
Intelligent Agents:
Web-mining Agents

Probabilistic Graphical Models

Lifted Inference

Tanya Braun

Probabilistic Graphical Models (PGMs)
1. Recap: Propositional

modelling
• Factor model, Bayesian

network, Markov network
• Semantics, inference tasks

+ algorithms + complexity
2. Probabilistic relational

models (PRMs)
• Parameterised models, Markov

logic networks
• Semantics, inference tasks

3. Lifted inference
• LVE, LJT, FOKC
• Theoretical analysis

4. Lifted learning
• Recap: propositional learning
• From ground to lifted models
• Direct lifted learning

5. Approximate Inference:
Sampling
• Importance sampling
• MCMC methods

6. Sequential models &
inference
• Dynamic PRMs
• Semantics, inference tasks

+ algorithms + complexity,
learning

7. Decision making
• (Dynamic) Decision PRMs
• Semantics, inference tasks

+ algorithms, learning
8. Continuous Models

• Probabilistic soft logic:
modelling, semantics, inference
tasks + algorithms

2

Outline: 3. Lifted Inference
A. Lifted variable elimination (LVE)

• Operators
• Algorithm
• Complexity (including first-order dtrees), completeness, tractability
• Variants

B. Lifted junction tree algorithm (LJT)
• First-order junction trees (FO jtrees)
• Algorithm
• Complexity, completeness
• Variants

C. First-order knowledge compilation (FOKC)
• Normal form, circuits
• Algorithm
• Complexity, completeness

D. Beyond Standard Query Answering
• Adaptive inference
• Changing and unknown domains
• Assignment queries

3

Adaptive Inference
What if one of the inputs changes?

4

Sensors

Percepts

Actions

Actuators

Environment
Agent

?

Adaptive Inference
• What if there is a change in the environment?
• Could be from actions of the agent or from the

environment within, e.g., through other agents
• Changes in percepts ➝ changes in evidence
• Fundamental changes in environment ➝ changes in model

• If an agent uses an algorithm with a helper structure
given a model ! representing the environment and the
environment changes, then ! has to change as well as
the helper structure

5

Sensors

Percepts

Actions

Actuators

Environment
Agent

?

Inferring model changes directly
using percepts based on an
expected increase in utility if
assuming a change (or a similar
optimisation criterion) is the
ultimate goal but we and the
science are not really there yet

Adaptive Inference
• Avoid starting from scratch to fast reach the point

of answering queries again
➝ adaptive inference
• In case of LJT: changes to consider
• In evidence
• In model

• In domain sizes
• Nice property of relational models:

Changes in domain sizes do not affect the model structure
• Propositional models: number of randvars changes, which

changes the helper structure
• In potentials
• In parfactors (addition, deletion)

6
Tanya B and Ralf Möller: Adaptive Inference on Probabilistic Relational Models. In Proceedings of the 31st Australasian
Joint Conference on Artificial Intelligence, 2018

Adaptive Evidence Entering
• If evidence changes

• Standard way: restart at Step 2 (Evidence Entering)
• Delete existing evidence (if still stored)
• Reset local models
• Enter evidence anew
• Pass messages
• Answer queries

• If evidence changes only partially or only a subset of
nodes is concerned, then
• Reset of all local models not necessary

• Reset only those local models that are affected by
evidence changes Δ" = $%&or $%) %*+, :

∀ ./ ∈ 1 ∶ reset 6/ iff ∃ $% ∈ Δ" ∶ :; $" ⊆ ./
• $%& new evidence to add, $%) old evidence to remove

• if 6/ reset, enter evidence anew ./
7

AdaptEvidence

Adaptive Message Passing
• If only some local models change,

• Calculating all messages anew not necessary
• Message passing under adaptive inference:

• Pass messages as before based on the two message pass conditions
• Send empty message !"# = ∅ to indicate no changes

• If receiving an empty message, mark message as valid
• If receiving a not empty message, mark message as changed

• Calculate a new message !"# if
• &" marked changed or
• At least one message !'",) ≠ +,) ∈ -./ 0 , marked

• E.g.,
• New evidence on 123 4 ➝ &5 changes (absorbs evidence)
• !65, !76 still valid (no changes in 86 or 87)
• !56, !67 need to be updated as they were based on the original &5

8

9:0; <0=) >
?@2ABC >

9:0; <0=) >
?@B23 >,D

9:0; 123 4
D2- E 85 86 87

!56 !76 !67!65 F6 F7F5
9:0; 9:0;

<0=) >

AdaptMessages

Changes in Model
• Changes in potentials of parfactors !
• Only change local models but not structure of FO jtree
• Mark local model where the change of ! occurred
• Use adaptive message passing to update messages

• Changes in domain sizes of logvars "
• Only change message calculation but not structure of FO

jtree
• Mark local models of parclusters #$ where " ∈ &' #$
• Use adaptive message passing to update messages

• More complicated:
Adding or deleting parfactors
• Replacing a parfactor = Add the new, delete the old one

9

Adding a Parfactor
• New parfactor !" added to model # with FO jtree $ =
&, (
•)*+, = -. !" ∩ -. # : known PRVs
•)012 = -. !" ∖ -. # : new PRVs

• Even after adding !", $ has to fulfil the FO jtree
properties, i.e., after adding !"
• Property 2 holds: ∃56 ∈ & ∶ -. !" ⊆ 56
• Running intersection property (3) still holds

• Automatically holds for)012 as)012 becomes part of exactly one
parcluster and does not occur in any other as)012 contains only
new PRVs

• For all PRVs in)*+,, the property holds before addition and has to
holds afterwards as well

• Goals for addition procedure:
1. Maintain FO jtree properties
2. Keep parclusters as small as

possible

10

1. ∀5 ∈ & ∶ 5 ⊆ -. #
2. ∀! ∈ # ∶ ∃5 ∈ & ∶ -. ! ⊆ 5
3. If ∃> ∈ -. # ∶ > ∈ 56 ∧ > ∈ 5@

with 56, 5@ ∈ &, then ∀5A ∈ & on
the path between 56, 5@ ∶ > ∈ 5A

Adding a Parfactor
• If !"#$ occurs in one parcluster %&, easy (ok, easier)

• !"#$ already fulfils running intersection property
• Decide what to do based on the existence of !'() and how
!"#$ relates to %&

1. If *+ ,- ⊆ %&: add ,- to /&
• Means that !'() = ∅

2. If *+ ,- ⊃ %&: extend %& with !'(), add ,- to /&
• Means that !"#$ = %&

3. If !"#$ ⊂ %& ∧ !'() ∩ %& = ∅, build %6 = *+ ,- as
neighbour to %&, add ,- to /6
• Means 7&6 = !"#$
• Means that there are some PRVs in %& that do not occur in ,-
• Adding *+ ,- to %&, i.e., extending %& with !'(),

unnecessarily enlarges %&
11

Adding a Parfactor: Example
1. If !" #$ ⊆ &': add #$ to ('
2. If !" #$ ⊃ &': extend &' with *+,-, add #$ to ('
3. If *./0 ⊂ &' ∧ *+,- ∩ &' = ∅, build &6 = !" #$ as

neighbour to &', add #$ to (6
• E.g.,

1. Add #$ = 7 89:; ➝ add to any parcluster
2. Add #$ = 7 89:;, =>? @ ,A>B C , DE>FGB ➝ extend &H

with PRV DE>FGB, add #$ to (H
3. Add #$ = 7 89:;, D:IJ K ,CG!J K ➝ build &L =

89:;, D:IJ K ,CG!J K with (L = #$, add as
neighbour to either &M or &N
• If extending &M or &N with PRV CG!J K , then largest parcluster

size increased to 4 instead of keeping it at 3 for faster query
answering

12

89:; D:IJ K
O!>"EP K

89:; D:IJ K
O!E>? K,A

89:; =>? @
A>B C &H &M &N

QHM QNM QMNQMH #M #N#H

89:; 89:;
D:IJ K

Adjusting FO Jtrees
• What if !"#$ does not occur in one parcluster?

• E.g., %& = ()*+,- .,0 ,0,1 2
• Cannot simply extend one parcluster or add a new

parcluster for %&
• Most likely violates the running intersection property
• E.g.,

• Cannot extend 34 for %&➝ violates running intersection property
for)*+,- .,0 occurring in 35 but not 36

• Same holds for extending 35 for %& and 0,1 2
• Adjust FO jtree such that !"#$ occurs in one parcluster

maintaining the running intersection property

13

789: ;9<= .
)*,>+? .

789: ;9<= .
)*+,- .,0

789: @,- A
0,1 2 34 36 35

B46 B56 B65B64 %6 %5%4
789: 789:

;9<= .

Adjusting FO Jtrees
• Adjust FO jtree such that !"#$ occurs in one

parcluster maintaining the running intersection
property
• Find a set of parclusters % such that !"#$ ⊆ '(%
• Adjust FO jtree in way that afterwards ∃*+ ∶ !"#$ ⊆ *+

using an adjustment strategy
• E.g., add a parfactor -. = 0 12,45'6 7
• 45'6 7 contained in *2, 12 contained in *8,
• Subgraph of *2 and *8

14

Adjust

Adjustment Strategies
• Find a set of parclusters ! such that "#$% ⊆ '(!
• Subgraph)* spanned by !

1. Merge all parclusters in)*
• Creates one very large parcluster

2. Add "#$% to all parclusters in)*
• E.g., add +,,./'0 1 to all parclusters in the subgraph
• Might be able to save adding some PRVs, depending on

which PRVs appear in which parcluster
• E.g., enough to add one of +,,./'0 1 to the path

15

Adjustment Strategies
• Find a set of parclusters ! such that "#$% ⊆ '(!
• Subgraph)* spanned by !

3. While ! > 1
• Take two parclusters out of ! with - the path between

them
• While ./012ℎ - > 1

• Take the ends out of - and merge them ➝ creates a cycle
• Check if you can delete an edge on the cycle while the running

intersection property still holds ➝ If so, delete the edge + stop
• Maximum parcluster size doubles at most

16

Adjusting FO Jtrees: Example
• To add a parfactor !" = $ %&,()*+ ,
• ()*+ , contained in -&, %& contained in -., path

• Start merging at ends of path

• Cannot break cycle without violating run. intersect. prop.
17

Adjusting FO Jtrees: Example
• Merge next two parclusters on path ends

• Can break cycle by deleting edge between !", !#

• Stop
18

Adjusting FO Jtrees
• After adjustment: ∃"# ∶ %&'(⊆ "#
• Proceed as before

1. If *+ ,- ⊆ "#: add ,- to .#
• %/01 = ∅

2. If *+ ,- ⊃ "#: extend "# with %/01, add ,- to .#
• %&'(= "#

3. If %&'(⊂ "# ∧ %/01 ∩ "# = ∅, build "8 = *+ ,- as
neighbour to "#, add ,- to .8

19

Adding a Parfactor: Procedure
• Input: new parfactor !" added to model # with FO

jtree $ = &, (
•)*+, = -. !" ∩ -. # : known PRVs
•)012 = -. !" ∖ -. # : new PRVs

• Adjust $ such that ∃56 ∶)*+, ⊆ 56
• If)012 = ∅, i.e., -. !" =)*+, ⊆ 56

• Add !" to #6, mark #6 as changed
• Else if)*+, = 56, i.e., -. !" ⊃ 56

• Extend 56 with)012
• Add !" to #6, mark #6 as changed

• Else, i.e., -. !" ⊅ 56 ∧ -. !" ⊈ 56 ∧ -. !" ∩ 56 ≠ ∅
• Create new parcluster 5? = -. !" with #? = !" , mark
#? as changed

• Add 5? to & and @, A to (
• (Afterwards, perform adaptive message passing)

20

Addition

Deleting a Parfactor
• Parfactor !" ∈ $ to delete from model $ with FO

jtree % = ',)
• Even after deleting !", % has to fulfil the FO jtree

properties, i.e., after deleting !"
• Property 1 holds: ∀+ ∈ ' ∶ + ⊆ ./ $

• Deleting a parfactor might delete a PRV from $
• FO jtree should still be minimal

• Goals for deletion procedure:
1. Maintain FO jtree properties
2. Keep FO jtree minimal

21

1. ∀+ ∈ ' ∶ + ⊆ ./ $
2. ∀! ∈ $ ∶ ∃+ ∈ ' ∶ ./ ! ⊆ +
3. If ∃4 ∈ ./ $ ∶ 4 ∈ +5 ∧ 4 ∈ +7

with +5, +7 ∈ ', then ∀+8 ∈ ' on
the path between +5, +7 ∶ 4 ∈ +8

Deleting a Parfactor: Procedure
• Parfactor !" ∈ $ to delete from model $ with FO

jtree % = ',)
• Find parcluster *+ such that !" ∈ $+
• Remove !" from $+, mark $+
• Makes PRVs ,- !" ∖ ,- $+ superfluous in terms of

the local model
• Check for each / ∈ ,- !" ∖ ,- $+ if / needed

for running intersection property
• If not, delete /

• If any PRV deleted, check if *+ now a subset of a
neighbour *0
• If so, merge *+, *0 and mark resulting local model

22

Deletion

Deleting a Parfactor: Example
• Assume another parfactor !" = $ %&'(at)*
• Consider removing !"

• Does not make any PRVs superfluous w.r.t. +* as !* contains
all PRVs of the parcluster

• Simply remove !" from +*
• Consider removing !*

• Makes PRVs ,-. / ,1-2 3 superfluous w.r.t. +* as !"
only contains %&'(

• ,-. / ,1-2 3 also not necessary to maintain the running
intersection property

• Remove !" from +*, delete ,-. / ,1-2 3
• Now,)* is a subset of)4➝ merge)*,)4

23

%&'(5'67 8
9:-;<= 8

%&'(5'67 8
9:<-. 8,1

%&'(,-. /
1-2 3)*)4)>

?*4 ?>4 ?4>?4* !4 !>!" !*
%&'(%&'(

5'67 8

Deleting a Parfactor: Example
• Assume another parfactor
!" = $ %&'(, *+, - at ./
• Consider removing !/
• Makes PRV 0+1 2 superfluous w.r.t. 3/ as !" only

contains %&'(, *+, -
• 0+1 2 also not necessary to maintain the running

intersection property
• Remove !/ from 3/, delete 0+1 2
• ./ is not a subset of .4➝ no merging

24

%&'(5'67 8
9:+;<= 8

%&'(5'67 8
9:<+, 8,0

%&'(*+, -
0+1 2 ./ .4 .>

?/4 ?>4 ?4>?4/ !4 !>!" !/
%&'(%&'(

5'67 8

Deleting a Parfactor: Example
• Assume another parfactor
!" = $ %&'() , +,-./0) at 12
• Consider removing !2
• Makes PRV 34&5 superfluous w.r.t. 62 as !" only

contains %&'() , +,-./0)
• But: 34&5 necessary to maintain the running

intersection property
• Only remove !2 from 62

25

34&5 %&'()
+,-./0)

34&5 %&'()
+,/-7),8

34&5 9-7 :
8-; < 1= 12 1>

?=2 ?>2 ?2>?2= !" !2 !>!=
34&5 34&5

%&'()

LJT for Adaptive Inference: Algorithm
!"#$(FO jtree % of model & with evidence ', queries
())*+, , evidence changes Δ., model changes Δ/)

Adapt % to Δ/ (with addition, deletion)
for each parcluster 0) in % do

if 0) marked or affected by Δ. then
Handle or adapt evidence at 0), mark 0)

while ∃0) ready to compute message 2)3 to 03 do
if 0) marked, has a marked message, or 03 new then

Send newly computed 2)3
else

Send empty message 2)3 = ∅
Mark 2)3 at 03 accordingly (valid/changed)

Answer queries with query terms ())*+, in %

26

If local model changed, then evidence
might need to be entered again

Runtimes
• Get to the point of answering queries again as fast as

possible
• Left: Accumulated runtimes over three changes

• Vertical lines mark a change
• Dots mark steps of LJT versions

• Right: runtimes for each step of LJT/aLJT after a model
change (model size doubles with each change)

27

R
un

tim
es

 [s
]

0

1

2

3

4
LVE
LJT
aLJT

Gex Gex
1 Gex

2 Gex
3

R
un

tim
es

 [m
s]

10−4
10−3
10−2
10−1
100
101
102
103
104
105
106
107

21 22 23 24 25 26 27 28 29 210

LJT construction aLJT adaption

LJT evidence aLJT evidence
LJT messages aLJT messages

Model Changes
• Adaptive inference reasonable if effect of changes

does not change FO jtree structure
• Always possible to save at least one message calculation

up to half of the message pass
• Adaptive inference only reasonable if effect of

changes FO jtree structure only locally
• I.e., limited number of parclusters affected
• If changes to model are too many or too drastic, FO jtree

may degenerate
• Restart from scratch and build a new FO jtree

• Similar considerations for circuits and FOKC
• Only repeat weight propagation in branches with

changes

28

Leaving a
specific domain
What happens if domains change?

29

Known Domains
• Grounding semantics is only defined given specific

domains for logical variables
• Evidence for known constants
• Queries reference known constants

• Also, models usually learned on a specific domain

• What if…
• domains change?
• domains are unknown?

30

Changing Domains

31

• Keep semantics as before

• Assume that parfactors

accurately describe world

• Posterior probabilities

change depending on

domain sizes

• Example by Poole (2003)

David Poole. First-order Probabilistic Inference. In IJCAI-03 Proc. of the 18th Internat. Joint Conf. on AI, 2003.

… Without Effects
• (Conditional) Independence

PRVs, containing logical variables !, that are
(conditionally) independent from query terms ➝
domains of ! have no influence on query results
• E.g., given "#$% = ',
• () and (* do

not matter for queries
regarding +,-.'/,
0$12, and +,'-3
• (4 and (5 do

not matter for queries
regarding 6-3 and 5-7

➝ Partly invariant under increasing domain sizes
32

'

6-3()) 5-7(*)

+,-.'/(4)

0$12(4)

+,'-3(4,5)

;<

;= ;>

… Without Effects
• A simple case of so-called projectivity
• After shattering, query terms are independent of model

parts containing logical variables !
➝ domains of ! have no influence on query results
• Depends on model structure
• More by Jaeger and Schulte (2018)

• E.g., "($%&' ())
• +(,) = {(), … , (1}
• After shattering:

• + , = (3, … , (1
• Upper part independent

from lower part; + , irrelevant

➝ Partly invariant under increasing domain sizes

33

456789(,)

$%&'(,)

4586:(,,;)<3 <=

456789(())

$%&'(())

4586:((),;)<3 <=

Manfred Jaeger and Oliver Schulte. Inference, Learning, and Population Size: Projectivity for SRL Models. In StaRAI-18
Workshop on Statistical Relational Artificial Intelligence, 2018.

Growing Domain Sizes
• Let domain size ! grow
• With grounding semantics, posteriors change

• Can lead to extreme behaviour in the posteriors

• Example: "#$% gets more and more
neighbours with ! rising

34

"#$%

&$'((*)

,

- "#$% ∝ /
0∈ℛ 3456 7

, "#$%, &$'(9 = ;
<

"#$% ,′

false C

true G

"#$% ,′′

false C<

true G<

"#$% ,H

false
C<

C< + G<

true
G<

C< + G<

= ,J "#$%
<
= ,JJ "#$% = ,H "#$%

1

1 +
G
C

<

C > G

G > C

! → ∞

1

0
Sigmoid
function

David Poole, David Buchman, Seyed Mehran Kazemi, Kristian Kersting, and Sriraam Natarajan. Population Size Extrapolation in Relational
Probabilistic Modeling. In SUM-14 Proceedings of the 8th International Conference on Scalable Uncertainty Management, 2014.

Growing Domain Sizes
• How to avoid extreme behaviour?
➝ Adapt values in model dependent on domain size
• Approach for MLNs: Domain-size aware MLNs

• Assume predicates !", … , !% occur in a FOL formula &
• Count number of connections '(for each predicate !(

given new domains
• Build a connection vector '", … , '%
• Choose max

,-
'", … , '% as scaling-down factor

• Instead of max, other functions possible
• Works best if the values in '", … , '% do not vary that much

• Given an MLN with a set of formulas &. with weights /.
• Rescale each /. with scaling-down factor 0. computed for &. as 1232

• Analogous approach possible for parfactors

35
Happy Mittal, Ayush Bhardwaj, Vibhav Gogate, and Parag Singla. Domain-size Aware Markov Logic Networks. In
AISTATS-19 Proceedings of the 22nd International Conference on Artificial Intelligence and Statistics, 2019.

Unknown Domains
• General domains of logical variables, e.g.,
• ! " = $%&'(, (*(, +,+ or
• ! " = -.,… , -0

• Constraint 12 in each
parfactor 32, e.g.,
• 14 = ",5 ,! " × ! 5

• Based on constraints, grounding semantics apply
• Lifted algorithms work

36

✗
78&9

:;$*(%(")

>&'?(")

:;($@(",5)3A 34

Template Model
• Assume that local potential functions accurately

describe behaviour
• Template model:

Parfactors with empty constraints
• !" = $%& &'()

• $%& = *& +& | -./
• -0& = 1, ⊥
• 1 a sequence of the logvars in +&

• E.g., in " = %& &'45

• -04 = 6 , ⊥
• -05 = 6,7 , ⊥

37

89:;

<=>?@A(6)

D:EF(6)

<=@>G(6,7)%4 %5

Tanya B and Ralf Möller. Exploring Unknown Universes in Probabilistic Relational Models. In Proceedings of AI 2019:
Advances in Artificial Intelligence, 2019.

Use ⊥ instead of ∅ as ∅ could be a
valid constraint set in some scenarios

Constraint Program
• Constraint program !:

Generate constraints, possibly accompanied by a
probability, for a template model "# = %&' '()

* given
a domain:

+ = ,-,' '()
* , /- -()

0

• ,.,' a constraint to replace 2,' in "#
• Replacing the empty constraints in "# with the constraints in a

constraint world leads to a standard model #
• Each ,-,' '()

* , /- called a constraint world
• Each constraint world can replace the constraints in "#

• Leads to a set of models 3 = #-, /- -()
0

where
• #- is "# but the empty constraints are replaced by ,-,' '()

*

38
Tanya B and Ralf Möller. Exploring Unknown Universes in Probabilistic Relational Models. In Proceedings of AI 2019:
Advances in Artificial Intelligence, 2019.

Constraint Program
• Constraint program !:

Generate constraints, possibly accompanied by a
probability, for a template model "# = %&' '()

* given
a domain:

+ = ,-,' '()
* , /- -()

0

• If no probabilities given per constraint world
• Either just a set of sets (set of constraint worlds without /-)
• Or provide an equal distribution over all worlds: /- =)

0
• If program yields one world, probability of the one

constraint world is 1:
+ = ,-,' '()

* , 1
-()

0()
→ ,),' '()

* = ,' '()*

• Yields one model # with constraints ,' '()*

39
Tanya B and Ralf Möller. Exploring Unknown Universes in Probabilistic Relational Models. In Proceedings of AI 2019:
Advances in Artificial Intelligence, 2019.

Constraint Program: Example
• E.g., using probabilistic Datalog (Fuhr, 1995):
• Set of rules (Horn clauses) and facts that are possibly

weighted by probability
• Free variable occurring in !"#: $

• Provide a domain for $, e.g., % $ = '()*+, +-+, ./. by
adding facts (no weight = always true)
instance_of_X(alice).
instance_of_X(eve).
instance_of_X(bob).

40

element_of_C3(X,Y1) :- linked(X,Y1,Y2).
element_of_C3(X,Y2) :- linked(X,Y1,Y2).
linked(X,Y1,Y2) :- instance_of_X(X) & pair(Y1,Y2).
0.7 pair(t1,t2).
0.2 pair(t2,t3).
0.1 pair(t1,t3).

Norbert Fuhr: Probabilistic Datalog. In: SIGIR-95 Proceedings of the 18th Annual International ACM SIGIR conference
on Research and Development on Information Retrieval, 1995.

Mutually exclusive (only one is true at a time)

!"#

Constraint Worlds: Example
• Generate tuples for constraints by asking query
• Queries can contain free variables

• Answers provide valid groundings of free variables associated
with a probability

• E.g.,
• !" = $, ⊥ : ?- instance_of_X(X)
• !' = $,(, ⊥ : ?- element_of_C3(X,M)

element_of_C3(X,Y1) :- linked(X,Y1,Y2).
element_of_C3(X,Y2) :- linked(X,Y1,Y2).
linked(X,Y1,Y2) :- instance_of_X(X) & pair(Y1,Y2).
0.7 pair(t1,t2).
0.2 pair(t2,t3).
0.1 pair(t1,t3).
instance_of_X(alice).
instance_of_X(eve).
instance_of_X(bob).

41
Norbert Fuhr: Probabilistic Datalog. In: SIGIR-95 Proceedings of the 18th Annual International ACM SIGIR conference
on Research and Development on Information Retrieval, 1995.

Constraint Worlds: Example
• !" = $, ⊥ : ?- instance_of_X(X)
• Query returns the following facts:

• Return those groundings of the query that evaluate to true
instance_of_X(alice).
instance_of_X(eve).
instance_of_X(bob).

42

element_of_C3(X,Y1) :- linked(X,Y1,Y2).
element_of_C3(X,Y2) :- linked(X,Y1,Y2).
linked(X,Y1,Y2) :- instance_of_X(X) & pair(Y1,Y2).
0.7 pair(t1,t2).
0.2 pair(t2,t3).
0.1 pair(t1,t3).
instance_of_X(alice).
instance_of_X(eve).
instance_of_X(bob).

Constraint Worlds: Example
• !" = $,& , ⊥ : ?- element_of_C3(X,M)

• Query returns the following facts using 0.7 pair(t1,t2):
0.7 element_of_C3(alice,t1).
0.7 element_of_C3(alice,t2).
0.7 element_of_C3(eve,t1).
0.7 element_of_C3(eve,t2).
0.7 element_of_C3(bob,t1).
0.7 element_of_C3(bob,t2).

43

element_of_C3(X,Y1) :- linked(X,Y1,Y2).
element_of_C3(X,Y2) :- linked(X,Y1,Y2).
linked(X,Y1,Y2) :- instance_of_X(X) & pair(Y1,Y2).
0.7 pair(t1,t2).
0.2 pair(t2,t3).
0.1 pair(t1,t3).
instance_of_X(alice).
instance_of_X(eve).
instance_of_X(bob).

Mutually exclusive (only one is true at a time)

Leads to three sets of facts
of which only one set is
true with a probability as
given by the fact

Constraint Worlds: Example
• Three constraint worlds ! = #$,& &'(

) , *$ $'(

+',

• - = 1 using 0.7 pair(t1,t2).: #(,& &'/
, , *(

• *(= 0.7
• #(,/ = 3 , 4, 5, 6
• #(,, = 3,7 , 4, 81 , 4, 82 , 5, 81 , 5, 82 , 6, 81 , 6, 82
• with 4 = 4:;<5, 5 = 5=5, 6 = 6>6

44

element_of_C3(X,Y1) :- linked(X,Y1,Y2).
element_of_C3(X,Y2) :- linked(X,Y1,Y2).
linked(X,Y1,Y2) :- instance_of_X(X) & pair(Y1,Y2).
0.7 pair(t1,t2).
0.2 pair(t2,t3).
0.1 pair(t1,t3).
instance_of_X(alice).
instance_of_X(eve).
instance_of_X(bob).

Constraint Worlds: Example
• ! = 2 using 0.2 pair(t2,t3).: $%,' '(%

) , *% :
• *% = 0.2
• $%,% = - , ., /, 0
• $%,) = -,1 , ., 22 , ., 23 , /, 22 , /, 23 , 0, 22 , 0, 23

• ! = 3 using 0.1 pair(t1,t3).: $),' '(%
) , *) :

• *) = 0.1
• $),% = - , ., /, 0
• $),) = -,1 , ., 21 , ., 23 , /, 21 , /, 23 , 0, 21 , 0, 23

45

element_of_C3(X,Y1) :- linked(X,Y1,Y2).
element_of_C3(X,Y2) :- linked(X,Y1,Y2).
linked(X,Y1,Y2) :- instance_of_X(X) & pair(Y1,Y2).
0.7 pair(t1,t2).
0.2 pair(t2,t3).
0.1 pair(t1,t3).
instance_of_X(alice).
instance_of_X(eve).
instance_of_X(bob).

. = .567/
/ = /8/
0 = 090

Domain Worlds

46

• Specify or generate possible domains
• Encode assumptions like
• Small domains more likely than large domains
• Only rough counts necessary (500 vs. 499 vs. 501)

• For &, e.g.,
• Beta-binomial distribution (' = 6, + = 15) referred to

as ,- . with . as the domain size of &
/ = 01 1234 , ,- . 42355,462355

7555

• Each as input to constraint
program 89:

0.00

0.04

0.08

0.12

0.16

0 500 1000 1500 2000

Yields 20 domains
with probability > 0

Tanya B and Ralf Möller. Exploring Unknown Universes in Probabilistic Relational Models. In Proceedings of AI 2019:
Advances in Artificial Intelligence, 2019.

,- .

.

Interworkings

47

• Distribution over domains

• … as input to probabilistic constraint program

0.00

0.04

0.08

0.12

0.16

0 500 1000 1500 2000

element_of_C3(X,Y1) :- linked(X,Y1,Y2).
element_of_C3(X,Y2) :- linked(X,Y1,Y2).
linked(X,Y1,Y2) :- instance_of_X(X) & pair(Y1,Y2).
0.7 pair(t1,t2).
0.2 pair(t2,t3).
0.1 pair(t1,t3)

Together, they yield 20 # 3
constraint worlds, each

with probability > 0
If both domain and constraint worlds
are associated with probabilities,
multiply both probabilities, assuming
the probabilities are independent.

Tanya B and Ralf Möller. Exploring Unknown Universes in Probabilistic Relational Models. In Proceedings of AI 2019:
Advances in Artificial Intelligence, 2019.

%&'

Filtering

48

• Some probabilities can be or become very low
• Filtering based on probabilities; e.g.,
• Threshold ! or
• Keep only those models whose probabilities make up,

e.g., 95% of the distribution around its mean or
maximum value

• Cascading filtering
1. Filter domain worlds
2. Filter constraint worlds resulting from (remaining)

domain worlds

Tanya B and Ralf Möller. Exploring Unknown Universes in Probabilistic Relational Models. In Proceedings of AI 2019:
Advances in Artificial Intelligence, 2019.

Inputs
• Template model

• Empty constraints
• Constraint program

• Fill empty constraints
given a domain world

• Can generate a probability
distribution over models

• Domain worlds
• Generate possible worlds

as input to constraint
program

• Can be a probability
distribution over domains

• Optionally, threshold !

Approach
• Generate a set of

possible models
• Can be a probability

distribution over
possible models
• Within model:

grounding semantics
apply
• Lifted algorithms work

again

• Reasoning over possible
models
• New query types

49

Groundings-based Semantics

Tanya B and Ralf Möller. Exploring Unknown Universes in Probabilistic Relational Models. In Proceedings of AI 2019:
Advances in Artificial Intelligence, 2019.

Example: Inputs
• Template model

• Constraint program

• Filtering with ! = 0.05

• Domain worlds

50

element_of_C3(X,Y1) :- linked(X,Y1,Y2).
element_of_C3(X,Y2) :- linked(X,Y1,Y2).
linked(X,Y1,Y2) :- instance_of_X(X) & pair(Y1,Y2).
0.7 pair(t1,t2).
0.2 pair(t2,t3).
0.1 pair(t1,t3)

&'()

*+,-./(1)

3(45(1)

*+.,!(1,7)89 8:

0.00

0.04

0.08

0.12

0.16

0 500 1000 1500 2000

;<=

Example
• Filtering with ! = 0.05 brings domain worlds down to
8 domain worlds

• E.g., for ' = 200
•)* *+,-.., 01 200
• 01 200 = 0.07182
•)* the constants for 4

• Generate constraint worlds (3 per domain, i.e., 24)
• E.g., for ' = 200 and 0.7 pair(t1,t2)for 7 = 1:

• 8,,- = 4 ,)* *+,-..

• 8,,9 = 4,: ,)* *+,-..× !1, !2
• Probability: 01 200 < 0.7 = 0.050274

51

0.00

0.04

0.08

0.12

0.16

0 500 1000 1500 2000

01 '

'

)* *+,= , 01 ' =+-..,=>+,..

?..

900200

0.05

Example
• Filtering again with ! = 0.05

brings constraint worlds
down to 7
• Cascaded filtering
• Domain worlds that

yield constraint worlds
with probability
'() * '+ > 0.05
for each resulting model:
• -. ./01 , '() 1/344,15/044

644
and

• 7 = 1: 0.7 pair(t1,t2) in 9:;
• <1,0,3 = = , -. ./01

• <1,0,> = =,? , -. ./01 × !1, !2
52

0.00

0.04

0.08

0.12

0.16

0 500 1000 1500 2000

'()

)800200

0.05

Actually, one does not want to
generate all 24 constraint worlds
and filter afterwards but stop
after the constraint world with
probability of domain world) =
500 (highest probability among
)) and 0.2 pair(t2,t3) is
below !:
'(500 * 0.2 = 0.0284 < 0.05

New Queries Emerging

53

• Exploration
• Model and query

probabilities w.r.t.
• Domain sizes (as in changing

domains + grounding
semantics)

• Skyline query

• Model checking
• E.g., does the probability of

• an individual being sick
decrease with larger domains?

• an epidemic rise if more
people travel?

Model probability

P
(S

ic
k(

x1
) =

 tr
ue

)

0.30

0.31

0.32

0.33

0.34

0.35

0.05 0.06 0.07 0.08 0.09 0.10

d=200

d=300

d=400

d=500
d=600d=700d=800

Domain sizes d

0.05

0.10

0.15

0.20

0.25

0.30

0.35

200 300 400 500 600 700 800

P(Sick(x1) = true)
Model probability

Tanya B and Ralf Möller. Exploring Unknown Universes in Probabilistic Relational Models. In Proceedings of AI 2019:
Advances in Artificial Intelligence, 2019.

Most Probable
Assignments
Most likely state assignments to (a subset of) the remaining
PRVs given evidence

54

Most Probable Explanation (MPE)
• Given some evidence, what is the most likely state

of the remaining randvars?
• Assignment query asking for the most probable

assignment to
• all randvars without evidence

• Most probable explanation (MPE)

• Formally, given a model ! representing the full joint "#
and evidence $% = '% %()

*
, + for short,

,"$# + = argmax
2∈ℛ 5|7

" 5 = 2 |8|+
• 5|8 = 9: ! ∖ $% %()

*
the PRVs in ! without evidence

• Compared to “probability” query, replaced ∑ with argmax as
the elimination operation

55

Alexander Philip Dawid. Applications of a General Propagation Algorithm for Probabilistic Expert Systems. Statistics and
Computing, 2(1):25–36, 1992.
Rina Dechter. Bucket Elimination: A Unifying Framework for Probabilistic Inference. In Learning and Inference in
Graphical Models, pages 75–104. MIT Press, 1999.

MPE: Semantics
• Based on semantics, could build full joint of !,

apply evidence, and then choose the world that has
the highest probability assigned
• E.g., given "#$% = '()*, what is the most likely state of
+(,-*. / , 1$23 / , +(*,' /,4 ?

45" *#$%
= argmax

;,<,;;
5 +(,-*. / = ', 1$23 / = =, +(*,' /,4 = ''|?

• But,
• ignores factorisation
• without further evidence

on logvars, all
instances of PRVs
are indistinguishable

56

"#$%

+(,-*.(/)

1$23(/)

+(*,'(/,4)BC BD

(L)VE for MPE Queries
• Replace sum-out operation with a max-out operation

• Rest stays the same (including needing a heuristics for an
elimination order)

• In knowledge compilation, replace + with max
• In LVE operator suite, operator max−out instead of sum−out

• Same input
• Same preconditions
• Same postcondition
• Basically same specification of output

• But: two tasks in one
• Perform maximisation (argmax)
• Store assignments as well (argmax)
➝ Parfactor definition changes slightly to map to potentials and
assignments

57

Rodrigo de Salvo Braz, Eyal Amir, and Dan Roth. MPE and Partial Inversion in Lifted Probabilistic Variable
Elimination. AAAI-06 Proceedings of the 21st Conference on Artificial Intelligence, 2006.
Udi Apsel and Ronen I. Brafman. Exploiting Uniform Assignments in First-Order MPE. Proceedings of the 28th
Conference on Uncertainty in Artificial Intelligence, 2012.
Tanya B and Ralf Möller. Lifted Most Probable Explanation. In Proceedings of the International Conference on
Conceptual Structures, 2018.

Parfactors for Assignments
• Map each argument setting

to its potential and the set
of assignments already
maxed out
• Maxing out a P(C)RV means

maxing out a set of
propositional randvars
represented by a P(C)RV
• All get the same value

assigned as they behave
identically, therefore have the
same assignment leading to
the (same) maximum value

• Store as a sequence of
histograms
• Also keep list of PRVs of same

order
• Initially empty

58

!"#$

%&'()*(,)

.#/0(,)

%&)'1(,,3)45 46

!"#$.#/0 , %&)'1 ,,3 76
8'*9) 8'*9) 8'*9) 2,
8'*9) 8'*9) 1&;) 1,
8'*9) 1&;) 8'*9) 2,
8'*9) 1&;) 1&;) 3,
1&;) 8'*9) 8'*9) 0,
1&;) 8'*9) 1&;) 1,
1&;) 1&;) 8'*9) 2,
1&;) 1&;) 1&;) 4,

Tanya B and Ralf Möller. Lifted Most Probable Explanation. In Proceedings of the International Conference on
Conceptual Structures, 2018.

LVE for MPE Queries: Example
• Max-out !"#$%(',))

• Fulfils all preconditions
• Result: +,

- = /,
- 0123, 4256 '

• Choose argmax assignment for
each setting of 0123, 4256 '
• E.g., 0123 = 7$89#, 4256 ' =
7$89#

• Max. value: 2
• Assignment leading to 2:
!"#$% ',) = 7$89#

• New mapping:
7$89#, 7$89# → 2<, 2 = 0,1
• ncountE|G ⊤ = 2

59

0123

!"$I#8(')

4256(')

!"#$%(',))
+< +,

0123 4256 ' !"#$% ',) /,

7$89# 7$89# 7$89# 2,

7$89# 7$89# %"J# 1,

7$89# %"J# 7$89# 2,

7$89# %"J# %"J# 3,

%"J# 7$89# 7$89# 0,

%"J# 7$89# %"J# 1,

%"J# %"J# 7$89# 2,

%"J# %"J# %"J# 4,
0123 4256 ' /,

- . NOPQR G,E

7$89# 7$89# 2<, 0,2

7$89# %"J# 3<, 2,0

%"J# 7$89# 1<, 2,0

%"J# %"J# 4<, 2,0
Tanya B and Ralf Möller. Lifted Most Probable Explanation. In Proceedings of
the International Conference on Conceptual Structures, 2018.

LVE for MPE Queries: Example
• Max-out !"#$%&(()

• Fulfils all preconditions
• Result: *+, = .+, /012, 4156 (

• Multiply *7, , *+,
• Works as before in terms of

multiplication
• Additionally, concatenate

sequences of histograms
• Cannot contain overlapping

assignments due to precondition
of max-out
• Would have been multiplied

before

60

/012

4156(()

*+, *7,

/012 4156 (.+, . 9:;<=> ?

@#&A% @#&A% 4+, 1,0
@#&A% E"F% 2+, 1,0
E"F% @#&A% 5+, 0,1
E"F% E"F% 7+, 0,1

/012 4156 (.7, . 9:=;J ?,K

@#&A% @#&A% 2+, 0,2
@#&A% E"F% 3+, 2,0
E"F% @#&A% 1+, 2,0
E"F% E"F% 4+, 2,0

/012 4156 (.+7 . 9:=;J ?,K ,9:;<=> ?

@#&A% @#&A% 2+ M 4+, 0,2 , 1,0
@#&A% E"F% 3+ M 2+, 2,0 , 1,0
E"F% @#&A% 1+ M 5+, 2,0 , 0,1
E"F% E"F% 4+ M 7+, 2,0 , 0,1

Tanya B and Ralf Möller. Lifted Most Probable Explanation. In Proceedings of
the International Conference on Conceptual Structures, 2018.

LVE for MPE Queries: Example
• Max-out !"#$(&)
• Fulfils all preconditions
• Result: ()*+ = -)*+ ./"0

• Max-out ./"0
• Fulfils all preconditions
• Result: ()*++ = -)*++

61

./"0

!"#$(&)

()*

./"0 -)*++ . 2345 6 ,89:;< 6,= ,89;>:? 6

@ABCD 64, 0,3 , 3 I 0,2 , 3 I 1,0
LMND 784, 3,0 , 3 I 2,0 , 3 I 0,1

./"0 !"#$ & -)* . 89:;< 6,= ,89;>:? 6

@ABCD @ABCD 64, 0,2 , 1,0
@ABCD LMND 36, 2,0 , 1,0
LMND @ABCD 25, 2,0 , 0,1
LMND LMND 784, 2,0 , 0,1

./"0

()*+ ()*+

-)*++ . RS3T,2345 6 ,89:;< 6,= ,89;>:? 6

784, 1,0 , 3,0 , 6,0 , 0,3
./"0 = LMND

∀& ∈ AB"#D, DWD, XYX ,Z ∈ [\,[) :
!"#$ & = LMND,

^MDAL &,Z = LMND,
^MAWDB & = @ABCD

Tanya B and Ralf Möller. Lifted Most Probable Explanation. In Proceedings of
the International Conference on Conceptual Structures, 2018.

LVE for MPE Queries Continued
• If only PRVs and ⊤ constraints, then maximum

assignments will be either all "#$% or all &'()%
• I.e., peak-shaped histograms

• If CRVs in input model, then different histograms
might be a maximum assignment
• If inequality constraints in model, then maximum

assignment lies where domains split in the middle
• E.g.,

• *+ ,'#"-%#) ., 0+, 01 , 0+ ≠ 01
• *1 ,'#"-%#) ., 0+, 01 , #%"'3(0+ , #%"'3(01 , 0+ ≠ 01
• Given 15 companies for 0+, 01, maximum assignment for #%"'3(

will be at 8,7 and 7,8
• Independent of the actual potentials, only dependent on the

relative max value

62
Rodrigo de Salvo Braz, Eyal Amir, and Dan Roth. MPE and Partial Inversion in Lifted Probabilistic Variable
Elimination. AAAI-06 Proceedings of the 21st Conference on Artificial Intelligence, 2006.

LVE for MPE Queries Continued
• Count conversions get a bit trickier

• Logvar that is counted might occur in a maxed out PRV
• Not a hindrance in terms of counting
• But: requires counting the logvar in the maxed out PRV as well,

requires to rewrite the histograms as well
• Counting yields histograms !,# where the true assignments map

to a sequence of histograms and the false assignments to another
sequence of histograms

• The two sequences are basically added up

• As a consequence:
Only count a logvar if the PRV turned into a CRV occurs only in the
input parfactor
• If not, multiply together (same as with max-out/sum-out)
• Why?

• When a grounding or expansion of the counted logvar would
become necessary, it would no longer be possible to trace which
grounding leads to which max. value because of the added up
histograms

• Counting only after combining all occurrences prevents a
grounding or expansion at a later point (as that can only happen
if the original PRV occurs in another parfactor)

63
Tanya B and Ralf Möller. Lifted Most Probable Explanation. In Proceedings of the International Conference on
Conceptual Structures, 2018.

LJT for MPE Queries
• (L)JT: message calculation by maxing out
• Specifically

• As before: construction, evidence entering
• Message passing

• Only one message pass (from periphery to centre)
• Max out remaining variables at centre

• No explicit query answering step
• E.g., given model ! to right and

evidence "#$% &'#$(, "#$% (*(
• Construct an FO jtree for !
• Enter "#$% &'#$(, "#$% (*(

64
Tanya B and Ralf Möller. Lifted Most Probable Explanation. In Proceedings of the International Conference on
Conceptual Structures, 2018.

+,#-

.&/(1) 3&4(5)

67&*('(8)

9#$%(8)

67(&/(8,3)

:;

:< :=

:<, :<> :=, :=>:;

+,#- 9#$% 8
67&*(' 8

+,#- 9#$% 8
67(&/ 8,3

+,#- .&/ 1
3&4 5 ?; ?< ?=

LJT: MPE
• Send messages from
• !" to !#:

• !$ to !#:

• At !#:
• Max-out %&'()* + ,
,-./ + , 01-2 from 3#,
4"#, 4$#

• Result could look like:
• 01-2 = 6'*7)
• ∀2,: ∈ ⊤ ∶
>'? 2 = 6'*7),
@'A : = 6'*7)
• ∀BC ∈ '*-.),)() ,4 ∈ ⊤ ∶
%&'()* BC = ?&D),
%&)'? BC,@ = ?&D)
• ∀4 ∈ ⊤ ∶ %&'()* EFE =
?&D), ,-./ EFE = ?&D),
%&)'? EFE,@ = ?&D)

65
G#
H, G#

C G$
H, G$

CG"

01-2 ,-./ +
%&'()* +

01-2 ,-./ +
%&)'? +,@

01-2 >'? I
@'A J !" !# !$

4"# = K" 01-2 LMN O ,PMQ R

4$# =

{K$
CC 01-2, ,-./ EFE

TUHMN VWV,P
,

K$
HC 01-2 TUHMN XY,P }

4"# 4$#

Complexity
• Runtimes still depend

on worst-case parfactor
sizes with potentials
still being raised to the
power of domain sizes
• Results hold from

LVE/LJT for probability
queries

Completeness
• Maxing out does not

affect any argument
about completeness of
LVE/LJT for
• ℳ"#$

• ℳ%&'$

• Results hold from
LVE/LJT for probability
queries (single query
terms)

66

Complexity and Completeness

Most Probable Assignment
• Assignment query asking for the most probable

assignment to a subset of randvars without evidence:
Maximum a posteriori assignment (MAP)
• Generalisation of MPE

• Formally, given a model ! representing the full joint "# ,

evidence $% = '% %()
*

, + for short, and a set of PRVs ,|./ ,
01"# ,|./|+
= argmax

7∈ℛ ,|:/
;

<∈ℛ =|://

" , = 7 |./, = = < |.//|+

• =|.// = ?@ ! ∖ $% %()
* ∖ ,|./ the remaining PRVs

• If ,|./ = B|. , i.e., =|.// = ∅, then 01"# ,|./|+ = 0"$# +

67

Alexander Philip Dawid. Applications of a General Propagation Algorithm for Probabilistic Expert Systems. Statistics and
Computing, 2(1):25–36, 1992.

Rina Dechter. Bucket Elimination: A Unifying Framework for Probabilistic Inference. In Learning and Inference in
Graphical Models, pages 75–104. MIT Press, 1999.

query terms

Most Probable Assignment
• Problem with an MAP query
!"#$ %|'(|)
= argmax

0∈ℛ %|3(
4

5∈ℛ 6|3((

% = 0 |'(, 6 = 5 |'((|)

• Contains both summation and maximisation, which
are not commutative!
• One has to

• first sum out 6|'((and
• only then max out %|'(

• May enlarge tree width
• Screws with the elimination order

68

Alexander Philip Dawid. Applications of a General Propagation Algorithm for Probabilistic Expert Systems. Statistics and
Computing, 2(1):25–36, 1992.
Rina Dechter. Bucket Elimination: A Unifying Framework for Probabilistic Inference. In Learning and Inference in
Graphical Models, pages 75–104. MIT Press, 1999.

69

Example
MAP query with same tree width

!"#$

%&'()) +&,(-)

./&012(3)

4#56(3)

./1&'(3,+)

89

8: 8;

8:, 8:
< 8;, 8;

<89

!"#$ 4#56 3
./&012 3

!"#$ 4#56 3
./1&' 3,+

!"#$ %&')
+&, - =9 =: =;

+>?@ !"#$, 4#56 3

? 1, A, '2, '', ,,B= argmax
I,J∈

ℛ MNOP,QORS T

U
VW,VV,X,Y∈

ℛ
Z[\]JW T ,Z[J\V T,^ ,

_\V ` ,^\X a

b9 1, ,,B b: 1, A, '2 b; 1, A, ''= argmax
I,J∈

ℛ MNOP,QORS T

U
VW,VV,X,Y∈

ℛ
Z[\]JW T ,Z[J\V T,^ ,

_\V ` ,^\X a

b: 1, A, '2 b; 1, A, '' b9 1, ,,B= argmax
I,J∈

ℛ MNOP,QORS T

U
VW∈

ℛ Z[\]JW T

U
VV∈

ℛ Z[J\V T,^

U
X,Y∈

ℛ _\V ` ,^\X a

70

Example
MAP query with enlarged tree width

!"#$

%&'()) +&,(-)

./&012(3)

4#56(3)

./1&'(3,+)

89

8: 8;

8:, 8:
< 8;, 8;

<89

!"#$ 4#56 3

./&012 3

!"#$ 4#56 3

./1&' 3,+

!"#$ %&')

+&, - =9 =: =;

+>?@ ./&012 3 , ./1&' 3,+

? 1, A, '2, '', ,,B= argmax
IJ,II∈

ℛ MNOPQJ R ,MNQOI R,S

T
Q,U,V,W∈

ℛ
XYZ[,\Z]^ R ,

_OI ` ,SOV a

b9 1, ,,B b: 1, A, '2 b; 1, A, ''= argmax
IJ,II∈

ℛ MNOPQJ R ,MNQOI R,S

T
Q,U,V,W∈

ℛ
XYZ[,\Z]^ R ,

_OI ` ,SOV a

b: 1, A, '2 b; 1, A, '' b9 1, ,,B= argmax
IJ,II∈

ℛ MNOPQJ R ,MNQOI R,S

T
Q∈

ℛ XYZ[

T
U∈

ℛ \Z]^ R

T
V,W∈

ℛ _OI ` ,SOV a

Liftable and Bounded MAP Queries
• Liftable MAP queries
• Does not concern the lifted width, only regards if

groundings occur
• ℳ"#$%&': one logvar and one set of constants per

query term
• Argument as with parameterised conjunctive queries regarding

completeness

• Bounded MAP queries
• If query terms cover a subgraph of parclusters, then the

lifted width does not increase

71

(), ()+ (,, (,+(-

./01 2034 5
6789:; 5

./01 2034 5
67:8< 5,=

./01 >8< ?
=8@ A B- B) B,

LVE for MAP Queries: Algorithm
!"#−%&'(Model (, evidence), query *|,)

(← Shatter (on *|,,), and on itself
(← Absorb) in (
while (contains non-query terms do

if a PRV . fulfils the preconditions of sum−out then
(← Apply sum−out to . in (

else
(← Apply an enabling operator on parfactors in (

while (contains query terms do
if a PRV . fulfils the preconditions of max−out then

(← Apply max−out to . in (
else

(← Apply an enabling operator on parfactors in (
return assignment stored in (

72

Sum-out

Max-out

i.e., while 6|,77 ≠ ∅

LJT for MAP Queries: Algorithm
!"#−%&' (, *+ +,-

. , /
Construct an FO jtree 0 for (
Enter evidence / into 0
Pass message in 0
for each query with query terms *+ do

Find subgraph 01 s.t. *+ ⊆ 34 01
Collect submodel (* from (+,56+, 7 ∈ 01, 9 ∉ 01
Call MAP−LVE (*,*, ∅ , return or store

result

• Compare query answering to answering for
conjunctive queries

73

if B|DE = 34 01 then
use MPE-LJT to compile

MPE assignment on 01

MAP Queries Continued
• If given a bounded query, then the complexity

results still hold
• In terms of calculations, combination of LVE and MPE-

LVE, which have the same complexity

• Liftability of MAP queries
• Further work lifting more settings by Sharma et al.

(2018)
• Side note: Sometimes,

names are different
• MPE query = MAP query
• MAP query = marginal MAP query
• probability query = marginal query

74
Vishal Sharma, Noman Ahmed Sheikh, Happy Mittal, Vibhav Gogate, and Parag Singla. Lifted Marginal MAP Inference.
In Proceedings of the 34th Conference on Uncertainty in Artificial Intelligence 4, 2018.

In logic, corresponding tasks:
⇽ Abduction

⇽ Induction

MAP Queries Continued
• Approximate MAP query !"#$ %|'(|)

• Replace sum with max
• Operations for %|'(and /|'((are commutative again
• Basically computes an MPE query with the result projected onto

the query terms of the MAP query
• Provides a lower bound in terms of the max potential at the end

0!"#$ %|'(|) = argmax
4∈ℛ %|7(

max
8∈ℛ /|7((

% = 4 |'(, / = 8 |'((|)

= :%|7(!#;$)

75

" < = ∑< argmax>
?@ABC ?@ABC 1

6
?@ABC FGHC 5

FGHC ?@ABC 3
7 " = FGHC

FGHC FGHC 4

" < = max< argmax>

?@ABC ?@ABC 1
5 " = ?@ABC

?@ABC FGHC 5

FGHC ?@ABC 3
4

FGHC FGHC 4

0!"#M "!"#M "

3

4

3

3

" = FGHC

Can yield same result
but does not have to

A Combined LJT for All Query Types
• Given queries of

different types

• Types:

• MPE

• MAP

• Probability

• Parameterised,

conjunctive query

for a (conditional)

probability

(distribution)

• On one evidence set

• Can reuse FO jtree at

different stages

76

!"#$%& ',)* *+,- , .
Construct an FO jtree / for '
Enter evidence . into /
Pass message in /
for each query with query terms)|12 and

a type do
if MPE query then

Pass MPE messages using /
else

Find subgraph /′ s.t.)|12 ⊆ 56 /7
if MAP query,)|12 = 56 /7 then

Pass MPE messages using /7
else

Extract a submodel '7
if MAP query then

MAP−LVE '7,)|12, ∅
else

LVE '7,)|12, ∅

Interim Summary
• Adaptive inference

• FO jtree structure remains valid: Adaptive message passing
• Adapt structure: Reasonable with locally restricted changes

• Leaving a specific domain behind
• Changing domains

• Without effect on query results:
(conditional) independence, projectivity

• With effect: Adapt weights
• Unknown domains

• Sets of or distributions over models
• New query types

• Most probable assignments
• Replace ∑ by argmax for assignment PRVs

• Problem if both ∑ and argmax occur: not commutative!
• Identical lifted width if assignment on whole parclusters

77

Outline: 3. Lifted Inference
A. Lifted variable elimination (LVE)

• Operators
• Algorithm
• Complexity (including first-order dtrees), completeness, tractability
• Variants

B. Lifted junction tree algorithm (LJT)
• First-order junction trees (FO jtrees)
• Algorithm
• Complexity, completeness
• Variants

C. First-order knowledge compilation (FOKC)
• Normal form, circuits
• Algorithm
• Complexity, completeness

D. Beyond Standard Query Answering
• Adaptive inference
• Changing and unknown domains
• Assignment queries

⟹ Next: Lifted learning 78

