Intelligent Agents:
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Probabilistic Graphical Models

Approximate Inference: Sampling

Update: Only sampling
techniques are covered

(variational inf. scrapped).
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Probabilistic Graphical Models (PGMs)

1. Recap: Propositional 5. Approximate Inference:
modelling Sampling
* Factor model, Bayesian * Importance sampling
network, Markov network « MCMC methods
* Semantics, inference tasks ia del
+ algorithms + complexity .Sefquentla models &
cps e . intference
2. Probabilistic relational

* Dynamic PRMs

* Semantics, inference tasks
+ algorithms + complexity,
learning

7. Decision making

e (Dynamic) Decision PRMs

* Semantics, inference tasks
+ algorithms, learning

models (PRMs)

* Parameterised models, Markov
logic networks

* Semantics, inference tasks

3. Lifted inference
e LVE, LT, FOKC
* Theoretical analysis

4. Lifted learning 8. Continuous Models

* Recap: propositional learning * Probabilistic soft logic:

e From ground to lifted models modellinlg, semantics, inference
: : : tasks + algorithms

* Direct lifted learning




Approximations

e Approximate answers to queries such as the
posterior P(R|e)

* Assume an intuitive of approximation:
 The answer may be erroneous up to some amount

* Formally treated in
PAC theory (Probably Approximately Correct)
by parameters (9, €)

* Confidence (quantified by 6) in that found solution
maximally deviates from true solution up to ¢

 How many samples do you need to satisfy 6, €

Nz, ©
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Outline: 5. Approximate Inference

A. (Lifted) sampling

* Importance sampling: Likelihood weighting, importance
sampling, lifted importance sampling (LIS)

e Markov Chain Monte Carlo (MCMC) sampling: Gibbs
Sampling, Metropolis Hastings, Lifted MCMC




Sampling as Approximation: BNs

* Given a BN F, evidence e, and query term R

* Generate a set of samples
* Sometimes also called particles

* Each sample contains an observation for each randvar,
i.e., an event (in the model or in the sampling target)

* So, generate an event for each randvar based on the
model distribution

* Based on the samples, estimate P(R|e) by
counting (ML-like)

As maybe seen in the lecture “Advanced Topics Data Science and
G RIS M onssrsreus Al: Probabilistic and Differential Programming” by Ozgiir Ozcep



Sampling: Generalisation

* Generalisation: Estimate expectation of some function
f (R) relative to a distribution P(R)

Ermlf(®)] = ) f)P()

reR(R)
* Generate a set of N samples, estimating value of f or its
expectation

* Aggregate the results

Eplf ()] ~ Zf(ro

* Can choose f to be indicator functlon 1thatis1if R =1 and
0 otherwise (which is what happens on the following slides)

* Accuracy usually depends on number of samples N
* Because then the law of large numbers applies

aaaa
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Recap: Rejection Sampling

From Topic 3 in IR part: X, I
* Rejection sampling for BNs X X, e s, from PLE: | )
. . 3.Sample x, oM7L L
* Given a topological order _‘ A A fw._rg{;j'jj:‘;;;__\,
0 = (Ry, ... R,) for the Xy e Pz, | 2
randvars in the BN

and some evidence e

* For each sample
* Loop through 6

e Sample a value 7; for R; given the sampled values of the parent
randvars

* parents(R;) beforeR;in @, i.e.,
parentS(Ri) c {RO; Iy Ri—l}

* Drop current sample if ; contradicts an eventin e
* May generate many examples that are rejected

* Made worse if evidence is very unlikely (unlikely to sample
values that agree with evidence)

Wg(td \J"c'm
athes inefticenc

R
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Likelihood Weighting

* Goal
* Avoid inefficiency of rejection sampling

* |dea
* Generate only events consistent with evidence e

e Each event is weighted by likelihood that the event
accords to the evidence

:::::
3Rs22 %  INSTITUT FUR INFORMATIONSSYSTEME



Likelihood Weighting: Example

* P(R|S = true,W = true)? S Cloudy _
* Topological order: (C,S,R, W) Qw:w

e Sampling (repeat N times) T ettrasss
* Weight w of sample is set to 1.0 P(c) =05
« Sample from P(C) = (0.5,0.5) - true
e S is an evidence variable with value true | N |
wew-P(S =true|C =true) = 0.1 false 05

e Sample from P(R|C = true) = (0.8,0.2) —
* |/ is an evidence variable with value true Inm.l
wew:P(W = truelS = true,R = ) = 0.099 | true 08

o [true,true, , true] with weight 0.099 false 0.2
* Estimating s | R | POWISR)
* Accumulate weights to either R = true true  true  0.99
orR = false true  false 0.9
. Qké(i)gvﬁtsg? (I)e goes toward R = true with false  true 0.9
. false false 0.9

* Normalise (= divide by sum of weights)

R
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Likelihood Weighting: Example

 P(R|C = true,W = true)? S Cloudy 2
* Topological order: (C,S,R, W) 1@8@

e Sampling (repeat N times) T ettrasss
* Weight w of sample is set to 1.0 POS05
* ( is an evidence variable with value true
we«w-P(C =true) =0.5 U

* Sample from P(S|C = true) = (0.1,0.9) = false  fase o5
e Sample from P(R|C = true) = (0.8,0.2) —

* [/ is an evidence variable with value true
wew-P(W =true|S = false,R = ) =045 fue 08
 [true, false, , true] with weight 0.45 false 02
* Estimating s | R_|POwISR)
* Accumulate weights to either R = true true  true  0.99
orR = false true false 0.9
. Qké(i)gvﬁtnggle goes toward R = true with false  true 0
* Normalise (= divide by sum of weights) false false 09

5 RUIT © UNIVERSITAT
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Likelihood Weighting: Algorithm

function LikelihoodWeighting(R, e, F, N) returns an estimate of P(R|e)

local variables:

W, a vector of weighted counts over the range

values of R, initially 0

forj =1to N do

r,w « WeightedSample(F, e)

Wlr] « W|r] + w where r is the value of R in r
return Normalise(W)

function WeightedSample(F, e) returns a compound event and a weight
r « an event withn = |rv(F)| elements; w « 1
fori = 1tondo > follows topological order
if R; has a value 7; in e then
w < w - P(ry|parents(R;)); setr; inr
else
r; < arandom sample from P(R;|parents(R;))

returnr, w Likelihood Weighting

R
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 Normalise works as expected
* Dividing each element by the sum over all elements

11



Likelihood Analysis

* Sampling probability for z
WeightedSample S,o(r,e) = 1_[ P(r|parents(R,))
* [ goes throughr\ e i=1

. Takes onl_y evidgnce in ancestors
into consideration

k
* Weight for a given sampler, e w(r, e) = np (ej|parents(5j))
e [ goes through e =1

* Weighted sampling probability is
l

k

Sws(r,e) -w(r,e) = HP(ri|parents(Ri)) . l_[P (eﬂparents(E,-)) = P(r,e)
i=1 j=1

* Last step by semantics of BN

* Hence, likelihood weighting returns consistent
estimates

But, performance still degrades with many evidence variables
because few samples have nearly all the total weight

12



Importance Sampling

* Remember: Estimates expectation of a function
f (r) relative to some distribution P(R)

Erlf(®]= ) fE)PM)

reR(R)
* P(R) typically called target distribution

* Estimate this expectation by generating samples r; from
P and then estimating

N
Erlf (] =~ ) f(r)
=1

* What we have done so far

* If generating samples from P is hard, use a
(simpler) proposal distribution Q instead

R
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Using a Proposal Distribution

* Condition: Proposal distribution ) dominates P
* l.e., Q(r) > 0 whenever P(r) > 0

* () may not ignore any states that have non-zero probability
with P

 Specifically, support of Q has to include support of P
* Support for a distribution S are all pointsrs.t. S(r) > 0

* In general, Q can be arbitrary but computational
performance highly depends on how similar Q to P is

* E.g., want probabilities close to zero in
only if also very small  BEIGIACIE z fr)P(r)

* Keep variance small TER(R)
* Generate samples from ( instead of P
* Cannot average f-values of samples generated

— Adjust estimator to compensate for incorrect sampling
distribution

rSI
GERSIZ,

S
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Unnormalised Importance Sampling

 How to adjust:

Ermlf(®)] = ) f)P@)

reR(R)

PIIGYG

reR(R) (R)
= Eqw) |f(R) (R)]

P(R)
* Adjustment: o® Assumes that P is known
* Generate a set of sal\r,nples from Q and Sn estimate
NG

P(r)
Q(r)

rSI
GERSIZ,
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When P is known: Example

* Interpret likelihood weighting as importance sampling

* Model without evidence set is P, model with evidence is Q
e Samples are weighted according to probabilities in CPTs

* Probability of a sample r; (includes e) in model F conformant with
evidence e, i.e., P:

b Toyer P (nlparenss(s)

P(r;le) = =
( ll ) I)(e) })(e)
* Probability of a sample r; sampled in model F with evidence set,

i.e., Q:
Q(r;) = 1_[ p (rj|parents(Rj))
ri€(r;\e)
* Weight
) P(r;|e) HrjeriP(MparentS(Rj)) HrjEeP(rj|parentS(R]-))
w(r;) = = =
Qryd)  p(e) [l ecrpne) P (rJ |parentS(Rj)) P(e)

* P(e) identical for all samples — okay to ignore, i.e.,

w(r;) = 1_[ P (rj|parents(Rj))

rjEe




When P is not known

* Most common reason for sampling from Q: ™
P only known up to normalising constant Z W) = 06
* Access to a function P that is not a normalised
distribution but P(R) = P(R) - Z
* Normalised Importance Sampling
. . ~ def p( i)
* Define w(r;) using P: w(r;) & Q(:i)
* Estimation no Ionger works Epylf(R)] # z f(r)P(r)

(no probability distribution) réR(R)
P(r)

N = Q) f () 57—
B a5

. ’ P

i

D) k)

iz,
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Normalised Importance Sampling

* Trick: Consider w(R) as a randvar with expected
value Z

Eow[w(R)] = z Qrw(r) = Z Q(r )Piri z Pr) =2z

reR(R) reR(R) reR(R)

* Given EQ(R) [W(R)] =
Eanlf®] = Y fOP@ =7 > 000

reR(R) TR [f(R)w(R)]
- l . EQ(R) f(R)w(R
=z el (RwR)] == @)

e Use estimator for numerator and denominator

L1 fr)w(ry)
N=1 w(r;)

Eplf(r)] =




Sampling in Undirected Models

* Assuming we have a proposal distribution Q(R), which
allows for easy sampling, we can generate samples r; and
weight them accordingly by

» where P(r;) = [1; ¢ (T[rv(f)(ri))

* Product of potentials where the arguments have values according to r;

* If we do this for all samples, we estimate Z (or P(e))

P(r;)
Eppylw(R)] = =7
St Q(r;)
* If are interested in P(r|e) _
Iiv=1 f(r) %
E r)| = —
O == 5
=)



Where To Get Q From? — An |dea

e Given a model F

e Turn F into a model F' s. t. factors are over maximal cliques

* In jtree: Multiply all factors in each local model s. t. each cluster has
a local factor f; = gbi(Rl, ...,Rki)

e Basically turn F’ into a “sort-of” BN FEN by

* Choosing one cluster as root and directed all edges away from that
cluster = “directed jtree”
* Normalise such that
* Root cluster: marginal over all randvars (potentials sum to 1)

* All other clusters: conditional over separator randvars of “parent” in
directed jtree

— Enforces a factorisation into (conditional) probability distributions with
Z =1 as seen during parameter estimation

— Fixes a form of topological ordering on randvars in F

* Root cluster randvars first, followed by randvars as they are visited in the
directed jtree

* Sample from Q = F5V, e.g., using likelihood weighting




Example

fo
* Model F with jtree J — 8 =c

1 fi for 12
* Model F’, max. cliques p p
1 2 B
- AB BC
* fZ — f2 ’ fO e i 7
B o
* Choose one as root, e.g., C; = {AB} ﬁ]\fB ‘ E;f;
* Normalise

* C, such that f; is a marginal distribution f"
* C, such that f, is a distribution 2N conditional on B

NOA BRE 2DEA DA
0 0 0.1

0 0 1 0 0 6 0 0 0.6
0 1 2 0 1 0.2 0 1 4 0 1 04
1 0 3 1 0 03 1 0 4 1 0 0.8
1 1 4 1 1 04 1 1 1 1 1 0.2

JERST
Rl 74



Example

* Ordering of AB, C ; ifo ; 111
* Sample values for AB OaaOnaO /?B : E;C
from f°N

* Since it is a distribution ﬂ ﬂ ﬂ
0 2

* Generate a random number 0O 0 1 0O 0 3

v between 0 and 1 and.tak.e 1 1 0 1 2 0 1 2
values for AB where v lies in

the corresponding interval 1o 3 10 4

00 01 10 11 11 4 11 1

—

0 05 SIS BRE DR

0O 0 0.1 0O 0 0.6

* Eg,v=08=11 01 02 0 1 04

* Map to separator randvars T ||

—B=1 | '
1 1 04 1 1 0.2

GERST
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Example

* Ordering of AB, C if 11 1 10
o fi e /> e AB B | BC
e Sample values for BC\B /

fi 7
conditionedon B =1

from £, B /o IIEI- B ICf,

e With B =1, itis a distribution 0 2 1 0 0 3
0 1 11 01 2 0 1 2
—— 1 0 3 1 0 4
0 v 05 1
11 4 11 1
e Eg,v=035—0 B leN B fZBN
* Sample: [1,1,0] 00 01 0 0 06
* Q weight: 0(|[1,1,0]) = 0.4-0.8 01 02 0 1 04
P weight: P([1,1,0]) 10 03 1 0 08
,,,,,,, e w([1,1,0]) = == = 50 1 1 04 1 1 02



Example

* Ordering of AB, C " fo

fi f2 B R
* Set of N samples r; with ®) ‘ © (e =

2 7
weights w(r;)

+ E.g., sample [1,1,0] BiA BEA DEAa
0 2 0O O

« w([1,1,0]) =50 1 0 0 3

e Assume queryforP(C=1) 1t 1 01 2 0 1 2
- 10 3 1 0 4

* Estimate — kT
110, € = Dw(ry) BEER DEE

P(C) ~ N w(r) 0 0 01 0 0 06
e 01 02 0 1 04

, _ . 1 T[C(ri) =1 1 0 0.3 1 0 0.8

1y C=1)= {0 otherwise 1 1 04 1 1 0.2




Lifted Importance Sampling (LIS)

e Consider an MLN ¥ = {(w;, ¥;) }i=,
* Probability of a world w : Py(w) = iexp(}]?:l win;(w))

* Normalisation: Zy = Y, exp(Qi, win;(w))
 Normal form:

* No constants in any formula

 If any distinct atoms with the same predicate symbol have
variables x, y in the same position, then x, y have the same
domain

e |dea

e Sample a value for one predicate

* Value applies to all instances of predicate under the same
evidence (group)

e Use value to estimate quantities defined over the group

,,,,,
\\\\\
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Lifted Importance Sampling (LIS)

 Consider estimating Zy = Zw exp(Qit win;(w))
* Remember Eqgy[W(R)] =

* Then
Ly = Z exp <z win; ((U)) gg % EQ(R) [eXp(Z Ql(avr)n ((1)))

w

e Given N sampled worlds w®, sampled independently
from Q, then

eXp(Zl 1Wlnl(w(t)))
N Z Q(w®)

* LIS uses different I|ft|ng rules to handle instances as
groups
e Reduce variance for indistinguishable instances

:::::
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LIS: Lifting Rules — Power Rule

e Given a normal MLN ¥, a set of logical variables x
is called a decomposer if it satisfies the following
two conditions

1. Every atom in W contains exactly one variable from x

2. For any predicate symbol R, there exists a position s. t.
variables from x only appear at that position in atoms

of R

* Any X,y € X have the same domain because of normality

and given a decomposer x, rewrite Zy as
D(X)|
Ly = (Z‘Plx—>X)

 Y|x — x denoting that all occurrences of x are replaced

with the same constant x € D(x) and the resulting MLN
is converted into a normal MLN




LIS: Lifting Rules — Generalised Binomial Rule

* Given a normal MLN W and a singleton atom R(x) not involved in
self-joins (does not appear more than once in same formula),

rewrite Zy as ,
|D(x)]| |D( )| Compare counting
X _ ,
Iy = E ( . )Zl_pler(])Zp(])

, J
. J=0
* Y|r/ denotes that in W, truth values are assigned to R(x) such that j
instances are set to true; specifically
* Ground all R(x) and assign truth values to the groundings
* Delete all formulas that evaluate to either true or false
* Delete all groundings of R(x)
e Convert the resulting MLN into a normal one

* w(j) is the exponentiated sum of the weights of formulas that evaluate
to true

. p(j) is the number of ground atoms that are removed from the MLN as
a result of removing formulas

* Don’t-care propositional atoms, which can be set to true or false

e Can be relaxed by not requiring singleton atoms but then no
longer exact

D) k)
= ol =
o Ry /1 & UNIVERSITAT ZU ECK
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LIS: Lifting Rules — Isolated Variable Rule

* For predicate symbol R of an MLN W, a logical variable x at position
m in its arguments is called isolated

 ifitis exclusive to R in all formulas containing R

* Let x denote the set of all isolated variables of R and let y denote the
set of remaining variables in R

* D(y) cartesian product of the domains of y and y; denotes the i’th element
* Then, estimate Zy as
D) ('D(x)|)
Zy = Zyzw(R)2PE) 1_[
Qi

(]ll]lr . rji—l)

 Y|x an MLN obtained from W by applying the following steps:

1. Fori=1to|D(y)|, sample number j; from a dlstrlbutlong %/ ilj1, -, ji—1) and
set j; arbitrarily selected groundings of R(x,y;) to true and the remalnlng to

fa Se
Delete all formulas that evaluate to either true or false

2.
3. Delete all groundings of R
4.  Convert the MLN to a normal one
* w(R) exponentiated sum of the weights of formulas that evaluate to true

* p(R) number of ground atoms that are removed from ¥ as a result of (2)




LIS tries to apply the power rule, followed by the generalised binomial rule, followed by the

isolated variable rule. If all fail, then LIS grounds an atom and samples for the groundings.

function LIS(W — in normal form, Q) returns an estimate of Z

if ¥ is empty then
return 1
if there exists a decomposer x then

return (LIS(W|x - x, Q))

if there exists a singleton atom R(x) without self-joins then
Use Q to sample an integer j € {0, ..., [D(x)|}

LIS(w|r7,Q)w(j)2P0) (lD(x)l)
Q(j) ]
if there exists isolated variables x in a predicate R then

(ID(x)I)
return LIS(W|x, Q)w(R)2P(®R) Hljﬂ(ly)lQ.(j_ljJ‘ o
t\JilJ1r-J1—-1

Choose an atom A and sample all of its groundings from Q
Let a be the sampled assighment
LIS¥|a,Q)w(a)2P@

0(a)

5 s

= olegs =

5
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LIS: Constructing Q

* General ideas used
e 4: disjoint parts
* Handle independently

e 8: choose an ordering
for an atom

* Assume parent-child
relationship
* Lifting rules used
for constructing Q
e 2: power rule
e Simplifies the MLN

* 12: approximate
generalised bin. rule

e 13: isolated variable
rule

Algorithm 2: Construct Proposal (CP)

& W N -

e ® 9

10
11
12

13
14

15
16
17

Input: An MLN M, an integer k and a set of atoms R
Output: The structure of the proposal distribution Q
if M is empty then return |
if there exists a decomposer x then
| Letz € xand X € A,. return CP(M[X/x], k,R)

if M can be decomposed into m MINS M, ..., M such
that no two MLNs share any atoms then

fori=1r1r0omdo
\\ L CP(M;,k,R)

return |

Heuristically select an atom R from M
Heuristically select k atoms from R as parents of R
// Construct Proposal over R
for every assignment to the groundings of pa(R) index by i do
if R contains no isolated variables then
Use the approximate generalized binomial rule to
L construct Q;(R)

else
| Use the isolated variables rule to construct Q;(R)

A:ld RtoR
Ground R and then remove it from all formulas of M
return CP(M, k. R)

Vibhav Gogate, Abhay Jha, and Deepak Venugopal: Advances in Lifted Importance Sampling. In: Proceedings of the
Twenty-Sixth AAAI Conference on Artificial Intelligence, 2012.
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Problems with Importance Sampling

* Requires a reasonably fitting proposal distribution Q

* Can be hard to construct/find if we deal with something other
than directed models

e Cannot estimate distributions well for evidence in
leaves

* Independent of whether we deal with directed or undirected
models

* Consider two extreme cases in BNs (the easy model type)
e All evidence at

— Proposal distribution = posterior distribution w

— No weighting necessary (for all, w = P(e)) W:@
* All evidence at leaves

— Proposal distribution = prior distribution W

— Correction purely by weights, yielding high variance

— Will only work well if prior similar to posterior distribution;
otherwise most samples are irrelevant, evidenced by a low weight




Markov Chain Monte Carlo (MCMC)

* Monte Carlo methods

* Repeated random sampling to get to some numerical
result

* Let us think of the model as being in a particular
current state specifying a value for every variable

* MCMC generates each compound event by making
a random change to the preceding event
* Next state generated by randomly sampling a value for

one non-evidence variable R; conditioned on the
current values of the variables in Markov blanket of R;

e Simplest form called Gibbs sampling, which the next
slides build towards

5 RULJT & UNIVERSITAT ZU LU
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Markov Blanket

e Directed model:

 Markov blanket of a node X:
Parents U, of X
+ children Y; of X

+ children’s parents Z;;
* Parents Z;; of ¥; that are not X

 Undirected model:

 Markov blanket of a node R:
All direct neighbours of R

* Direct connection via a factor

* Node is conditionally independent
of all other nodes in network,
given its Markov Blanket

* Global Markov property with the

Markov blanket as the separating
subset

& INSTITUT FUR INFORMATIONSSYSTEME




MCMC: Example

 Given S = true, W = true, four states (boxes) G Cloudy 3
* Four possible combinations of range values for C, R wzw

C_Cloudy 3 C Cloudy
| ooHa I
+ Fixed evidence
& (WetGrass> D WetGrass) T
S f G f
=
é - /> O - Colour coding
g C_Cloudy G Cloudy 3 e
| OoaE» G| s
WetGrass (WetGrass)

* Arrows between states describe transition probabilities
* Leads to a (the Markov) chain of states

-~ * Wander about for a while, average what you see

R
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MCMC: Example
<>,

 P(R|S = true, W = true)?
* Topological order: (C,S,R, W) Cprinkler>  C_Rain_D

« Random initial state: [true, true, false, true] CWetGrass
e Sampling (repeat N times) P(c) = 0.5
* (C issampled given the current values of its Markov blanket,
i.e., sample from P(C|S = true,R = false)
* Suppose resultis false true 0.1
» Current state: [false, true, false, true] false 0.5

* Update counts: R = false — +1

* R issampled given the current values of its Markov blanket,
i.e., sample from P(R|C = false,S = true, W = true) true 08

* Suppose result is true
* Current state: [false, true, true, true]

* Update counts: : R = true — +1 “ P(w|S, R)

* Assume after N = 80 iterations, the process 0.99
visited 20 states where R = true and 60 states ¢

where R = false, then answer to query is
Normalise((20,60)) = (0.25,0.75)  fabe frue =09

false false 0.9

false 0.2

true false 0.9




Gibbs Sampling: Algorithm

function Gibbs(R, e, F, N) returns an estimate of P(R|e)
local variables:
C, a vector of counts over the range values of R, initially O
S, the non-evidence randvars in F
T, the current state of whole network, initially copied from e
with random values for §

forj =1to N do
foreach S in S do

Sample the value s of S to replace in 1 from P(S|mb(5))
given the values of MB(S) inr
Clr] « C|r] + 1 where r is the value of R in r

return Normalise(W) Gibbs Sampling

 State of network = current assignment to all randvars r

* Generate next state by sampling one randvar given Markov blanket
MB(S) with values mb(S) in current state

* Sample each randvar in turn, keeping evidence fixed
* Can also choose a randvar to sample at random each time

5 T
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Gibbs and Undirected Models

* We have assignments for each randvar in F
* We need to sample from P(S|mb(S))

* In example below,
sample from P(X|mb(X)) = P(X|ny,ny, ns)

 Since S independent from all other randvars given
MB(S) and we have values for MB(S), i.e., mb(S),
we only need to consider the normalised product

P(S, mb(S)) of the factors between X and MB(S)
set to mb(S)

* Egr ¢(X' Nl)) ¢(X, NZJNS)

° ¢(X’ nl) . ¢(X’ n2'n3) and normalise ! i '
:gﬁ; UINETRUT EER NFoRmATIONssYsTEME @ @ @
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Gibbs and Undirected Models
l- l- l- l-

4 (lines dropped)
1 1 4 1 1 0 8

= R O @
o @ =
B0 N ER

(columns dropped)

multipl
iﬁ/
> 0.2

normalise

HRA = R R O ©
R~ © & L ~ O© P
B O B P HF © B P
H o0 & (W'l [ S L

1 32 1 0.8

¢ Eg, Nl — 1,N2 — 1,N3 =0

c flo =X, 1) - ¢p(X,1,0) = $p(X) (O—=—Ny)—=—(r,)
* fi» used to sample a new X value (R )-=—N;)——(N,)
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Gibbs and Undirected Models

« Sample a value for X from fi,

* E.g., — 0 !

* New state 0 05
¢ N]_ — 1,N2 — 1,N3 — 0,R3 — 7"3,R1 = 1,

* Assuming that we are interested

in P(R3))
* Add 1 to the counter of 13 f’
12
e Continue with sampling 0 02
next randvar 1 08

¢ Eg, Nl with mb(Nl) — {X — 1, Rl — 7‘1}

* ¢(X =1,Ny),¢(N;), p(N1, Ry = 11)
* Multiply and normalise, yielding ¢’
« Sample a new value for N; using ¢’ e

aaaa
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Some Basics for MCMC

A Markov chain consists of n states, plus an nXn
transition matrix I
* At each step, we are in exactly one of the states

* For 1 < i,j < n, matrix entry J;; tells us the relative
frequency of j being the next state, given we are
currently in state i

-
=

l]—T(l_)]) {}

Jii >0
[ > ] is OK
f]'ij (self loops)

R
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Some Basics for MCMC

* Markov chain has to be ergodic for MCMC to work

* Markov chain is ergodic if

* You have a path from any state to any other state
(irreducibility)

* No part of the system wanders off

Not
e Returns to states occur at irregular m ergodic
times (aperiodicity) (even/

* Periodicity: Returns to a state are odd).

only possible every ¢ > 1 steps

* For any start state, after a finite transient time T, the
probability of being in any state at a fixedtime T > T is
nonzero (positive recurrence)

e Given a finite state space:
Positive recurrence follows from irreducibility

5 T
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Some Basics for MCMC

* Ergodic theory: about dynamical systems that are
ergodic
e System must be measure-preserving

* Measure on a set: assign a number to
each suitable subset of that set

e Axioms of probability theory
correspond to axioms of measure

theory (Kolmogorov axioms)
— Some ergodic theorems can be

Kolmogorov axioms

1. Probability of an event is a
non-negative real number

2. Assumption of unit measure:
~probabilities add up to 1

. Assumption of g-additivity:
Probability of a set of

applied to probabilistic setting disjoint events equals the
¢S diff sum over the individual
ome aiierences probabilities (independence)

* In ergodic theory
* irreducible + positive recurrent = ergodic and
* irreducible + positive recurrent + aperiodic = mixing
* Whereas in probability theory
* irreducible + aperiodic + positive recurrent = ergodic




Some Basics for MCMC

* For any finite-state ergodic Markov chain, there is a unique
long-term visit rate for each state

» “Steady-state” or stationary distribution

* Over long time-period, each state visited in proportion to this rate
* |t does not matter where we start

— Reason why sampling works with a large enough sampling size

— Stationarity: Transition probabilities between states do not
change over time

* Well-known application that you might have seen:
PageRank, original ranking principle of Google

* Rank set of relevant web pages for a query according to the probabilities
they have in the steady-state distribution (ranking is query independent)

e Markov chain:
* Web pages = states (i.e., being on one and not the others)

* Arrows from one state/webpage to the next if outgoing link from one to the
next

e Transition model T': for each state, uniformly distributed over all outgoing links
« Compute steady state distribution A (as vector): A has to fulfil ATT = AT
e Eigenvector corresponding to eigenvalue 1

aaaa
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Stationary Distribution Formally

* A Markov chain is regular if there exists some
number k such that, for every 1,1’ € R(R), the
probability of getting from 7 to ' in exactly k steps
is> 0

* For finite state spaces: Condition on regularity
equivalent to condition on ergodicity

* Sometimes easier to verify
* |In factor models/MNs:

If all potentials are strictly positive, then the Gibbs-
sampling Markov chain is regular




Stationary Distribution Formally

* Markov chain with transition model T is reversible if
there exists a unique distribution A such that, for all
r,r' € R(R):

AT (r->1r")=A20")T" - r)
* Equation is called detailed balance

 Pick a starting state at random according to A
* Take a random transition from the chosen state according to I

* Asserts that, using this process, probability of a transition
fromr — 1’ is the same as probability of transition from
r ->r

If T is regular and satisfies the detailed
balance equation relative to 4, then /1 is the

unique stationary distribution of 7.




Parallelisation

* Run Gibbs independently on full copies of the same

model
* More samples in the same time
or
* Same samples in fewer time Variable Tally
* Combine individual Jd 111111l
counters in one x / | "\
Complete n - - -
Model Copies U

Run
sequential Gibbs

Data to materialize
factor graph

Figure: Theo Rekatsinas, https://thodrek.github.io/CS839 fall18/lectures/lecture 14/Lecture 14.pdf 47
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Burn-in & Thinning

* Controversial techniques that each
try to solve a problem

* Problem 1: samples start at a
random state that might be highly
unlikely and skew the distribution

* Burn-in/warm-up: tossing the first
N’ < N samples
e Alternatives
 Start at highly likely state if known
e Start at state that a previous run ended in

* Problem 2: as the next state depends
on the previous one, the samples are
no longer independent
(autocorrelation)

. Thinning/subsampling: only taking
every k’th sample
* Does not really solve problem
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A set of random variables following
a mean-zero normal distribution;
startedatx = 10andx =0

http://users.stat.umn.edu/~geyer/mcmc/burn.html

https://besjournals.onlinelibrary.wiley.com/doi/10.1111/.2041-210X.2011.00131.x
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Other Problems with Gibbs Sampling

* Only very local moves over the state space
* One randvar at a time

* In models with tightly correlated randvars, such
moves can lead from highly likely states to states
with very low probability

* With a high probability of moving back to the high-
probability state

e Chain is unlikely to move away from such a state
e Chain will mix slowly

— Consider chains that allow broader range of
moves including larger steps

— Have to construct such a Markov chain with the
same/desired stationary distribution

GERST
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Metropolis-Hastings Algorithm (MH)

 Construct a Markov chain that is reversible with a
particular stationary distribution

* Does not assume that we can generate next-state
samples from a particular target distribution but
uses the idea of a proposal distribution

 c.f. importance sampling for proposal distribution

* Target distribution: next-state sampling distribution at a
desired state

e Sample from proposal distribution and correct for error
e But: do not keep track of importance weights
* Are going to decay exponentially with number of transitions
* Instead: randomly choose whether to accept a proposed

transition with a probability that corrects for the
difference between proposal and target distribution

& INSTITUT FUR INFORMATIONSSYSTEME



Proposal Distribution in MH

* Proposal distribution 79 defines a transition model
over state space R(R)
* For each state r, 79 defines a distribution over possible

successor states in R(R), from which one randomly selects a
candidate next state r’

* Either accept proposal and transition to r’
* Or reject proposal and stay atr
 For each pair of states r, r’, there exists an acceptance
probability A(r - r’)
e Actual transition model of Markov chain:

(Te(r > A > 1) r#ET
Tr-1") =4 Tr - 1) + z 7% > 1r)(1—A@ —>1'")) otherwise
L r'=r

* Choice of proposal distribution arbitrary as long as it induces
a regular chain

aaaa
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Acceptance Probabilities

e Given a proposal distribution 79, select acceptance
probabilities to obtain desired stationary distribution

* Detailed balance equation that has to hold
ANNTe(r->r)A@r->1r)=210")T(r" - rAGT - 1)

* Set A to be

! Q ! -
A(r - r') = min [1 AT > 1)

"A)Te(r > 1)

Let 79 be any proposal distribution. Consider the Markov chain T defined by
Te(r ->r)A(r ->1r") r+r

Tr-1r)= Tor > r) + Z Tor > r')(1—A@ - 1")) otherwise

r'#r

with

Ar)Te(r' - 1)
"AMTe(r->1r) |
If T is regular, then it has the stationary distribution A.

A(r - r') = min [1




MH: Algorithm

* Follows the same procedure as Gibbs sampling
except

* Generate a new state 1; from proposal distribution 779
instead of target distribution T

* Pick or discard r; based on acceptance probability A

function Gibbs(R, e, F, N) returns an estimate of P(R|e)
local variables:
C, a vector of counts over the range values of R, initially 0
S, the non-evidence randvars in F
r, the current state of whole network, initially copied from e
with random values for §

forj=1toNdo
for eac

ample the value s of S to replace in r from P(Slmb(fﬂ'>
iven the values of MB(S) inr

Clr| « C|r OoTRINT
return Normalise(W)

2o
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LIftEd I\/I CMC As far as | know at this point

* No direct transformation of MCMC to lifted models
* But: application of the lifting idea to Markov chains

* Exchangeable Boolean randvars R
* |If for every assignment to all randvars in R, i.e., r € {0,1}¥,
and every permutation g on {0,1}%,
P(R=1r)=P(R =19)
e Can find these so called automorphism groups using colour
passing
* Then, there are k 4+ 1 orbits each containing the
randvar assignments

* Here: Orbit = equivalence class where elements within each
class are mapped to the same probability

@ 0.017

~
@ @ (01 10) 049
(00) 0.003
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Why Do Orbits help?

* Two Boolean random variables and a symmetric
potential function

* Probabilities of states 01 and 10 both 0.49
e States 01 and 10 part of the same orbit

* Assume a standard Gibbs sampler is in state 10
* Probability to transition to 11 or 00 is only 0.02
e Cannot transition directly to state 01 (two changes)
e Chainis “stuck” in 10 until it is able to move to 11 or 00

* With orbital Gibbs sampler, intuitively, while it is
”waitin%” to move to one of the low probability states,
it samples the two high probability states horizontally
uniformly at random from the orbit {01, 10}

* Converges faster than standard Gibbs sampler
e Can show analytically

11 ) 0.017

N’

\/;;\,. /[-,\ 01 10 049

N N

N -
00 ) 0.003
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Orbital Markov Chain

* Assume a standard Markov chain M’ over state
space R(R) with stationary distribution A

* Let ® be an automorphism group on (R(R), 1)

 Orbital Markov chain M for M’ performs:
* Let r’ be the state of M’ at time t
 Sample 1, the state of M at time t, uniformly at random
. [(5 /
from the orbitr’ ~ of r

 If M' is aperiodic/irreducible/reversible, then M
also aperiodic/irreducible/reversible

* So, we can build a Gibbs sampler that converges to
stationary distribution A at least as fast or faster



Orbital Gibbs Sampling

 Two Markov chains,
* One ordinary M’
* One orbital M (based on symmetry groups)

* In each sampling iteration
1. Run a step of traditional MCMC, chain M’

e Select a randvar R uniformly at random
e Sample a value for R based on the current states of M

2. Sample the state of M uniformly at random from the

orbit of the new state of R,
i.e., select an equivalent state uniformly at random

() 0.017
(01__10) 049
0.003
Mathias Niepert: Markov Chains on Orbits of Permutation Groups. In UAI-12 Proceedings of the 28t

Conference on Uncertainty in Artificial Intelligence, 2012. 57
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Lifted MH

Given an orbital Metropolis chain A:
* Given symmetry group G (approx. symmetrieL
* Orbit x% contains all states approx. symmetric to x
* Instate x

Select x” uniformly at random from x¢

Move from x to x'with probability min {If:((xx,)) , 1}

1
2
3. Otherwise: stay in x (reject)
4. Repeat

and an ordinary (base) Markov chain B

Account for

* With prob. a follow B evidence that may
: break symmetries,
+ With (1 — a) follow A USing e.g. approx
symmetries
Guy Van den Broeck and Mathias Niepert: Lifted Probabilistic Inference for Asymmetric Graphical

Models . In AAAI-15 Proceedings of the 29th AAAI Conference on Artificial Intelligence, 2015. 58
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Interim Summary

* Approximate inference based on sampling and counting
helps to overcome complexity of exact inference

* Goodness of approximation depends on the number of
samples generated

* Importance sampling

* Use proposal distribution for sampling, weight samples to
correct the difference between proposal distribution and

target distribution
* Use domain knowledge about groups of indistinguishable
instances to reduce variance

e MCMC sampling
* Build a Markov chain and sample a new state based on the
previous state
* Find orbits for faster convergence
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Setting: Agent with Utilities

4 N 4 N
Precepts
| SENSOrS s
| How the world evolves | m
2
=
=}
>3
3
9
>
~+
Actions
Actuators ——
\Agent J " J
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Agents: Monte Carlo vs. Las Vegas

* Agent has to work with available resources, requires an
answer in a giventime T

* Monte Carlo = Approximate inference (sampling)
* The best possible but not necessarily correct result that could
be generated in the given time
* Las Vegas — Exact inference
 Either get the correct result in the given time or bust!

* Combine Monte Carlo & Las Vegas

e While currenttimet <T
* One thread works on exact inference
* One thread works on approximate inference

* If exact inference produces a result before t reaches T, break
and return result

* Otherwise: use result of approximate inference at T

,,,,,
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Outline: 5. Approximate Inference

A. (Lifted) sampling
* Importance sampling: Likelihood weighting, importance
sampling, lifted importance sampling (LIS)

* Markov Chain Monte Carlo (MCMC) sampling: Gibbs
Sampling, Metropolis Hastings, Lifted MCMC

= Next: Sequential Models & Inference




