#### Intelligent Agents: Web-mining Agents

# Probabilistic Graphical Models

#### Lifted Inference

Tanya Braun



INIVERSITÄT ZU LÜBECK INSTITUT FÜR INFORMATIONSSYSTEME

#### Probabilistic Graphical Models (PGMs)

- 1. Recap: **Propositional** modelling
  - Factor model, Bayesian network, Markov network
  - Semantics, inference tasks + algorithms + complexity
- 2. Probabilistic relational models (PRMs)
  - Parameterised models, Markov logic networks
  - Semantics, inference tasks
- 3. Lifted inference
  - LVE, LJT, FOKC
  - Theoretical analysis
- 4. Lifted learning

VERSITÄT ZU LÜBECK

- Recap: propositional learning
- From ground to lifted models
- Direct lifted learning

#### 5. Approximate Inference: Sampling

- Importance sampling
- MCMC methods
- 6. Sequential models & inference
  - Dynamic PRMs
  - Semantics, inference tasks + algorithms + complexity, learning

#### 7. Decision making

- (Dynamic) Decision PRMs
- Semantics, inference tasks + algorithms, learning

#### 8. Continuous Models

 Probabilistic soft logic: modelling, semantics, inference tasks + algorithms

2

## Local Symmetries and Structure

Consider potential function as given by the table on the right

 $\phi(Travel(X), Epid, Sick(X))$ 

- Only two weighted formulas  $(w, \psi)$  necessary
  - $(\ln 2, \neg travel(X) \lor \neg epid \lor \neg sick(X))$
  - $(\ln 7, travel(X) \land epid \land sick(X))$
  - If potential of 1 instead of 2, would reduce to
    - $(\ln 7, travel(X) \land epid \land sick(X))$
    - assignments that do not make the formula true automatically get weight of  $0 = \ln 1$
- If external knowledge existing, provide FOL formulas directly
  - E.g., (ln 2, epid  $\land$  sick(X)  $\Rightarrow \neg$ travel(X))

Use for efficient inference

| Travel(X) | Epid  | Sick(X) | $\phi$ |
|-----------|-------|---------|--------|
| false     | false | false   | 2      |
| false     | false | true    | 2      |
| false     | true  | false   | 2      |
| false     | true  | true    | 2      |
| true      | false | false   | 2      |
| true      | false | true    | 2      |
| true      | true  | false   | 2      |
| true      | true  | true    | 7      |



#### **MLNs: Semantics**

- MLN  $\Psi = \{(w_i, \psi_i)\}_{i=1}^n$ , with  $w_i \in \mathbb{R}$ , induces a probability distribution over possible worlds  $\omega \in \{true, false\}^N$ 
  - N = the number of ground atoms in the grounded  $\Psi$

$$P(\omega) = \frac{1}{Z} \prod_{i=1}^{n} \exp(w_i)^{n_i(\omega)} = \frac{1}{Z} \exp\left(\sum_{i=1}^{n} w_i n_i(\omega)\right)$$

•  $n_i(\omega)$  = number of true instances of  $\psi_i$  in  $\omega$ 

10 Presents(X,P,C) => Attends(X,C)

3.75 Publishes(X,C) ∧ FarAway(C) => Attends(X,C)



## Outline: 3. Lifted Inference

- A. Lifted variable elimination (LVE)
  - Operators
  - Algorithm
  - Complexity (including first-order dtrees), completeness, tractability
  - Variants
- B. Lifted junction tree algorithm (LJT)
  - First-order junction trees (FO jtrees)
  - Algorithm
  - Complexity, completeness
  - Variants

#### C. First-order knowledge compilation (FOKC)

- Normal form, circuits
- Algorithm
- Complexity, completeness
- D. Beyond Standard Query Answering
  - Adaptive inference
  - Changing and unknown domains
  - Assignment queries



# Weighted Model Counting

- Solve query answering problem by solving a weighted model counting problem
  - Weighted model count (WMC) given a sentence  $\varphi$  in propositional logic and a weight function  $weight : L \to \mathbb{R}_{\geq 0}$  associating a non-negative weight to each literal in  $\varphi$  (set L) defined by

$$WMC(\varphi, weight) = \sum_{\omega \in \Omega_{\varphi}} \prod_{l \in \omega} weight(l)$$

- where  $\Omega_{arphi}$  refers to the set of worlds of arphi
- Probability of a world  $\omega$  of a sentence  $\varphi$  with weight function  $P(\omega) = \frac{\prod_{l \in \omega} weight(l)}{WMC(\varphi, weight)} = \frac{WMC(\varphi \land \omega, weight)}{WMC(\varphi, weight)}$
- A query for literal q given evidence e is solved by computing  $P(q|e) = \frac{WMC(\varphi \land q \land e, weight)}{WMC(\varphi \land e, weight)} \bigvee_{Vgl. P(Q|E) = e} P(Q|E) = e^{-\frac{1}{2}}$



- Sentence
  - $sun \wedge rain \Rightarrow rainbow$
- Weight function:
  - weight(sun) = 1
  - $weight(\neg sun) = 5$
  - weight(rain) = 2
  - $weight(\neg rain) = 7$
  - weight(rainbow) = 0.1
  - $weight(\neg rainbow) = 10$

Each line a world  $\omega \in \Omega_{\varphi}$ 





# Weighted Model Counting: Example

- Sentence
  - $sun \land rain \Rightarrow rainbow$
- Weight function:
  - weight(sun) = 1
  - $weight(\neg sun) = 5$
  - weight(rain) = 2
  - $weight(\neg rain) = 7$
  - weight(rainbow) = 0.1
  - $weight(\neg rainbow) = 10$
- Probability of worlds:
  - $P(sun, rain, rainbow) = \frac{0.2}{525.4} = 0.00038$

 $\omega = (sun, rain, rainbow) \in \Omega_{\omega}$ 

$$P(\omega) = \frac{\prod_{l \in \omega} weight(l)}{WMC(\varphi, weight)} = \frac{WMC(\varphi \land \omega, weight)}{WMC(\varphi, weight)}$$

 $(sun \land rain \Rightarrow rainbow) \land sun \land rain \land rainbow$ 

| rain | sun                                  | rainbow                                                                                                                                                                                                                                                                                                   | Weig                                                  | ht                                                    |
|------|--------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------|-------------------------------------------------------|
| 0    | 0                                    | 0                                                                                                                                                                                                                                                                                                         | 7 • 5 • 10                                            | 350                                                   |
| 0    | 0                                    | 1                                                                                                                                                                                                                                                                                                         | 7 • 5 • 0.1                                           | 3.5                                                   |
| 0    | 1                                    | 0                                                                                                                                                                                                                                                                                                         | 7 • 1 • 10                                            | 70                                                    |
| 0    | 1                                    | 1                                                                                                                                                                                                                                                                                                         | $7 \cdot 1 \cdot 0.1$                                 | 0.7                                                   |
| -1   | -0                                   | 0                                                                                                                                                                                                                                                                                                         | 2 . 5 . 10                                            | 100                                                   |
| 1    | 0                                    | 1                                                                                                                                                                                                                                                                                                         | 2 - 5 - 0.1                                           |                                                       |
| 1    | 1                                    | θ                                                                                                                                                                                                                                                                                                         | $2 \cdot 1 \cdot 10$                                  | <del>20</del> 0                                       |
| 1    | 1                                    | 1                                                                                                                                                                                                                                                                                                         | $2 \cdot 1 \cdot 0.1$                                 | 0.2                                                   |
|      |                                      |                                                                                                                                                                                                                                                                                                           | ÷                                                     | 525.4                                                 |
|      | 0<br>0<br>0<br>1<br>1<br>1<br>1<br>1 | 0       0         0       0         0       1         0       1         1       0         1       0         1       1         1       1         1       1         1       1         1       1         1       1         1       1         1       1         1       1         1       1         1       1 | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ |



## Weighted Model Counting: Example

- Sentence
  - $sun \land rain \Rightarrow rainbow$
- Weight function:
  - weight(sun) = 1
  - $weight(\neg sun) = 5$
  - weight(rain) = 2
  - $weight(\neg rain) = 7$
  - weight(rainbow) = 0.1
  - $weight(\neg rainbow) = 10$
- Probability of worlds:
  - $P(rain) = \frac{100 + 1 + 0.2}{525.4} = 0.1926$

All  $\omega \in \Omega_{\omega}$  where *rain* holds

$$P(q) = \frac{WMC(\varphi \land q, weight)}{WMC(\varphi, weight)}$$

 $(sun \land rain \Rightarrow rainbow) \land rain$ 

|   | rain | sun | rainbow | Weight                |                 |  |
|---|------|-----|---------|-----------------------|-----------------|--|
| - | 0    | 0   | 0       | 7 . 5 . 10            | 350             |  |
| - | 0    | 0   | 1       | 7 • 5 • 0.1           | 3.5             |  |
| - | 0    | -1  | 0       | 7.1.10                | 70              |  |
| - | 0    | -1  | 1       | 7 • 1 • 0.1           | 0.7             |  |
| ſ | 1    | 0   | 0       | $2 \cdot 5 \cdot 10$  | 100             |  |
|   | 1    | 0   | 1       | $2 \cdot 5 \cdot 0.1$ | 1               |  |
|   | 1    | 1   | 0       | $2 \cdot 1 \cdot 10$  | <del>20</del> 0 |  |
| ┥ | 1    | 1   | 1       | $2 \cdot 1 \cdot 0.1$ | 0.2             |  |
|   |      |     |         | +                     | 525.4           |  |

#### WMC and Inference

- Solving a WMC problem for a sentence  $\varphi$  as introduced on previous slides is exponential in number of worlds with probability > 0 (models)
- To be more efficient, build a helper structure
  - Bring sentence into negation normal form (NNF)
    - NNF: Formulas contain only negations directly in front of variables, conjunctions, and disjunctions
  - E.g.,
    - $sun \wedge rain \Rightarrow rainbow$   $\equiv \neg(sun \wedge rain) \lor rainbow$  $\equiv \neg sun \lor \neg rain \lor rainbow$

(Apply  $A \Rightarrow B \equiv \neg A \lor B$ ) (Apply De Morgan's law) (NNF)



#### Circuits

- Represent the NNF sentence as a directed, acyclic graph called circuit with leaves labelled with literals (*l* or ¬*l*) or *true*, *f alse* with inner nodes being
  - Deterministic disjunctions
    - Only one disjunct (child node) can be true at the same time
      - I.e., their conjunction is unsatisfiable
  - *Decomposable* conjunctions
    - Each pair of conjuncts (child nodes) must be independent
      - I.e., they cannot share any variables
- Circuit is then in d-DNNF
  - <u>d</u>eterministic <u>D</u>ecomposable <u>NNF</u>
  - See later why important

- Deterministic disjunctions
  - Only one disjunct (child node) can be true at the same time
    - I.e., their conjunction is unsatisfiable
- Decomposable conjunctions
  - Each pair of conjuncts (child nodes) must be independent
    - I.e., they cannot share any variables
- E.g., ¬*sun* ∨ ¬*rain* ∨ *rainbow* 
  - <disjunct> V rainbow
    - Determinism: <disjunct> can only be true if rainbow is not
      - Add ¬*rainbow* to disjunct: ¬*rainbow* ∧ <disjunct>





- Deterministic disjunctions
  - Only one disjunct (child node) can be true at the same time
    - I.e., their conjunction is unsatisfiable
- Decomposable conjunctions
  - Each pair of conjuncts (child nodes) must be independent
    - I.e., they cannot share any variables
- E.g., ¬*sun* ∨ ¬*rain* ∨ *rainbow* 
  - <disjunct> V rainbow
    - Determinism: <disjunct> can only be true if rainbow is not
      - Add ¬*rainbow* to disjunct: ¬*rainbow* ∧ <disjunct>
      - <disjunct> now part of a conjunction with ¬*rainbow*
        - Decomposability: May not contain Rainbow





- Deterministic disjunctions
  - Only one disjunct (child node) can be true at the same time
    - I.e., their conjunction is unsatisfiable
- Decomposable conjunctions
  - Each pair of conjuncts (child nodes) must be independent
    - I.e., they cannot share any variables
- E.g.,  $\neg sun \lor \neg rain \lor rainbow$ 
  - <disjunct> V ¬*rain* 
    - Determinism:
       <disjunct> can only be true if
       ¬*rain* is not, i.e., if *rain* is
      - Add *rain* to disjunct: *rain* ∧ <disjunct>





- Deterministic disjunctions
  - Only one disjunct (child node) can be true at the same time
    - I.e., their conjunction is unsatisfiable
- Decomposable conjunctions
  - Each pair of conjuncts (child nodes) must be independent
    - I.e., they cannot share any variables
- E.g.,  $\neg sun \lor \neg rain \lor rainbow$ 
  - <disjunct> V ¬*rain* 
    - Determinism:
       <disjunct> can only be true if
       ¬*rain* is not, i.e., if *rain* is
      - Add *rain* to disjunct: *rain* ∧ <disjunct>
      - <disjunct> now part of a conjunction with *rain*





Decomposability: May not contain *Rain* <disjunct> *rain* 

- Deterministic disjunctions
  - Only one disjunct (child node) can be true at the same time
    - I.e., their conjunction is unsatisfiable
- Decomposable conjunctions
  - Each pair of conjuncts (child nodes) must be independent
    - I.e., they cannot share any variables
- E.g.,  $\neg sun \lor \neg rain \lor rainbow$ 
  - Add as conjunct
    - Decomposability: Does not share variables with sibling node





#### Effects of d-DNNF

- Effects of d-DNNF
  - Deterministic disjunctions
    - Only one disjunct (child node) can be true at the same time
      - I.e., their conjunction is unsatisfiable
  - Assume children  $c_i, c_j$  represent probabilities  $p_i, p_j$ 
    - Node then represents probability of  $P(c_i \lor c_j)$

• 
$$P(c_i \lor c_j) = P(c_i) + P(c_j) - P(c_i \land c_j)$$

- If only  $c_i$  or  $c_j$  can be true at a time,  $P(c_i \wedge c_j) = 0$ , i.e.,
  - $P(c_i \lor c_j) = P(c_i) + P(c_j)$
- Can replace V with + for inference calculations





#### Effects of d-DNNF

- Effects of d-DNNF
  - Decomposable conjunctions
    - Each pair of conjuncts (child nodes) must be independent
      - I.e., they cannot share any variables
  - Assume children  $c_i, c_j$  represent probabilities  $p_i, p_j$ 
    - Node then represents probability of  $P(c_i \wedge c_j)$  (v)
    - If  $c_i$  and  $c_j$  independent (decomposable), then  $P(c_i \wedge c_j) = P(c_i) \cdot P(c_j)$
  - Can replace ∧ with · for inference calculations





## Smooth d-DNNF (sd-DNNF)

- Smooth circuits: constant runtime for certain queries
  - Any pair of disjuncts mentions the same set of variables
  - E.g.,  $\neg sun \lor \neg rain \lor rainbow$ 
    - Two disjunctions that do not fulfil the smoothness property



NIVERSITÄT ZU LÜBECK

- Rules for conversion
  - For each negation of a positive literal *l* not appearing, replace *l* by *l* ∨ (¬*l* ∧ *false*)
  - For each variable A not mentioned in a disjunct
     <disjunct>, add a ∨ ¬a with a conjunction to
     <disjunct>:
     <disjunct> ∧ (a ∨ ¬a)

19

#### Smooth d-DNNF (sd-DNNF)

• Add  $sun \lor \neg sun$  to  $\neg rain$ , replacing  $\neg rain$  with

 $\neg rain \land (sun \lor \neg sun)$ 





#### Smooth d-DNNF (sd-DNNF)

• Add sun  $\vee \neg$  sun and rain  $\vee \neg$  rain, replacing rainbow with

rainbow  $\land$  (sun  $\lor \neg$ sun)  $\land$  (rain  $\lor \neg$ rain)



21

#### Circuit for Model Counting

- Model counting problem: Count how many models fulfil a sentence
- Model counting arithmetic circuit
  - Replace  $\wedge$  with •
  - Replace V with +
  - Replace leaves with 1's





| su                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | n∧ra                        | $in \Rightarrow$ | rainbow |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|------------------|---------|
| Circuit for Model Counting                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | rain                        | sun              | rainbow |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0                           | 0                | 0       |
| <ul> <li>Propagate 1's upwards (from leaves to</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0                           | 0                | 1       |
| root), using arithmetic operations in                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0                           | 1                | 0       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0                           | 1                | 1       |
| inner nodes to combine incoming                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1                           | 0                | 0       |
| numbers                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1                           | 0                | 1       |
| <ul> <li>Result at root: Model count</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1                           | 1                | 0       |
| $(\mathbf{v})$ $(+)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1                           | 1                | 1       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <b>\</b>                    |                  |         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 3                           |                  |         |
| $(\land) \qquad (\land) \qquad (\land)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $\left( \cdot \right)$      |                  |         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                             |                  |         |
| $[rainbow] \land (\lor) \land (\lor) \land (\neg rainbow) \land (1) \land (+) (+) (+) (+) (+) (+) (+) (+) (+) (+)$ |                             | 1                |         |
| $\left  \begin{array}{c} \\ \\ \\ \\ \\ \\ \end{array} \right  $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                             |                  |         |
| $\sim 10^{-10}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $\mathbf{\dot{\mathbf{x}}}$ |                  |         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $/ \mathbb{N}$              |                  |         |
| $\begin{bmatrix} sun & \neg rain & \neg sun & rain & 1 & 1 & 1 \end{bmatrix}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ] [                         | 1                |         |
| UNIVERSITÄT ZU LÜBECK<br>INSTITUT FÜR INFORMATIONSSYSTEME                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | _                           |                  | 23      |

| su                                                                                   | n∧ra         | $in \Rightarrow$ | rainbow |
|--------------------------------------------------------------------------------------|--------------|------------------|---------|
| Conditioning                                                                         | rain         | sun              | rainbow |
| 001101110                                                                            | 0            | 0                | 0       |
| <ul> <li>To get model count of models fulfilling</li> </ul>                          | 0            | 0                | 1       |
| <ul> <li>To get model count of models fulfilling<br/>certain truth values</li> </ul> | 0            | 1                | 0       |
| <ul> <li>Replace 1's with zeros where literal contradicts</li> </ul>                 | 0            | 1                | 1       |
| truth values                                                                         | 1            | 0                | 0       |
| Could minimise circuit                                                               | 1            | 0                | 1       |
| <ul> <li>E.g., condition on ¬rainbow — 3</li> </ul>                                  | 1<br>1       | 1<br>1           | 0<br>1  |
| $\bigvee$                                                                            | 1            | 1                | 1       |
|                                                                                      | $\mathbf{N}$ |                  |         |
|                                                                                      | 3            |                  |         |
| $\mathcal{A}$ $\mathcal{A}$ $\mathcal{A}$                                            | X            |                  |         |
|                                                                                      |              |                  |         |
| $[rainbow] (V) (V) [\neg rainbow] (0) (+) (+) (+)$                                   |              | 1                |         |
|                                                                                      |              |                  |         |
| $\mathcal{A}$                                                                        | X            |                  |         |
|                                                                                      |              |                  |         |
| $sun$ $\neg rain$ $\neg sun$ $rain$ 1 1                                              | . [          | 1                |         |
| UNIVERSITÄT ZU LÜBECK<br>INSTITUT FÜR INFORMATIONSSYSTEME                            |              |                  | 24      |

#### Circuit for Weighted Model Counting

- Replace literals with weights in leaves and propagate weights upwards
  - Computes WMC(φ, weight) -



weight(sun) = 1  $weight(\neg sun) = 5$  weight(rain) = 2  $weight(\neg rain) = 7$  weight(rainbow) = 0.1 $weight(\neg rainbow) = 10$ 



#### Circuit for Weighted Model Counting

- For probabilities of worlds or query terms  $\omega$ , condition on truth values
  - 1. Compute  $WMC(\varphi, weight)$
  - 2. Compute  $WMC(\varphi \land \omega, weight)$
  - 3. Divide the two counts





 $P(\omega = \{sun, rain, rainbow\})$ 

## **Knowledge** Compilation

- Solve the weighted model counting problem by knowledge compilation
- Given a theory  $\Delta$  and a set of queries  $\{P(q_i|e)\}_{i=1}^m$ 
  - Build a circuit for theory  $\Delta$  (a conjunction of sentences)
  - Make the circuit a WMC circuit
    - Replace inner nodes with arithmetic operations
    - Replace leaves with weights
  - Condition on given evidence *e* 
    - Replace weights with 0 where literals contradict e
  - Calculate WMC(∆ ∧ e, weight) in the circuit
    - By propagating the weights upwards
  - For each query  $P(q_i|e)$  in the circuit
    - Compute  $WMC(\Delta \land e \land q_i, weight)$
    - Return or store  $P(q_i|e) = \frac{WMC(\Delta \wedge e \wedge q_i, weight)}{WMC(\Delta \wedge e, weight)}$

Knowledge Compilation



#### Propositional → First-order

- If input theory is in FOL-DC ((function-free) firstorder logic with domain constraints), one could ground the theory given domains and build a circuit for the grounded theory
  - FOL-DS includes intensional conjunctions and disjunctions (∀, ∃)
  - Leads to repeated structures in circuit
- Combine repeated structures using new inner node types for intensional conjunctions and disjunctions (∀,∃)
- We are not going into every detail of FOKC;
  - For complete description, analysis, and discussion, see the PhD thesis by Guy Van den Broeck



#### Weighted First-order Model Counting

• Define a weighted first-order model counting problem using a weighted first-order model count (WFOMC)

$$WFOMC(\Delta, w_T, w_F) = \sum_{\substack{\omega = \omega_T \cup \omega_F \\ \omega \in \Omega_{\Delta}}} \prod_{l \in \omega_T} w_T(pred(l)) \prod_{l \in \omega_F} w_F(pred(l))$$

- $\Delta$  a theory in FOL-DC
- $w_T$  a weight function for predicates being positive
- $w_F$  a weight function for predicates being negative
- $\Omega_{\Delta}$  the set of worlds (i.e., models in logics) of  $\Delta$
- pred(l) a function mapping a literal l to its predicate
- Query can be answered by computing  $P(q_i|e) = \frac{WFOMC(\Delta \land e \land q_i, w_T, w_F)}{WFOMC(\Delta \land e, w_T, w_F)}$



Guy Van den Broeck, Nima Taghipour, Wannes Meert, Jesse Davis, and Luc De Raedt: Lifted Probabilistic Inference by First-order Knowledge Compilation. In: IJCAI-11 Proceedings of the 22nd International Joint Conference on Artificial Intelligence, 2011.

- Theory: one sentence  $\forall X \in \text{People}$  :  $smokes(X) \Rightarrow cancer(X)$ 
  - People =  $\{x_1, x_2\}$
- Weight functions
  - $w_T(smokes(X)) = 3$
  - $w_F(\neg smokes(X)) = 1$
  - $w_T(cancer(X)) = 6$
  - $w_F(\neg cancer(X)) = 2$
- Model count: 9
  - Worlds that fulfil the theory

 $WFOMC(\Delta, w_T, w_F)$ 

$$=\sum_{\substack{\omega=\omega_T\cup\omega_F\\\omega\in\Omega_A}}\prod_{l\in\omega_T}w_T(pred(l))\prod_{l\in\omega_F}w_F(pred(l))$$



| $s(x_1)$ | $c(x_1)$ | $s(x_2)$ | $c(x_2)$ | Weight                             |                |
|----------|----------|----------|----------|------------------------------------|----------------|
| 0        | 0        | 0        | 0        | $1 \cdot 2 \cdot 1 \cdot 2$        | 4              |
| 0        | 0        | 0        | 1        | $1 \cdot 2 \cdot 1 \cdot 6$        | 12             |
| θ        | θ        | 1        | 0        | $1 \cdot 2 \cdot 3 \cdot 2$        | <del>12</del>  |
| 0        | 0        | 1        | 1        | $1 \cdot 2 \cdot 3 \cdot 6$        | 36             |
| 0        | 1        | 0        | 0        | $1 \cdot 6 \cdot 1 \cdot 2$        | 12             |
| 0        | 1        | 0        | 1        | $1 \cdot 6 \cdot 1 \cdot 6$        | 36             |
| θ        | 1        | 1        | 0        | $1 \cdot 6 \cdot 3 \cdot 2$        | <del>36</del>  |
| 0        | 1        | 1        | 1        | $1 \cdot 6 \cdot 3 \cdot 6$        | 108            |
| 1        | Ð        | Ð        | Ð        | $3 \cdot 2 \cdot 1 \cdot 2$        | <u>12</u>      |
| 1        | 0        | 0        | 1        | $3 \cdot 2 \cdot 1 \cdot 6$        | <del>36</del>  |
| 1        | 0        | 1        | Ð        | $3 \cdot 2 \cdot 3 \cdot 2$        | 36             |
| 1        | 0        | 1        | 1        | $3 \cdot 2 \cdot 3 \cdot 6$        | <del>108</del> |
| 1        | 1        | 0        | 0        | $3 \cdot 6 \cdot 1 \cdot 2$        | 36             |
| 1        | 1        | 0        | 1        | 3 • 6 • 1 • 6                      | 108            |
| 1        | 1        | 1        | Ð        | $\frac{3\cdot 6\cdot 3\cdot 2}{2}$ | <del>108</del> |
| 1        | 1        | 1        | 1        | 3 • 6 • 3 • 6                      | 324            |
|          |          |          |          | +                                  | 676            |

- Theory: one sentence  $\forall X \in \text{People}$  :  $smokes(X) \Rightarrow cancer(X)$ 
  - People =  $\{x_1, x_2\}$
- Weight functions
  - $w_T(smokes(X)) = 3$
  - $w_F(\neg smokes(X)) = 1$
  - $w_T(cancer(X)) = 6$
  - $w_F(\neg cancer(X)) = 2$

 $P(s(x_1)) = \frac{WFOMC(\Delta \land s(x_1), w_T, w_F)}{WFOMC(\Delta, w_T, w_F)}$ 

36 + 108 + 324

 $=\frac{468}{676}=0.692$ 

UNIVERSITÄT ZU LÜBECK INSTITUT FÜR INFORMATIONSSYSTEME

| $s(x_1)$ | $c(x_1)$ | $s(x_2)$ | $c(x_2)$ | Weight                                |                |
|----------|----------|----------|----------|---------------------------------------|----------------|
| 0        | 0        | 0        | 0        | $1 \cdot 2 \cdot 1 \cdot 2$           | 4              |
| 0        | 0        | 0        | 1        | $1 \cdot 2 \cdot 1 \cdot 6$           | 12             |
| 0        | θ        | 1        | θ        | $\frac{1 \cdot 2 \cdot 3 \cdot 2}{2}$ | <del>12</del>  |
| 0        | 0        | -1       | -1       | $1 \cdot 2 \cdot 3 \cdot 6$           | 36             |
| 0        | -1       | 0        | 0        | 1.6.1.2                               | 12             |
| -0       | -1       | 0        | -1       | 1.6.1.6                               | -36            |
| θ        | 1        | 1        | θ        | $1 \cdot 6 \cdot 3 \cdot 2$           | <del>36</del>  |
|          | -1       | -1       | -1       | 1.6.3.6                               | 108            |
| 1        | 0        | 0        | 0        | $3 \cdot 2 \cdot 1 \cdot 2$           | <del>12</del>  |
| 1        | 0        | 0        | 1        | $3 \cdot 2 \cdot 1 \cdot 6$           | <del>36</del>  |
| 1        | 0        | 1        | 0        | <u>3 · 2 · 3 · 2</u>                  | 36             |
| 1        | 0        | 1        | 1        | $3 \cdot 2 \cdot 3 \cdot 6$           | <del>108</del> |
| 1        | 1        | 0        | 0        | $3 \cdot 6 \cdot 1 \cdot 2$           | 36             |
| 1        | 1        | 0        | 1        | 3 · 6 · 1 · 6                         | 108            |
| 1        | 1        | 1        | 0        | $3 \cdot 6 \cdot 3 \cdot 2$           | 108            |
| 1        | 1        | 1        | 1        | 3.6.3.6                               | 324            |
|          |          |          |          | +                                     | 676            |

# First-order (FO) Circuits

- Assume theory in Skolem normal form + CNF
  - Sequence of intensional conjunctions in CNF
  - E.g., with s = smokes, c = cancer  $\forall X \in People : s(X) \Rightarrow c(X)$  $\equiv \forall X \in People : \neg s(X) \lor c(X)$
- FO circuit (extract)
  - Inner nodes:
    - Extensional conjunctions/disjunctions (as before)
    - Set conjunctions
  - Leaf nodes
    - Positive and negative predicates, true, false
  - Full + construction: see PhD thesis by Guy Van den Broeck





#### Smooth FO d-DNNF Circuits

- Properties
  - Deterministic disjunctions
    - Only one disjunct (child node) can be true at the same time
  - Decomposable conjunctions
    - Each pair of conjuncts (child nodes) must be independent
  - Smoothness
    - Each disjunct contains the same variables





#### Arithmetic FO d-DNNF Circuits

- Replace
  - Replace  $\wedge$  with •
  - Replace V with +
  - Replace ∀ with exponentiation for |Domain|
  - Replace leaves with 1's
  - E.g., with  $|People| = |\{x_1, x_2\}| = 2$



#### WFOMC Circuits

- Replace
  - Replace  $\wedge$  with •
  - Replace V with +

$$WFOMC(\Delta, w_T, w_F) = \sum_{\substack{\omega = \omega_T \cup \omega_F \\ \omega \in \Omega_{\Delta}}} \prod_{l \in \omega_T} w_T(pred(l)) \prod_{l \in \omega_F} w_F(pred(l))$$

- Replace ∀ with exponentiation for |Domain|
- Replace leaves with weights
- E.g., with  $|People| = |\{x_1, x_2\}| = 2$





#### WFOMC Circuits

- Given  $P(q_i|e)$ 
  - Basically, compile a circuit for  $\Delta \wedge e \wedge q_i$  reusing components from the circuit of  $\Delta \wedge e$
  - E.g.,  $P(s(x_1))$  with  $|People| = |\{x_1, x_2\}| = 2$



# Conditioning in FO Circuits

- Evidence on
  - Propositional variables L
    - Replace leaf values with 0 where literal contradicts observation
      - As in propositional circuits
  - Unary variable L(X)
    - For each variable L(X) that one wants to condition on,
      - Replace FOL-DC formula with three copies with additional domain constraints, possibly simplify formula based on observation
        - **1.**  $X \in D_T$  for observations l(x)
        - 2.  $X \in D_{\perp}$  for observations  $\neg l(x)$
        - 3.  $X \notin D_{\top} \land X \notin D_{\perp}$  no observations
    - Compile a circuit for the extended theory
    - Given specific evidence, domains for  $D_{T}$ ,  $D_{\perp}$  are determined
      - Might be empty
  - Binary variable L(X, Y)
    - Can compile a circuit, no longer polynomial in time (reduction of #2SAT problem)

# Conditioning in FO Circuits

- E.g.,  $\forall X \in \text{People} : s(X) \Rightarrow c(X) \text{ and } S(X)$ 
  - 1.  $\forall X \in \text{People}_{\top} : s(X) \Rightarrow c(X) \stackrel{s(X)}{=} \forall X \in \text{People}_{\top} : c(X)$
  - 2.  $\forall X \in \text{People}_{\perp} : s(X) \Rightarrow c(X) \stackrel{\text{s}(X)}{\equiv} \forall X \in \text{People}_{\perp} : true$
  - 3.  $\forall X \in \text{People}, X \notin \text{People}_{\top}, X \notin \text{People}_{\perp} : s(X) \Rightarrow c(X)$
  - Delete Formula 2 as it is always true
  - If one also wants to condition on C(X), theory becomes larger again:
    - Formulas (1) and (3) contain C(X) and therefore need to be replaced by three formulas, then simplify



#### First-order Knowledge Compilation (FOKC)

 Solve the weighted first-order model counting problem by knowledge compilation

Given

- a theory  $\Delta$  in FOL-DC in Skolem NNF
- a weight function  $w_T$  for predicates being positive
- a weight function  $w_F$  for predicates being negative
- and a set of queries  $\{P(q_i|e)\}_{i=1}^m$  with evidence for variables **E**

#### Do

- Build a WFOMC circuit  $C_{\Lambda}$  for  $\Delta$ , also preparing for evidence on **E**
- Condition on e
- Calculate  $WFOMC(\Delta \wedge e, w_T, w_F)$  in  $\mathcal{C}_{\Delta}$
- For each query  $P(q_i|e)$ 
  - Build a WFOMC circuit  $C_{\Delta,q_i}$  for  $\Delta \wedge q_i$  conditioned on e

  - Compute  $WFOMC(\Delta \land e \land q_i, w_T, w_F)$  in  $\mathcal{C}_{\Delta, q_i}$  Return or store  $P(q_i|e) = \frac{WFOMC(\Delta \land e \land q_i, w_T, w_F)}{WFOMC(\Delta \land e, w_T, w_F)}$

FOKC



# MLNs for WFOMCs

- Weights in MLNs specified for formulas instead of single predicates
  - E.g., example from the beginning
    - $(\ln 7, travel(X) \land epid \land sick(X))$
    - $(\ln 2, \neg travel(X) \lor \neg epid \lor \neg sick(X))$
- Trick:
  - Introduce a new predicate  $\theta_i$  containing all free variables of  $\psi_i$  as equivalent to  $\psi_i$ 
    - E.g.,
      - $\forall X \in \text{People} : \theta_1(X) \Leftrightarrow (travel(X) \land epid \land sick(X))$
      - $\forall X \in \text{People} : \theta_2(X) \Leftrightarrow (\neg travel(X) \lor \neg epid \lor \neg sick(X))$
  - Specify weight functions such that  $heta_i$  takes the weight of  $\psi_i$ 
    - $w_T(\theta_1(X)) = \exp(\ln 7) = 7$
    - $w_T(\theta_2(X)) = \exp(\ln 2) = 2$
    - All other predicates and  $\neg \theta_1$ ,  $\neg \theta_2$  are mapped to 1 by both  $w_T$ ,  $w_F$



### WFOMC Reduction

- Formally, given an MLN  $\Psi = \{(w_i, \psi_i)\}_{i=1}^n$ 
  - Transform each weighted formula  $(w_i, \psi_i)$  into an FOL-DC formula

 $\forall X_i, cs_i : \theta_i(X_i) \Leftrightarrow \psi_i$ 

- where
  - $X_i$  are the free variables in  $\psi_i$
  - cs<sub>i</sub> is the constraint set that enforces the domain constraints as given by the MLN
  - $heta_i(X_i)$  is a new predicate containing all free variables of  $\psi_i$
- Specify weight functions  $w_T$ ,  $w_F$  such that for each
  - $w_T(\theta_i(\boldsymbol{X}_i)) = \exp(w_i)$
  - $w_T(p_i) = 1$  for all predicates  $p_i$  occurring in  $\Psi$

• 
$$w_F(\theta_i(X_i)) = w_F(p_i) = 1$$

Continue with knowledge compilation

# Example

- Given
  - $(\ln 7, travel(X) \land epid \land sick(X))$
  - $(\ln 2, \neg travel(X) \lor \neg epid \lor \neg sick(X))$
- Resulting theory
  - with t = travel, e = epid, s = sick
    - $\forall X \in \text{People} : \theta_1(X) \Leftrightarrow (t(X) \land e \land s(X))$
    - $\forall X \in \text{People} : \theta_2(X) \Leftrightarrow (\neg t(X) \lor \neg e \lor \neg s(X))$
  - with weight functions
    - $w_T(\theta_1(X)) = 7$
    - $w_T(\theta_2(X)) = 2$
    - Rest mapped to 1 by both  $w_T$ ,  $w_F$
- Transform formulas into CNF



# Example: Normal Form

- Transform formulas into CNF
  - $\forall X \in \text{People} : \theta_1(X) \Leftrightarrow (t(X) \land e \land s(X))$

$$\begin{array}{ll} \theta_1(X) \Leftrightarrow \left(t(X) \land e \land s(X)\right) & (\text{resolve} \Leftrightarrow) \\ \equiv \left(\theta_1(X) \Rightarrow \left(t(X) \land e \land s(X)\right)\right) \land \left(\theta_1(X) \leftarrow \left(t(X) \land e \land s(X)\right)\right) & (\text{De Morgan on } \Rightarrow) \\ \equiv \left(\neg \theta_1(X) \lor \left(t(X) \land e \land s(X)\right)\right) \land \left(\theta_1(X) \lor \neg \left(t(X) \land e \land s(X)\right)\right) & (\text{move } \neg \text{ inward}) \\ \equiv \left(\neg \theta_1(X) \lor \left(t(X) \land e \land s(X)\right)\right) \land \left(\theta_1(X) \lor \neg t(X) \lor \neg e \lor \neg s(X)\right) & (\text{distribute } \lor) \\ \equiv \left(\neg \theta_1(X) \lor t(X)\right) \land \left(\neg \theta_1(X) \lor e\right) \land \left(\neg \theta_1(X) \lor s(X)\right) & \land \left(\theta_1(X) \lor \neg t(X) \lor \neg e \lor \neg s(X)\right) & (\text{CNF}) \end{array}$$

- Result (each conjunct as own formula):
  - $\forall X \in \text{People} : \neg \theta_1(X) \lor t(X)$
  - $\forall X \in \text{People} : \neg \theta_1(X) \lor e$
  - $\forall X \in \text{People} : \neg \theta_1(X) \lor s(X)$
  - $\forall X \in \text{People} : \theta_1(X) \lor \neg t(X) \lor \neg e \lor \neg s(X)$



# Example: Normal Form

Transform formulas into CNF

• 
$$\forall X \in \text{People} : \theta_2(X) \Leftrightarrow (\neg t(X) \lor \neg e \lor \neg s(X))$$
  
 $\theta_2(X) \Leftrightarrow (\neg t(X) \lor \neg e \lor \neg s(X))$   
 $\equiv (\theta_2(X) \Rightarrow (\neg t(X) \lor \neg e \lor \neg s(X))) \land (\theta_2(X) \leftarrow (\neg t(X) \lor \neg e \lor \neg s(X)))$   
 $\equiv (\neg \theta_2(X) \lor \neg t(X) \lor \neg e \lor \neg s(X)) \land (\theta_2(X) \lor \neg (\neg t(X) \lor \neg e \lor \neg s(X)))$   
 $\equiv (\neg \theta_2(X) \lor \neg t(X) \lor \neg e \lor \neg s(X)) \land (\theta_2(X) \lor (t(X) \land e \land s(X)))$   
 $\equiv (\neg \theta_2(X) \lor \neg t(X) \lor \neg e \lor \neg s(X)) \land (\theta_2(X) \lor (t(X) \land e \land s(X)))$ 

- Result (each conjunct as own formula):
  - $\forall X \in \text{People} : \neg \theta_2(X) \lor \neg t(X) \lor \neg e \lor \neg s(X)$
  - $\forall X \in \text{People} : \theta_2(X) \lor t(X)$
  - $\forall X \in \text{People} : \theta_2(X) \lor e$
  - $\forall X \in \text{People} : \theta_2(X) \lor s(X)$



- Given theory in CNF
  - $\forall X \in \text{People} : \neg \theta_1(X) \lor t(X)$
  - $\forall X \in \text{People} : \neg \theta_1(X) \lor e$
  - $\forall X \in \text{People} : \neg \theta_1(X) \lor s(X)$
  - $\forall X \in \text{People} : \theta_1(X) \lor \neg t(X) \lor \neg e \lor \neg s(X)$
  - $\forall X \in \text{People} : \neg \theta_2(X) \lor \neg t(X) \lor \neg e \lor \neg s(X)$

sick(x)

 $\theta_1(x)$ 

travel(x)

 $\forall x, x \in$ 

person

 $\neg travel(x)$ 

 $\neg \theta_2(x)$ 

 $\neg sick(x)$ 

 $\theta_2(x)$ 

 $\theta_2(x)$ 

 $\neg \theta_1(x)$ 

 $\neg \theta_1(x)$ 

 $\neg epid$ 

- $\forall X \in \text{People} : \theta_2(X) \lor t(X)$
- $\forall X \in \text{People} : \theta_2(X) \lor e$
- $\forall X \in \text{People} : \theta_2(X) \lor s(X)$
- Resulting FO d-DNNF circuit generated by the FOKC implementation
  - Some leaves repeated for readability





 $\theta_2(X), X \in person$ 

 $\neg \theta_1(X), X \in person$ 















#### Example: Smoothed FO d-DNNF Circuit





# Theoretical Results

- Compilation independent of domain sizes
  - Just like construction of FO jtree is also independent of domain sizes
- Inference
  - Polynomial in domain sizes
    - Based on the computations that are computed at different node types
- Completeness as before
  - $\mathcal{M}^{2lv}$ 
    - Two-logvar theories with max. two logical variables per formula
  - $\mathcal{M}^{1prv}$ 
    - One logvar per variable



#### Implementation

- Available at
  - https://github.com/UCLA-StarAI/Forclift
    - May no longer work according to Guy so you may have to try
      - <u>https://github.com/tanyabraun/wfomc</u>
  - Officially three input formats
    - Based on the normal form required (.wmc)
    - Early version of parfactor graphs (.fg)
    - MLN version (.mln)
    - $\rightarrow$  MLN file format only one I got the compiled version to parse



#### Implementation

- Query answering times, trade-off criteria
- Increasing domain size



Increasing counting width



FOKC does not build histograms, which blow up the representation

#### Probabilistic Theorem Proving (PTP)

- Based on theorem proving in logics
- Solves lifted weighted model counting problem
  - Similar to the weighted first-order model counting problem by Guy Van den Broeck
  - MLNs as input
- Implementation available: Alchemy
  - <u>http://alchemy.cs.washington.edu</u>
  - Input format: MLNs



# LJT as a Framework

- Remember: LJT only specifies a helper structure and steps
  - I.e., no specific inference algorithm as a subroutine for its calculations
- Requirements for subroutine
  - Lifted evidence handling
  - Lifted message calculation
    - Message = conj. param'd query
  - Lifted query answering
- LJTKC: LJT with LVE & FOKC
  - LVE for evidence entering and message passing
  - FOKC for query answering
    - Only for Boolean PRVs

ERSITÄT ZU LÜBECK

MATIONSSYSTEME

Tanya B and Ralf Möller. Fusing First-order Knowledge Compilation and the Lifted Junction Tree Algorithm. In *Proceedings of KI 2018: Advances in Artificial Intelligence*, 2018.

| Calculated lifted? | LVE          | FOKC         |
|--------------------|--------------|--------------|
| Evidence           | $\checkmark$ | $\checkmark$ |
| Messages           | $\checkmark$ | Χ*           |
| Queries            | $\checkmark$ | $\checkmark$ |

\* Not obvious how parameterised queries are handled in circuits

# LJTKC: Algorithm

```
LJTKC(G, \{Q_i\}_{i=1}^n, \{g_e\}_{e=1}^m)
     Construct an FO jtree J for G
     Enter evidence \{g_e\}_{e=1}^m into I
     Pass message in J
     for each parcluster C<sub>i</sub> in J do
          Transform local model G_i into an MLN \Psi_j
          Transform \Psi_j into a theory \Delta_j in CNF with weight functions w_T, w_F
           Build a circuit C_i for \Delta_i
          Compute c_i = WFOMC(\Delta_i, w_T, w_F) in C_i
     for each query terms Q_i do
           Build a circuit C_{i,q} for \Delta_i \wedge q_i
          Compute c_q = \overset{g_i}{W} FOMC(\Delta_j \land q_i, w_{T, i} w_F) in \mathcal{C}_{j,q}
Return or store \frac{c_q}{c_i} (and possibly 1 - \frac{c_q}{c_i})
```



# Summary

- Propositional (weighted) model counting
  - WMC definition
  - Circuits:
    - Inner nodes: conjunctions/disjunctions
    - Leaves: literals, *true*, *false*
    - Properties: d-DNNF, smooth
    - Model counts, WMC by propagation
  - Knowledge compilation
    - Inference in circuits: Query answering by weighted model counting in circuits
- Lifted (weighted) model counting
  - WFOMC definition
  - FO circuits
    - Inner nodes can also be set conjunctions/disjunctions
  - First-order knowledge compilation
    - Inference in FO circuits
- Further uses
  - WFOMC in PTP
  - FOKC for query answering in LJT



# Outline: 3. Lifted Inference

- A. Lifted variable elimination (LVE)
  - Operators
  - Algorithm
  - Complexity (including first-order dtrees), completeness, tractability
  - Variants
- B. Lifted junction tree algorithm (LJT)
  - First-order junction trees (FO jtrees)
  - Algorithm
  - Complexity, completeness
  - Variants
- C. First-order knowledge compilation (FOKC)
  - Normal form, circuits
  - Algorithm
  - Complexity, completeness
- D. Beyond Standard Query Answering
  - Adaptive inference
  - Changing and unknown domains
  - Assignment queries

