
Intelligent Agents:
Web-mining Agents

Probabilistic Graphical Models

Lifted Learning

Tanya Braun

Probabilistic Graphical Models (PGMs)
1. Recap: Propositional

modelling
• Factor model, Bayesian

network, Markov network
• Semantics, inference tasks

+ algorithms + complexity
2. Probabilistic relational

models (PRMs)
• Parameterised models, Markov

logic networks
• Semantics, inference tasks

3. Lifted inference
• LVE, LJT, FOKC
• Theoretical analysis

4. Lifted learning
• Recap: propositional learning
• From ground to lifted models
• Direct lifted learning

5. Approximate Inference:
Sampling
• Importance sampling
• MCMC methods

6. Sequential models &
inference
• Dynamic PRMs
• Semantics, inference tasks

+ algorithms + complexity,
learning

7. Decision making
• (Dynamic) Decision PRMs
• Semantics, inference tasks

+ algorithms, learning
8. Continuous Space

• Gaussian distributions and
Bayesian networks

• Probabilistic soft logic

2

Outline: 4. Lifted Learning
A. Recap: Learning directed models
• Maximum likelihood (ML) estimation, expectation-

maximisation (EM), structural EM
B. Learning undirected models
• Iterative fitting procedure

C. Lifted encoding of propositional models
• Colour passing

D. Statistical relational learning
• First-order inductive learning
• Decision tree representations

3

Learning BNs
• Known structure, unknown parameters in CPTs
• Fully observable (complete data)

• Maximum-likelihood (ML) estimation

• Hidden (unobservable) variables (incomplete data)
• Expectation-maximisation (EM)

• Unknown structure
• Model selection
• Structural EM

• See also propaedeutic material in Moodle course:
Grundlagen des Lernens mit partiellen Daten:
Expectation Maximisation (EM) (pdf, pptx, mp4)

4

https://www.ifis.uni-luebeck.de/~moeller/Lectures/WS-20-21/Intelligent-Agents/00-EM-Learning.pdf
https://www.ifis.uni-luebeck.de/~moeller/Lectures/WS-20-21/Intelligent-Agents/00-EM-Learning.pptx
https://uni-luebeck.webex.com/uni-luebeck/ldr.php?RCID=16ab41b96f73ededaf32f7539d863e18

General ML procedure
1. Express the likelihood of the data as a function of

the parameters to be learned
2. Take the derivative of the log likelihood with

respect to each parameter
3. Find the parameter value that makes the

derivative equal to 0

• The last step can be computationally very
expensive in real-world learning tasks

5

Learning BNs: Complete Data
• ML estimation for simplest form of BN learning:
• Known structure
• Data containing observations for all variables

• All variables are observable, no missing data

• Only thing to learn are the networkʼs parameters
• Entries of the CPTs
➝ Count how often which range value occurs given the

different values for its parent nodes

6

Learning with Hidden Variables
• If network has hidden variables,

no data available for them
• Cannot count the range values

• E.g., ! occurrences on the left

• Quick fix: Get rid of hidden ones
• But: may make model much more

complex
• E.g., example below

Range values for all:
"#$,&#'()*+(, ℎ-.ℎ

Numbers attached to nodes denote
how many parameters need to be
specified for the CPT of that node

7

EM: General Idea
• Start from “invented” (e.g., randomly generated)

information to solve the learning problem
• Determine the network parameters

• Refine initial guess by cycling through two steps
• Expectation (E): update the data with predictions

generated via the current model
• Calculate expected counts

• Maximisation (M): given the updated data, update the
model parameters using MLE
• Same step compared to learning parameters for fully

observable networks

• Full description: see material linked on slide 4

8

Parameter Estimation
• Assume known structure
• Goal: estimate BN parameters ! given data "

• !: CPT entries # $ | #&'()*+ $
• Parameterisation ! is good if it is likely to generate

the observed data " = -.,… , -1 2 :

345'(! = # "|! =6
2
-.,… , -1 2|!

• Maximum Likelihood Estimation (MLE) Principle:
Choose !∗ so as to maximise 345'(

• Inherent bias by the assumed structure
• Only as accurate as the structure allows it to be

i.i.d. samples

9

Structure Learning
• Unknown network structure
• Given training set !
• Find model that best matches !, includes:
• Model selection
• Parameter estimation (as on previous slides)

Data D

Inducer

C

A

EB

!
!
!
!

"

#

$
$
$
$

%

&

⋅⋅⋅⋅

⋅⋅⋅⋅

][][][][

]1[]1[]1[]1[

MCMAMBME

CABE

10

Some of the following slides from an AI course “Graphical models“
by Burgard/De Raedt/Kersting/Nebel

Model selection
• Goal: Select the best network structure
• Input: Training data, Scoring function
• Output: A network that maximises the score

1. Perform heuristic search
for model candidates

2. Perform EM for parameters
• If complete data ➝ all variables known➝ MLE instead of EM

3. Score each model
4. Pick model with

highest score
11

Local Search in Practice
• Perform EM for each candidate graph

12

!"!# !$

Parametric
optimisation

(EM)

Parameter space

Local Maximum

!% !&
Computationally expensive
• Parameter optimisation via EM – non-trivial
• Need to perform EM for all candidate structures
• Spend time even on poor candidates
• Data might be incomplete

Structure Learning: Incomplete Data
• There might be hidden variables
• No data available for the hidden variables
• Search space becomes that much larger

• Idea:
• Use current model to help evaluate new structures

• Outline:
• Perform search in (Structure, Parameters) space
• At each iteration, use current model for finding either:

• Better scoring parameters: “parametric” EM step
or
• Better scoring structure: “structural” EM step

13

EM

14

EM-algorithm:

iterate until convergence

Current model

S X D C B

<? 0 1 0 1>
<1 1 ? 0 1>
<0 0 0 ? ?>
<? ? 0 ? 1>

………

Data

S X D C B

1 0 1 0 1
1 1 1 0 1
0 0 0 0 0
1 0 0 0 1

………..

Expected
counts

Expectation
Inference:

P(S|X=0,D=1,C=0,B=1)

Maximisation

Parameters

E

B A

Structural EM

15

SEM-algorithm:

iterate until convergence

Current model

S X D C B

<? 0 1 0 1>
<1 1 ? 0 1>
<0 0 0 ? ?>
<? ? 0 ? 1>

………

Data

S X D C B

1 0 1 0 1
1 1 1 0 1
0 0 0 0 0
1 0 0 0 1

………..

Expected
counts

Expectation
Inference:

P(S|X=0,D=1,C=0,B=1)

Maximisation

Parameters

E

B A

Maximisation

Structure

E B

A

E

B

A
E

B A

E B

A

Interim Summary
• Known structure, fully observable:

only need to do parameter estimation
• Known structure, hidden variables:

use expectation maximisation (EM) to estimate
parameters
• Unknown structure, fully observable:

do heuristic search through structure space, then
parameter estimation
• Unknown structure, hidden variables:

structural EM

16

Outline: 4. Lifted Learning
A. Recap: Learning directed models
• Maximum likelihood (ML) estimation, expectation-

maximisation (EM), structural EM
B. Learning undirected models
• Iterative fitting procedure

C. Lifted encoding of propositional models
• Colour passing

D. Relational learning
• First-order inductive learning
• Decision tree representations

17

Undirected Models
• BNs have the advantage of a normalisation

constant of ! = 1
• Parameter estimation reduces to estimating parameters

of local CPTs
• Undirected models do not have this advantage

$% =
1
!&'()

*
+' ,), … , ,/

! = 0
12∈ℛ(62)

0
18∈ℛ(68)

&
'()

/
+' 9), … , 9/

• ! combines all variables in model in one function

18

ML Procedure for Undirected Models
• Given a model ! = #$ $%&

' with (random variables
) ∈ +, ! with range values + ∈ ℛ)
• Let . =×$%&0 ℛ)$ denote the set of possible worlds

• With 1 = +&, … , +0 referring to a single world (compound
event for +, !)

• Let 14 denote the projection of 1 onto the randvars of some
entity 5
• E.g., 16 = 789 6 1 : project 1 onto the randvars in #

• Let :6 refer to the potential function of #
• Given a data set ; with < compound events for
+, ! (i.e., complete data)
• Let # 1 denote how often 1 has been observed in ;
• Could write ; as multi-set, i.e., ; = 1, # 1 $ $%&

>

19

ML Procedure for Undirected Models
1. Express the likelihood ! "|$ of the data " as a

function of the parameters $ to be learned
• $ refers to the potentials in the factors of %

! "|$ ='
(∈*

! (|$ # (

• In this formulation, ! "|$ can become zero if an (∈
, has not been observed
• E.g., initialise all counts to 1 to circumvent problem

and take the logarithm

log ! "|$ = log'
(∈*

! (|$ # (

20

ML Procedure for Undirected Models

21

log $ %|' = log)
*∈,

$ *|' # *

= .
*∈,

* log$ *|' = .
*∈,

* log 1
0)
1∈2

31 *1

= .
*∈,

* log 1
0 + log)

1∈2
31 *1

= .
*∈,

* − log 0 +.
1∈2

log31 *1

= .
*∈,

* .
1∈2

log31 *1 − .
*∈,

* log 0

= .
*∈,

* .
1∈2

log31 *1 − 6 log 0

= .
1∈2

.
*7∈ℛ 9: 1

*1 log31 *1 − 6 log 0

31 *1 refers to parameter ∈ '

ML Procedure for Undirected Models
2. Take the derivative of the log likelihood with

respect to each parameter, i.e., !" #"

• Derivation of $%

22

log) *|, = .
"∈0

.
#1∈ℛ 34 "

#" log!" #" − 7 log 8

9$%
9!" #"

= # #" : 1
!" #"

$% $<

constant w.r.t. !" #"

Derivation of log:
9 log = >

9> = 1
= > : 9= >

9>
E.g., if = > = >:
9 log >
9> = 1

> :
9>
9> =

1
> : 1 =

1
>

ML Procedure for Undirected Models
• Derivation of !" = $ log (

23

)!"
)*+ ,+

= $ - 1(-
)(

)*+ ,+
= $ - 1(-

)
)*+ ,+

- /
0∈2

3
4∈5

*4 04

Only those summands that contain *+ ,+ remain; derivation
of the others returns 0; use indicator function to denote this:

7 ,, 0 = 91 if , = 0
0 otherwise

= $ - 1(- /
0∈2

7 ,+, 0+
)

)*+ ,+
-3
4∈5

*4 04

One of the :’s is ;,
i.e., *+ ,+ = *4 04
for one :; the rest is
constant w.r.t. *+ ,+

=)
)*+ ,+

- *+ 0+ -3
4∈5
4<+

*4 04 =3
4∈5
4<+

*4 04

= *+ ,+
*+ ,+

-3
4∈5
4<+

*4 04 = 1
*+ ,+

-3
4∈5

*4 04

ML Procedure for Undirected Models
• Derivation of !"

24

#!"
#$% &%

= () 1+) ,-∈/
0 &%, -%

1
$% &%

)2
3∈4

$3 -3

= () 1
$% &%

) ,
-∈/

0 &%, -%) 1+)2
3∈4

$3 -3

= () 1
$% &%

) ,
-∈/

0 &%, -%) 5 -

= () 1
$% &%

) 5 &%

ML Procedure for Undirected Models
2. Take the derivative of the log likelihood with

respect to each parameter, i.e., !" #"

• Derivative for each parameter !" #"

25

log ' (|* = ,
"∈.

,
#/∈ℛ 12 "

#" log!" #" − 5 log 6

78 79

:78
:!" #"

= # #"
!" #"

:79
:!" #"

= 5 ; ' #"
!" #"

: log ' (|*
:!" #"

= # #"
!" #"

− 5 ; ' #"
!" #"

ML Procedure for Undirected Models
3. Find the parameter value that makes the

derivative equal to 0

• States that the ML estimates should be in such a way
that the model marginals ! "# are equal to the
normalised empirical counts:

!# "# ≝ # "#
& = ! "#

• Does not state how to get the estimates

26

(log ! ,|.
(/# "#

= # "#
/# "#

− & 1 ! "#
/# "#

= 0 → # "#
/# "#

= & 1 ! "#
/# "#

"# = & 1 ! "#
"#
& = ! "#

!

Factors over Maximal Cliques
• Markov net with potential

functions over its maximal cliques
• Clique: set of nodes where every

node is directly connected with every
other node
• In factor graphs: Directly connected =

appear in same factor
• Maximal clique

• There is no node in the graph that you
could add to the clique with the clique
remaining a clique

• Equivalent factor models
• Corresponding junction tree with

the nodes of each clique as the
clusters and one factor per cluster
assigned as local model with its
arguments making up the cluster

27

!"#$%&.%$%

()*+

,*-..%$%
Markov network (MN)

!"#$%&.%$%

()*+

,*-..%$%
Factor graph (FG)

/0/1

,*-. %$%
()*+

!"#$%&. %$%
()*+ 21 20

Junction tree

Factors over Maximal Cliques
• Factor model ! = #$ $%&

' with a junction tree
(, * where

∀# ∈ ! ∶ ∃ /$ ∈ (∶ 01 # = /$
∧ ∀/3 ∈ (, 4 ≠ 6, 01 # ⊈ /$

➝ Each /$ has one factor #$ assigned
• Full joint represented:

89 =
1
;<=∈9

= 1
;</>∈?

#$ =
∏/>∈? 8 /$
∏ $,3 ∈A 8 B$3

• For a world C,

8 C =
∏/>∈? 8 C$
∏ $,3 ∈A 8 C$3

=
∏=∈9 8 C=
∏ $,3 ∈A 8 C$3

28

Factors over Maximal Cliques

! " =
∏%&∈(! ")
∏),+ ∈, ! ")+

=
∏-∈. ! "-
∏),+ ∈, ! ")+

• Set factors to be the normalised empirical counts
!# "- and, for each separator, pick one neighbour and
divide the factor by the normalised empirical count of
the separator !# ")+ , i.e.,
• For each 0 ∈ 1,

• Set 2- "- ← !# "-
• For each 4, 5 ∈ 6, i.e., separator 7)+,

• Choose ℎ ∈ 4, 5 at random
• Set 29 "9 ← :; ";

<# "&=
• Enforces > = 1

• As we have now probability distributions in the factors

29

!# "- ≝ # "-
A = ! "-

!

LearnMaxCliques

Learning with General Factors
• If factors over non-maximal cliques, closed form

solution not possible; fixed-point iteration:

• Update rule

!"
($%&) (" ← !"$ ("

*# (,
*- (,

• !"$ (" current potentials
• .# (" fixed
• .$ (" query to compute

on current !"$ ("

30

/ log . 3|5
/!" ("

= # ("
!" ("

− 8 9 . ("
!" ("

= 0 → # ("
!" ("

= 8 9 . ("
!" ("

("
8 9 !" ("

= . ("
!" ("

.# ("
!" ("

= . ("
!" ("

!" (" = !" ("
.# ("
. ("

!" ("
.# ("

= !" ("
. ("

Iterative proportional fitting
• Iterative proportional fitting (IPF) procedure
• Initialise all factors with ! = 0 uniformly, e.g., all

potentials 1
• for ! = 1,2, … do

• if convergence criterion does not hold then
• for all () ∈ ℛ ,- . , . ∈ / do

• 0)
(234) () ← 0)2 ()

7# (9
7: (9

• else break

• Convergence criterion, e.g., given error threshold ;
• ∀. ∈ / ∶ 0)234 () − 0)2 () < ;

• Many @2 () queries to compute over all factors!
• Efficient execution using a junction tree (jtree)

31

IPF

Radim Jiroušek: Solution of the Marginal Problem and Decomposable Distributions. In: Kybernetika 27, 1991.
Radim Jiroušek and Stanislav Přeučil: On the Effective Implementation of the Iterative Proportional Fitting Procedure.
In: Computational Statistics & Data Analysis 19, 1995.

IPF with Jtrees

IPF-JT

• Use jtree to compute !" #$ efficiently
• Construction independent of parameters

• IPF-JT: IPF with junction trees
• Construct a jtree
• Initialise all factors and messages uniformly for % = 0
• Pick a random cluster () as the current cluster
• for % = 1,2, … do

• if convergence criterion does not hold then
• for all #$ ∈ ℛ 01 2 , 2 ∈ 3)" do

• 4$
("67) #$ ← 4$" #$

:# #<
:= #<

• else break
• Choose a neighbour (> as new current cluster at random
• Compute and send message ?)>

" to (>

32

Compute !" #$ using current ?>)" and 3)"
• Organise in a reasonable way over all

local factors and assignments

No ordering prescribed;
implicit requirement that
all () visited enough times
• E.g., start at a leaf,

traverse the clusters by
depth first search

Yee Whye Teh and Max Welling: On Improving the Efficiency of the Iterative Proportional Fitting Procedure. In:
AISTATS-03 Proceedings of the Ninth International Workshop on Artificial Intelligence and Statistics, 2003.

Properties of IPF Updates
• Reduces to one update per factor if factors

are over maximal cliques
• Coordinate ascent algorithm

• Coordinates = parameters ! in clusters
• At each step, the update increases the log-

likelihood of the data log % &|! and it will
converge to a global maximum

• Maximising the log-likelihood is equivalent
to minimising the KL divergence (cross
entropy)
max log % &|! ⇔ min./ %# 1 ∥ % 1|!
./ %# 1 ∥ % 1|! =4

1
%# 1 log %

1
% 1|!

• Max-entropy principle for parameterisation:
dual perspective to MLE

33

0

0.1

0.2

0.3

0.4

0.5

-4 -2 0 2 4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

-4 -2 0 2 4

%# 1
% 1|!

./ %# 1 ∥ % 1|!

IPF with Incomplete Data
• Problem with incomplete data:
• Update rule

!"
($%&) (" ← !"$ ("

*# ("
*$ ("

• Hidden variables do not have *# ("

• EM-IPF: IPF procedure merged with EM scheme
• E step: Calculate expected counts for hidden variables
• M step: Update parameters !"$%& ("
• Could also use jtree for efficiency

34

Interim Summary
• Parameter learning in undirected models harder

because of ! ≠ 1
• IPF
• Fix-point iteration

• Reduces to one update per factor if factors on maximal cliques
• Then ! = 1 enforced

• Jtrees for efficiency
• Update per cluster, then send updated information to

neighbour
• EM version for incomplete data

35

Addendum to Propositional Learning
• Can use approximate inference

to compute queries in update rule
• E.g., sampling

• Can use alternative objectives
• Pseudo-likelihood
• Contrastive divergence

• Structure learning
• In undirected models can follow

the same idea as before
• Model selection + parameter estimation, possibly

interleaved as in structural EM
• Different approach: independence tests

• Find which randvars are independent of each
other, delete edges accordingly

• As indicated in first lecture on propositional
models

See Chapter 20, in “Probabilistic Graphical Models” by
Koller & Friedman (2009) for more details on learning

36

Generative & Discriminative Models
• Methods described are for learning models

representing a full joint probability distribution ! ", $
• One can do any kind of inference (prediction, classification,

any probability of randvars) one is interested in

➝ Generative models
• In contrast: Discriminative models (such as neural nets)

• Specifically designed and trained to maximise performance of
classification: ! $|"
• $ a classification randvar and " a vector of features

• Generally perform better on classification than generative
models when given a reasonable amount of training data
• By focusing on modelling a conditional distribution

37

In both cases: Models are an abstraction/generalisation of data, which
cannot represent the data with 100% accuracy. Only the data can do that.

Outline: 4. Lifted Learning
A. Recap: Learning directed models
• Maximum likelihood (ML) estimation, expectation-

maximisation (EM), structural EM
B. Learning undirected models
• Iterative fitting procedure

C. Lifted encoding of propositional models
• Colour passing

D. Relational learning
• First-order inductive learning
• Decision tree representations

38

Compression

!""

!#" !$"

!"#!"$!"%

!$#

&'(.!*++, &'(.!-./

0'1.2-.34

0'1.5'.

6.'2/*./2/
6./'(./2/.7#

6./'(./2/.7"

89-,

:-;<./2/

!##

!$$

!$%6.'2/*.'*-;/

6./'(.'*-;/.7#

6./'(.'*-;/.7"

:-;<.'*-;/

!#$

!$=

!$> 6.'2/*. ?+?

6./'(.?+?.7#

6./'(.?+?.7"

:-;<.?+?

89-,

&'((A) 0'1(C)

6.'2/*(D)

:-;<(D)

6./'((D,0)

F"

F# F$

Input

Goal

39

Recap: Foundations of Clustering
• History in propositional probabilistic inference:
• Based on probability propagation introduced by Pearl

(1988)
• If a BN is a polytree, i.e., the

underlying undirected graph
has no trivial cycles, then
• Treat each node in a BN as a

cluster with the randvars of
the accompanying CPT as the
cluster randvars

• Send messages along the
edges (to parents and
children), eliminating
randvars not occurring in the
parent or child nodes

40
Judea Pearl: Reverend Bayes on Inference Engines: A Distributed Hierarchical Approach. In: AAAI-82 Proceedings of the
2nd National Conference on Artificial Intelligence, 1982.

!

"#

!$!#

"$

% "#, !

% !, !$
% !, !#

% "$, !
' !, "$

' !#, !

' !$, !

' !, "#

Loopy Belief Propagation
• Pass messages on graph

• If no cycles: exact

• Else: approximate

• Lifted (loopy) belief propagation

• Exploit computational symmetries

• Compress graph whenever nodes would send identical

messages

• Send messages on compressed graph

➝ Colour passing algorithm for compression

41

Parag Singla and Pedro Domingos: Lifted First-order Belief Propagation. In AAAI-08 Proceedings of the 23rd AAAI
Conference on Artificial Intelligence, 2008.

Kristian Kersting, Babak Ahmadi, and Sriraam Natarajan. Counting Belief Propagation. In UAI-09 Proceedings of the 25th
Conference on Uncertainty in Artificial Intelligence, 2009.

Babak Ahmadi, Kristian Kersting, Martin Mladenov, and Sriraam Natarajan. Exploiting Symmetries for Scaling Loopy

Belief Propagation and Relational Training. In Machine Learning. 92(1):91-132, 2013.

Compression: Pass the colours around*

• Colour nodes according to the
evidence you have
• No evidence, say red
• State „one“, say brown
• State „two“, say orange
• ...

• Colour factors distinctively
according to their equivalences
For instance, assuming f1 and f2 to
be identical and B appears at the
second position within both, say
blue

*can also be done at the „lifted“, i.e., relational level
42

Compression
1. Colour nodes and factors
• 1 colour for the

nodes: ●
• 3 colours for the

factors: ■ ■ ■
!""

!#" !$"

!"#!"$!"%

!$#

&'(.!*++, &'(.!-./

0'1.2-.34

0'1.5'.

6.'2/*./2/
6./'(./2/.7#

6./'(./2/.7"

89-,

:-;<./2/

!##

!$$

!$%6.'2/*.'*-;/

6./'(.'*-;/.7#

6./'(.'*-;/.7"

:-;<.'*-;/

!#$

!$=

!$> 6.'2/*. ?+?

6./'(.?+?.7#

6./'(.?+?.7"

:-;<.?+?

43

Compression
2. Factors collecting colours from nodes,

signing their own colours to the collected ones

!""

!#" !$"

!"#!"$!"%

!$#

&'(.!*++, &'(.!-./

0'1.2-.34

0'1.5'.

6.'2/*./2/
6./'(./2/.7#

6./'(./2/.7"

89-,

:-;<./2/

!##

!$$

!$%6.'2/*.'*-;/

6./'(.'*-;/.7#

6./'(.'*-;/.7"

:-;<.'*-;/

!#$

!$=

!$> 6.'2/*. ?+?

6./'(.?+?.7#

6./'(.?+?.7"

:-;<.?+?

44

Compression
3. Nodes collecting colours from factors

!""

!#" !$"

!"#!"$!"%

!$#

&'(.!*++, &'(.!-./

0'1.2-.34

0'1.5'.

6.'2/*./2/
6./'(./2/.7#

6./'(./2/.7"

89-,

:-;<./2/

!##

!$$

!$%6.'2/*.'*-;/

6./'(.'*-;/.7#

6./'(.'*-;/.7"

:-;<.'*-;/

!#$

!$=

!$> 6.'2/*. ?+?

6./'(.?+?.7#

6./'(.?+?.7"

:-;<.?+?

45

Compression
4. Recolour nodes based on collected signatures
• 5 colours for the

nodes: ● ● ● ● ●
• Factors as before

!""

!#" !$"

!"#!"$!"%

!$#

&'(.!*++, &'(.!-./

0'1.2-.34

0'1.5'.

6.'2/*./2/
6./'(./2/.7#

6./'(./2/.7"

89-,

:-;<./2/

!##

!$$

!$%6.'2/*.'*-;/

6./'(.'*-;/.7#

6./'(.'*-;/.7"

:-;<.'*-;/

!#$

!$=

!$> 6.'2/*. ?+?

6./'(.?+?.7#

6./'(.?+?.7"

:-;<.?+?

46

Compression
5. If no new colour created, stop. Otherwise, pass

colours again.
• Before: ●
• After: ● ● ● ● ●

!""

!#" !$"

!"#!"$!"%

!$#

&'(.!*++, &'(.!-./

0'1.2-.34

0'1.5'.

6.'2/*./2/
6./'(./2/.7#

6./'(./2/.7"

89-,

:-;<./2/

!##

!$$

!$%6.'2/*.'*-;/

6./'(.'*-;/.7#

6./'(.'*-;/.7"

:-;<.'*-;/

!#$

!$=

!$> 6.'2/*. ?+?

6./'(.?+?.7#

6./'(.?+?.7"

:-;<.?+?

47

Compression
2. Factors collecting colours from nodes,

signing their own colours to the collected ones

!""

!#" !$"

!"#!"$!"%

!$#

&'(.!*++, &'(.!-./

0'1.2-.34

0'1.5'.

6.'2/*./2/
6./'(./2/.7#

6./'(./2/.7"

89-,

:-;<./2/

!##

!$$

!$%6.'2/*.'*-;/

6./'(.'*-;/.7#

6./'(.'*-;/.7"

:-;<.'*-;/

!#$

!$=

!$> 6.'2/*. ?+?

6./'(.?+?.7#

6./'(.?+?.7"

:-;<.?+?

48

Compression
3. Nodes collecting colours from factors

!""

!#" !$"

!"#!"$!"%

!$#

&'(.!*++, &'(.!-./

0'1.2-.34

0'1.5'.

6.'2/*./2/
6./'(./2/.7#

6./'(./2/.7"

89-,

:-;<./2/

!##

!$$

!$%6.'2/*.'*-;/

6./'(.'*-;/.7#

6./'(.'*-;/.7"

:-;<.'*-;/

!#$

!$=

!$> 6.'2/*. ?+?

6./'(.?+?.7#

6./'(.?+?.7"

:-;<.?+?

49

Compression
4. Recolour nodes based on collected signatures
• 5 colours for the

nodes: ● ● ● ● ●
• Factors as before

!""

!#" !$"

!"#!"$!"%

!$#

&'(.!*++, &'(.!-./

0'1.2-.34

0'1.5'.

6.'2/*./2/
6./'(./2/.7#

6./'(./2/.7"

89-,

:-;<./2/

!##

!$$

!$%6.'2/*.'*-;/

6./'(.'*-;/.7#

6./'(.'*-;/.7"

:-;<.'*-;/

!#$

!$=

!$> 6.'2/*. ?+?

6./'(.?+?.7#

6./'(.?+?.7"

:-;<.?+?

50

Compression
5. If no new colour created, stop. Otherwise, pass

colours again.
• Before: ● ● ● ● ●
• After: ● ● ● ● ●

• No new
colour! !""

!#" !$"

!"#!"$!"%

!$#

&'(.!*++, &'(.!-./

0'1.2-.34

0'1.5'.

6.'2/*./2/
6./'(./2/.7#

6./'(./2/.7"

89-,

:-;<./2/

!##

!$$

!$%6.'2/*.'*-;/

6./'(.'*-;/.7#

6./'(.'*-;/.7"

:-;<.'*-;/

!#$

!$=

!$> 6.'2/*. ?+?

6./'(.?+?.7#

6./'(.?+?.7"

:-;<.?+?

51

Compression
• Compressed graph:

!""

!#" !$"

!"#!"$!"%

!$#

&'(.!*++, &'(.!-./

0'1.2-.34

0'1.5'.

6.'2/*./2/
6./'(./2/.7#

6./'(./2/.7"

89-,

:-;<./2/

!##

!$$

!$%6.'2/*.'*-;/

6./'(.'*-;/.7#

6./'(.'*-;/.7"

:-;<.'*-;/

!#$

!$=

!$> 6.'2/*. ?+?

6./'(.?+?.7#

6./'(.?+?.7"

:-;<.?+?

89-,

&'((A) 0'1(C)

6.'2/*(D)

:-;<(D)

6./'((D,0)

F"

F# F$

52

Colour Passing Compression
• Algorithm:

1. Each factor collects the colours of its neighbouring nodes
2. Each factor “signs“ its colour signature with its own colour
3. Each node collects the signatures of its neighbouring factors
4. Nodes are recoloured according to the collected signatures
5. If no new colour is created stop, otherwise go back to 1
• Afterwards, build compressed version by combining randvars

of same colour using logvars

• Uses exact symmetries in factors
• Same colour if factors considered equivalent
• Could specify an approximate version to further compress a

model
• E.g., consider 1.0,2.0 and 1.1,2.0 to be equivalent

53
Babak Ahmadi, Kristian Kersting, Martin Mladenov, and Sriraam Natarajan. Exploiting Symmetries for Scaling Loopy
Belief Propagation and Relational Training. In Machine Learning. 92(1):91-132, 2013.

Interim Summary
• Compress a model (lifted or ground) based on

semantics
• Pass colours around until convergence (no new colours)
• Uses exact symmetries in factors

• Same colour if factors considered equivalent
• Ignores syntax

• E.g., names of randvars

• “Literal” translation of propositional models into
lifted models
• Take the ground model, find the symmetries, combine

them into a compact encoding

54

Outline: 4. Lifted Learning
A. Recap: Learning directed models
• Maximum likelihood (ML) estimation, expectation-

maximisation (EM), structural EM
B. Learning undirected models
• Iterative fitting procedure

C. Lifted encoding of propositional models
• Colour passing

D. Relational learning
• First-order inductive learning
• Decision tree representations

55

Relational Parameter Learning
• Assumption: individual instances in training data

behave indistinguishably
• Relational representation captures the setting with adequate

accuracy
• Assuming relational structure is known

• Complete data, e.g., using MLE
• MLNs: decomposes per rule because of log exp' = '
• PM: e.g., use IPF
• Can use lifted inference for queries during learning
• Data on groundings mapped to PRVs/predicates

• Incomplete data: EM version
• Could cluster instances into different domains and shatter

model to increase accuracy
• Trade-off between compact representation (no clustering) and

accuracy (each instance in own cluster)

56

Structure Learning
• Can follow the same idea of structural EM
• Already NP-hard problem in propositional setting
• More complicated because there are not only randvars

but also logvars that can be combined together

• Other approaches
• Relation learning in logics, e.g.,

• First-order inductive learning (FOIL)
• First-order logical decision trees (FOLDTs)

• Combined with weights/probabilities

• Learning approximate models, e.g.,
• Relational dependency networks (RDNs)

• Using a relational probability tree for local distributions in RDNs
• Boosted learning: Learn a set of distributions to approximate a

local distribution (RDN-Boost)

57

Knowledge-based Inductive Learning
• Logic perspective on learning

• Examples are composed of descriptions and classifications
• Objective is to find a hypothesis that explains the classification

of the examples, given their descriptions
• Hypothesis ∧ Descriptions ⊨ Classi3ications

• Knowledge-based inductive learning
• Background knowledge helps to explain examples

• Background ∧ Hypothesis ∧ Descriptions ⊨ Classi3ications
• E.g., inferring disease 9 from symptoms not enough to explain

prescription of medicine :
• Rule that : is effective against 9 needed

• Using knowledge, effective hypothesis space reduced to include
only those theories consistent with what is already known
• Prior knowledge can be used to reduce size of hypothesis explaining

the observations
• Smaller hypotheses easier to find

• Main research field: inductive logic programming (ILP)
58

First-order Inductive Learning (FOIL)
• Learns function-free Horn clauses for a target

concept given a set of positive and negative
examples and some background knowledge
• Form of ILP
• Form of top-down learning

• Start from a general rule and specialize it

• E.g., learning family relations from examples
• Observations are an extended family tree

• Mother, Father and Married relations
• Male and Female properties

• Target predicates, e.g.,
!"#$%&#"'$(, *"+(ℎ'"-$.#/, 0$1'2(+"

59John Ross Quinlan: Learning Logical Definitions from Relations. In Machine Learning, 1990.

A Not Up-to-date Example

60

George |><| Mum

Spencer |><| Kydd Elizabeth |><| Philip Margaret

Diana |><| Charles Anne |><| Mark Andrew |><| Sarah Edward

William Harry Peter Zara Beatrice Eugenie

Example Continued: !"#$%&#"'$(
• Descriptions

include facts like

• Sentences in Classifications depend on the target
concept being learned
• In the example: 12 positive, 388 negative

• Goal: find a set of sentences for Hypothesis such
that the entailment constraint is satisfied
• E.g., without background knowledge, hypothesis is:

!"#$%&#"'$(), + ⇔ ∃. /0(ℎ'"), . ∧ /0(ℎ'" ., +
∨ ∃. /0(ℎ'"), . ∧ 4#(ℎ'" ., +
∨ ∃. 4#(ℎ'"), . ∧ /0(ℎ'" ., +
∨ ∃. 4#(ℎ'"), . ∧ 4#(ℎ'" ., +

4#(ℎ'" 5ℎ676&, 8ℎ#"7'9 ,/0(ℎ'" /:;,/#"<#"'(
/#""6'% =6#$#, 8ℎ#"7'9 ,/#7' 5ℎ676& , 4';#7' >'#("6?'

!"#$%&#"'$(/:;, 8ℎ#"7'9 , ¬!"#$%&#"'$(/:;,A#""+

Background ∧ Hypothesis ∧ Descriptions ⊨ ClassiXications

61

Background Knowledge
• A little bit of

background knowledge helps a lot
• E.g.,

• Background knowledge contains

• Grandparent is now reduced to

• Constructive induction algorithm
• Create new predicates to facilitate the expression of

explanatory hypotheses
• E.g.,

• Introduce a predicate !"#$%& to simplify the definitions of the
target predicates

'#"%()"#$%& *, , ⇔ ∃/ !"#$%& *, / ∧ !"#$%& /, ,

!"#$%& *, , ⇔ 12&ℎ$# *, , ∨ 5"&ℎ$# *, ,

62

Background ∧ Hypothesis ∧ Descriptions ⊨ ClassiLications

FOIL: !"#$%&#"'$(Example
• Split positive and negative

examples

• Construct set of Horn clauses
with !"#$%)#(ℎ'" +, - as
head with the positive
examples as instances of the !"#$%)#(ℎ'" relationship
• Start with a clause with an

empty body
• All examples are now classified

as positive, so specialize to rule
out the negative examples

1. Incorrectly classifies the 12
positive examples

2. Incorrect on a larger part of the
negative examples

3. Prefer the third clause and
specialise it further

• Positive:

• Negative:

• Start:

• 3 potential additions:

• Further specialisation:

63

<!'."/',0$$'>, <1ℎ232&,1'('">,
<4&'$5'",6#""->, …

<!'."/',7328#9'(ℎ>, <6#""-,:#"#>,
<;ℎ#"3'<,1ℎ232&>, …

______ ⇒ !"#$%)#(ℎ'" +, -

1. ?#(ℎ'" +, - ⇒ !"#$%)#(ℎ'" +, -
2. 1#"'$(+, 8 ⇒ !"#$%)#(ℎ'" +, -
3. ?#(ℎ'" +, 8 ⇒ !"#$%)#(ℎ'" +, -

?#(ℎ'" +, 8 ∧ 1#"'$(8, -
⇒ !"#$%)#(ℎ'" +, -

FOIL: Algorithm
function FOIL(%&'()*%+, ,'-.%,) returns a set of Horn clauses

inputs: %&'()*%+, set of examples
,'-.%,, a literal for the goal predicate

local variables: /*'0+%+, set of clauses, initially empty
while %&'()*%+ contains positive examples do
/*'0+% ← New−Clause %&'()*%+, ,'-.%,
remove examples covered by /*'0+% from examples
add /*'0+% to /*'0+%+

return /*'0+%+
• Function New−Clause: generate a clause that covers all

positive examples while excluding as many negative examples
as possible

64

FOIL

FOIL: new clause

FOIL: New Clause
function New−Clause *+,-./*0, 2,34*2 returns a Horn
clause

local variables:
5/,60*, a clause with target as head and an empty body
/, a literal to be added to the clause
*+2*78*8, a set of examples with values for new variables
*+2*78*8 ← *+,-./*0

while *+2*78*8 contains negative examples do
/ ← Choose−Literal(New−Literals(5/,60*), *+2*78*8)
append / to the body of clause
*+2*78*8 ← set of examples created by applying

Extend−Example to each example in *+2*78*8 for /
return 5/,60*

65

FOIL: New Literals
• New−Literals: generates a

set of new literals to
possibly be added to the
body of a clause
• Input:

• ,-./01, a clause
• Output:

• -2314.-0, a set of literals

• E.g.,

• Using predicates
• Valid: 563ℎ14 8, / , 5.4421: 8, 8 ,
;4.<:=.3ℎ14 >, ?

• Invalid: 5.4421: /, >
• Inequality: 8 ≠ ?
• Arithmetic comparisons:
? > B (not meaningful)

• Approach: Add to -2314.-0
• Using predicates:

• Negated or unnegated
• Use any existing predicate

(including the goal)
• By allowing the target

predicate at this point,
FOIL is able to learn
recursive definitions, but
has to be kept from infinite
recursion.

• Arguments must be variables
• Each literal must include at

least one variable from an
earlier literal or from the
head of the clause

• Tests for equality and for
inequality of variables,
already occurring in the rule
• Test on empty lists

• Arithmetic comparisons
• Also on threshold values

66

C.3ℎ14 ?, 8 ⇒ ;4.<:=.3ℎ14 ?, B

FOIL: Choose Literal
• Choose−Literal: heuristic function that chooses a

literal out of a set of literals
• Input:

• -./012-3, a set of literals to choose from
• 04/05606, a set of positive and negative examples
• Possibly any other input required for making a decision

• Output: -./012-, the chosen literal
• Approach:

• Base decision on a criterion such as information gain
• How much better can one distinguish the positive and the negative

examples given the current clause 78 compared to an extended
version 79 with the literal added to the body of the clause

:2.5 78, 79 = / log>
?9

?9 + 59
− log>

?8
?8 + 58

• ?A, 5A denote the number of positive, negative examples
covered by 7A (classified as positive by 7A)

• / denotes the number of positive examples covered by both
• cf. entropy and information gain for decision trees

67

FOIL: Extend Example
function Extend−Example(-./012-, 245-6/2) returns a set
of examples

if -./012- satisfies 245-6/2 then
return the set of examples created by extending

-./012- with each possible constant value for
each new variable in 245-6/2

else
return the empty set

68

FOIL: extend example

FOIL: Optimisations
• The way New−Literal changes the clauses leads to

a very large branching factor
• Improve performance by using type information

• E.g., +,-./0 1, / where 1 is a person and / is a number
• Ockham’s razor to eliminate hypotheses

• If the clause becomes longer than the total length of the
positive examples that the clause explains, this clause is not a
valid hypothesis

• Rules/FOL formulas have to satisfy all positive
examples while excluding all negative examples
• Otherwise inconsistent
• Combine with probabilities or weights to reflect

inconsistency and uncertainty

69

Decision Tree Representation
• Represent result as decision tree

• Target (head) as root, followed by
decision nodes (body)

• (Conjunctions of) literals in inner
nodes
• Left child: path from root to inner

node evaluates to !"#$
• Right child: path from root to inner

node evaluates to %&'($
• Different nodes can share variables

under the restriction that a variable
introduced in a node must not occur
in right branch of that node

• Leaves: indicate if path is a model
• Rework to contain class labels ➝ first-order logical decision tree

• E.g.,
)&!ℎ$" +, - ∧ /&"$0! -, 1
⇒ 3"&04%&!ℎ$" +, 1

70

Follows from semantics of tree:
• Variable 5 introduced in a node is

existentially quantified within the
conjunction of that node

• Right subtree only relevant if
conjunction fails (“there is no
such 5”), in which case further
reference to 5 is meaningless

Hendrik Blockeel and Luc De Raedt: Top-down Induction of First-order Logical Decision Trees. In Artificial Intelligence, 1998.

3"&04%&!ℎ$" +, 1

)&!ℎ$" +, -

%&'($/&"$0! -, 1

%&'($!"#$

%&'($

%&'($

!"#$

!"#$

More on decision trees: Topic 7 here

https://www.ifis.uni-luebeck.de/index.php?id=691&L=2

First-order Logical Decision Trees
• Instead of learning a logic program, learn a first-order

logical decision tree, FOLDT
• Logical representation of a relational decision tree
• Input: examples, background knowledge, target concept

(classes)
• !"#$/%&'($ in the FOIL setting

• Output: FOLDT
• Defined as on previous slide with leaves containing class names

• Idea:
• Choose (a conjunction of) literals at each inner node such that the

examples are split up in groups that are as homogeneous as
possible with respect to classes occurring (very idea of decision
trees)

• Called learning from interpretations
• Also what ProbLog does

71
Hendrik Blockeel and Luc De Raedt: Top-down Induction of First-order Logical Decision Trees.
In Artificial Intelligence, 1998.

72

• Idea of what is to learn:
• Check a machine with parts !
• If machine contains worn parts that

cannot be replaced by engineer, send
back to manufacturer

• If all worn parts can replaced, then fix it
• No worn parts, ok

• Learning progress

• Resulting logic program:

FOLDT: Example

class(ok) ← ∀! ∶ ¬&'() !
class(sendback) ← ∃! ∶ &'() ! ∧)',_(./012.130. !
class(fix) ← ∃! ∶ &'() ! ∧

∀4 ∶ ¬&'() 4 ∨ ¬)',_(./012.130. !

Input examples, background knowledge

6107.,(8. 6107.,(8.

6107.,(8.

Hendrik Blockeel
and Luc De Raedt:
Top-down Induction
of First-order Logical
Decision Trees. In
Artificial
Intelligence, 1998.

Regression Trees
• Regression trees = decision trees with continuous

values (regression values) in leaves
• Could base decision on variance
• Depends on application how

regression values are calculated
• E.g., predict price of cars

• Regression values = average

73http://www.stat.cmu.edu/~cshalizi/350-2006/lecture-10.pdf

http://www.stat.cmu.edu/~cshalizi/350-2006/lecture-10.pdf

Relational Regression & Probability Trees

• Relational regression
tree (RRT)

≈ FOLDT with continuous
values in leaves

• Relational probability
tree (RPT)

≈ FOLDT with probability
distributions in leaves

74

Left figure: Sriraam Natarajan, Tushar Khot, Kristian Kersting, Bernd Gutmann, Jude Shavlik: Gradient-based Boosting

for Statistical Relational Learning: The Relational Dependency Network Case. In Machine Learning, 2012.

Right figure: Jennifer Neville, David Jensen, Lisa Friedland, and Michael Hay: Learning Relational Probability Trees. In

SIGKDD-03 Proceedings, 2003. // WebKB data set: http://www.cs.cmu.edu/~webkb/

There are some differences what they

allow inner nodes to be

• Not important to grasp the general idea

Goal: Is !
advised by "?

Goal: Is a web

page a student

web page?

(WebKB data set)

http://www.cs.cmu.edu/~webkb/

Learn Approximate Models
• Relational dependency networks (RDNs)
• Using RPTs for local distributions in RDNs
• Boosted learning: Learn a set of distributions to

approximate a local distribution
• Set of RRTs for local distributions in RDNs

• Based on approximate propositional model of
dependency networks (DN)

• Next slides
• DNs
• RDNs
• Learning RPTs for RDNs
• Boosted learning for RDNs

75

Dependency Networks
• Dependency network
• Like a BN, i.e., a directed graph, but allowing for cycles

• Each node corresponding to randvar !" has a conditional
probability distribution (CPD) # !"|%&'()*+ !" assigned

• Approximate model
• Represent joint distribution as a

product of (conditional) marginals
• Does not necessarily result in coherent joint distribution

• If no cycles: exact (and equivalent to BN)
• If discrete randvars and positive local CPDs ➝ full joint recoverable [see Heckerman et al. (2000) for proof/details]

• Allows for learning each distribution independently from the rest
• Can work well with large amounts of data

76

#, -. = ∏.∈, # -.
∏ 2,4 ∈5 # -24

6 7

8 9

CPDs:
6|8
7|6
9|7, 8
8|6

➝ Due to representing conditionals,
better suited for classification

David Heckerman, David Maxwell Chickering, Christopher Meek, Robert Rounthwaite, and Carl Kadie: Dependency
Networks for Inference, Collaborative Filtering, and Data Visualisation. In Journal of Machine Learning Research, 2000.

Relational Dependency Networks
• Relational aspects explicitly modelled in DN

• Relational databases as original motivation and backend for
algorithms; logic perspective here

• Represent joint distribution as a product of
(conditional) marginals over ground atoms
• Inference by grounding and unrolling the model such that we

have a BN again and then sampling on the ground BN
• Each predicate !"

associated with a CPD
!"|%&'()*+ !"
• Aggregators such as

count, max, average

77

#, -. = ∏.∈, # -.
∏ 2,4 ∈5 # -24

Jennifer Neville and David Jensen: Relational Dependency Networks. In Journal of Machine Learning Research, 2007.
Figure: Sriraam Natarajan, Tushar Khot, Kristian Kersting, Bernd Gutmann, Jude Shavlik: Gradient-based Boosting for
Statistical Relational Learning: The Relational Dependency Network Case. In Machine Learning, 2012.

Learning RPTs for RDNs
• Represent CPD not as a table

but as an RPT
• Learn RPTs individually for

each (target) predicate
• Construct aggregators: !"#$,
%"&'(,)*")"*(+"', #$,*$$
• Inner nodes: decisions on

aggregators
• Actually restricted to

aggregated predicates
• Method: Recursive greedy

partitioning
• Split on feature that maximises

the correlation between feature
and class using -. statistics

• Pre-pruning with
•)-value cut-off at /./1#3445
• depth cut-off at 7

• Class distribution in leaves

78
Jennifer Neville, David Jensen, Lisa Friedland, and Michael Hay:
Learning Relational Probability Trees. In SIGKDD-03 Proceedings, 2003.

-. statistics: Calculate a so-called)-
value as roughly the normalised sum
of squared deviations between
observed and theoretical frequencies
• Used in hypothesis testing to test,

e.g., if observed values follow a
theoretical distribution; given 7,
often α = 0.05, if) < 7, reject H0

(More: Topic 5 here)

https://www.ifis.uni-luebeck.de/index.php?id=691&L=2

Boosting Idea
• Use an ensemble of classifiers (!: feature vector, ": class labels)

• Each classifier marginally better than random guessing
• Idea: each (simple) classifier works well enough for a subset of the samples but

not all of them; loop:
• Train a classifier ℎ$! on the current training set, add it to ensemble
• Find out which samples do not work well in ensemble, prioritise them, e.g., weight

them higher (%$&'), in the current training set ()
• Combine these weak classifiers to one strong classifier ℎ !

• Using a weighted sum: ℎ ! = ∑$,$ℎ$!
• E.g., AdaBoost with decision trees:

79

ℎ ! = ,'ℎ' !
() = !, ", %' $

ℎ' !

() = !, ", %. $

ℎ. !

() = !, ", %. $

ℎ/ !

…

+,.ℎ. ! +⋯+ ,/ℎ/ !

https://www.cs.princeton.edu/~schapire/papers/explaining-adaboost.pdf

Stop when validation
performance plateaus

(more on ensemble methods: Topic 8 here)

https://www.cs.princeton.edu/~schapire/papers/explaining-adaboost.pdf
https://www.ifis.uni-luebeck.de/index.php?id=691&L=2

Functional-gradient Ascent
• Models given by

exp$ %; '
∑)* exp$ %+; '

• Method for potential functions of models
• Start with initial potential $, and iteratively add gradients Δ.
• After / iterations, potential is given by

$0 = $, + Δ3 +⋯+ Δ0
• Δ0 is the functional gradient at iteration / and given by

Δ0 = 50 6 78,)
:

:$0;3
log ? %|'; $0;3

• 50 learning rate
• Basically, each Δ0 is a step in the direction of the gradient of the

log likelihood function and 50 is the parameter that controls the
step size

80
Thomas G. Dietterich, Guohua Hao, and Adam Ashenfelter: Gradient Tree Boosting for Training Conditional
Random Fields. In Journal of Machine Learning Research, 2008.

Functional Gradient Tree Boosting
• Since full joint unknown, treat data as surrogate

• Instead of computing functional gradient over a potential function,
functional gradients are computed for each training sample !"; $"(conditioned on potential from previous it.)

Δ& !"; $" = ∇)*
"
log. !"|$"; 0 1

)234

• Set of Δ& !"; $" over all 5 form set of training examples
➝ Train a function ℎ& that approximates Δ& !"; $"
➝ Build/fit a regression tree ℎ& to minimise

*
"
ℎ& !"; $" − Δ& !"; $"

8

• Fitted function ℎ& not exactly the same as Δ& but will point in
same general direction (assuming enough training examples)

• Then, the new potential at stage 9 is given by
0& = 0&:; + =&ℎ&

• After > iterations, there are > regression trees to represent 0

81
Thomas G. Dietterich, Guohua Hao, and Adam Ashenfelter: Gradient Tree Boosting for Training Conditional
Random Fields. In Journal of Machine Learning Research, 2008.

Functional Gradient for RDNs
• RDN represented as a set of conditional distributions ! "|$%&'()* "

for all predicates "
• Let ! +|$%&'()* + for a grounding + of " be

! +|$%&'()* + = exp0 +; 2
∑45 exp0 +6; 2

where
• ∀8 ∈ 2, 8 ≠ +, 0 +; 2 denotes potential function of + given all other 8, 8 ≠ +

and +6 iterates through all possible groundings of "
• Probability of example/grounding +< of example =

! +<; 2< = exp0 +<; 2<
∑45 exp0 +6; 2<

• Logarithm of ! +<; 2<
log ! +<; 2< = log exp0 +<; 2<

log∑45 exp0 +6; 2<
= 0 +<; 2< − logB

45
exp0 +6; 2<

82Sriraam Natarajan, Tushar Khot, Kristian Kersting, Bernd Gutmann, Jude Shavlik: Gradient-based Boosting for Statistical
Relational Learning: The Relational Dependency Network Case. In Machine Learning, 2012.

Functional Gradient for RDNs

log $ %&; (& = * %&; (& − log,
-.
exp* %2; (&

• Functional gradient for %& of example 3

• Gradient at each example: adjustment required for the
probabilities to match the observed value for that example
• Use %&; (& and Δ5 %&; (& for all examples to fit an RRT

83Sriraam Natarajan, Tushar Khot, Kristian Kersting, Bernd Gutmann, Jude Shavlik: Gradient-based Boosting for Statistical
Relational Learning: The Relational Dependency Network Case. In Machine Learning, 2012.

Δ5 %&; (& = 6 log $ %&; (&
6* %& = 1; (&

= 8 %& = 1; (& − 1
∑-. exp* %2; (&

6
6* %& = 1; (&

,
-.
exp* %2; (&

= 8 %& = 1; (& − exp* %2; (&
∑-. exp* %2; (&

= 8 %& = 1; (& − $ %& = 1; (&

Indicator function that returns
1 if :& = 1 and 0 otherwise

RDN-Boost: Overview
• For each ! "#; %&'()*+ "# ∈ -
• I.e., for each predicate "#
• Build a set of RRTs, which form !

• Each RRT estimates the gradient with which to update !
• Using the gradient of each example of . as training examples

84

/0 12 = ∏2∈0 / 12
∏ 5,7 ∈8 / 157

!9

!:

Δ< Δ:

Left figure: Siwen Yam, Devendra Singh Dhami, and Sriraam Natarajan: The Curious Case of Stacking Boosted
Relational Dependency Networks. In 1st I Can’t Believe It’s Not Better Workshop (ICBINB@NeurIPS 2020), 2020.
Right figure: Sriraam Natarajan, Tushar Khot, Kristian Kersting, Bernd Gutmann, Jude Shavlik: Gradient-based
Boosting for Statistical Relational Learning: The Relational Dependency Network Case. In Machine Learning, 2012.

RDN-Boost
procedure TreeBoostForRDNs(-./.)

for 1 ≤ 3 ≤ 4 do ▹Iterate through 4 predicates
for 1 ≤ 5 ≤ 6 do ▹Iterate through 6 gradient steps

78 ← GenExamples 3; -./.; CDEF
8 ▹Generate examples

ΔD 3 ← FitRelRegressTree 78; J; - ▹Functional gradient
CD8 ← CDEF

8 + ΔD 3 ▹Update model
L .8|N.OPQ/R S8 ∝ U8 ▹ U8 is obtained by grounding CV

8

function GenExamples 3, -./., C
7 ← ∅
for 1 ≤ Y ≤ Z8 do ▹Iterative over all examples

Compute L [8
\ = 1; ^8

\ , ^8
\ = N.OPQ/R [8

\ ▹Probab. of [8
\ being true

Δ [8
\ ; ^8

\ ← _ [8
\ = 1 − L [8

\ = 1; ^8
\ ▹Compute gradient

7 ← 7 ∪ ^8
\ , [8

\ , Δ [8
\ ; ^8

\ ▹Update regression examples

return 7

• function FitRelRegressTree returns an RRT fitted for 78 with a maximum of J
leaves and a maximum depth - (cut-off criteria)

85

FOIL: extend example

Sriraam Natarajan, Tushar Khot, Kristian Kersting, Bernd Gutmann, Jude Shavlik: Gradient-based Boosting for Statistical
Relational Learning: The Relational Dependency Network Case. In Machine Learning, 2012.

Bagging
• Ensemble method that reduces variance compared to

boosting reducing bias

• Compare: Random forests

• Set of decision trees

• Each tree learned on

• Sampled subset of training instances

• Sampled set of features available for each decision

• Combine both: Learn a set of boosted RDN models

• Each run of RDN-Boost uses a sampled subset of the training

examples

• Only consider a random 50% of the candidate literals

• Increased prediction accuracy + easy parallelisation

• Boosting does decrease variance with a large number of

gradient steps, so bagging + boosting only has positive effect

if considering small number of gradient steps

86
Sriraam Natarajan, Tushar Khot, Kristian Kersting, Bernd Gutmann, Jude Shavlik: Gradient-based Boosting for Statistical

Relational Learning: The Relational Dependency Network Case. In Machine Learning, 2012.

Interpretability
• Set of RRTs not really interpretable
• Combine all RRTs into one tree and produce probabilities

in leaves for interpretation by humans

87
Sriraam Natarajan, Tushar Khot, Kristian Kersting, Bernd Gutmann, Jude Shavlik: Gradient-based Boosting for Statistical
Relational Learning: The Relational Dependency Network Case. In Machine Learning, 2012.

Interim Summary
• FOIL

• Logic based: Learn relations given examples, background
knowledge and a target concept

• First-order logical decision trees
• Logic based: Learn relations in tree form given examples,

background knowledge and a target concept
• Regression/probability trees

• Leaves with continuous values/probability distributions
• Relational versions: predicates in inner nodes
• Represent conditional distributions as trees
• Boosting

• Set of trees to represent distributions

• Can construct weighted FOL formulas to build an MLN and
then convert it to whatever form one needs (FOKC; LVE/LJT)
• Very little work on learning the structure of general

parameterised models or MLNs

88

Outline: 4. Lifted Learning
A. Recap: Learning directed models
• Maximum likelihood (ML) estimation, expectation-

maximisation (EM), structural EM
B. Learning undirected models
• Iterative fitting procedure

C. Lifted encoding of propositional models
• Colour passing

D. Statistical relational learning
• First-order inductive learning
• Decision tree representations

⇒ Next: Approximate Inference

90

