
Intelligent Agents:
Web-mining Agents

Probabilistic Graphical Models

Sequential Models & Inference

Tanya Braun



Probabilistic Graphical Models (PGMs)
1. Recap: Propositional 

modelling
• Factor model, Bayesian 

network, Markov network
• Semantics, inference tasks 

+ algorithms + complexity
2. Probabilistic relational 

models (PRMs)
• Parameterised models, Markov 

logic networks
• Semantics, inference tasks

3. Lifted inference
• LVE, LJT, FOKC
• Theoretical analysis

4. Lifted learning 
• Recap: propositional learning
• From ground to lifted models
• Direct lifted learning

5. Approximate Inference: 
Sampling
• Importance sampling
• MCMC methods

6. Sequential models & 
inference
• Dynamic PRMs
• Semantics, inference tasks 

+ algorithms + complexity, 
learning

7. Decision making
• (Dynamic) Decision PRMs
• Semantics, inference tasks 

+ algorithms, learning
8. Continuous Models

• Probabilistic soft logic: 
modelling, semantics, inference 
tasks + algorithms

2



Setting: Agent with Utilities

3AIMA, Russell/Norvig



A Note on Naming Conventions
• Common names for the same thing in PGMs
• Dynamic

• BUT: stationary in terms of how a state changes from the 
previous the current one 
• State does change and has an influence on the next one

• Temporal
• Changes between states considered due to time moving 

forward, i.e., a temporal state sequence
• Implicit direction of edges towards the future
• Simplifying assumption: Discrete time steps indexed by integer (!)

• Sequential
• Generalised version of the notion “temporal” as the sequence 

may occur not only due to time moving forward but because of 
something else (e.g., spatial movement, sequence of words in 
text; implicitly, then also time moves forward)

4



Remember in IR Topic 4: DBNs
• Actually, a specific DBN: Hidden Markov model (HMM)
• One state randvar !"

• Latent (hidden)
• One evidence randvar #"

• Observable
➝Two CPTs (+ prior for !$)

• State transition: % !"|!"'(
• Evidence emission: % #"|!"

5

Raint-1

Umbrellat-1

Raint

Umbrellat

Rt-1 P(Rt|Rt-1)
T
F

0.7
0.3

Rt P(Ut|Rt)
T
F

0.9
0.2

Rain0
…

P(R0)

• Copy pattern over )
with a start description 
for ) = 0

Time slices



DBNs: Generalising HMMs
• Set of randvars

• Some latent, some observable 
(marked grey in figure)

• Set of CPTs connecting randvars 
(+ description for ! = 0)
• Within a time step: 

only ! occur as indices

• Between time steps: 
different !’s occur as indices

• If only ! and ! − 1 occur: 
Markov-1 assumption (as in HMMs)

• Copied for each time step

• Turn a discrete DBN into an HMM by combining all 
latent randvars into one and all observable randvars 
into another randvar, multiplying CPTs accordingly

• Gives up the (conditional) independences between randvars ➝ may (greatly) increase the number of entries in the CPTs

6

Time slices

Figure: Kevin P. Murphy: Dynamic Bayesian Networks: Representation, Inference and Learning. PhD thesis, University 

of California, Berkeley, 2002.



Tasks in HMMs
• Query ! "#|%&:( , ) the current step
• Filtering: * = )
• Prediction: * > )
• Hindsight: * < )

• Also called smoothing
• MPE

• In HMMs: solved by 
Viterbi algorithm

7

Raint-1

Umbrellat-1

Raint

Umbrellat

Rain0
…

• State variable is a separating subset
between the past, i.e., all randvars indexed 
with . < ), and the future, i.e., all randvars 
indexed with . > )

➝ Allows for propagation algorithm
• Forward pass for filtering/prediction
• Additional backward pass for hindsight

Time slices

Shorthand notation for a set of observations 
for % over all steps from 0 to .



Solving Tasks in DBNs
• Not one randvar that separates past from future
• Find separating subset that make the past 

independent from the present and the present 
independent from the future
• So called interface

• Separates current slice from previous and subsequent slices

• To automatically find
interfaces and specify 
a similar propagation 
algorithm, we will use 
jtrees again
• Collect information about

past at forward interface
and send it onwards

8
Time slicesKevin P. Murphy: Dynamic Bayesian Networks: Representation, Inference 

and Learning. PhD thesis, University of California, Berkeley, 2002.



Outline: 6. Sequential Models & Inf.
A. Lifted modelling of sequences
• Parameterised dynamic models (PDMs)
• Modelling, semantics

B. Lifted dynamic inference
• Inference tasks
• Interfaces
• Lifted dynamic junction tree algorithm (LDJT)
• Theoretical analysis: complexity

C. Keeping inference polynomial
• Problem of evidence over time in lifted models
• Temporal approximate merging (TAMe)

9



Step/Time-indexed PRVs
• PRVs get an index referring to its position in the 

sequence of states/time
• Previous version: ! = # $%,… , $(

• Combination of a randvar name # and ) logvars $*
• If ) = 0: ! = # constitutes a propositional randvar

• Sequential version: !, = # $%,… , $( ,
• Sequential indices as subscript, other indices as superscript
• Combination of a randvar name # and ) logvars $* and an 

index -
• If ) = 0: !, = #, constitutes a propositional randvar indexed by -

• Only the PRV as a whole is indexed by -, not the individual 
logvars
• I.e., # $%, … , $( , ≠ # $%, … , $( ,/%
• But, 01 # $%, … , $( , = $%, … , $( = 01 # $%, … , $( ,/%

10
Marcel Gehrke, Tanya Braun, and Ralf Möller. Lifted Dynamic Junction Tree Algorithm. In ICCS-18 Proceedings of the 
International Conference on Conceptual Structures, 2018.



Parameterised Dynamic Models (PDMs)
• Assumptions: Markov-1, stationary process
• PDM ! = !#, !→ where

• !# is a PM describing the intra-time slice behaviour for & = 0:
!# = (#

)
)*+

,-

• (#) = .#
) /#

+, … , /#
12

|4-
2

• !→ is a PM describing the intra- and 
inter-time slice behaviour for & > 0

!→ = !67+ ∪ !6 ∪ !67+,6
• !6 = (6

9
9*+

,: , (6
9 = .6

9 ;6
+, … , ;6

1<
|4:
<

• !67+ = !6|6 =>?1@A>B CD 67+

• !67+,6 = (E
E*+

,
, (E = . ;F

+ , … , ;F
1G

|4
, H ∈ & − 1, &

• In the general setting, it usually holds !6 ⊆ !#|# =>?1@A>B CD 6
• i.e., there is a correspondence between !# and !6 (and !67+)

11

Also called a 2-(time) slice model 
as it contains descriptions for two 
time slices

Marcel Gehrke, Tanya Braun, and Ralf Möller. Lifted Dynamic Junction Tree Algorithm. In ICCS-18 Proceedings of the 
International Conference on Conceptual Structures, 2018.



PDM: Example
• !" = $"%, $"', $"(

• !→ = $*+%' , $*+%( ∪ $*', $*( ∪ $-

12

Time slices

./0123 4 *+%

./205 4,6 *+%
789:*+%

;9<= 4 *+%

$*+%($*+%'

./0123 4 *

./205 4,6 *
789:*

;9<= 4 *

$*($*'

$-

./0123 4 "

./205 4,6 "
789:"

;9<= 4 "

$"($"'

$"%



HMMs as PDMs
• PDM ! = !#, !→
• !# = &' '()

*+

• !→ =
!,-) ∪ !, ∪ !,-),,

• In the HMM setting, 
• !# = / 0#
• !, = / 1, 0,
• !,-) = / 1,-) 0,-)
• !,-),, = / 0,|0,-)

13

Raint-1

Umbrellat-1

Raint

Umbrellat

Rt-1 P(Rt|Rt-1)
T
F

0.7
0.3

Rt P(Ut|Rt)
T
F

0.9
0.2

Rain0
…

P(R0)

Time slices



1.5-slice Model
• Information about transition behaviour and one 

(time) slice
• Defines a copy pattern for each new step appended

• Formally,
!→#.% = !' ∪ !')#,'

• where !' and !')#,' are defined as before
• !' = +', ,-#

./ , +', = 0', 1'#, … , 1'
34

|6/4

• !')#,' = +7 7-#
. , +7 = 0 18# , … , 18

39
|6
, : ∈ < − 1, <

• If given a 2-slice model !→, remove all parfactors +
where ?@ + contains only PRVs with index < − 1

14



1.5-slice Model: Example
• 2-slice model

• 1.5-slice model

15

!"#$%& ' ()*

!"%#+ ',- ()*
./01()*

2034 ' ()*

5()*65()*7

!"#$%& ' (

!"%#+ ',- (
./01(

2034 ' (

5(65(7

58

./01()*

2034 ' ()* !"#$%& ' (

!"%#+ ',- (
./01(

2034 ' (

5(65(7

58



Unrolling a PDM
• Given a maximum step size !, unroll " for ! steps
• Start with # = 0: Use "&
• For each # < !: Instantiate "→).+ for #

• Instantiate: replace , by #
• PRVs with index # − 1 refer to PRVs instantiated for # − 1

• Especially obvious in a graphical representation

• Formally, given a PDM " = "&, "→ and number !

"&:1 = 234566 ", ! = "& ∪8
9:)

1
"→|< =>?@AB>C DE 9).+

• "&:1 is a standard PM as defined before

16



Unrolling a PDM: Example – ! = 2

$%:' = ()*+,, $, 2 = $% ∪/
012

'

$→|5 6789:;7< => 0
2.@

17

!*ABC, D %

!*CAE D,F %

GHIJ%

KILM D %

N%
ON%

'

N%
2

GHIJ5P2

KILM D 5P2 !*ABC, D 5

!*CAE D,F 5

GHIJ5

KILM D 5

N5
ON5

'

NQ

$% and $→2.@



Unrolling a PDM: Example – ! = 0

$%:' = ()*+,, $, 2 = $% ∪0
123

'

$→|6 789:;<8= >? 13.A

18

B*CDE, F %

B*ECG F,H %

IJKL%

MKNO F %

P%QP%'

P%3

As ! = 0, use $%



Unrolling a PDM: Example – ! = 1

$%:' = ()*+,, $, 2 = $% ∪0
123

'

$→|6 789:;<8= >? 13.A

19

B*CDE, F %

B*ECG F,H %

IJKL%

MKNO F %

P%QP%'

P%3

IJKL3R3

MKNO F 3R3 B*CDE, F 3

B*ECG F,H 3

IJKL3

MKNO F 3

P6QP6'

PS

Instantiate $→3.A for ! = 1, 
i.e., replace G with !



Unrolling a PDM: Example – ! = 1

$%:' = ()*+,, $, 2 = $% ∪0
123

'

$→|6 789:;<8= >? 13.A

20

B*CDE, F %

B*ECG F,H %

IJKL%

MKNO F %

P%QP%'

P%3

IJKL%

MKNO F % B*CDE, F 3

B*ECG F,H 3

IJKL3

MKNO F 3

P6QP6'

PR

Add to $% (append to $%
in terms of the graph)



Unrolling a PDM: Example – ! = 1

$%:' = ()*+,, $, 2 = $% ∪0
123

'

$→|6 789:;<8= >? 13.A

21

B*CDE, F %

B*ECG F,H %

IJKL%

MKNO F %

P%QP%'

P%3

B*CDE, F 3

B*ECG F,H 3

IJKL3

MKNO F 3

P6QP6'

PR

$%:1 = $%:3 = $% ∪ $→|6 789:;<8= >? 33.A



Unrolling a PDM: Example – ! = 2

$%:' = ()*+,, $, 2 = $% ∪/
012

'

$→|5 6789:;7< => 0
2.@

22

Instantiate $→2.@ for ! = 2 and add to $%:2

A*BCD, E %

A*DBF E,G %

HIJK%

LJMN E %

O%PO%
'

O%2

A*BCD, E 2

A*DBF E,G 2

HIJK2

LJMN E 2

O5
PO5'

OQ

A*BCD, E '

A*DBF E,G '

HIJK'

LJMN E '

O5PO5'

OQ

$%:0 = $%:' = ()*+,, $, 2



PDM: Semantics
• Given a PDM ! = !#, !→ and number &, 

semantics as defined for PMs
• Unrolling for & steps, grounding, and building a full joint 

distribution

' (,) =
1
+

,
-∈/0 (1:3

4

• After unrolling for & = 2

23

&6789: ; #

&697< ;,= #

>?@A#

B@CD ; #

E#FE#G

E#H

&6789: ; H

&697< ;,= H

>?@AH

B@CD ; H

EIFEIG

EJ

&6789: ; G

&697< ;,= G

>?@AG

B@CD ; G

EIFEIG

EJ

Marcel Gehrke, Tanya Braun, and Ralf Möller. Lifted Dynamic Junction Tree Algorithm. In ICCS-18 Proceedings of the 
International Conference on Conceptual Structures, 2018.



PDM: Semantics
• After grounding
• ! " = $, &, ' , ! ( = )

24

*+$,&- $ .

*+&$/ $,) .
0123.

4256 $ .

7.87.9

7.:

*+$,&- $ :

*+&$/ $,) :
0123:

4256 $ :

17:9

7<

*+$,&- $ 9

*+&$/ $,) 9
01239

4256 $ 9

798799

7<

*+$,&- & .

*+&$/ &,) .

4256 & .

7.87.9

7<

*+$,&- & :

*+&$/ &,) :

4256 & :

7:87:9

*+$,&- & 9

*+&$/ &,) 9

4256 & 9

798799

7<

*+$,&- ' .

*+&$/ ',) .

4256 ' .

7.87.9

7<

*+$,&- ' :

*+&$/ ',) :

4256 ' :

7:87:9

*+$,&- ' 9

*+&$/ ',) 9

4256 ' 9

798799

7<



PDM: Semantics
• Full joint is then a probability distribution over

!"#$%, !"#$', !"#$(
)#*+ , %, )#*+ , ', )#*+ , (
)#*+ - %, )#*+ - ', )#*+ - (
)#*+ . %, )#*+ . ', )#*+ . (

/0,1-2 , %, /0,1-2 , ', /0,1-2 , (
/0,1-2 - %, /0,1-2 - ', /0,1-2 - (
/0,1-2 . %, /0,1-2 . ', /0,1-2 . (

/0-,3 ,,4 %, /0-,3 ,,4 ', /0-,3 ,,4 (
/0-,3 -,4 %, /0-,3 -,4 ', /0-,3 -,4 (
/0-,3 .,4 %, /0-,3 .,4 ', /0-,3 .,4 (

• Size: 26%
• Boolean ranges

25



Interim Summary
• Modelling Sequential Data
• Assumption: Markov-1, stationary process
• Dynamic model consists of two static models

• One to describe the first step
• One to describe the transition from one to the other

• Copy pattern

• Semantics by unrolling for ! steps

• Actually, whether it is HMMs, DBNs, PDMs or 
dynamic MLNs ➝ same basic structure/idea

26



Outline: 6. Sequential Models & Inf.
A. Lifted modelling of sequences
• Parameterised dynamic models (PDMs)
• Modelling, semantics

B. Lifted dynamic inference
• Inference tasks
• Interfaces
• Lifted dynamic junction tree algorithm (LDJT)
• Theoretical analysis: complexity, completeness

C. Keeping inference polynomial
• Problem of evidence over time in lifted models
• Temporal approximate merging (TAMe)

27



PDM: Tasks
• As before: Query ! "#|%&:( , ) the current step
• Filtering: * = )
• Prediction: * > )
• Hindsight (smoothing): * < )

• Restricted to one (grounded) PRV or propositional 
randvar "# as a query term for the moment
• Parameterised queries ok if single query term

• %&:( contains for each step ). a set of events
/(01 = 2 134

5
(03&

(

• 2 ∈ ℛ /81

28
Marcel Gehrke, Tanya Braun, and Ralf Möller. Lifted Dynamic Junction Tree Algorithm. In ICCS-18 Proceedings of the 
International Conference on Conceptual Structures, 2018.



Naïve Inference by Unrolling
• Given a PDM ! = !#, !→ , (a number &), and a 

query ' ()|+#:-.
• Unroll model for & steps and use any inference 

algorithm of one’s liking to answer ' ()|+#:-.
• &/ ≤ &, 1 ≤ &, could determine & to be & = max &/, 1

• Problems:
• Unrolled models get very large
• Restart if &, (), +#:-. changes

• Scenario of step 5 increasing with new evidence coming in
• New !→6.8 has to be added, evidence re-entered/added

• Naïve inference on unrolled models not efficient
• Aim: Work with one current model that can 

efficiently handle increasing 5 and different queries

29



Clustering
• Remember: Parclusters are sets of PRVs enough for 

query answering
• Arranged in an acyclic graph (FO jtree)
• Messages provide information over separators of 

remaining part of model, make a parcluster independent 
from its neighbours

• Want something similar for sequential inference 
where slices are independent given separating 
subsets, so-called interfaces, between them

30

!"

#$%& '%() *
+,-./0 *

!1

#$%& '%() *
+,/-2 *,4

!5

#$%& 6-2 7
4-8 9 #$%& #$%&

'%() *
:5 :" :1



Clustering
• In unrolled example, want interfaces such that the 

following independences hold
• !" independent from !#:%
• !# independent from !", !%
• !% independent from !":#

31

'()*+, - "

'(+). -,/ "
0123"

4256 - "

7"87"%

7"#

'()*+, - #

'(+). -,/ #
0123#

4256 - #

79879%

7:

'()*+, - %

'(+). -,/ %
0123%

4256 - %

79879%

7:



PDM: Interfaces
• Separating subsets that make the past independent 

from the present and the present independent 
from the future
• Relevant model parts: transition parfactors

• Those that contain PRVs with index ! − 1 and !

32
Time slices

$%&'() * +,-

$%(&! *,/ +,-
01234,5

6278 9 4,5

:+,-;:+,-<

$%&'() * +

$%(&! *,/ +
01234

=>?@ * +

:+;:+<

A0

Marcel Gehrke, Tanya Braun, and Ralf Möller. Lifted Dynamic 
Junction Tree Algorithm. In ICCS-18 Proceedings of the 
International Conference on Conceptual Structures, 2018.



PDM: Interfaces
• PRVs with index ! − 1 in transition parfactors

• Called forward interface (separate ! − 1 from next slice !) but 
works in both directions
• As each slice is a copy of the previous one, if the interface 

separates $% from $%&', it also separates $%&' from $%
• Backward interface: Find the PRVS that separate ! from ! − 1

• See Murphy (2002) for a discussion

• Formally, given a PDM $ = $), $→
,%&' = -%&'|∃0 ∈ $→ ∶ -%&' ∈ 34 0 ∧ ∃-% ∈ 34 0
• Could also work with $→'.7

33
Time slices

8394:; < %&'

83:9! <,= %&'

>?@AB&C

D@EF G B&C

0%&'
H0%&'

I

8394:; < %

83:9! <,= %

JKLM%

NLOP < %

0%
H0%

I

0Q

Marcel Gehrke, Tanya Braun, and Ralf Möller. Lifted Dynamic 
Junction Tree Algorithm. In ICCS-18 Proceedings of the 
International Conference on Conceptual Structures, 2018.



PDM: Interfaces – Moving forward
• After one is finished with inference for !, basically ask a 

query for "# on the current model $# (as in a message in 
LJT) and include that information when instantiating a 
model $→ for ! + 1
• Use FO jtrees and message passing

• Make sure that "()* occurs in one parcluster
• How? By adding a parfactor +, = . "()*

• By the FO jtree properties, there then is a parcluster containing "()*
• +, can be removed after FO jtree construction 

• If not removed ➝ . has to be equally distributed

34
Time slices

/01234 5 ()*

/0316 5,8 ()*

9:;<=)>

?;@A B =)>

+()*C+()*D

/01234 5 (

/0316 5,8 (

EFGH(

IGJK 5 (

+(C+(D

+L

Marcel Gehrke, Tanya Braun, and Ralf Möller. Lifted Dynamic 
Junction Tree Algorithm. In ICCS-18 Proceedings of the 
International Conference on Conceptual Structures, 2018.



PDM: Incluster & Outcluster
• Parcluster that contains !"#$➝ incluster

• From the perspective of %: separates past from present
• Receives incoming information from outcluster of previous 

step
• Parcluster that contains !" ➝ outcluster

• From the perspective of %: separates present from future
• Sends information out to incluster of next step

• Present will become past for the next step so !"#$ and 
!" needed

35
Time slices

&'()*+ , "#$

&'*(% ,,. "#$
/0123#4

5167 8 3#4

9"#$:9"#$;

&'()*+ , "

&'*(% ,,. "
<=>?"

@>AB , "

9":9";

9C

Marcel Gehrke, Tanya Braun, and Ralf Möller. Lifted Dynamic 
Junction Tree Algorithm. In ICCS-18 Proceedings of the 
International Conference on Conceptual Structures, 2018.



Dynamic FO Jtrees
• Given an interface !"#$ for a PDM % = %', %→
• Build two FO jtrees *', *→ for %
• *' for %' ∪ , !'

• !' in one parcluster (outcluster)
• *→ for %→$.. ∪ , !"#$ , , !"

• !"#$ in one parcluster (incluster)
• !" in one parcluster (outcluster)

• Standard FO jtree construction works

36
Time slices

/01234 5 "#$

/0316 5,7 "#$

89:;<#=

>:?@ A <#=

B"#$CB"#$D

/01234 5 "

/0316 5,7 "

EFGH"

IGJK 5 "

B"CB"D

BL

An FO jtree * = M, E consists
of a set of parclusters M as nodes
and a set of undirected edges E

Marcel Gehrke, Tanya Braun, and Ralf Möller. Lifted Dynamic 
Junction Tree Algorithm. In ICCS-18 Proceedings of the 
International Conference on Conceptual Structures, 2018.



Dynamic FO Jtrees: Example
• !" for #" ∪ %"&

• Here, both parclusters contain the interface 
variables
• Both could be outcluster
• Outcluster determined by which parcluster contains %&

37

'()*+, - "

'(+). -,0 "
12345

6378 9 5

%":%";

%"<
%"&

%"& Remove%"<, %";

%":

=>?@" A?BC - "
'()*+, - "

=>?@" A?BC - "
'(+). -,0 "

D"EFG

D"<



Dynamic FO Jtrees: Example
• !→ for #→$.& ∪ ()*$+ , ()+

38

-./0)*$

1/23 4 )*$ 56789: 4 )

5697; 4,< )
-./0)

1/23 4 )

()=()>

(? ()+

()*$+

()>

()=

-./0) 1/23 4 )
56789: 4 )

-./0) 1/23 4 )
5697; 4,< )

()+

-./0)*$ 1/23 4 )*$
-./0)

(? ()*$+
@$AB)

@$$

@$CD
Remove



Dynamic FO Jtrees: Unrolling
• Given two FO jtrees !", !→ for % and a number &, 

unroll the FO jtree by
• For ' = 0, taking !" = *", +"
• For ' < &, taking !→ = *→, +→ instantiated for '
• For all ' − 1, ', adding an edge between outcluster of 
' − 1 and incluster of '

• Formally, !":0 = *, + where

* = *" ∪2
345

0
*3

+ = +" ∪2
345

0
+3 ∪2

345

0
678, 9: ;3<5=>? ∧ ;3AB

39



40

• ! = 2
• $ = 0

• $ = 1

'()

'(*

+,-.( /-01 2 (
!34567 2 (

+,-.( /-01 2 (
!3648 2,: (

+,-.; /-01 2 ;
+,-.(

'<
=(>?@

=((

=(AB

';(, ';)

';*

+,-.; /-01 2 ;
!34567 2 ;

+,-.; /-01 2 ;
!3648 2,: ;

=;>?@

=;(

';(, ';)

';*

+,-.; /-01 2 ;
!34567 2 ;

+,-.; /-01 2 ;
!3648 2,: ;

=;>?@

=;(



Dynamic FO Jtrees: Unrolling – ! = 2
• $ = ! = 2

• Unrolling unnecessary!
• Because of the interface, current FO jtree %& enough to 

answer queries about current step $
• Inference within one step ➝ LJT
• Moving forward ➝ send message from '&()* to '&+,-.

41

/,0

/,1

2345, 6478 9 ,
!:;<=> 9 ,

2345, 6478 9 ,
!:=;? 9,A ,

2345B 6478 9 B
2345,
/C

',()*

',,

',-.

/B,, /B0

/B1

2345B 6478 9 B
!:;<=> 9 B

2345B 6478 9 B
!:=;? 9,A B

'B()*

'B,

/00

/01

23450 6478 9 0
!:;<=> 9 0

23450 6478 9 0
!:=;? 9,A 0

2345, 6478 9 ,
23450
/C

'0()*

'0,

'0-.



Moving Forward
• Inference within a step ! will follow LJT

• One can ask a set of queries for ! efficiently

• Ensures that all information is available at "#$%& to 

calculate the forward message that makes ! + 1
independent from !

• Moving forward:

• Calculate a forward message )# over the separator 

between "#$%& and "#*+,- using local model .#$%& and 

messages /#
0,$%&

• Instantiate 2→ for ! + 1
• Add )# to local model of "#*+,-
• Drop 2#
• Perform inference in 2#*+

42
Marcel Gehrke, Tanya Braun, and Ralf Möller. Lifted Dynamic Junction Tree Algorithm. In ICCS-18 Proceedings of the 
International Conference on Conceptual Structures, 2018.



Moving Forward: Example
• ! = 0
• Current FO jtree
• Intra-slice messages: 
$%
&,()*, $%

()*,&

• Answer queries for 
+ ,%|.%

• Inter-slice message: /%
• Eliminate non-separator 

PRV 012345 6 % from 
local model 7%()* =
8%&, 8%9 and $%

&,()*

• Send result as message 
/% to :&;<

43

=>?@% A?BC 6 %
=>?@&

8D
:&;<

8%&, 8%9

8%E

=>?@% A?BC 6 %
012345 6 %

=>?@% A?BC 6 %
0142F 6,G %

:%()*

:%&

$%
()*,&

$%
&,()*

=>?@%
A?BC 6 %

/%

/% contains all information from 7% including .%, 
making step 0 and 1 independent

Next: Instantiate an FO jtree for ! = 1
and add /% to the local model of :&;<



Moving Forward: Example
• ! = 1
• Current FO jtree
• Intra-slice messages: 
$%
&'(,*+, $,

*+,&'(, 
$%
,,&'(, $%

&'(,,

• Answer queries for 
- .,|0%:,

• Inter-slice message: 2,
• Eliminate non-separator 

PRV 345678 9 , from 
local model :,&'( = ;,<
and $,

,,&'(,$,
*+,&'(

• Send 2, to =<*+

44

>?@A, B@CD 9 ,
>?@A<

;E
=<*+

$,
&'(,,

$,
,,&'(, $,

*+,&'(

>?@A,
B@CD 9 ,

2% ;,<

;,F

>?@A, B@CD 9 ,
345678 9 ,

>?@A, B@CD 9 ,
3475G 9,H ,

>?@A% B@CD 9 %
>?@A,

;E
=,&'(

=,,

=,*+

$,
&'(,*+

During message passing, the information in 2% is 
passed around as well and therefore also included 
when calculating 2,. 
2, now includes information of :%:, including 0%:,, 
making step 1 and 2 independent.

2,

Next: Instantiate an 
FO jtree for ! = 2
and add 2, to the 
local model of =<*+



Filtering
• Queries answered in this fashion: filtering queries
• ! "#|%&:#
• Queries for the current 

step given all previous 
evidence
• Upsides

• Only one current FO jtree
• One additional message to

move forward

• What about prediction and hindsight?
• ! "(|%&:# , ) ≠ +

45

,-.

,-/

0123- 4256 7 -
89:;<= 7 -

0123- 4256 7 -
89<:> 7,@ -

0123& 4256 7 &
0123-

,A
B-CDE

B--

B-FG

Marcel Gehrke, Tanya Braun, and Ralf Möller. Lifted Dynamic Junction Tree Algorithm. In ICCS-18 Proceedings of the 
International Conference on Conceptual Structures, 2018.



Prediction
• Prediction queries for future PRV instances
• ! "#|%&:( , ) > +
• Flashing into the future, i.e., moving forward to )

without seeing evidence in between, i.e.,
• Filtering query ! "#|%&:# where the evidence sets between 
+ + 1 and ) in %&:# are empty: %(./:# = ∅(2 (23(./#

• Prediction query answering
• Given + current step
• Move forward until + = )

• When moving forward, only an inbound message pass with the 
outcluster as centre is necessary

• Answer query with query term "#
• If only one query, locate parcluster 4#5 containing "# and 

trigger one inbound message pass with 4#5 as centre
• Otherwise, perform complete message passing

46

Saves half of 
the messages

Marcel Gehrke, Tanya Braun, and Ralf Möller. Lifted Dynamic Junction Tree Algorithm. In ICCS-18 Proceedings of the 
International Conference on Conceptual Structures, 2018.



Prediction: Example
• ! "#$%&|():+ , 3 > 1
• No evidence for steps 2 and 3: (0:& = ∅34 3450

&

• Given 6 = 1 current step, move forward until 6 = 3, 
then answer query with query term "#$%&
• 6 = 2, current FO jtree with 7+ in local model of 809:

• Send intra-slice messages towards 80;<= (collect all information 
at outcluster); also, no evidence entering as ∅0

• Calculate inter-slice message 70

47

>00

>0&

"#$%0 ?$@A B 0
CDEFGH B 0

"#$%0 ?$@A B 0
CDGEI B,K 0

"#$%+ ?$@A B +
"#$%0

>L
80;<=

80+

809:

7+ M0
+,;<=, M0

9:,;<=

70



Prediction: Example
• ! "#$%&|():+ , 3 > 1
• / = 3, current FO jtree with 12 in local model of 3&45
• If answering only "#$%&, collect messages at one of the 

parclusters, e.g., 3&45 and answer query
• If so, no need to also calculate 6&

45,89:,6&
89:,+

48

;&2

;&&

"#$%& <$=> ? &
@ABCDE ? &

"#$%& <$=> ? &
@ADBF ?,G &

"#$%2 <$=> ? 2
"#$%&

;H
3&89:

3&+

3&45

12 6&
+,89:6&

89:,45



Hindsight: Moving Back Again
• Hindsight queries for past PRV instances
• ! "#|%&:( , ) < +
• Looking back given what we know now in terms of 

evidence, i.e., 
• From the current step +, we have to go back and send the 

information accumulated between ) and + to ) and then 
answer a filtering query in step ) again

• Hindsight query answering
• Given + current step
• Move backward until + = )

• Calculate backward messages -( starting from + until )
• When moving backward, only an inbound message pass with the 

incluster as centre is necessary

• Answer query with query term "#
49

Marcel Gehrke, Tanya Braun, and Ralf Möller. Relational Forward Backward Algorithm for Multiple Queries. In FLAIRS-32 
Proceedings of the 32nd International Florida Artificial Intelligence Research Society Conference, 2019.



Hindsight: Backward Message !"
• Same as forward but sent from #"$% to #"&'()*

• Forward message +" contains all information on ,-:"
including /-:", making 0 + 1 independent from 0

• Backward message !" contains all information on ,":3
including /":3, making 0 − 1 independent from 0
• Exclude forward message +"&' for calculation, as that information 

is already present at slide 0

• E.g., calculate !5 by eliminating 67895 from :;, <5
()*,$%

(without +>)

50

:5>

:55

67895 ?8@A B 5
CDEFGH B 5

67895 ?8@A B 5
CDGEI B,J 5

6789> ?8@A B >
67895

:;
K5()*

K5'

K5$%

+> <5
$%,()*, <5

',()*<5
()*,$%

6789>
?8@A B >

:>>

6789> ?8@A B >
CDEFGH B > K>()*

<5
()*,'

!5

Marcel Gehrke, Tanya Braun, and Ralf Möller. Relational Forward Backward Algorithm for Multiple Queries. In FLAIRS-32 
Proceedings of the 32nd International Florida Artificial Intelligence Research Society Conference, 2019.



Hindsight: Independences
• Given ! "#|%&:( , ) < +, at goal slice ), 
• Forward message ,#-. contains all information on 
/&:#-. including %&:#-., making ) independent of ) − 1
• Requires storing forward messages ,(; otherwise, one would 

have to re-do moving forward from 0 to )
• Backward message 3#4. contains all information on 
/#4.:( including %#4.:(, making ) independent of ) + 1

51

6.
7

6.
8

9:;<. =;>? @ .

ABCDEF @ .

9:;<. =;>? @ .

ABECG @,I .

9:;<& =;>? @ &

9:;<.

6J

K.
LMN

K.
.

K.
OP

,&

9:;<.
=;>? @ .

38

9:;<&
=;>? @ &

Marcel Gehrke, Tanya Braun, and Ralf Möller. Relational Forward Backward Algorithm for Multiple Queries. In FLAIRS-32 
Proceedings of the 32nd International Florida Artificial Intelligence Research Society Conference, 2019.



Hindsight: Example
• ! "#$%&|():+ , 1 < 3
• Given / = 3 current step, move backward until / = 1, 

then answer query with query term "#$%&
• / = 3, current FO jtree with 12 in local model of 3+45

• Calculate backward message 6+
• Instantiate an FO jtree for / = 2, add 6+ to local model of 3289:

52

;+2

;++

"#$%+ <$=> ? +
@ABCDE ? +

"#$%+ <$=> ? +
@ADBF ?,H +

"#$%2 <$=> ? 2
"#$%+

;I
3+89:

3+&

3+45

12 J+
45,89:, J+

&,89:J+
89:,45

"#$%2
<$=> ? 2

;22

"#$%2 <$=> ? 2
@ABCDE ? 2 3289:

J+
89:,&

6+



Hindsight: Example
• ! "#$%&|():+ , 1 < 3
• / = 2, current FO jtree with 2+ in local model of 34567

• Enter evidence (4, send messages inbound to 3489

• Calculate backward message 24, ignoring :&
• Instantiate an FO jtree for / = 1, add 24 to local model of 3&567

53

;44

;4+

"#$%4 <$=> ? 4
@ABCDE ? 4

"#$%4 <$=> ? 4
@ADBF ?,H 4

"#$%& <$=> ? &
"#$%4

;I
34567

34&

3489

:& J4
&,567J4

567,89

"#$%&
<$=> ? &

;&4

"#$%& <$=> ? &
@ABCDE ? & 3&567

24 2+



Hindsight: Example
• ! "#$%&|():+ , 1 < 3
• / = 1, current FO jtree with 12 in local model of 3&456

• Enter evidence (&
• If answering only "#$%&, collect messages at one of the 

parclusters, e.g., 3&& and answer query
• If so, no need to also calculate 7&

456,9:, 7&
&,456

54

;&2

;&+

"#$%& <$=> ? &
@ABCDE ? &

"#$%& <$=> ? &
@ADBF ?,G &

"#$%) <$=> ? )
"#$%&

;H
3&456

3&&

3&9:

I)

"#$%&
<$=> ? &

12

"#$%)
<$=> ? )

7&
9:,456

7&
456,&



General Query Answering
• Relational forward-backward algorithm for all types 

of queries, Filtering, prediction, hindsight

• Set of queries !":$% = '()* *+,
-.

/+"

$%

• Basically a stream of queries
• For efficiency, go through !":$% by 0 and through each 
'()* *+,

-. by type of query and 1*
1. Filtering queries
2. Prediction queries, ordered by increasing 1*
3. Hindsight queries, ordered by decreasing 1*
• Order of 2. and 3. could be exchanged

55
Marcel Gehrke, Tanya Braun, and Ralf Möller. Relational Forward Backward Algorithm for Multiple Queries. In FLAIRS-32 
Proceedings of the 32nd International Florida Artificial Intelligence Research Society Conference, 2019.



General Query Answering
• Given ! as the current step with query terms 
"#$% %&'

() and a completed message pass for !
• For all "#$% where ! = +%, answer "#$% in ,-
• For all "#$% where ! < +%, move forward without 

evidence until max% +%
• Instantiate FO jtrees and calculate messages accordingly
• Whenever ! = +% while moving forward, answer "#$%

• For all "#$% where ! > +%, move backward until min% +%
• Instantiate FO jtrees, enter evidence, and calculate messages 

accordingly 
• Whenever ! = +% while moving backward, answer "#$%

56
Marcel Gehrke, Tanya Braun, and Ralf Möller. Relational Forward Backward Algorithm for Multiple Queries. In FLAIRS-32 
Proceedings of the 32nd International Florida Artificial Intelligence Research Society Conference, 2019.



Lifted Dynamic Jtree Algorithm (LDJT)
procedure LDJT( %&, %→ , )&:+,, -&:+.)

Build 1.5-slice model %→/.1
Construct FO jtree 2&, 2→ for %& and %→/.1
for 3 in 0…67 do

Instantiate 28
Add 98:/ to incluster of 28 ▹if 3 > 0
Enter evidence -8 into 28
Pass messages in 28
Answer queries )8
Calculate 98

• In online inference, two streams, one for incoming 
evidence, one for incoming queries instead of inputs 
)&:+,, -&:+.

57

LDJT

Marcel Gehrke, Tanya Braun, and Ralf Möller. Relational Forward Backward Algorithm for Multiple Queries. In FLAIRS-32 
Proceedings of the 32nd International Florida Artificial Intelligence Research Society Conference, 2019.



Approaches to Backward Passes
• Backward passes as presented so far require 

recalculating some of the messages
• Each step backwards without queries for a step

• Calculate an inbound message pass with ! − 1 messages, ! the 
number of parclusters in $%
• Collect model information and evidence for & as well as future 

information in '%()
• Each step backwards with queries for a step

• Calculate a complete message pass with 2 ! − 1 messages, !
the number of parclusters in $%

• BUT: only one FO jtree in memory at a time
• For hindsight queries, forward messages need to be stored!

• What if LDJT does not drop FO jtrees once & moves 
forward?
• Keep instantiations vs. instantiating them on demand

58
Marcel Gehrke, Tanya Braun, and Ralf Möller. Relational Forward Backward Algorithm for Multiple Queries. In FLAIRS-32 
Proceedings of the 32nd International Florida Artificial Intelligence Research Society Conference, 2019.



Keep Instantiations
• What does LDJT pay in memory?
• Additionally store local models, intra-slice messages for 

each slice

• How much runtime can LDJT save?
• C.f., adaptive message passing: Only update those 

messages affected by new incoming information in !"#$
• Each step backwards without queries for a step

• Calculate messages on path between outcluster and incluster
of %"➝ up to & − 1 messages, & the number of parclusters in 
%"

• Each step backwards with queries for a step
• Calculate an outbound message pass with & − 1 messages, &

the number of parclusters in %"

59
Marcel Gehrke, Tanya Braun, and Ralf Möller. Relational Forward Backward Algorithm for Multiple Queries. In FLAIRS-32 
Proceedings of the 32nd International Florida Artificial Intelligence Research Society Conference, 2019.



Example: ! "#$%&|():+
• In , = 2 (no queries)
• Keep instantiations: /0

&,234 (on path)
• Ondemand: /0

&,234,/0
234,56 (inbound to 7056)

• In , = 1 (with multiple queries)
• Keep instantiations: /&

234,&,/&
234,56(outbound)

• Ondemand: /&
234,&,/&

234,56,/&
&,234,/&

56,234

60

9&0

9&+

"#$%& :$;< = &
>?@ABC = &

"#$%& :$;< = &
>?B@D =,E &

"#$%) :$;< = )
"#$%&

9F
7&234

7&&

7&56
)

)

234

7)&

900

90+

"#$%0 :$;< = 0
>?@ABC = 0

"#$%0 :$;< = 0
>?B@D =,E 0

"#$%& :$;< = &
"#$%0

9F
70234

70&

7056

"#$%0 :$;< = 0
"#$%+

9F
7+56

/0
&,234

/0
234,&

/0
56,234

/0
234,56G& /+

234,56G0/&
&,234

/&
234,&

/&
56,234

/&
234,56G)234

&

H+

Basically the unrolled FO jtree in memory



Approaches to Backward Passes
• Keeping all instantiations in memory not sustainable
• Aim was to have a memory-efficient algorithm that does 

not need the complete model from the first step onwards

• Could trade off runtime vs. memory requirements
• Keep the last ! instantiations

• Analyse data/queries for typical lags
• Instantiate on demand for queries with large lags

61

Keep instantiations Instantiate on demand
Steps without queries ≤ # − 1 # − 1
Steps with queries # − 1 2(# − 1)
Additional memory Local models + messages Only α* messages

Marcel Gehrke, Tanya Braun, and Ralf Möller. Relational Forward Backward Algorithm for Multiple Queries. In FLAIRS-32 
Proceedings of the 32nd International Florida Artificial Intelligence Research Society Conference, 2019.



Beyond Standard LDJT
Algorithm-induced groundings with LDJT
Conjunctive queries in PDMs, MPE/MAP queries in PDMs, 
Complexity analysis, Implementation/runtimes

62

!"#

!"$

%&'(" )'*+ , "
-./012 , "

%&'(" )'*+ , "
-.1/3 ,,5 "

%&'(6 )'*+ , 6
%&'("

!7
8"9:;

8""

8"<=



Algorithm-induced Groundings
• Like LJT, LDJT may induce 

groundings during 
message passing
• Intra-slice: use LJT-fusion 

to avoid
• Merge parclusters if a 

separator PRV induces 
groundings

63



Algorithm-induced Groundings
• Inter-slice?
• Check if calculation of !" leads to groundings using the 

same conditions as LJT-fusion
• If so, extend incluster with PRV that causes groundings

• Do not merge but keep separate to keep up sequential/temporal 
separation between # and # + 1

• But: still may lead to outcluster of # or incluster of # + 1
being a subset of the other (separation removed) that 
cannot be avoided if wanting to avoid groundings

➝Trade off between lifting and handling temporal 
aspects due to restrictions on elimination orders

64

Marcel Gehrke, Tanya Braun, and Ralf Möller. Preventing Unnecessary Groundings in the Lifted Dynamic Junction Tree 
Algorithm. In: Proceedings of the AI 2018: Advances in Artificial Intelligence, 2018.
Marcel Gehrke, Tanya Braun, Ralf Möller: Towards Preventing Unnecessary Groundings in the Lifted Dynamic Junction 
Tree Algorithm. In: Proceedings of KI 2018: Advances in Artificial Intelligence, 2018.



Conjunctive Queries
• May contain query terms that cover multiple steps

• E.g., ! "#$%&, ()*+,- . /
• Conjunctive query answering

• Find subgraph covering all query terms (like LJT)
• Unroll FO jtrees for steps occurring in query

• Take parcluster 0 with largest overlap with query terms
• Add all query terms to 0
• Ensure running intersection property by extending parclusters
• Perform an inbound message pass with 0 at centre and answer 

query at 0

65

1&2

1&/

"#$%& 3$45 . &
()*+,- . &

"#$%& 3$45 . &
(),*6 .,7 &

"#$%8 3$45 . 8
"#$%&
19

:&;<=

:&&

:&>?

122

12/

"#$%2 3$45 . 2
()*+,- . 2

"#$%2 3$45 . 2
(),*6 .,7 2

"#$%& 3$45 . &
"#$%2
19

:2;<=

:2&

:2>?

122

1//

"#$%/ 3$45
()*+,- .

"#$%/ 3$45
(),*6 .,7

"#$%2 3$45 . 2
"#$%/
19

:/>?

@2
&,;<=

@2
;<=,&

@2
>?,;<=@2

;<=,>? @

@;<=

@/
;<=,>?@&

&,;<=

@&
;<=,&

@&
>?,;<=@&

;<=,>?
"#$%&"#$%&"#$%&

A& A2

Marcel Gehrke, Tanya Braun, and Ralf Möller. Answering Multiple Conjunctive Queries with the Lifted Dynamic Junction 
Tree Algorithm. In: Proceedings of the AI 2018: Advances in Artificial Intelligence, 2018.



Sequential MAP (and MPE)
• Most probable assignments to PRVs !|#$ given 

evidence %
&'() !|#$|% = argmax

0∈ℛ !|3$
4

5∈ℛ 6|3$$

( ! = 0 |#$, 6 = 5 |#$$|%

• Now, queries for a most probable sequence
• Procedure (like MAP-LJT)
• Find a subgraph covering !|#$
• Eliminate 6|#$$ using LVE operators in model of subgraph
• Eliminate !|#$ using MPE-LVE operators

66
Marcel Gehrke, Tanya Braun, and Ralf Möller. Lifted Temporal Most Probable Explanation. In ICCS-19 Proceedings 
of the International Conference on Conceptual Structures, 2019.



Sequential MAP (and MPE)
• Most probable assignments to PRVs !|#$ given 

evidence %
&'() !|#$|% = argmax

0∈ℛ !|3$
4

5∈ℛ 6|3$$

( ! = 0 |#$, 6 = 5 |#$$|%

• If MAP query but over complete time steps
• MPE for all PRVs in 89::9< given evidence =>:9<
• Starting at ? = ?@ with A9B@ calculated as before

• Move forward until ? = ?C using MPE-LVE operators in 
calculations 
• Inbound message passes with outclusters as centre

67
Marcel Gehrke, Tanya Braun, and Ralf Möller. Lifted Temporal Most Probable Explanation. In ICCS-19 Proceedings 
of the International Conference on Conceptual Structures, 2019.



Complexity
• LJT complexity for message passing and query 

answering
!"# = ! %& ' log+ % ' ,-. ' %/#-#
!12 = ! log+ % ' ,-. ' %/#-#

• %3, %& number of nodes in FO dtree/jtree
• % largest domain size
• , largest range size, ,# largest range size of a PRV in a CRV
• 56 largest ground width
• 5# largest counting width

• LDJT: Moving forward in time
• Uses message passing within each time step ➝ !"#
• Uses LJT query answering for inter-slice message ➝ !12

68

What are the worst-case 
and best-case scenarios 

in terms of queries?

Largest parfactor sizeLifted calculations



Complexity
• Given a maximum number ! occurring over all "

queries (" = ∑%&'( )%, ) = *
( ∑%&'

( )%) 
• Moving forward: ! + ,-. + ,01
• Best worst case at a time step 2 = 23 ∈ 0,… , !

• Filtering query for 23, each with ,01
• Overall, 
= ! + ,-. + ,01 +" + ,01
= ! + 89 + ! +" + , log= 8 + >?@ + 8A#?#
= , ! + 89 + " + log= 8 + >?@ + 8A#?#
= , ! + 89 + ! + ) + log= 8 + >?@ + 8A#?#

69

Compare LJT complexity
, 89 + ) + log= 8 + >?@ + 8A#?#



Complexity
• Worst worst case at a time step ! = !# ∈ 0,… , (

• Hindsight query for ! = 0
• Backward message pass to ! = 0: !# ) *+, + *./

• Prediction query for ! = (
• Forward message pass to ! = (: ( − !# ) *+, + *./

• Together, a hindsight and a prediction query yield a complexity 
of 

= !# ) *+, + *./ + ( − !# ) *+, + *./
= ( ) *+, + *./

• For 1 queries per step, we have 
( ) *+, + *./ + 1 ) *./

• For ( steps, we have 
= ( ) ( ) *+, + *./ + ( ) 1 ) *./
= (2 ) *+, + *./ +3 ) *./

70



Complexity
• Worst worst case at a time step ! = !# ∈ 0,… , (
• Moving forward: ( ) *+, + *./
• Query answering complexity 

(0 ) *+, + *./ +1 ) *./
• Overall,

= ( ) *+, + *./ + (0 ) *+, + *./ +1 ) *./
= ( ) 23 + ( + (0 ) 23 + (0 +1 ) *./
= * (0 + ( ) 23 + 1 ) log0 2 ) 789 ) 2:#8#

= * (0 + ( ) 23 + ( ) < ) log0 2 ) 789 ) 2:#8#

71

Compare filtering complexity
* ( ) 23 + ( ) < ) log0 2 ) 789 ) 2:#8#



Comparison to Ground Inference
• Grounding with
• ! " = $, &, '
• ! ( = )

• Earning of LVE vs. VE
• *+, - ≫ *-

(with large domains)
• / ≫ /+ + /#

(with count conversions)
• Without count 

conversions, / = /+ and 
/# = 0

• In sequential case, 
• Earnings because of 

lifting the interface
• Even without count 

conversions, / ≫ /+

72

34$5&6 $ 789

34&$: $,) 789
;<=>789

?=@A $ 789

BC89DBC89E

34$5&6 $ 7

34&$: $,) 7
;<=>7

?=@A $ 7

BCDBCE

BF

34$5&6 & 789

34&$: &,) 789

?=@A & 789

BC89DBC89E

34$5&6 & 7

34&$: &,) 7

?=@A & 7

BCDBCE

BF

34$5&6 ' 789

34&$: ',) 789

?=@A ' 789

BC89DBC89E

34$5&6 ' 7

34&$: ',) 7

?=@A ' 7

BCDBCE

BF



73

Runtimes
• Algorithms for comparison

• LDJT as presented here
• DJT: propositional interface algorithm
• LJT FOJT: unrolling the FO jtree

• Performs similar to LDJT as they perform 
the same calculations only LJT FOJT has to 
keep unrolled model in memory

• LJT Model: unrolling the model

• X-axis: maximum number of steps !
• Y-axis: runtime in seconds
• Figs. 1 + 2: Filtering queries
• Fig. 3: Hindsight queries

• Prediction runtimes look similar

• Fig. 4: Preventing groundings
Implementation available at:
https://www.ifis.uni-luebeck.de/index.php?id=483

n = 10

Fig. 1

Fig. 2

Fig. 3

Fig. 4

https://www.ifis.uni-luebeck.de/index.php?id=483


A Note on Approximations
• Boyen-Koller algorithm
• Assume independences in interface 

• Partition of interface required as input
• E.g., !, # , $ in an interface !, $, #

• Query no longer over complete interface but as a 
product over independent parts
• Inter-slice message: Union of the results of queries of the 

individual parts of the partition
• E.g., call LVE with the local model at %&'() and a query for !, #

and a query for $ : 
*& = LVE /&'(), !, # , ∅ , LVE /&'(), $ , ∅

• Exact algorithm if independences actually hold, 
otherwise approximate

74
Xavier Boyen and Daphne Koller: Tractable Inference for Complex Stochastic Processes. In: UAI-98 Proceedings of 
the Fourteenth Conference on Uncertainty in Artificial Intelligence, 1998.



A Note on Approximations
• Factored-frontier algorithm (Murphy, 2002)
• Remember: 

• Probability propagation on polytree BNs: Send messages 
directly between the nodes

• Probability propagation in general graphs called (loopy) belief 
propagation (BP): Send messages directly between the nodes
• Similar to the colour passing scheme but sending actual 

messages instead of just colours
• Exact if polytree, otherwise approximate
• Lifted BP: Compress a graph (using colour passing) and send lifted 

messages on compressed graph

• Core idea: Use BP over time
• Lifted version for dynamic MLNs using lifted BP 

(Ahmadi et al, 2013)

75

Kevin P. Murphy: Dynamic Bayesian Networks: Representation, Inference and Learning. PhD thesis, University of 
California, Berkeley, 2002.
Babak Ahmadi, Kristian Kersting, Martin Mladenov, and Sriraam Natarajan. Exploiting Symmetries for Scaling Loopy 
Belief Propagation and Relational Training. In Machine Learning. 92(1):91-132, 2013.



Interim Summary
• Interfaces to separate past from present and 

present from future
• Inter-slice messages

• Forward message to propagate all information up to current 
slice to next slice

• Backward message to propagate all information down to 
current slice to previous slice

• LDJT algorithm
• LJT algorithm for intra-slice inference
• Inter-slice messages to move in time
• Algorithm-induced groundings possible but not 

necessarily preventable while keeping sequential 
separation up
• Reduced complexity in terms of lifted interface

76



Outline: 6. Sequential Models & Inf.
A. Lifted modelling of sequences
• Parameterised dynamic models (PDMs)
• Modelling, semantics

B. Lifted dynamic inference
• Inference tasks
• Interfaces
• Lifted dynamic junction tree algorithm (LDJT)
• Theoretical analysis: complexity

C. Keeping inference polynomial
• Problem of evidence over time in lifted models
• Temporal approximate merging (TAMe)

77



The Problem with Evidence
• Evidence can ground a model over time
• Non-symmetric evidence
• Observe evidence for some instances in one time step
• Observe evidence for a subset of these instances in 

another time step
• Splits a logvar slowly over time

• Vanilla junction trees for each time step
• Without any splits

• Forward message carries over splits, leading to 
slowly grounding a model over time

78
Marcel Gehrke, Tanya Braun, and Ralf Möller. Lifted Taming Reasoning in Temporal Probabilistic Relational Models 
Explanation. In Proceedings of the ECAI 2020, 2020.



Evidence over Time
• Slight variation of example
• Replace !"#$% with & ' %

• Evidence: ()* +, = ./01
• Split 2*3 into 

• 2*3
45for +, and 

• 2*3
65 for ' ≠ +,

• 8* consists of
• 9*

:;,=>%

• 9*
,,=>%

• 2*3
45 and 2*3

65 with 
()*(') eliminated

79

2*3

& ' * A ' *
() ' *

& ' 3 A ' 3
& ' *

832B 9*
=>%,:;

& ' * A ' *
(. ',C *

2**9*
=>%,,

8*D*:; D*=>%

D*,

9*
:;,=>%
9*
,,=>%

& ' * A ' *
& ' E

2B
DE:;



Evidence over Time
• Next step ! = 4
• Evidence: 
$%& '( = )*+,
• Split -&( into 

• -&(
./for '( and 

• -&(
0/ for 1 ≠ '(

• 34 contains
• -4(

.5 and -4(
05 with $%4(1)

eliminated
• For 8&

9:,<=>, 1 is split w.r.t. '?
• In 3&, 1 is split w.r.t. '? and 
'(

80

-&(

@ 1 & A 1 &
$% 1 &

@ 1 4 A 1 4
@ 1 &

34-B 8&
<=>,9:

@ 1 & A 1 &
$) 1,C &

-&48&
<=>,?

3&D&9: D&<=>

D&?

8&
9:,<=>
8&
?,<=>

@ 1 & A 1 &
@ 1 E

-B
DE9:

1 is slowly grounded



Undoing Splits
• Need to undo splits to 

keep reasoning polynomial w.r.t. domain sizes
1. Where can splits be undone efficiently?
2. How to undo splits?
3. Is it reasonable to undo splits?
• Effect of slight differences in evidence? 
• Impact of evidence vs. temporal behaviour of model? 

81
Marcel Gehrke, Tanya Braun, and Ralf Möller. Lifted Taming Reasoning in Temporal Probabilistic Relational Models 
Explanation. In Proceedings of the ECAI 2020, 2020.



1. Where Can Splits Be Undone Efficiently?

• Evidence causes splits in a logical variable 
in the same way in all factors in a model
• LDJT always instantiates a vanilla junction tree
• Forward message carries over splits

82
Marcel Gehrke, Tanya Braun, and Ralf Möller. Lifted Taming Reasoning in Temporal Probabilistic Relational Models 
Explanation. In Proceedings of the ECAI 2020, 2020.

!"#

$ % " & % "
'( % "

$ % # & % #
$ % "

)#!* +"
,-.,01

$ % " & % "
'2 %,3 "

!""+"
,-.,4

)"5"01 5",-.

5"4

+"
01,,-.
+"
4,,-.

$ % " & % "
$ % 6

!*
5601



2. How to Undo Splits?
• The colour passing algorithm can 

efficiently identify exact symmetries
• But
• Evidence causes differences in distributions 

• Need to find approximate symmetries to undo 
splits caused by evidence
• Need a way to merge factors

83
Marcel Gehrke, Tanya Braun, and Ralf Möller. Lifted Taming Reasoning in Temporal Probabilistic Relational Models 
Explanation. In Proceedings of the ECAI 2020, 2020.



Comparing Parfactors: Approaches
• Comparing all marginals is expensive 
• Comparing the joint distribution over the complete 

interface is expensive
• Comparing marginals of a subset of PRVs can 

determine non-similar factors similar
• E.g.,

• ! " = $%

• & ' $% = ()*+ : ,
-

,
-

• & . $% = ()*+ : /
%,

%
,

84
Marcel Gehrke, Tanya Braun, and Ralf Möller. Lifted Taming Reasoning in Temporal Probabilistic Relational Models 
Explanation. In Proceedings of the ECAI 2020, 2020.

. " ' " 0
1234+ 1234+ 0
1234+ ()*+ 7
()*+ 1234+ 4
()*+ ()*+ 1

. " ' " 0
1234+ 1234+ 2
1234+ ()*+ 4
()*+ 1234+ 2
()*+ ()*+ 4



Comparing Parfactors
• Potentials determine distributions
• Similar ratios in potentials lead to similar marginals 

and similar factors
• E.g.,

• ! " = $%

• & ' $% = ()*+ : ,
%-

,
%-

• & . $% = ()*+ : /
%-

/
%-

• & ' $% = ()*+, . $% = ()*+ : %
%-

-.2
%-

85

. " ' " 3
4567+ 4567+ 4
4567+ ()*+ 3
()*+ 4567+ 2
()*+ ()*+ 1

. " ' " 3
4567+ 4567+ 3.9
4567+ ()*+ 3.1
()*+ 4567+ 2.1
()*+ ()*+ 0.9

Marcel Gehrke, Tanya Braun, and Ralf Möller. Lifted Taming Reasoning in Temporal Probabilistic Relational Models 
Explanation. In Proceedings of the ECAI 2020, 2020.



Identifying Similar Groups 
• Groups are equal if they 

have the same full joint 
distribution 
• Full joint distribution 

computationally hard to 
get 
➝ Use parfactors as vector 
➝ If vectors of two groups 

point in same direction, 
they have a similar full 
joint distribution 

86

x

y

g1

g2

g3

g4

g5

g6

g7

g8
g9

g10

Marcel Gehrke, Tanya Braun, and Ralf Möller. Lifted Taming Reasoning in Temporal Probabilistic Relational Models 
Explanation. In Proceedings of the ECAI 2020, 2020.



Find Approximate Symmetries
• Cosine similarity for similarity of vectors

cos $ =
∑'()
* +' ⋅ -'

∑'()
* +'

. ⋅ ∑'()
* -'

.

• E.g.,

• cos $ = /⋅.01⋅202⋅.0)⋅2
/0230)40)⋅ 20)4020)4~0.7785

87

;< = > = ?
@A<BC @A<BC 0
@A<BC DEFC 7
DEFC @A<BC 4
DEFC DEFC 1

;< = > = ?
@A<BC @A<BC 2
@A<BC DEFC 4
DEFC @A<BC 2
DEFC DEFC 4

Marcel Gehrke, Tanya Braun, and Ralf Möller. Lifted Taming Reasoning in Temporal Probabilistic Relational Models 
Explanation. In Proceedings of the ECAI 2020, 2020.



Find Approximate Symmetries
• Cosine similarity for similarity of vectors

cos $ =
∑'()
* +' ⋅ -'

∑'()
* +'

. ⋅ ∑'()
* -'

.

• E.g.,

• cos $ =
/⋅0.230⋅0.)3.⋅..)3)⋅4.2

)5323/3)⋅ )6..)32.5)3/./)34.7)
~0.9993

88

<= > ? > @

AB=CD AB=CD 4

AB=CD FGHD 3

FGHD AB=CD 2

FGHD FGHD 1

<= > ? > @

AB=CD AB=CD 3.9

AB=CD FGHD 3.1

FGHD AB=CD 2.1

FGHD FGHD 0.9

Marcel Gehrke, Tanya Braun, and Ralf Möller. Lifted Taming Reasoning in Temporal Probabilistic Relational Models 
Explanation. In Proceedings of the ECAI 2020, 2020.



Find Approximate Symmetries
• Cosine similarity for similarity of vectors

cos $ = ∑'()* +' ⋅ -'
∑'()* +'. ⋅ ∑'()* -'.

• E.g.,

• cos $ = /⋅012⋅31.⋅/1)⋅2
)3141/1)⋅ 3/1231)31/ = 1

89

67 8 9 8 :
;<7=> ;<7=> 4
;<7=> @AB> 3
@AB> ;<7=> 2
@AB> @AB> 1

67 8 9 8 :
;<7=> ;<7=> 8
;<7=> @AB> 6
@AB> ;<7=> 4
@AB> @AB> 2

Marcel Gehrke, Tanya Braun, and Ralf Möller. Lifted Taming Reasoning in Temporal Probabilistic Relational Models 
Explanation. In Proceedings of the ECAI 2020, 2020.

Use 1 − cos $ as 
distance function in 
clustering algorithm



Cluster Groups 
• Density-based clustering 

as unknown number of 
clusters 
• E.g., DBSCAN

• Cosine similarity as 
distance function 

• Use ANOVA for testing 
fitness of clustering
• Hypothesis testing
• Do the cluster means 

sufficiently distinguish 
the clusters?

90

x

y

g1

g2

g3

g4

g5

g6

g7

g8
g9

g10

Marcel Gehrke, Tanya Braun, and Ralf Möller. Lifted Taming Reasoning in Temporal Probabilistic Relational Models 
Explanation. In Proceedings of the ECAI 2020, 2020.



Merge Groups
• Merge groups of cluster 

by calculating mean of 
cluster while accounting 
for groundings 
• Replace old groups with 

merged group in forward 
message 

91
Marcel Gehrke, Tanya Braun, and Ralf Möller. Lifted Taming Reasoning in Temporal Probabilistic Relational Models 
Explanation. In Proceedings of the ECAI 2020, 2020.

x

y

g1

g2

g3

g4

g5

g6

g7

g8
g9

g10

X

X

X



Merging Parfactors
• Merge similar parfactors, 

accounting for groundings

92

!" # $ # %
&'"() &'"() 4
&'"() +,-) 3
+,-) &'"() 2
+,-) +,-) 1

!" #1 $ #1 %
&'"() &'"() 7.9
&'"() +,-) 6
+,-) &'"() 3.9
+,-) +,-) 2.1

!" #11 $ #11 %
&'"() &'"() 15.7
&'"() +,-) 12.2
+,-) &'"() 8.1
+,-) +,-) 3.8

8 # = 4

8 #1 = 4

8 #11 = 2

!" # $ # %
&'"() &'"() 4 ⋅ 4 + 7.9 ⋅ 4 + 15.7 ⋅ 2

10 =7.9
&'"() +,-) 3 ⋅ 4 + 6 ⋅ 4 + 12.2 ⋅ 2

10 = 6.04
+,-) &'"() 2 ⋅ 4 + 3.9 ⋅ 4 + 8.1 ⋅ 2

10 = 3.98
+,-) +,-) 1 ⋅ 4 + 2.1 ⋅ 4 + 3.8 ⋅ 2

10 = 2

8 # = 10



Runtimes and Error
• DBSCAN for Clustering
• ANOVA for checking fitness of clusters

93

2 4 6 8 10

0
10

00
20

00
30

00 LDJT
I = 5, e = 10-14

I = 5, e = 10-2

I = 2, e = 10-2

! Max Min Average
0 0.0001537746121 0.0000000001720 0.0000191206488
2 0.0000000851654 0.0000000000001 0.0000000111949
4 0.0000000000478 0 0.0000000000068

Marcel Gehrke, Tanya Braun, and Ralf Möller. Lifted Taming Reasoning in Temporal Probabilistic Relational Models 
Explanation. In Proceedings of the ECAI 2020, 2020.



Is It Reasonable to Undo Splits?
• Approximate forward message
• For each time step, sequential behaviour is 

multiplied onto the forward message
• Indefinitely bounded error due to 

sequential behaviour

94

Without any new evidence, 
the model would become 
fully lifted again!

Marcel Gehrke, Tanya Braun, and Ralf Möller. Lifted Taming Reasoning in Temporal Probabilistic Relational Models 
Explanation. In Proceedings of the ECAI 2020, 2020.

!"#

$ % " & % "
'( % "

$ % # & % #
$ % "

)#!* +"
,-.,01

$ % " & % "
'2 %,3 "

!""+"
,-.,4

)"5"01 5",-.

5"4

+"
01,,-.
+"
4,,-.

$ % " & % "
$ % 6

!*
5601



Interim Summary
• Need to undo splits to 

keep reasoning polynomial w.r.t. domain sizes
1. Where can splits be undone efficiently?
• Undo splits in a forward message

2. How to undo splits?
• Find approximate symmetries
• Merge based on groundings

3. Is it reasonable to undo splits?
• Yes, due to the temporal model behaviour 

(indefinitely bounded error) 
• Achieve fully lifted model again without new evidence

95
Marcel Gehrke, Tanya Braun, and Ralf Möller. Lifted Taming Reasoning in Temporal Probabilistic Relational Models 
Explanation. In Proceedings of the ECAI 2020, 2020.



Outlook
• Changing domains over time/sequences
• Towards open-world assumption

• Non-stationarity
• Outside forces change the distributions
• C.f., reinforcement learning

• Markov-k
• Influence might be further in the future than just the 

next step ➝ Something that will be even more apparent 
during next topic, decision making, where actions might 
only have an effect after ! steps

• OngoingResearch@IFIS

96



Outline: 6. Sequential Models & Inf.
A. Lifted modelling of sequences
• Parameterised dynamic models (PDMs)
• Modelling, semantics

B. Lifted dynamic inference
• Inference tasks
• Interfaces
• Lifted dynamic junction tree algorithm (LDJT)
• Theoretical analysis: complexity

C. Keeping inference polynomial
• Problem of evidence over time in lifted models
• Temporal approximate merging (TAMe)

⇒ Next: Decision Making
97


