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Probabilistic Graphical Models (PGMs)

1. Recap: Propositional 5. Approximate Inference:
modelling Sampling
* Factor model, Bayesian * Importance sampling
network, Markov network « MCMC methods
* Semantics, inference tasks ia del
+ algorithms + complexity 6 .Sefquentla models &
cps _ae . interence
2. Probabilistic relational + Dynamic PRMs
models (PRMs) C
. * Semantics, inference tasks
* Parameterised models, Markov + algorithms + complexity
logic networks learning ’
* Semantics, inference tasks . . .
] : 7. Decision making
3. Lifted inference * (Dynamic) Decision PRMs
* LVE, LJT, FOKC * Semantics, inference tasks
* Theoretical analysis + algorithms, learning
4. Lifted learning 8. Continuous Space
* Recap: propositional learning * Gaussian distributions and
* From ground to lifted models Bayesian networks

* Direct lifted learning * Probabilistic soft logic
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Outline: 4. Lifted Learning

A. Recap: Learning directed models

 Maximum likelihood (ML) estimation, expectation-
maximisation (EM), structural EM

B. Learning undirected models
* |terative fitting procedure

C. Lifted encoding of propositional models
* Colour passing

D. Statistical relational learning
* First-order inductive learning
* Decision tree representations




Learning BNs

* Known structure, unknown parameters in CPTs

* Fully observable (complete data)
* Maximum-likelihood (ML) estimation

* Hidden (unobservable) variables (incomplete data)
* Expectation-maximisation (EM)
 Unknown structure

* Model selection
e Structural EM

 See also propaedeutic material in Moodle course:
Grundlagen des Lernens mit partiellen Daten:
Expectation Maximisation (EM) (pdf, pptx, mp4)
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https://www.ifis.uni-luebeck.de/~moeller/Lectures/WS-20-21/Intelligent-Agents/00-EM-Learning.pdf
https://www.ifis.uni-luebeck.de/~moeller/Lectures/WS-20-21/Intelligent-Agents/00-EM-Learning.pptx
https://uni-luebeck.webex.com/uni-luebeck/ldr.php?RCID=16ab41b96f73ededaf32f7539d863e18

General ML procedure

1. Express the likelihood of the data as a function of
the parameters to be learned

2. Take the derivative of the log likelihood with
respect to each parameter

3. Find the parameter value that makes the
derivative equalto O

* The last step can be computationally very
expensive in real-world learning tasks



Learning BNs: Complete Data

* ML estimation for simplest form of BN learning:
* Known structure

* Data containing observations for all variables
* All variables are observable, no missing data

* Only thing to learn are the network’s parameters
* Entries of the CPTs

— Count how often which range value occurs given the
different values for its parent nodes

Model Data Probabilities

ABCDE| pp
o t f t t f P(B)
oottt P(E|A. B)
t t f t f P(CIE)
OO P(DIE)

R
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Learning with Hidden Variables

* If network has hidden variables, °
no data available for them

e Cannot count the range values
* E.g., H occurrences on the left o

e Quick fix: Get rid of hidden ones

™ Th N
:f‘ffﬂ-‘hm
I e

e But: may make model much more e o
complex

* E.g., example below

Range values for all:

low, moderate, high
Numbers attached to nodes denote
how many parameters need to be
specified for the CPT of that node
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EM: General Idea

e Start from “invented” (e.g., randomly generated)
information to solve the learning problem

* Determine the network parameters

* Refine initial guess by cycling through two steps
* Expectation (E): update the data with predictions
generated via the current model
* Calculate expected counts
* Maximisation (M): given the updated data, update the

model parameters using MLE

e Same step compared to learning parameters for fully
observable networks

 Full description: see material linked on slide 4
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Parameter Estimation

e Assume known structure

e Goal: estimate BN parameters 0 given data D
* 9: CPT entries P(X | ParentS(X))

* Parameterisation 0 is good if it is likely to generate

the observed data D = {(x4, ...,xn)m}:
Score(0) = P(D|0) = HP((xl, ...,xn)m|9)
m

 Maximum Likelihood Estimation (MLE) Principle:
Choose 8™ so as to maximise Score

* Inherent bias by the assumed structure
* Only as accurate as the structure allows it to be

R
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Structure Learning

 Unknown network structure
* Given training set D

* Find model that best matches D, includes:
* Model selection
e Parameter estimation (as on previous slides)

- IR M"?f

Data D

Some of the following slides from an Al course “Graphical models”
by Burgard/De Raedt/Kersting/Nebel 10




Model selection

* Goal: Select the best network structure
* Input: Training data, Scoring function
e Output: A network that maximises the score

1. Perform heuristic search
for model candidates ——

2. Perform EM for parameters B ' S =

* If complete data ;@

3. Score each model

4. Pick model with
highest score

— all variables known
— MLE instead of EM bgcdem .... D ..
dscOf E@
6/4)

\\\\\\
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Local Search in Practice

* Perform EM for each candidate graph
G3 G Gy

[ Parameter space ]

. )
Parametric

optimisation
T EM )

—Zl Local Maximum

Computationally expensive

* Parameter optimisation via EM — non-trivial

* Need to perform EM for all candidate structures
* Spend time even on poor candidates

e Data might be incomplete

\J




Structure Learning: Incomplete Data

* There might be hidden variables
* No data available for the hidden variables
* Search space becomes that much larger

* |dea:
e Use current model to help evaluate new structures

 Qutline:
e Perform search in (Structure, Parameters) space

e At each iteration, use current model for finding either:
* Better scoring parameters: “parametric” EM step
or
e Better scoring structure: “structural” EM step

,,,,,
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Expectation

Inference:
P(S|X=O,D= 1,C=O,B= 1)

Expected
Maximisation counts

Parameters

EM-algorithm:
iterate until convergence




Structural EM

Data
N
SXDCB

<2010 1>
<1120 1>
<0 00 ? ?>

Expectation

Inference:
P(S|X=0,D=1,C=0,B=1)

-

Current model

Expected

Maximisation counts

Parameters

Maximisation
Structure

SEM-algorithm:
~ iterate until convergence

S
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Interim Summary

* Known structure, fully observable:
only need to do parameter estimation

 Known structure, hidden variables:
use expectation maximisation (EM) to estimate
parameters

* Unknown structure, fully observable:
do heuristic search through structure space, then
parameter estimation

 Unknown structure, hidden variables:
structural EM

uuuuuuuuuuuuuuuuuuuu
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Outline: 4. Lifted Learning

A. Recap: Learning directed models

 Maximum likelihood (ML) estimation, expectation-
maximisation (EM), structural EM

B. Learning undirected models
* |terative fitting procedure

C. Lifted encoding of propositional models
* Colour passing

D. Relational learning
 First-order inductive learning
* Decision tree representations




Undirected Models

* BNs have the advantage of a normalisation
constantof Z =1

* Parameter estimation reduces to estimating parameters
of local CPTs

e Undirected models do not have this advantage

Z Z l lcb (T s T

71 ER(R,) ThER(Ry) I=

* / combines all variables in model in one function




ML Procedure for Undirected Models

* Given a model F = {f;};-, with [ random variables
R € rv(F) with range values r € R(R)

¢ Let W :x%:ﬂe(Ri) denote the set of possible worlds

e Withr = (14, ..., 1) referring to a single world (compound
event for rv(F))

* Let r, denote the projection of r onto the randvars of some
entity a

* E.g., Ty = myy(r)(7): project r onto the randvars in f

* Let ¢f refer to the potential function of f

e Given a data set D with kK compound events for
rv(F) (i.e., complete data)

* Let #(r) denote how often r has been observed in D
m
i=1

e Could write D as multi-set, i.e., D = {(r, #(r))l.}
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ML Procedure for Undirected Models

1. Express the likelihood P(D|6) of the data D as a
function of the parameters 6 to be learned

* O refers to the potentials in the factors of F

P(D|6) = 1_[ P (r|0)*®)

rew
* In this formulation, P(D|0) can become zero if anr €

W has not been observed
* E.g., initialise all counts to 1 to circumvent problem

and take the logarithm
log P(D|8) = log 1_[ P(r|9)*™)

rew




ML Procedure for Undirected Models

log P(D|6) = log 1_[ P(r|9)#(r) qbf(rf) refers to parameter € 0

rew /
_ Z #(r) log P(r|6) = Z #(r) log Gnd)f(rf))

rew rew fEF
— ;:V #(r) <log (%) + log g Oy (rf)>
— z #(1) (— log(Z) + Z log ¢f('”f)>
rew fEF
_ (Z #r) Y log ¢f(rf)> — ) #@)log(2)
rew fEF rew

= <Z #(1‘) z log ¢f(rf)> —k log(Z)

reEW fEF
#(r;) log cl)f(rf)) — klog(Z)

<fEF rreR(rv(f))




ML Procedure for Undirected Models

2. Take the derivative of the log likelihood with
respect to each parameter, i.e. qbf(rf)

logP(D|6) = (2 2 #(rf) log gbf(rf)) klog(Z)

fEF rfER(rv(f))

11 L
* Derivation of [

al,

= #(ry) -
d
¢f(rf) qbf(rf) Derivation of log:
dlogf(x) 1  0f(x)
0x B f(x). 0x

E.g.,if f(x) =x:
constant w.r.t. ¢ (rs) alaogx 1 ? 1,21
X x 0x x X

R
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ML Procedure for Undirected Models

e Derivation of [, = klog(Z)

al, 1 oz 1 9
T T qbe(se)
Ops(ry) Z 0¢g(ry) Z la‘/)f(rf) zn

SEW e€F

Only those summands that contain (,bf(rf) remain; derivation
of the others returns 0; use indicator function to denote this:

5(r,s) = { ifr=s

0 otherwise

Z 5(7‘f»5f) n¢e(5e)

SEW eer

One of the e’sis f,
i.e., ¢f(rf) = (pe(se)

for one e; the rest is
constant w.r.t. qbf(rf)

D) K

A, =

B A‘ﬁ?; UUUUUUUUUUUUUUUUUUU
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ML Procedure for Undirected Models

* Derivation of [,

ol 1
<=k Z 5(ry.57)

0 (7y)
= 5 e e
¢f<rf> 2 0ren g [ Jeee
= 6(rs sc) - P(s)
¢f(rf) Sezw ( [ f) S

1
“ or(rs) P(rr)




ML Procedure for Undirected Models

2. Take the derivative of the log likelihood with
respect to each parameter, i.e., ¢+ (rf)

logP(D|6) = (2 z #(rf) log gbf(rf)) — klog(Z)
\ J| _J

fEF rreR(rv(f)) Y
I L

* Derivative for each parameter qbf(rf)

al, B #(rf)
0r(rs)  &r(ry)
dl, P(rf)

0y (ry) “ ¢r(r)

dlogP(D|6) _ #(ry) . P(rs)
0ps(rs)  ¢r(ry) ¢r(rr)

D) k)
iz,
2 WUAYT & UNIVERSITAT ZU LUBECK
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ML Procedure for Undirected Models

3. Find the parameter value that makes the
derivative equal to O

d1og P(D|6) _ #(ry) .. P(ry) —o o er):k- P(ry)
0ds(rs)  bs(ry) ¢r(ry) ¢r(ry) ¢r(ry)
#(rg) =k - P(rs)

#(rf) ( f)

* States that the ML estimates should be in such a way

that the model marginals P(rf) are equal to the
normalised empirical counts:

P¥(rp) & #(,tf) = P(ry)

* Does not state how to get the estimates




Factors over Maximal Cligues

* Markov net with potential @
functions over its maximal cliques

* Clique: set of nodes where every

node is directly connected with every Travel.eve @
other node

* In factor graphs: Directly connected = Markov network (MN)
appear in same factor

* Maximal clique @

* There is no node in the graph that you
could add to the clique with the clique

remaining a clique Travel.eve
* Equivalent factor models

* Corresponding junction tree with
the nodes of each clique as the

Factor graph (FG)

clusters and one factor per cluster | Travel.eve Sick(eve)
assigned as local model with its Epid Epid
arguments making up the cluster fi £

Junction tree

SRs22 5  INSTITUT FUR INFORMATIONSSYSTEME
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Factors over Maximal Cligues

* Factor model F = {f;};=, with a junction tree
(V,E) where
VFEF:3C; eV :rv(f) =C(;
AVC; €V,i # j,rv(f) € C;
— Each C; has one factor f; assigned
* Full joint represented: )
1 1 [lc,ev P(C;
Pr =~ f== fi = l
z l:,l z l;[/ [ jyes P(Sis)

* Foraworldr,
[leev P(ri) HfEFP(rf)

Mijes P(rij) g jyer P(rif)

P(r) =

R
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Factors over Maximal Cligues

HCiEVP(ri) B HfEFP(rf)
H{i,j}EEP (rij) H{i,j}EEP (rij)
* Set factors to be the normalised empirical counts

P#(rf) and, for each separator, pick one neighbour and

divide the factor by the normalised empirical count of

the separator P*(r;;), i.e.,

*|Foreach f € F,
+ Set ¢y(ry) « P*(ry)
*|For each {i,j} € E, i.e., separator S,

* Choose h € {i,j} at random
bp(ry)

* Set ry) <
¢n(rp) P#(r;;) LearnMaxCliques

* EnforcesZ =1
* As we have now probability distributions in the factors

P(r) =

= ol =
WYY © UNIVERSITAT ZU LUBECK

3
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Learning with General Factors

* If factors over non-maximal cliques, closed form
solution not possible; fixed-point iteration:
dlog P(D|6) _ #(r;) . P(rf) 0 o #(rs) k. P(r;)
0gp(rs)  op(ry) o7 (r7) 7 (rr) 7 (r)
#(ry) _ P(ry)

e Update rule ) k-¢r(rr)  dp(ry)
P*(r #
A R COT - B . 5!

. qﬁt T+ ) current potentials
. péi% fived r(rr) _ dr(ry)
f

. PH(rs)  P(ry)
P (rf) query to compute
on current ¢f(7y) br(1s) = O (7)) —F—<

P*(ry)
P(rs)

E
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lterative proportional fitting

f Iterative proportional fitting (IPF) procedure

* Initialise all factors with t = 0 uniformly, e.g., all
potentials 1

e fort =1,2,...do
* if convergence criterion does not hold then
 forallry € R(rv(f)),f € F do

© 9 (y) < 95 ) el

* else break IPF

* Convergence criterion, e.g., given error threshold ¢
- Vf € F ¢V (ry) - pf(ry) <

* Many Pt(rf) gueries to compute over all factors!
 Efficient execution using a junction tree (jtree)

31



IPF with Jtrees

* Use jtree to compute Pt(rf) efficiently

e Construction independent of parameters

[ IPF-JT: IPF with junction trees
* Construct a jtree

* Pick a random cluster C; as the current cl
e fort =1,2,...do
* if convergence criterion does not holc then
« forallry € R(rv(f)),f € F{ do

+ o0 r) < i) T

e else break

* |nitialise all factors and messages uniformly fort = 0

uster

* Choose a neighbour C; as new current cluste

 Compute and send message mfj to C;

r at random \

R
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Properties of IPF Updates

* Reduces to one update per factor if factors
are over maximal cliques

* Coordinate ascent algorithm
e Coordinates = parameters 0 in clusters

* At each step, the update increases the log-
likelihood of the data log P(D|6) and it will
converge to a global maximum

* Maximising the log-likelihood is equivalent
to minimising the KL divergence (cross
entropy)

max log P(D|0) © min KL (P#(T) | P(r|9))
P*(r)
KL (P#(T) | P(TlH)) = z P*(r) log

P(r|0)

* Max-entropy principle for parameterisationi
dual perspective to MLE

aaaa
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IPF with Incomplete Data

* Problem with incomplete data:
e Update rule #( )
P™\r
(t+1) f
¢r O (rp) < ¢p(rr) Pt(r;)

 Hidden variables do not have P#(rf)

* EM-IPF: IPF procedure merged with EM scheme

* E step: Calculate expected counts for hidden variables

* VI step: Update parameters c/)](f“) (rf)
* Could also use jtree for efficiency

R
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Interim Summary

* Parameter learning in undirected models harder
becauseof Z # 1

* IPF
* Fix-point iteration
* Reduces to one update per factor if factors on maximal cliques
* Then Z = 1 enforced

* Jtrees for efficiency

» Update per cluster, then send updated information to
neighbour

 EM version for incomplete data

,,,,,
\\\\\
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Addendum to Propositional Learning

e Can use approximate inference

to compute queries in update rule -l fitting (IPF) proce

e E.o. i ive proportional =8 & sormly, €
E.g., sampling | o uerap;‘l;,:e - factors with t =0 anifor
* Can use alternative objectives | * Tichtials 1
* Pseudo-likelihood cfort =129 doesnothold then
e C : di . if convergence pa € Fdo
ontrastive divergence . tor all T/ e R(rv(N).f i
e Structure learning : ¢‘,"”(ff)°‘""'("

* In undirected models can follow . else break
the same idea as before —

* Model selection + parameter estimation, possibly
interleaved as in structural EM

* Different approach: independence tests

* Find which randvars are independent of each
other, delete edges accordingly

* Asindicated in first lecture on propositional
models

rSI
GERSIZ,

S S
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Generative & Discriminative Models

* Methods described are for learning models
representing a full joint probability distribution P(X,Y)

* One can do any kind of inference (prediction, classification,
any probability of randvars) one is interested in

— Generative models

* |n contrast: Discriminative models (such as neural nets)

» Specifically designed and trained to maximise performance of
classification: P(Y|X)
* Y aclassification randvar and X a vector of features

* Generally perform better on classification than generative
models when given a reasonable amount of training data

* By focusing on modelling a conditional distribution

In both cases: Models are an abstraction/generalisation of data, which

cannot represent the data with 100% accuracy. Only the data can do that.
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Outline: 4. Lifted Learning

A. Recap: Learning directed models

 Maximum likelihood (ML) estimation, expectation-
maximisation (EM), structural EM

B. Learning undirected models
* |terative fitting procedure

C. Lifted encoding of propositional models
* Colour passing

D. Relational learning
 First-order inductive learning
* Decision tree representations
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Recap: Foundations of Clustering

 History in propositional probabilistic inference:

* Based on probability propagation introduced by Pearl
(1988)

e I[faBNisapolytreeg, i.e., the
underlying undirected graph
has no trivial cycles, then

* Treat each node ina BN as a
cluster with the randvars of
the accompanying CPT as the
cluster randvars

* Send messages along the
edges (to parents and
children), eliminating
randvars not occurring in the
parent or child nodes

2 WUAYT & UNIVERSITAT ZU LUBECK
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Loopy Belief Propagation

* Pass messages on graph
* If no cycles: exact
* Else: approximate

e Lifted (loopy) belief propagation
* Exploit computational symmetries
 Compress graph whenever nodes would send identical
messages
* Send messages on compressed graph

— Colour passing algorithm for compression

5 R <
SXRSS2 Y INSTITUT FUR INFORMATIONSSYSTEME
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Compression: Pass the colours around™

e Colour nodes according to the
evidence you have
* No evidence, say red
e State ,one” say brown
e State ,two“ say orange

* Colour factors distinctively
according to their equivalences
For instance, assuming f; and f, to
be identical and B appears at the
second position within both, say
blue

*can also be done at the ,lifted”, i.e., relational level

42



Compression

1. Colour nodes and factors

e 1 colour for the
nodes:

e 3 colours for the
factors: m =

fi

4
3

: T
Sick.alice f: , © Sick.bob
reat.eve.m
@ Treat.bob.m

Travel.eve
Sick.eve Treat.eve.m,

Travel.bo




Compression

2. Factors collecting colours from nodes,
signing their own colours to the collected ones

; 6
f3 fl f1 32 3

Sick.alice, — - 8§

Travel.eve

e‘v E I T
reat.eve.m
s, - . .

2 WUAYT & UNIVERSITAT ZU LUBECK
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Compression

3. Nodes collecting colours from factors

45



Compression

4. Recolour nodes based on collected signatures

e 5 colours for the
nodes: o0

e Factors as before




Compression

5. If no new colour created, stop. Otherwise, pass
colours again.

e Before:
o After:




Compression

2. Factors collecting colours from nodes,
signing their own colours to the collected ones

3 Epid

%) A NG
Sick.ali®eP- '4CZ;EEEEEEEEI> ® o~

-@-0-
- (N
Treat.alice.m Treat.bob.m
Travel.eve
:;:'e\:\\“:'rtté UNIVERSITAT ZU LUBECK @ Treat. eve .m




Compression

3. Nodes collecting colours from factors

Tl :
-

Tram@uléccm

7% T
Sy A A

Tt Py

5 RUTT © UNIVERSITAT ZU LUBECK
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Compression

4. Recolour nodes based on collected signatures

e 5 colours for the
nodes: o0

e Factors as before




Compression

5. If no new colour created, stop. Otherwise, pass
colours again.
* Before: o0
e After: o0

* No new
colour! fl




Compression DY

) Compressed graph: Treat(X,M)

Treat®ob.m
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Colour Passing Compression

e Algorithm:

1.

RN

Each factor collects the colours of its neighbouring nodes
Each factor “signs” its colour signature with its own colour
Each node collects the signatures of its neighbouring factors
Nodes are recoloured according to the collected signatures
If no new colour is created stop, otherwise go back to 1

e Afterwards, build compressed version by combining randvars

of same colour using logvars

» Uses exact symmetries in factors
* Same colour if factors considered equivalent
e Could specify an approximate version to further compress a

,,,,,
\\\\\
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model

* E.g., consider (1.0,2.0) and (1.1,2.0) to be equivalent
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Interim Summary

 Compress a model (lifted or ground) based on
semantics
* Pass colours around until convergence (no new colours)

* Uses exact symmetries in factors
* Same colour if factors considered equivalent

* |[gnores syntax
e E.g., names of randvars

e “Literal” translation of propositional models into
lifted models

* Take the ground model, find the symmetries, combine
them into a compact encoding

,,,,,
\\\\\
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Outline: 4. Lifted Learning

A. Recap: Learning directed models

 Maximum likelihood (ML) estimation, expectation-
maximisation (EM), structural EM

B. Learning undirected models
* |terative fitting procedure

C. Lifted encoding of propositional models
* Colour passing

D. Relational learning
 First-order inductive learning
* Decision tree representations




Relational Parameter Learning

e Assumption: individual instances in training data
behave indistinguishably

* Relational representation captures the setting with adequate
accuracy

e Assuming relational structure is known

 Complete data, e.g., using MLE
* MLNs: decomposes per rule because of logexpw = w
* PM:e.g., use IPF
e Can use lifted inference for queries during learning
» Data on groundings mapped to PRVs/predicates
* Incomplete data: EM version
e Could cluster instances into different domains and shatter
model to increase accuracy

» Trade-off between compact representation (no clustering) and
accuracy (each instance in own cluster)

:::::
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Structure Learning

e Can follow the same idea of structural EM
* Already NP-hard problem in propositional setting

* More complicated because there are not only randvars
but also logvars that can be combined together

* Other approaches

e Relation learning in logics, e.g.,
* First-order inductive learning (FOIL)
 First-order logical decision trees (FOLDTs)
* Combined with weights/probabilities
e Learning approximate models, e.g.,

e Relational dependency networks (RDNs)
* Using a relational probability tree for local distributions in RDNs

e Boosted learning: Learn a set of distributions to approximate a
local distribution (RDN-Boost)

aaaa
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Knowledge-based Inductive Learning

* Logic perspective on learning
* Examples are composed of descriptions and classifications

* Objective is to find a hypothesis that explains the classification
of the examples, given their descriptions

* Hypothesis A Descriptions k& Classifications

* Knowledge-based inductive learning

* Background knowledge helps to explain examples
* Background A Hypothesis A Descriptions k Classifications

* E.g., inferring disease D from symptoms not enough to explain
prescription of medicine M

* Rule that M is effective against D needed
* Using knowledge, effective hypothesis space reduced to include
only those theories consistent with what is already known

* Prior knowledge can be used to reduce size of hypothesis explaining
the observations

* Smaller hypotheses easier to find
* Main research field: inductive logic programming (ILP)

:::::
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First-order Inductive Learning (FOIL)

 Learns function-free Horn clauses for a target
concept given a set of positive and negative
examples and some background knowledge
 Form of ILP

* Form of top-down learning
e Start from a general rule and specialize it

* E.g., learning family relations from examples

e Observations are an extended family tree
* Mother, Father and Married relations
 Male and Female properties
e Target predicates, e.g.,
Grandparent, BrotherInLaw, Ancestor

,,,,,
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A Not Up-to-date Example

George |><| Mum

ST

Spencer |><| Kydd Elizabeth |><| Philip Margaret

T

Diana |><| Charles Anne |><| Mark Andrew |><| Sarah Edward

ANRVANRYVAN

William Harry Peter Zara Beatrice Eugenie

,,,,,
\\\\\
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Example Continued: Grandparent

Background A Hypothesis A Descriptions & Classifications

include facts like

Father(Philip, Charles), Mother(Mum, Margaret)
Married(Diana, Charles), Male(Philip), Female(Beatrice)

* Sentences in depend on the target
concept being learned

* In the example: 12 positive, 388 negative
Grandparent(Mum, Charles), ~Grandparent(Mum, Harry)

* Goal: find a set of sentences for Hypothesis such
that the entailment constraint is satisfied

e E.g., without background knowledge, hypothesis is:

Grandparent(x,y) < [3z Mother(x,z) A Mother(z,y)]
V [3z Mother(x,z) A Father(z,y)]
V [3z Father(x,z) A Mother(z,y)]
V [3z Father(x,z) A Father(z,y)]

rSI
GERSIZ,
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Background Knowledge

N W Hadl=Ne]ile A Dackground A Hypothesis A Descriptions & Classifications
knowledge helps a lot

* E.g,
* Background knowledge contains
Parent(x,y) © [Mother(x,y) V Father(x,y)]
* Grandparent is now reduced to

Grandparent(x,y) < [3z Parent(x,z) A Parent(z,y)]

* Constructive induction algorithm
* Create new predicates to facilitate the expression of
explanatory hypotheses

* E.g,
* Introduce a predicate Parent to simplify the definitions of the
target predicates

= ol =
5> R © UNIVERSITAT ZU LUBECK
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FOIL: Grandparent Example

 Split positive and negative * Positive:
examples <George,Anne>, <Philip,Peter>,
<Spencer,Harry>, ...
* Negative:
e Construct set of Horn clauses & ,
with Grandfather(x, y) as <George,Elizabeth>, <Harry,Zara>,
head with the positive <Charles,Philip>, ...

examples as instances of the
Grandfather relationship
* Start with a clause with an
empty body

* All examples are now classified  « 3 potential additions:
as positive, so specialize to rule

e Start:
= Grandfather(x,y)

out the negative examples 1. Father(x,y) = Grandfather(x,y)
1. Incorrectly classifies the 12 2. Parent(x,z) = Grandfather(x,y)

positive examples 3. Father(x,z) = Grandfather(x,y)
2. Incorrect on a larger part of the

negative examples * Further specialisation:

3. Prefer the third clause and

specialise it further Father(x, z) A Parent(z,y)

= Grandfather(x,y)




FOIL: Algorithm

function FOIL(examples, target) returns a set of Horn clauses
inputs: examples, set of examples
target, a literal for the goal predicate

local variables: clauses, set of clauses, initially empty
while examples contains positive examples do

clause < New—Clause(examples, target)

remove examples covered by clause from examples

add clause to clauses

return clauses FOIL

* Function New—Clause: generate a clause that covers all
positive examples while excluding as many negative examples
as possible

D) e
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FOIL: New Clause

function New—Clause(examples, target) returns a Horn
clause
local variables:
clause, a clause with target as head and an empty body
[, a literal to be added to the clause
extended, a set of examples with values for new variables
extended <« examples
while extended contains negative examples do
| < Choose—Literal(New—Literals(clause), extended)
append [ to the body of clause
extended < set of examples created by applying
Extend—Example to each example in extended for [

return clause FOIL: new clause




FOIL: New Literals

« New—Literals: generates a
set of new literals to
possibly be added to the
body of a clause

* Input:
* clause, a clause

* Output:
* literals, a set of literals

* E.g,
Father(x,z) = Grandfather(x,y)

* Using predicates

* Valid: Mother(z,u),
Married(z, z),
Grandfather(v, x)

* Invalid: Married(u, v)
* Inequality: z # x
e Arithmetic comparisons:
x > y (not meaningful)

* Approach: Add to literals

e Using predicates:
* Negated or unnegated
* Use any existing predicate
(including the goal)

* By allowing the target
Eredi_cate at this point,
OlL is able to learn
recursive definitions, but

has to be kept from infinite
recursion.

* Arguments must be variables

e Each literal must include at
least one variable from an
earlier literal or from the
head of the clause

* Tests for equality and for
inequality of variables,
already occurring in the rule

* Test on empty lists
* Arithmetic comparisons
e Also on threshold values



FOIL: Choose Literal

e Choose—Literal: heuristic function that chooses a

literal out of a set of literals
* Input:
» literals, a set of literals to choose from

* extended, a set of positive and negative examples
* Possibly any other input required for making a decision
e Qutput: literal, the chosen literal
* Approach:
* Base decision on a criterion such as information gain
* How much better can one distinguish the positive and the negative
examples given the current clause R, compared to an extended
version R; with the literal added to the body of the clause
. P1 Po
Gain(Ry, R :t(lo —lo )
(Ro, Ry) g2p1+n1 g2p0+n0
* p;, n; denote the number of positive, negative examples
covered by R; (classified as positive by R;)
* t denotes the number of positive examples covered by both
» cf. entropy and information gain for decision trees




FOIL: Extend Example

function Extend—Example(example, literal) returns a set
of examples
if example satisfies literal then
return the set of examples created by extending
example with each possible constant value for
each new variable in literal

else

return the empty set FOIL: extend example

’ S UNIVERSITAT ZU LUBECK
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FOIL: Optimisations

 The way New—Literal changes the clauses leads to
a very large branching factor
* Improve performance by using type information
* E.g., Parent(x,n) where x is a person and n is a number

* Ockham’s razor to eliminate hypotheses
 If the clause becomes longer than the total length of the

positive examples that the clause explains, this clause is not a
valid hypothesis
* Rules/FOL formulas have to satisfy all positive
examples while excluding all negative examples
e Otherwise inconsistent

 Combine with probabilities or weights to reflect
inconsistency and uncertainty

,,,,,
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Decision Tree Representation

* Represent result as decision tree  NellENE o1y F g e e i =1k
* Target (head) as root, followed by * Variable X introduced in a node is

decision nodes (body) existentially quantified within the
* (Conjunctions of) literals in inner conjunction of that node
nodes Right subtree only relevant if
* Left child: path from root to inner conjunction fails (“there is no
node evaluates to true such X”), in which case further
* Right child: path from root to inner reference to X is meaningless
node evaluates to false
 Different nodes can share variables
under the restriction that a variable Grandfathe@

introduced in a node must not occur
in right branch of that node v

* Leaves: indicate if path is a model Father(x, z)

* Rework to contain class labels alse
— first-order logical decision tree
. Eg., Parent(z,y) false
Father(x,z) A Parent(z,y) true alse
= Grandfather(x,y) frue false

More on decision trees: Topic 7

Hendrik Blockeel and Luc De Raedt: Top-down Induction of First-order Logical Decision Trees. In Artificial Intelligence, 1998.70



https://www.ifis.uni-luebeck.de/index.php?id=691&L=2

First-order Logical Decision Trees

* Instead of learning a logic program, learn a first-order
logical decision tree, FOLDT
* Logical representation of a relational decision tree

* Input: examples, background knowledge, target concept
(classes)

* true/false in the FOIL setting
* Output: FOLDT

* Defined as on previous slide with leaves containing class names

* |dea:

* Choose (a conjunction of) literals at each inner node such that the
examples are split up in groups that are as homogeneous as
possible with respect to classes occurring (very idea of decision
trees)

e Called learning from interpretations
* Also what ProblLog does

5 QAP © UNIVERSITAT ZU LUBECK
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FO LDT Exa m p | e Input examples, background knowledge

. _}i_umplcl I’}.l;l;ﬂ'(:!' : l,l.;-plr_.\" _ m_l_m_.-_pkl |
* |dea of what is to learn:

d

olass i) class! sendback | classt sendhon i
e Check a machine with parts X WouR(ge ! " {engine)
* If machine contains worn parts that — ——
cannot be replaced by engineer, send ~ore—r——
back to manufacturer PTT———
 If all worn parts can replaced, then fix it replaceable(chain
* No worn parts, ok not.replaceable(engine
e Learning progress T
» | worn(X) worn(X)

true, false true false
? ok not_replaceable(X)

trWalse

| sendback | | fix |
wornd X) fsslo * worn{ X) Jast
replaceable(X) fas0l replaceable(X) Jils
not_replaceable(X) fasol not_replaceable(X) sy ¢
worn(Y) Jasl
replaceable(Y) fost
not_replaceable(Y) fust
* Resulting logic program:
class(ok) « VX : aworn(X)
class(sendback) « 31X : worn(X) Anot_replaceable(X)
class(fix) « 3X : worn(X) A

UNVERSITAT 20 O8O e VY : (—lworn(Y) V —not_replaceable(X )) 77



Regression Trees

* Regression trees = decision trees with continuous
values (regression values) in leaves
* Could base decision on variance ——08——(19) Price = 1.2

* Depends on application how
I Horsepower
regression values are calculated

* E.g., predict price of cars
e Regression values = average ] wsetione

<008 ___ (14) Price = 0.055

2007 __ (8) Price = -0.15

<02 213 (21) Prico = -0.89

<=0.07 ! porsepower

=13 ___ (9) Price = ~1.6

http://www.stat.cmu.edu/~cshalizi/350-2006/lecture-10.pdf 73
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http://www.stat.cmu.edu/~cshalizi/350-2006/lecture-10.pdf

Relational Regression & Probability Trees

e Relational regression * Relational probability
tree (RRT) tree (RPT)

= FOLDT with continuous = FOLDT with probability

values in leaves distributions in leaves
Goal: Is A <‘ " = "\"1' > zﬁ'.fma:fﬁ.?,'fiﬁ) Goal: Is a web
. I Sy Y n page a student
advised by B? < w5 A
— 5 T o) web page:
/ 3 S (WebKB data set)
<vl slessor(A) > 005 A
| <\\ ~ 5:206 Linked_From_Page
o :‘ - 2% : 98% Average{outiinks) > 21
.0.06 (’_\.-—h’:c more_than = ,.T.\T - /\
True Falve '
S TUTIVELTO U There are some differences what they
/‘ \',' - allow inner nodes to be
he * Not important to grasp the general idea

Left figure: Sriraam Natarajan, Tushar Khot, Kristian Kersting, Bernd Gutmann, Jude Shavlik: Gradient-based Boosting
for Statistical Relational Learning: The Relational Dependency Network Case. In Machine Learning, 2012.
UNIvERSITAT 20 LOBECK Right figure: Jennifer Neville, David Jensen, Lisa Friedland, and Michael Hay: Learning Relational Probability Trees. In

TIONSSYSTENE ¢ 1 DD-03 Proceedings, 2003. // WebKB data set: http://www.cs.cmu.edu/~webkb/ 74



http://www.cs.cmu.edu/~webkb/

Learn Approximate Models

* Relational dependency networks (RDNs)
e Using RPTs for local distributions in RDNs

* Boosted learning: Learn a set of distributions to
approximate a local distribution
* Set of RRTs for local distributions in RDNs

* Based on approximate propositional model of
dependency networks (DN)

* Next slides
* DNs
RDNs
Learning RPTs for RDNs
Boosted learning for RDNs

:::::
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Dependency Networks

* Dependency network

* Like a BN, i.e., a directed graph, but allowing for cycles

* Each node corresponding to randvar R}, has a conditional
probability distribution (CPD) P(Ry|parents(Ry)) assigned

e Approximate model

* Represent joint distribution as a — Due to representing conditionals,
product of (conditional) marginals better suited for classification

* Does not necessarily result in coherent joint distribution
* If no cycles: exact (and equivalent to BN)

* |f discrete randvars and positive local CPDs
— full joint recoverable

* Allows for learning each distribution independently from the rest
e Can work well with large amounts of data

CPDs:
A »( B P(A|D)
p _ per? (rs) P(B|A4)
e (1r) (T P(C|B,D)

i ( | )
x o, -
UUUUUUUUUUUUUUUUUUUUUU
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Relational Dependency Networks

* Relational aspects explicitly modelled in DN
* Relational databases as original motivation and backend for
algorithms; logic perspective here

* Represent joint distribution as a product of
(conditional) marginals over ground atoms

* Inference by grounding and unrolling the model such that we
have a BN again and then sampling on the ground BN

* Each predicate 4, -
associated witha CPD | R

-. T .\
| | -
+

Jennifer Neville and David Jensen: Relational Dependency Networks. In Journal of Machine Learning Research, 2007.
Figure: Sriraam Natarajan, Tushar Khot, Kristian Kersting, Bernd Gutmann, Jude Shavlik: Gradient-based Boosting for
Statistical Relational Learning: The Relational Dependency Network Case. In Machine Learning, 2012.
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Learning RPTs for RDNs

* Represent CPD not as a table etiiomikes 111
but as an RPT » X

* Learn RPTs individually for 223 Grved_rom Foge
each (target) predicate Existspath)

Y N
» Construct aggregators: mode, /\

1 S5:206 Linked From Pa
count, proportion, degree 58 L
* |nner nodes: decisions on
aggregators

* Actually restricted to
aggregated predicates

* Method: Recursive greedy
partitioning

* Split on feature that maximises
the correlation between feature : :
and class using ~ statistics observed and theoretical frequencies

* Pre-pruning with * Used in hypothesis testing to test,
_value cut-off at e.g., if observed values follow a
- depth cut-off at 7 theoretical distribution; given «,
* Class distribution in leaves often a = 0.05, if p < a, reject H

(More: Topic 5 here)
Jennifer Neville, David Jensen, Lisa Friedland, and Michael Hay:
Learning Relational Probability Trees. In SIGKDD-03 Proceedings, 2003. 73

y* statistics: Calculate a so-called p-
value as roughly the normalised sum
of squared deviations between

#attr



https://www.ifis.uni-luebeck.de/index.php?id=691&L=2

Boosting |dea

* Use an ensemble of classifiers (x: feature vector, y: class labels)

* Each classifier marginally better than random guessing

* |dea: each (simple) classifier works well enough for a subset of the samples but
not all of them; loop:

 Train a classifier h;(x) on the current training set, add it to ensemble

* Find out which samples do not work well in ensemble, prioritise them, e.g., weight
them higher (w; 1), in the current training set S’

« Combine these weak classifiers to one strong classifier h(x)
 Using a weighted sum: h(x) = }}; a;h; (x)
* E.g., AdaBoost with decision trees: h(x) = a;h,(x)+a,h,(x) + -+ + a,, h, (x)

§'=1(xy,w1)i}|| S" = {(x,y, W)} §'=1(x,y, W)}

Stop when validation

eee performance plateaus

G () i 2)
R W R e amonssverens (more on ensemble methods: Topic 8 ) 79

https://www.cs.princeton.edu/~schapire/papers/explaining-adaboost.pdf
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Functional-gradient Ascent

* Models given by
exp Y (y; x)
2y expyP(y’; x)
* Method for potential functions of models

 Start with initial potential 1) and iteratively add gradients A;
* After m iterations, potential is given by
Ym =Yo + A1+ +Ap

A, is the functional gradieant at iteration m and given by

Am = Nm * Ex,y [ logp()’lx; lpm—l)
0Ym-1
* 1, learning rate

* Basically, each A, is a step in the direction of the gradient of the

log likelihood function and n,,, is the parameter that controls the
step size

,,,,,
\\\\\
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Functional Gradient Tree Boosting

* Since full joint unknown, treat data as surrogate

* Instead of computing functional gradient over a potential function,
functional gradients are computed for each training sample y;; x;

(conditioned on potential from previous it.)
A (yis x;) = Vy E log P(y;|x;; ) L/)
o m-—1
l

 Set of A,,,(y;; x;) over all i form set of training examples
— Train a function h,,, that approximates A,,, (y;; x;)
— Build/fit a regression tree h,,, to minimise

E(hm(%‘: x;) — A (yi; xi))z

i
* Fitted function h;, not exactly the same as A, but will point in
same general direction (assuming enough training examples)

* Then, the new potential at stage m is given by
Ym = Vm-1 + Mmhm
» After M iterations, there are M regression trees to represent Y

,,,,,
\\\\\



Functional Gradient for RDNs

RDN represented as a set of conditional distributions P(Y|parentS(Y))
for all predicates Y

Let P(y|parents(y)) for a grounding y of Y be
exp Y (y; x)

' exXp Py’ x)

P(y|parents(y)) = 5

where

* Vx € x,x # vy, Y(y; x) denotes potential function of y given all other x,x # y
and y' iterates through all possible groundings of Y

Probability of example/grounding y; of example i

Plyix) = P V(i x;)
yll l Zy' expt/J(y’; xi)
* Logarithm of P(y;; x;)
log exp Y (y;; x;)
log P(y;; x;) = 1ngyr exp (v’ x;)

=Yy x;) — 1082 expp(y'; x;)
y’

,,,,,
\\\\\
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Functional Gradient for RDNs

log Py x) = P(yi; x,) —log ) exp(y'; x)
yl

* Functional gradient for y; of example i
dlog P(y;; x;)
W(y; =1 x;)
1 9 ,
=|I(yi = xi? - Zyr expY(y'; x;) 0Y(y; = 1;x;) ; xXp (s xi)

| |
Indicator function that returns
1ifa; = 1 and 0 otherwise

=1(y; = Lx;) -

Ay (i x;) =

expPp(y’; x;)
2, expP(y’; x;)
* Gradient at each example: adjustment required for the

probabilities to match the observed value for that example

* Use y;; x; and A, (y;; x;) for all examples to fit an RRT

=I1(y; = 1;x;) —P(y; = 1, x;)




RDN-Boost: Overview

* For each (A,; parents(4;)) € F
* |l.e., for each predicate A,

* Build a set of RRTs, which form y

* Each RRT estimates the gradient with which to update ¥
* Using the gradient of each example of f as training examples

O A0 OO ===

J \‘

OO0 ees 00

// \ // \‘
O O 0O

¢0 Aq Am ‘
Ym

Left figure: Siwen Yam, Devendra Singh Dhami, and Sriraam Natarajan: The Curious Case of Stacking Boosted

Relational Dependency Networks. In 1st | Can’t Believe It's Not Better Workshop (ICBINB@NeurIPS 2020), 2020.

Right figure: Sriraam Natarajan, Tushar Khot, Kristian Kersting, Bernd Gutmann, Jude Shavlik: Gradient-based
Boosting for Statistical Relational Learning: The Relational Dependency Network Case. In Machine Learning, 2012.
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RDN-Boost

procedure TreeBoostForRDNs(Data)

for1 <k <Kdo > |terate through K predicates

forl <m < Mdo > |terate through M gradient steps

Sk < GenExamples(k; Data; F,’,‘l_l) > Generate examples

A, (k) < FitRelRegressTree(S; L; D) > Functional gradient

EX — FE_| + Ap (k) > Update model

P(ay|parents(Ay)) o ¥ > 1)¥ is obtained by grounding F;¢

function GenExamples(k, Data, F)

S0

for1 <i < Nydo > [terative over all examples

Compute P(y,i =1; x,‘c),x,‘{ = parents(y,i) > Probab. of y being true

A(y,i{;x,i() «— I(y,i( - 1) — P(y,,ic = 1;x,i() > Compute gradient

S<SuU {((x,‘;,y,‘;),A(y,i; x,‘c))} > Update regression examples

return S FOIL: extend example

 function FitRelRegressTree returns an RRT fitted for S; with a maximum of L
leaves and a maximum depth D (cut-off criteria)




Bagging

* Ensemble method that reduces variance compared to
boosting reducing bias
* Compare: Random forests
* Set of decision trees
* Each tree learned on

e Sampled subset of training instances
* Sampled set of features available for each decision

e Combine both: Learn a set of boosted RDN models

e Each run of RDN-Boost uses a sampled subset of the training
examples

* Only consider a random 50% of the candidate literals

* Increased prediction accuracy + easy parallelisation

* Boosting does decrease variance with a large number of
gradient steps, so bagging + boosting only has positive effect
if considering small number of gradient steps

:::::
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Interpretability

* Set of RRTs not really interpretable

* Combine all RRTs into one tree and produce probabilities
in leaves for interpretation by humans

advisedBy(A,B) @ma faculty).
student(A)

rue

count_taughtby(B, E),
count_publications(B, F

. @t-cm_MA, GD
@MD have more than n_pubs(G, 1
T'UQ v

False

UNIVERSITAT ZU LUBECK Sriraam Natarajan, Tushar Khot, Kristian Kersting, Bernd Gutmann, Jude Shavlik: Gradient-based Boosting for Statistical

i INSTITUT FUR INFORMATIONSSYSTEME 87

Relational Learnini: The Relational Deiendenci Network Case. In Machine LeclrniniI 2012.




Interim Summary

* FOIL

* Logic based: Learn relations given examples, background
knowledge and a target concept

First-order logical decision trees
* Logic based: Learn relations in tree form given examples,
background knowledge and a target concept
* Regression/probability trees
» Leaves with continuous values/probability distributions
* Relational versions: predicates in inner nodes
* Represent conditional distributions as trees

* Boosting
» Set of trees to represent distributions

Can construct weighted FOL formulas to build an MLN and
then convert it to whatever form one needs (FOKC; LVE/LIT)

Very little work on learning the structure of general
parameterised models or MLNs
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Outline: 4. Lifted Learning

A. Recap: Learning directed models

 Maximum likelihood (ML) estimation, expectation-
maximisation (EM), structural EM

B. Learning undirected models
* |terative fitting procedure

C. Lifted encoding of propositional models
* Colour passing

D. Statistical relational learning
* First-order inductive learning
* Decision tree representations

= Next: Approximate Inference
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