ∨ 0
5. ∀" ∈ People ∶ ¬+1 " ∨ / "
6. ∀" ∈ People ∶ +, " ∨ . "
7. ∀" ∈ People ∶ +, " ∨ 0
8. ∀" ∈ People ∶ +, " ∨ / "

• Not smooth since 
• Right branch of root ∨

misses
/ " , . "

• Right branch of ∨ after 
set conjunction misses

. "
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_

^

epid
8x, x 2
person

_

^

sick(x) _

^

travel(x) ^

✓1(x) ¬✓2(x)

^

¬travel(x) ^

✓2(x) ¬✓1(x)

^

¬sick(x) ^

✓2(x) ^

¬✓1(x) >

^

¬epid ^

^

¬✓1(X), X 2 person>

✓2(X), X 2 person

¬0

∨

0 ∧

+, " ∧

+, "¬+1 "



Example: Smoothed FO d-DNNF Circuit
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_

^

epid
8x, x 2
person

_

^

sick(x) _

^

travel(x) ^

✓1(x) ¬✓2(x)

^

¬travel(x) ^

✓2(x) ¬✓1(x)

^

¬sick(x) ^

✓2(x) ^

¬✓1(x) >

^

¬epid ^

^

¬✓1(X), X 2 person>

✓2(X), X 2 person
^

travel(x) _ ¬travel(x)

^
sick(X) _ ¬sick(X)

X 2 person ^

travel(X) _ ¬travel(X)
X 2 person

As generated by the 
FOKC implementation



Theoretical Results
• Compilation independent of domain sizes
• Just like construction of FO jtree is also independent of 

domain sizes
• Inference
• Polynomial in domain sizes

• Based on the computations that are computed at different 
node types

• Completeness as before
• ℳ"#$

• Two-logvar theories with max. two logical variables per formula
• ℳ%&'$

• One logvar per variable

50



Implementation
• Available at
• https://github.com/UCLA-StarAI/Forclift

• May no longer work according to Guy so you may have to try
• https://github.com/tanyabraun/wfomc

• Officially three input formats 
• Based on the normal form required (.wmc)
• Early version of parfactor graphs (.fg)
• MLN version (.mln)
➝ MLN file format only one I got the compiled version to parse

51

https://github.com/UCLA-StarAI/Forclift
https://github.com/tanyabraun/wfomc


Implementation

52

• Query answering times, trade-off criteria
• Increasing domain size

• Increasing counting width
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Probabilistic Theorem Proving (PTP)
• Based on theorem proving in logics
• Solves lifted weighted model counting problem
• Similar to the weighted first-order model counting 

problem by Guy Van den Broeck
• MLNs as input

• Implementation available: Alchemy
• http://alchemy.cs.washington.edu
• Input format: MLNs

53
Vibbhav Gogate and Pedro Domingos: Probabilistic Theorem Proving. In: UAI-11 Proceedings of the 27th Conference 
on Uncertainty in Artificial Intelligence, 2011.

http://alchemy.cs.washington.edu/


LJT as a Framework
• Remember: LJT only specifies a helper structure 

and steps
• I.e., no specific inference algorithm as a subroutine for 

its calculations
• Requirements for subroutine
• Lifted evidence handling
• Lifted message calculation 

• Message = conj. param’d query
• Lifted query answering

• LJTKC: LJT with LVE & FOKC
• LVE for evidence entering and message passing
• FOKC for query answering

• Only for Boolean PRVs
54

Calculated lifted? LVE FOKC
Evidence ✓ ✓
Messages ✓ ✗*
Queries ✓ ✓

* Not obvious how parameterised 
queries are handled in circuits

Tanya B and Ralf Möller. Fusing First-order Knowledge Compilation and the Lifted Junction Tree Algorithm. 
In Proceedings of KI 2018: Advances in Artificial Intelligence, 2018.



LJTKC: Algorithm
!"#$% &, () )*+, , -. .*+/

Construct an FO jtree 0 for &
Enter evidence -. .*+/ into 0
Pass message in 0
for each parcluster 12 in 0 do

Transform local model &2 into an MLN Ψ2
Transform Ψ2 into a theory Δ2 in CNF with 

weight functions 56,57
Build a circuit 82 for Δ2
Compute 92 = ;<=>? Δ2, 56, 57 in 82

for each query terms () do
Build a circuit 82,@ for Δ2 ∧ B)
Compute 9@ = ;<=>? Δ2 ∧ B), 56, 57 in 82,@
Return or store CDCE (and possibly 1 − CD

CE
)
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Summary
• Propositional (weighted) model counting

• WMC definition
• Circuits: 

• Inner nodes: conjunctions/disjunctions
• Leaves: literals, !"#$, %&'($
• Properties: d-DNNF, smooth
• Model counts, WMC by propagation

• Knowledge compilation
• Inference in circuits: 

Query answering by weighted model counting in circuits

• Lifted (weighted) model counting
• WFOMC definition
• FO circuits

• Inner nodes can also be set conjunctions/disjunctions
• First-order knowledge compilation

• Inference in FO circuits

• Further uses
• WFOMC in PTP
• FOKC for query answering in LJT
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Outline: 3. Lifted Inference
A. Lifted variable elimination (LVE)

• Operators
• Algorithm
• Complexity (including first-order dtrees), completeness, tractability
• Variants

B. Lifted junction tree algorithm (LJT)
• First-order junction trees (FO jtrees)
• Algorithm
• Complexity, completeness
• Variants

C. First-order knowledge compilation (FOKC)
• Normal form, circuits
• Algorithm
• Complexity, completeness

D. Beyond Standard Query Answering
• Adaptive inference 
• Changing and unknown domains
• Assignment queries
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