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Probabilistic Graphical Models (PGMs)

1. Recap: Propositional 5. Approximate Inference:
modelling Sampling
* Factor model, Bayesian * Importance sampling
network, Markov network « MCMC methods
* Semantics, inference tasks ial |
+ algorithms + complexity ,Sefquent'a models &
cps e . iIntference
2. Probabilistic relational

* Dynamic PRMs

* Semantics, inference tasks
+ algorithms + complexity,
learning

7. Decision making

e (Dynamic) Decision PRMs

* Semantics, inference tasks
+ algorithms, learning

models (PRMs)

* Parameterised models, Markov
logic networks

* Semantics, inference tasks

3. Lifted inference
e LVE, LT, FOKC
* Theoretical analysis

4. Lifted learning 8. Continuous Models

* Recap: propositional learning * Probabilistic soft logic:

* From ground to lifted models modellinlg, semantics, inference
: : : tasks + algorithms

* Direct lifted learning
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A Note on Naming Conventions

* Common names for the same thing in PGMs

* Dynamic
* BUT: stationary in terms of how a state changes from the
previous the current one
» State does change and has an influence on the next one

e Temporal
* Changes between states considered due to time moving
forward, i.e., a temporal state sequence
* Implicit direction of edges towards the future
» Simplifying assumption: Discrete time steps indexed by integer (t)

e Sequential

* Generalised version of the notion “temporal” as the sequence
may occur not only due to time moving forward but because of
something else (e.g., spatial movement, sequence of words in
text; implicitly, then also time moves forward)




Remember in IR Topic 4: DBNs

 Actually, a specific DBN: Hidden Markov model (HMM)

* One state randvar R;
* Latent (hidden)

* One evidence randvar E;
* Observable

— Two CPTs (+ prior for R)

* State transition: P(R;|R¢_1)
* Evidence emission: P(E¢|R;)

P(Ro)

Time slices

Copy pattern over t

with a start description
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DBNs: Generalising HMMs

e Set of randvars

 Some latent, some observable
(marked grey in figure)
* Set of CPTs connecting randvars
(+ description for t = 0)
* Within a time step:
only t occur as indices

* Between time steps:
different t’s occur as indices

* Ifonlytandt — 1 occur:
Markov-1 assumption (as in HMMs)

* Copied for each time step

* Turn a discrete DBN into an HMM by combining all
latent randvars into one and all observable randvars
into another randvar, multiplying CPTs accordingly

* Gives up the (conditional) independences between randvars
— may (greatly) increase the number of entries in the CPTs

Time slices
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Tasks in HMMSs

* Query P(R.|E,..), T the current step

e Filtering:m =1 Shorthand notation for a set of observations
for E over all steps from O to ¢t

e Prediction: T > 1

o Hindsight: T<T e State variableis a s.eparating subse'F
between the past, i.e., all randvars indexed

* Also called smoothing with t < 7, and the future, i.e., all randvars

* MPE indexed witht >t
* In HMMs: solved by — Allows for propagation algorithm
Viterbi algorithm * Forward pass for filtering/prediction

* Additional backward pass for hindsight

Time slices 7




Solving Tasks in DBNs

* Not one randvar that separates past from future

* Find separating subset that make the past
independent from the present and the present
independent from the future

e So called interface
» Separates current slice from previous and subsequent slices

* To automatically find
interfaces and specify Q—’Q—*@P
a similar propagation ) / @
algorithm, we will use \
jtrees again @f

* Collectinformation about £/ %,

past at forward interface T/
and send it onwards @ ()

Time slices
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Outline: 6. Sequential Models & Inf.

A. Lifted modelling of sequences
e Parameterised dynamic models (PDMs)
* Modelling, semantics

B. Lifted dynamic inference
* Inference tasks
* Interfaces
e Lifted dynamic junction tree algorithm (LDJT)
* Theoretical analysis: complexity

C. Keeping inference polynomial
* Problem of evidence over time in lifted models
 Temporal approximate merging (TAMe)




Step/Time-indexed PRVs

* PRVs get an index referring to its position in the
segquence of states/time
* Previous version: A = R(X4, ..., X;;)
* Combination of a randvar name R and n logvars X;
* Ifn =0:A = R constitutes a propositional randvar
* Sequential version: 4, = R(X*, ..., X™),
* Sequential indices as subscript, other indices as superscript

* Combination of a randvar name R and n logvars X; and an
index t

 Ifn = 0:A4; = R; constitutes a propositional randvar indexed by t

* Only the PRV as a whole is indexed by t, not the individual
logvars

¢ I'e'l R(Xl, '--)XTL)t + R(Xll ---:Xn)t—l
¢ BUt; lv(R(Xlr ---;Xn)t) — {Xll ---;Xn} — lv(R(Xli '--)XTl)t—l)
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Parameterised Dynamic Models (PDMs)

* Assumptions: Markov-1, stationary process
* PDM G = (Gy, G_) where

* (g is a PM describing the intra- trllme slice behaviour for t = 0:
0

GO - {gO i=1
il L
* go = (Ibcl)(RO' - Ry )IC(; Also called a 2-(time) slice model

 G_ is a PM describing the intra- and as it contains descriptions for two
inter-time slice behaviour fort > 0 RWEEIEES

G, = G-1 UG U Ge-qy
* G = {gt }k 1»9t ¢§(A1: ---:Altk)lclgc
* Giq = Gt|t replaced by t—1
© Gi_1p = {gj};-:ygj = ¢ (A}t, ...,Aﬁ{)lc,n ef{t—1,t}

* In the general setting, it usually holds G; S G0 repraced by ¢
* i.e., thereis a correspondence between Gy and G, (and G;_4)

Marcel Gehrke, Tanya Braun, and Ralf Mdller. Lifted Dynamic Junction Tree Algorithm. In ICCS-18 Proceedings of the
International Conference on Conceptual Structures, 2018. 11
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PDM: Example

* Go = {90, 96, 95}

G = {95-1; g?—l} U {g?' g?} U {gE}

Time slices




JERST
AAAAAAA

HMMs as PDMs

* PDM G = (G, G_,) * In the HMM setting,
Gy = {g')" + Gy = (P(R)}
¢ G, = * G ={P(E¢|Rp)}
Giq UG U Geoq g * Gt—1 = {P(Et-1|R¢-1)}

* Giqt = {P(R¢|R¢—1)}3

Rei | PRiR:1)
T 0.7
F 0.3

TN :

R; P(U,|R,)
T 0.9

Time slices
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1.5-slice Model

* Information about transition behaviour and one
(time) slice
* Defines a copy pattern for each new step appended

* Formally,
1.5 _
GL% = G U Gy g
* where G; and G;_; ; are defined as before
l
* G = {gt}k 1;gt of (At ---;Atk)lctk
. — (g j = 1 i _
Gt—l,t — {g }j=1)g - ¢ (ATL'I "')An)lcrn € {t 1) t}

* If given a 2-slice model G_,, remove all parfactors g
where rv(g) contains only PRVs with index t — 1
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1.5-slice Model: Example

e 2-slice model

e 1.5-slice model




Unrolling a PDM

* Given a maximum step size T, unroll G for T steps
* Start with T = 0: Use G|

 For each T < T: Instantiate G1° for T

* Instantiate: replacet by T
* PRVs with index T — 1 refer to PRVs instantiated fort — 1
* Especially obvious in a graphical representation

* Formally, given a PDM G = (G,, G_,) and number T

T
Go.r = unroll(G,T) = Gy U U Gi|5t replaced by T

=1
* (Go.7 is a standard PM as defined before
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Unrolling a PDM: Example =T = 2

2
Go., = unroll(G,2) = Gy U U Gi-ft replaced by ©




Unrolling a PDM: Example —7 = 0
2
Go.p = unroll(G,2) = Gy U U G5t replaced by ©

=1
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Unrolling a PDM: Example—7 =1

GO 2 T unroll(G 2) — GO U G—>|t replaced by t

Instantiate G1° for7 = 1,
i.e., replace t with T




Unrolling a PDM: Example—7 =1

GO 2 T unroll(G 2) — GO U G—>|t replaced by t

Add to G, (append to G
in terms of the graph)
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Unrolling a PDM: Example—7 =1

2
Go., = unroll(G,2) = Gy U U Gl'|5t replaced by T

=1




Unrolling a PDM: Example — 7 = 2

GO 2 T unroll(G 2) — GO U G—>|t replaced by t

Instantiate G1° for 7 = 2 and add to Gy,

0. = Go.o = unroll(G,2)
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PDM: Semantics

* Given a PDM G = (G,, G_,) and number T,
semantics as defined for PMs

* Unrolling for T steps, grounding, and building a full joint

distribution
1
Pan=7 || 1

ngT(GO:T)
e After unrolling for T = 2

& INSTITUT FUR INFORMATIONSSYSTEME



PDM: Semantics

* After grounding
* D(X) ={a,e,b},D(M) = {m}

g g°




PDM: Semantics

* Full joint is then a probability distribution over
Epldo, Epldl, Epldz
Sick(a)y, Sick(a),, Sick(a),
Sick(e),, Sick(e)q,Sick(e),
SiCk(b)O, Sle(b)l,Sle(b)z
Travel(a),, Travel(a),, Travel(a),
Travel(e),, Travel(e),, Travel(e),
Travel(b),, Travel(b),, Travel(b),
Treat(a,m),, Treat(a,m),, Treat(a, m),
Treat(e,m),, Treat(e,m), Treat(e, m),
Treat(b,m),, Treat(b,m), Treat(b, m),

* Size: 239
* Boolean ranges

:::::
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Interim Summary

* Modelling Sequential Data
e Assumption: Markov-1, stationary process

* Dynamic model consists of two static models
* One to describe the first step

* One to describe the transition from one to the other
* Copy pattern

* Semantics by unrolling for T steps

* Actually, whether it is HMMs, DBNs, PDMs or
dynamic MLNs — same basic structure/idea

,,,,,
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Outline: 6. Sequential Models & Inf.

A. Lifted modelling of sequences
* Parameterised dynamic models (PDMs)
* Modelling, semantics

B. Lifted dynamic inference
* Inference tasks
* Interfaces
e Lifted dynamic junction tree algorithm (LDJT)
* Theoretical analysis: complexity, completeness

C. Keeping inference polynomial
* Problem of evidence over time in lifted models
 Temporal approximate merging (TAMe)

27



PDM: Tasks

* As before: Query P(R,|E,..), T the current step
* Filtering:m =1
* Prediction:m > 1
e Hindsight (smoothing): m <t

 Restricted to one (grounded) PRV or propositional
randvar R_. as a query term for the moment

e Parameterised queries ok if single query term

* E,.; contains a set of events

- e € R(E})

R
SXRSS2 Y INSTITUT FUR INFORMATIONSSYSTEME
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Naive Inference by Unrolling

* Given a PDM G = (G,, G_,), (a number T), and a
query P(R|Eg.r1)
* Unroll model for T steps and use any inference

algorithm of one’s liking to answer P(R;|E y.71)
e T"<T,m <T,could determine T to be T = max{T’, }

* Problems:

* Unrolled models get very large

* Restartif T, R, E .77 changes
* Scenario of step T increasing with new evidence coming in
« New GX° has to be added, evidence re-entered/added

* Naive inference on unrolled models not efficient

* Aim: Work with one current model that can
efficiently handle increasing T and different queries

,,,,,
\\\\\
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Clustering

* Remember: Parclusters are sets of PRVs enough for
guery answering
* Arranged in an acyclic graph (FO jtree)
* Messages provide information over separators of

remaining part of model, make a parcluster independent
from its neighbours

Epid Nat(D) Epid Sick(X) Epid Sick(X)
Man(W) Epid | Travel(X) Epid |Treat(X,M)
91 9> Sick(X) 93

* Want something similar for sequential inference
where slices are independent given separating
subsets, so-called interfaces, between them

D) e

2 WUAYT & UNIVERSITAT ZU LUBECK
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Clustering

* In unrolled example, want interfaces such that the
following independences hold
* (o independent from G1.,
* (; independent from G, G,
* (G, independent from Gg.q

& INSTITUT FUR INFORMATIONSSYSTEME



PDM: Interfaces

* Separating subsets that make the past independent
from the present and the present independent
from the future

* Relevant model parts: transition parfactors
* Those that contain PRVs with indext — 1 and t

CEpid,

Tl me S|iC€S Marcgl Gehrke, Tan.ya Braun, and Ralf Méller. Lifted Dynamic
Junction Tree Algorithm. In ICCS-18 Proceedings of the 37
International Conference on Conceptual Structures, 2018.




PDM: Interfaces

* PRVs with index t — 1 in transition parfactors

* Called forward interface (separate ¢ — 1 from next slice t) but
works in both directions

* Aseachsliceisa COé)y of the previous one, if the interface
separates G; from G;_1, it also separates G;_4 from G,

* Backward interface: Find the PRVS that separate t fromt — 1
* See Murphy (2002) for a discussion

* Formally, given a PDM G = (Gy, G)

I, = {At—1|3g €6 (At—l € rv(g) A3A; € 7"77(9))}
 Could also work with G1°

Time slices




PDM: Interfaces — Moving forward

e After one is finished with inference for 7, basically ask a
query for I, on the current model G; (as in a message in
LJT) and include that information when instantiating a
model G_, fort + 1

* Use FO jtrees and message passing

* Make sure that I'+_4 occurs in one parcluster
« How? By adding a parfactor g’ = ¢(I,_,)
* By the FO jtree properties, there then is a parcluster containing I';_4

g’ can be removed after FO jtree construction
* If not removed — ¢ has to be equally distributed

Time slices




PDM: Incluster & OQutcluster

* Parcluster that contains I,_; — incluster

* From the perspective of t: separates past from present
* Receives incoming information from outcluster of previous

step
* Parcluster that contains I+ — outcluster

* From the perspective of t: separates present from future
* Sends information out to incluster of next step

* Present will become past for the next stepso I;_; and
I; needed

JERST
< 74
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Dynamic FO Jtrees

* Given an interface I,_, fora PDM G = (G,, G_,)

e Build two FO jtrees (J,,/_,) for G
* Jo for Go U {¢p(I)}

* I, in one parcluster (outcluster) An FO jtree | = (V, E) consists
e |, for GE;S U {([) (It—l): ¢(It)} of a set of parclusters I/ as nodes

« I,_4 in one parcluster (incluster) and a set of undirected edges £
e I in one parcluster (outcluster)

» Standard FO jtree construction works

Time S|iceS I\/Iarcgl Gehrke, Tan_ya Braun, and Ralf I\/It')lle.r. Lifted Dynamic
Junction Tree Algorithm. In ICCS-18 Proceedings of the 36
International Conference on Conceptual Structures, 2018.




Dynamic FO Jtrees: Example

* Jo for Gy U {gp}
{Travel(X)O J

96, 96
Epid, Sick(X),
Treat(X,M),
g5

* Here, both parclusters contain the interface
variables
* Both could be outcluster
» Outcluster determined by which parcluster contains g’

,,,,,
\\\\\

%% INSTITUT FUR INFORMATIONSSYSTEME



Dynamic FO Jtrees: Example

1.5 I I
° ]—> for G—> U {gt—l! gt}
{Epidt_l SiCk(X)t_l Epldt Sle(X)t
Epid, a ‘ Travel(X);
o “

Epid; Sick(X);
Treat(X, M),

g:




Dynamic FO Jtrees: Unrolling

* Given two FO jtrees (J,,/_,) for G and a number T,
unroll the FO jtree by

* ForT = 0, taking]() — (Vo, Eo)
* Fort < T, taking ], = (I, E_) instantiated for T

e Forall T — 1, 7, adding an edge between outcluster of
T — 1 and incluster of T

e Formally, Jo.r = (V,E) Wh$re

V=VOUUVT

T T=1

T
E=E,U U E, U U{{out, in}|C2YE A G

T=1 7=1

:::::
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e7=0
{Travel(X)o J
do, 95
Epid, Sick(X),
Treat(X, M),
g5
e7=1

gd, g2

Treat(X,M),

ol

Travel(X),

Epid, Sick(X), }

Epid, Sick(X),
Travel(X), Epld1

Epid, Sick(X)4
Treat(X M),

»




Dynamic FO Jtrees: Unrolling =T = 2

e =T=2

S
Epid, Sick(X),
Travel(X),

98,92

Epid, Sick(X),
Treat(X,M),

9o

e Unrolling unnecessary!

* Because of the interface, current FO jtree J. enough to
answer queries about current step 7

* Inference within one step — LT

* Moving forward — send message from C2%! to C",




Moving Forward

* Inference within a step 7 will follow LJT
* One can ask a set of queries for T efficiently

* Ensures that all information is available at CZ% to
calculate the forward message that makes 7 + 1
independent from t

* Moving forward:

* Calculate a forward message a, over the separator
between €24 and C ; using local model G2% and
messages mi’out

Instantiate J_, fort + 1

Add a, to local model of C 4

+ Drop J,

* Perform inference in J 4

,,,,,
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Moving Forward: Example

c7=0 * Inter-slice message: o
* Current FO jtree * Eliminate non-separator
* Intra-slice messages: PRV Travel(X), from

mLout jpouti local model G§¥t =
* Answer queries for {90, 95} and m(l)’out
P(Ry|E,) * Send result as message
ay to C1"
Epid,
Epid, Sick(X), | Sick(X)o (Epid, Sick(C0),
Travel(X), m L Epid,
90,96 | mg®*t  a > g

Treat(X,M), making step 0 and 1 independent

gs  myutt Next: Instantiate an FO jtree fort = 1
and add « to the local model of C;"

{Epido SiCk(X)g @ contains all information from G, including E,




Moving Forward: Example

e7=1 * Inter-slice message: o,
* Current FO jtree * Eliminate non-separator
* Intra-slice messages: PRV TTavel()gLJ_t from ,

AL v i ot %7
mor , mo ) an ml ) ml
. n
* Answer queries for * Send ay to (3
P(RllEO:l)
Epid,
LEpidO Sick(X), | ‘ Epid, Sick(X)J Sick(X), (Epid1 Sick(g
Epid, Travel(X), mal \LA Epid,
ay gE m<1)ut,in g% mi,out, m:iln,out gE

During message passing, the information in « is
passed around as well and therefore also included

when calculating .

Next: Instantiate an
FO jtree fort = 2
and add «, to the
local model of C*

a1 now includes information of Gy.;1 including Ej.q,
making step 1 and 2 independent.




Filtering

* Queries answered in this fashion: filtering queries

* P(RTlEO'T)
. Epid, Sick(X) Epidy Sick(X)
e Queries for the current [p b(lpl.dl OHTZ;avlel(X)l 1}

step given all previous

E 2
evidence 9 5
* Upsides Epid, Sick(X),
* Only one current FO jtree Treat(X,M),
* One additional message to g3

move forward

 What about prediction and hindsight?
e P(R,|Ey.,), T+ 1

R
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Prediction

* Prediction queries for future PRV instances
e P(Ry|Ep.,), T> 1

* Flashing into the future, i.e., moving forward to
without seeing evidence in between, i.e.,

* Filtering query P(R;|E.;;) Wwhere the evidence sets between
T+ landminEg, areempty: E 1. = {0y} .,

* Prediction query answering
* Given T current step

e Move forwarduntilt =m

 When moving forward, only an inbound message pass with the
outcluster as centre is necessary

* Answer query with query term R,

* If only one query, locate parcluster Cft containing R,; and
trigger one inbound message pass with C}, as centre

* Otherwise, perform complete message passing

,,,,,
\\\\\

# % INSTITUT FUR INFORMATIONSSYSTEME



Prediction: Example

* P(Epid;|E(.1),3 > 1
* No evidence for steps 2and 3: E, ; = {(Z)Tr}ilzz
e Given T = 1 current step, move forward until 7 = 3,
then answer query with query term Epids,

* T = 2, current FO jtree with a4 in local model of Czi"

* Send intra-slice messages towards CS4 (collect all information
at outcluster); also, no evidence entering as 0

* Calculate inter-slice message a5

Epldl Sle(X)l Epldz Sle(X)Z] >
Epid, Travel(X), J ’

E 2 1,out in,out
g a 92 my,” ", m,

Epid, Sick(X),
Treat(X,M),

95




Prediction: Example

* P(Epid;|E(.1),3 > 1
* T = 3, current FO jtree with a, in local model of C:,f”

* If answering only Epid;, collect messages at one of the

parclusters, e.g., C3"* and answer query

in,out out,1
* If so, no need to also calculate m5”" ™", m4

Epids; Travel(X)s

E out,in 2 1,out
g~ dz my gs | Mms

Epid; Sick(X),
Treat(X, M),

93




Hindsight: Moving Back Again

* Hindsight queries for past PRV instances
* P(R,|Ey..), m<T
* Looking back given what we know now in terms of

evidence, i.e.,

* From the current step 7, we have to go back and send the
information accumulated between m and 7 to 7w and then
answer a filtering query in step m again

* Hindsight query answering
* Given T current step

e Move backward untilt =«

* Calculate backward messages [, starting from 7 until

* When moving backward, only an inbound message pass with the
incluster as centre is necessary

* Answer query with query term R,

,,,,,
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Hindsight: Backward Message B

* Same as forward but sent from C* to C2%%

* Forward message a; contains all information on Gg.;
including E.;, making T + 1 independent from t

* Backward message [; contains all information on G.r
including E .7, making T — 1 independent from t

* Exclude forward message a,_; for calculation, as that information
is already present at slide

» E.g., calculate 85 by eliminating Epids from g%, mJ“t™

(without a»)

Epid,

Epid, Sick(X), | Sick(O, (Epid, Sick(X), Epid, Sick(X),
Travel(X), J L Epid, Travel(X)
93+ Bs g% a; mgubin g5 | mgvort,myont

Epid; Sick(X),
Treat(X,M)4
g3 mgut’l




Hindsight: Independences

* Given P(R,|E,.;), m < T, at goal slice m,

* Forward message «,;_, contains all information on
Go.p—1 including Ey.._1, making m independent of 1 — 1
* Requires storing forward messages «; otherwise, one would
have to re-do moving forward from 0 to

* Backward message [,;.1 contains all information on
Gr41.7 including E -, 1., making  independentof m + 1

Epid, Epid,
sick(X)o [ Epidy Sick(X), | ‘ Epidy Sick(X), | Sick(X);

L Epid, Travel(X), J
ay g° gi B3

Epid, Sick(X),
Treat(X,M),

gi




Hindsight: Example

* P(Epid,|E,-), 1 < 3
* Given 7 = 3 current step, move backward until T = 1,
then answer query with query term Epid4

« 7 = 3, current FO jtree with a, in local model of C3"
 Calculate backward message [53
* Instantiate an FO jtree for T = 2, add f3; to local model of C{%t

Epid,
Epid, Sick(X), | Sick(X), (E'pid2 Sick(X), Epid; Sick(X)5
Travel(X), J L Epid, Travel(X) |
93 - Bs g% a mgubin 93 | mgvor,myon

Epid; Sick(X);
Treat(X,M)4
g3 mgut’l

52



Hindsight: Example

 P(Epid{|E,3),1 <3
e 7 = 2, current FO jtree with 5 in local model of CI4*

* Enter evidence E,, send messages inbound to Czi"

* Calculate backward message [5,, ignoring o

* Instantiate an FO jtree for T = 1, add f3, to local model of C/%t

Epid,
Epid, Sick(X), | Sick(X), (Epid1 Sick(X), Epid, Sick(X),
Travel(X), J L Epid, Travel(X), |
gi B2 gF ay mgubim g5 | my°* Bs

Epid, Sick(X),
Treat(X,M),

95

53



Hindsight: Example

 P(Epid{|E,3),1 <3
e T =1, current FO jtree with £, in local model of CP4¢

* Enter evidence E,

* If answering only Epid,, collect messages at one of the

parclusters, e.g., Ci and answer query
out,in 1,out

* If so, no need to also calculate m,; """, m;

Epid, N % Epid,
sick(0y Epido Sick(X)g Epid, Sick(X), | Sick(O,
L Epid4 ] \Travel(X)l J
ay g* gi By mivo%

Epid, Sick(X),
Treat(X,M),
gf mOutl

1 54



General Query Answering

* Relational forward-backward algorithm for all types
of queries, Filtering, prediction, hindsight

* Set of queries Qo:T — {{in} }Tq

* Basically a stream of queries
* For efﬂuency, go through Q,. T, by t and through each

{in} by type of query and m;

1. F|Iter|ng gueries

t=0

2. Prediction queries, ordered by increasing m;
3. Hindsight queries, ordered by decreasing m;
* Order of 2. and 3. could be exchanged

,,,,,
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General Query Answering

e Given T as the current step with query terms
. mT
{Q,‘Ti}i_l and a completed message pass for T

* For all Qf, where T = m;, answer Q. in J;

* For all eri where T < 1r;, move forward without

evidence until max m;
l

* Instantiate FO jtrees and calculate messages accordingly

* Whenever T = 1r; while moving forward, answer Q,‘Ti

* For all @y, where T > m;, move backward until mjin ;
l

* Instantiate FO jtrees, enter evidence, and calculate messages
accordingly

* Whenever T = m; while moving backward, answer Q}Ti

,,,,,
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Lifted Dynamic Jtree Algorithm (LDJT)

procedure LDJT((Gy, G-), Qo.r,, Eo:1,)
Build 1.5-slice model G%°
Construct FO jtree (J,, /=) for Gy and G1°
fortin0..7T, do
Instantiate J;
Add a;_4 to incluster of J; >ift >0
Enter evidence E into J;
Pass messages in J;
Answer queries Q-

Calculate a

* [n online inference, two streams, one for incoming
evidence, one for incoming queries instead of inputs

QO:Tq: EO:Te

= -

I \ 3
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Approaches to Backward Passes

* Backward passes as presented so far require
recalculating some of the messages

* Each step backwards without queries for a step

* Calculate an inbound message pass with n — 1 messages, n the
number of parclustersin J;

* Collect model information and evidence for T as well as future
information in f;41

e Each step backwards with queries for a step

* Calculate a complete message pass with 2(n — 1) messages, n
the number of parclustersin J;

* BUT: only one FO jtree in memory at a time
* For hindsight queries, forward messages need to be stored!

 What if LDJT does not drop FO jtrees once T moves
forward?
e Keep instantiations vs. instantiating them on demand

,,,,,
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Keep Instantiations

* What does LDJT pay in memory?

* Additionally store local models, intra-slice messages for
each slice

e How much runtime can LDJT save?

e C.f.,, adaptive message passing: Only update those
messages affected by new incoming information in 44

e Each step backwards without queries for a step

e Calculate messages on path between outcluster and incluster
of J. = up ton — 1 messages, n the number of parclusters in

Jo
e Each step backwards with queries for a step

e Calculate an outbound message pass with n — 1 messages, n
the number of parclustersin J;

,,,,,
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Examp\e: P(Epldl ‘EO:B)

* InT = 2 (no queries)

. . .. 1,out
* Keep instantiations: m, (on )
1,out out,in ;. ;
« Ondemand: myo o, my (inbound to C5")

* InTt = 1 (with multiple queries)
out,1 out,in

* Keep instantiations: my ,my (outbound)
] out,1 __ out,in _ 1,out _ _in,out
* Ondemand: my T,mqy T ,my ,my
| Epidy Sick(X)o Epid, Sick(X)4 Epidy Sick(X)4 Epid, Sick(X), Epid, Sick(X),
Epid, Travel(X), cin cout i
a, gE mtl)ut,in g% 7nzz)ut,in : i
m

. Treat(X,M),

3 out,1
91 my




Approaches to Backward Passes

* Keeping all instantiations in memory not sustainable
* Aim was to have a memory-efficient algorithm that does
not need the complete model from the first step onwards
e Could trade off runtime vs. memory requirements

* Keep the last k instantiations
* Analyse data/queries for typical lags
* Instantiate on demand for queries with large lags

Keep instantiations Instantiate on demand
Steps without queries <n-—-1 n—1
Steps with queries n—1 2(n—1)

Additional memory Local models + messages Only a; messages

GERST
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Epid, Sick(X), Epid, Sick(X),
Epid, Travel(X),

9" 93

Treat(X, M)

3

Beyond Standard LDJT

Algorithm-induced groundings with LDJT
Conjunctive queries in PDMs, MPE/MAP queries in PDMs,
Complexity analysis, Implementation/runtimes




Algorithm-induced Groundings

* Like LT, LDJT may induce
grou ndings durlng -‘(.:ond'lf\or‘s on Groundings -
message passing

it
\ —tFor a lifted calculation ofhr:tessage mi;

) | . t

* Intra-slice: use LIT-fusion | o

necessarily hastoh \d

liminated:
e, Ahastobee
to aVOid | « for each PRV A€ (c‘ \SU) [p(s) & Ww(A) (Cond. 1)

|
\

S e S“ :
. hseptrawrﬂw
‘ for eac

e
o Ip(S) & Ww(A).on
. ‘ s not hold, \.€.; ‘o
* Merge parclusters if a |- gof“:&:;ogond. 1 by count Tnogvérs(':ond- .
separator PRV induces .~ i
groundings B |

|
- \
- \

Conditions oN Groundings |

i nversions
with induced Cond. 1 using count O
. Pm:,:\?l‘ogvars in !v(S)-\ lv(Ao)‘.c°
0“. Logvars that were pcmus'v n

i rchuste >
) gur:tc:: :‘:s";ns which Ms to be

ed
. Iancwwcwpt . )
countable in G, s We e -




Algorithm-induced Groundings

* Inter-slice?

* Check if calculation of a; leads to groundings using the
same conditions as LJT-fusion

* If so, extend incluster with PRV that causes groundings

* Do not merge but keep separate to keep up sequential/temporal
separation betweentandt + 1

e But: still may lead to outcluster of t or inclusterof t + 1
being a subset of the other (separation removed) that
cannot be avoided if wanting to avoid groundings

—Trade off between lifting and handling temporal
aspects due to restrictions on elimination orders

R
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Conjunctive Queries

* May contain query terms that cover multiple steps
* E.g., P(Epidy, Travel(X);)

* Conjunctive query answering
* Find subgraph covering all query terms (like LJT)
* Unroll FO jtrees for steps occurring in query
* Take parcluster C with largest overlap with query terms
* Add all query termsto C
* Ensure running intersection property by extending parclusters

* Perform an inbound message pass with C at centre and answer
query at C

Epldl Travel(X)1 C{)ut Czin Epid Cé)ut Epid CBL;n i
: mgut’in g% mi,ouijl,out
1
Epid, Sick(X),
Treat(X, M),
mgut,l

Marcel Gehrke, Tanya Braun, and Ralf Moller. Answering Multiple Conjunctive Queries with the Lifted Dynamic Junction
Tree Algorithm. In: Proceedings of the Al 2018: Advances in Artificial Intelligence, 2018.



Sequential MAP (and MPE)

* Most probable assignments to PRVs U given
evidence e

MAPG(U|C/|e) = argmax z P ((U = u)lcr, (T = t)lcn|e)
uER(Uw,) tEIR(TlCH)

* Now, queries for a most probable sequence

* Procedure (like MAP-LJT)
* Find a subgraph covering U
* Eliminate T ;1 using LVE operators in model of subgraph
* Eliminate U|Cr using MPE-LVE operators

5 QAP © UNIVERSITAT ZU LUBECK
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Sequential MAP (and MPE)

* Most probable assignments to PRVs U given
evidence e

MAPG(U|C/|e) = argmax z P ((U = u)lcr, (T = t)lcn|e)
uER(Uw,) tEIR(TlCH)

* If MAP query but over complete time steps
* MPE for all PRVs in G .., given evidence E .,

 Starting at T = 17 with a;_4 calculated as before

* Move forward until T = 7, using MPE-LVE operators in
calculations

* Inbound message passes with outclusters as centre

,,,,,
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Complexity

* LJT complexity for message passing and query

d nswerl ng Lifted calculations  Largest parfactor size
Oyp = O(n] -log,(n) - r'o -n’”#W#)
—_— w
Oga = O(log,(n) - r"a - n"#W#)
nr,n; number of nodes in FO dtree/jtree

n largest domain size
r largest range size, ry largest range size of a PRV in a CRV

Wg IargeSt ground width What are the worst-case
wy largest counting width and best-case scenarios

e LDJT: Moving forward in time+ ® ®
* Uses message passing within each time step = Oyp
* Uses LJT query answering for inter-slice message — Og4

in terms of queries?

’ S UNIVERSITAT ZU LUBECK
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Complexity

* Given a maximum number T occurring over all M

. 1
querles (M — 2’11;:0 mtl m = ; ’11','120 mt)

* Moving forward: T - (OMP + OQA)

* Best worst case atatimestept =1’ € {0, ..., T}
* Filtering query for 7', each with Opa

e Overall,

T'(OMp‘l‘OQA)‘l‘M‘OQA
=(T-n +T+M)-0(og,(n) - ro - n#W#)
=0 ((T- n; + M) -log,(n) - re -n’"#W#)
=0((T-n +T-m)-logy(n)-r"e -n’”#W#)

Compare LIT complexity
0 ((n] +m) - log,(n) - V9 -nr#W#)




Complexity

* Worst worst case atatimestept =1 €{0,...,T}
* Hindsight query fort =0
» Backward message passtot = 0: 7" - (OMP + OQA)
* Predictionqueryfort =T
* Forward message passtot=T: (T —1') - (OMP + OQA)

* Together, a hindsight and a prediction query yield a complexity
of

T’ (Omp + 0ga) + (T —1") - (Oyp + 0g4)
=T - (Oyp + Oga)
 For m queries per step, we have
T - (Omp + Oga) + m - Oga
* For T steps, we have
—_ T2 . (OMP + OQA) ‘|‘M g OQA

R
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Complexity

* Worst worst case atatimestept =1’ € {0, ..., T}
* Moving forward: T - (OMP + OQA)
* Query answering complexity
T2 - (Omp + Oga) + M - Oy
e Overall,
T - (Oup + 0ga) + T? - (Oyp + 0ga) + M - Oy,
=(T-n+T+T? n+T*+ M) 0,4

=0 ((T2 +T)-n; + M) -log,(n) - r"e -n""#W#)

=0 ((T2+T)-n]+T-m)-log2(n)-ng-n’”#W#)

Compare filtering complexity
0 ((T n, +T- m) -log,(n) - r'™e -nr#W#)




Comparison to Ground Inference

e Grounding with * Earning of LVE vs. VE
* D(X) ={a,e, b} * Ngr(r) D N
e D(M) = {m} (with large domains)

‘w > (Wg + W#)
(with count conversions)

 Without count
conversions, w = Wy and
W# = O

—Teaem. > o |n sequential case,
* Earnings because of

Cravel(e) > Sick(e), > lifting the interface
' e Even without count
Treat(h,m),_> conversions, w >> w,

93—1 g

t-1 t

: g



Runtimes

e Algorithms for comparison
e LDJT as presented here

* DJT: propositional interface algorithm
e LJT FOJT: unrolling the FO jtree

* Performs similar to LDJT as they perform
the same calculations only LIT FOJT has to
keep unrolled model in memory

* LJT Model: unrolling the model
X-axis: maximum number of steps T

Y-axis: runtime in seconds

Figs. 1 + 2: Filtering queries

Fig. 3: Hindsight queries

* Prediction runtimes look similar
* Fig. 4: Preventing groundings

Implementation available at:
https://www.ifis.uni-luebeck.de/index.php?id=483

LT FOUT
LJT Model + -+
" — Fig. 1
10°
10 ¢ . - .
0 20 40 60 80 100
10 LT
n=10
n«100
10 ne= 1000
10 .
Fig. 2
10
10
0 2 &0 a0 & o0
10
LoJT
10’ — OJT
UT FOJT
10 LT Moogel
-+ .
10’ Fig. 3
W0
10" .
0 20 40 &0 80 100
10*
10
10 LDJT Groundings
10° LJT Mode ]
Fig. 4

alx
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https://www.ifis.uni-luebeck.de/index.php?id=483

A Note on Approximations

* Partition of interface required as input
* E.g, {{A, C}, {B}} in an interface {4, B, C}
* Query no longer over complete interface but as a
product over independent parts

* Inter-slice message: Union of the results of queries of the
individual parts of the partition

e E.g., call LVE with the local model at C2%t and a query for {4, C}

and a query for {B}:
a; = {LVE(GZ*, {4, C},0), LVE(G™,{B}, 0)}

* Exact algorithm if independences actually hold,
otherwise approximate

* Boyen-Koller algorithm @\ @
* Assume independences in interface Q o(5; \
¢

.

(l D, ‘*{I )3 )
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A Note on Approximations

* Factored-frontier algorithm (Murphy, 2002)

e Remember:

* Probability propagation on polytree BNs: Send messages
directly between the nodes

* Probability propagation in general graphs called (loopy) belief
propagation (BP): Send messages directly between the nodes

e Similar to the colour passing scheme but sending actual
messages instead of just colours

* Exact if polytree, otherwise approximate

» Lifted BP: Compress a graph (using colour passing) and send lifted
messages on compressed graph

 Coreidea: Use BP over time

* Lifted version for dynamic MLNs using lifted BP
(Ahmadi et al, 2013)

aaaa
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Interim Summary

* Interfaces to separate past from present and
present from future

* Inter-slice messages

* Forward message to propagate all information up to current
slice to next slice

* Backward message to propagate all information down to
current slice to previous slice

e LDJT algorithm
e LT algorithm for intra-slice inference
* Inter-slice messages to move in time

* Algorithm-induced groundings possible but not
necessarily preventable while keeping sequential
separation up

* Reduced complexity in terms of lifted interface

,,,,,
\\\\\
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Outline: 6. Sequential Models & Inf.

A. Lifted modelling of sequences
* Parameterised dynamic models (PDMs)
* Modelling, semantics

B. Lifted dynamic inference
* Inference tasks
* Interfaces
e Lifted dynamic junction tree algorithm (LDJT)
* Theoretical analysis: complexity

C. Keeping inference polynomial
* Problem of evidence over time in lifted models
 Temporal approximate merging (TAMe)

77



The Problem with Evidence

* Evidence can ground a model over time

* Non-symmetric evidence

* Observe evidence for some instances in one time step

 Observe evidence for a subset of these instances in
another time step

 Splits a logvar slowly over time

* Vanilla junction trees for each time step
* Without any splits

* Forward message carries over splits, leading to
slowly grounding a model over time

78



Evidence over Time

* Slight variation of example ¢ a5 consists of

* Replace Epid; with R(X); . mén;out
e Evidence: Tl;(x,) = true ¢ my°
* Split g% into + 927 and g2 with

Tl;(X) eliminated

=1
« g% forx; and
2-'/:1

e g3 forX #x;

R(X), SCXO), R(X)3 S(X)s | [R5 500
R(X)4 T1(X)4 /1 . L R(X),
3

ang mgut,in g% ;n'olujut gE
m3’
R(X)s S(X)ﬂ
Tt(X, M),

3mout,1
gsmsy 79




Evidence over Time

* Next step 7 = 4 * a3 contains
=1 1
e Evidence: * 95 and g3 with Tl3(X)
« Split g2 into * For my¥°", X is split w.r.t. x;
« g3 “for x, and *In a,, X is split w.r.t. x; and
.« g7 forX # x, X,

X is slowly grounded

R(X)3 S(X)s R(X), S(X), | (R0, 50,
R(X), TXs pm . ( R&Os

E __out,in 2 1 t 4 E
) in,ou

azg m, ga |my, 1 out 9

m,’

{R ), S(X)q

Tt(X, M),

3mout,1
411%4 80




Undoing Splits

* Need to undo splits to

keep reasoning polynomial w.r.t. domain sizes
1. Where can splits be undone efficiently?
2. How to undo splits?

3. Isit reasonable to undo splits?
 Effect of slight differences in evidence?
* Impact of evidence vs. temporal behaviour of model?

D) K

A, =
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1. Where Can Splits Be Undone Efficiently?

* Evidence causes splits in a logical variable
in the same way in all factors in a model

e LDJT always instantiates a vanilla junction tree

* Forward message carries over splits

R(X)2 SCX), R(X)3 S(X)s | (RO S(X)4
R(X); TI(X); [ . | R4

3
out,in 2 ; E
3 3m1,out
3

[R ()3 S(X) 3}
Tt(X, M)s

3 out,1
gsms,

,,,,,
\\\\\\
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2. How to Undo Splits?

* The colour passing algorithm can
efficiently identify exact symmetries

* But
e Evidence causes differences in distributions

* Need to find approximate symmetries to undo
splits caused by evidence

* Need a way to merge factors




GERST
GERSIT,

Comparing Parfactors: Approaches

 Comparing all marginals is expensive

 Comparing the joint distribution over the complete
interface is expensive

 Comparing marginals of a subset of PRVs can
determine non-similar factors similar

* Eg, R(X) S(X) g R(X) S(X) g
* DX) = tx) false false 0 false false 2
false true 7 false true 4

true false 4 true false 2

true true 1 true true 4

* P(S(xq) = true): g g

5 1

 P(R(xq) = true): o S
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Comparing Parfactors

e Potentials determine distributions

e Similar ratios in potentials lead to similar marginals
and similar factors

e E.g., R(X) S(X) g R(X) SX) g

* DY) = {x4} false false 4 false false 3.9
false true 3 false true 3.1
true false 2 true false 2.1
true true 1 true true 0.9
4 4
* P(S(xq) = true): - -
3 3
* P(R(xq) = true): o 0
* P(S(x1) = true, R(xq) = true): % 3—'3

,,,,,
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|[dentifying Similar Groups

* Groups are equal if they
have the same full joint
distribution

* Full joint distribution
computationally hard to
get

— Use parfactors as vector

— |f vectors of two groups

point in same direction,
. they have a similar full
joint distribution




Find Approximate Symmetries

e Cosine similarity for S|m|Iar|ty of vectors

cos(0) =
2
*E.g.,

TiX) SX) g Ti(X) SX) g
false false 0 false false 2
false true 7 false true 4
true false 4 true false 2
true true 1 true true 4

0-2+7-4+4-2+1-4
e cos(0) = ~0.7785

VO+49+16+1V/4+16+4+16

,,,,,
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Find Approximate Symmetries

e Cosine similarity for S|m|Iar|ty of vectors

cos(0) =
2
*E.g.,
TiX) SX) g TiX) SX) g
false false 4 false false 3.9
false true 3 false true 3.1
true false 2 true false 2.1
true true 1 true true 0.9
4-3.9+4+3-3.1+2-2.1+1:0.9
e cos(0) = ~0.9993

V164+9+4+1-/15.214+9.61+4.41+0.81

,,,,,
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Find Approximate Symmetries

e Cosine similarity for S|m|Iar|ty of vectors

cos(0) = =14 5
ot oo

TiX) SX) g TiX) SX) g

*E.g.,

false false 4 false false 8
false true 3 false true 6
true false 2 true false 4
true true 1 true true 2

Use 1 — cos(8) as

4-8+3-6+2-4+1-3
. COS 6 _ — 1 . f . .
(6) V16+9+4+1/64+36+16+4 S;jtsigrciiguarlgfi:hl:w

S O
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Cluster Groups

* Density-based clustering
as unknown number of

vy s clusters
* E.g., DBSCAN
92 9 * Cosine similarity as

distance function

* Use ANOVA for testing
fitness of clustering
* Hypothesis testing

Do the cluster means
> sufficiently distinguish
the clusters?




Merge Groups

* Merge groups of cluster
by calculating mean of
YA 93 cluster while accounting
for groundings

o o * Replace old groups with
merged group in forward
message

,,,,,
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GG - \/erging Parfactors

false false 4

false true

* Merge similar parfactors,
accounting for groundings

3
true false 2
1

true true

TIX') S(X') g S

false false 7.9
I D(X)| =10

false true 6
true false 3.9 TLX) S(X) g

false false (4-4+79-4+15.7-2)
10 =7.9

NGO °* "' =2 |false true (3-4+6-4+122-2) 04

true true 2.1

false false 15.7 10
true false (2-4+39-4+8.1-2)
false true 12.2 10 = 3.98
true false 8.1 true true (1:4+4+21-4+4+38:2)
true true 3.8 10 =2

JERST
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Runtimes and Error

* DBSCAN for Clustering
 ANOVA for checking fitness of clusters

S | LDJT

S =5 ¢=10"*

s | |=5,¢=1072

S - 1=2,6=10"

Al

o

o _|

o

O p—
[ [ [ [ |
2 4 6 8 10

T Max Min Average

0 0.0001537746121  0.0000000001720 0.0000191206488
2 0.0000000851654  0.0000000000001  0.0000000111949
4 0.0000000000478 0 0.0000000000068

JERST
< 74




s It Reasonable to Undo Splits?

* Approximate forward message

* For each time step, sequential behaviour is
multiplied onto the forward message

* Indefinitely bounded error due to
sequential behaviour

R(X)s S(X)s R(X)s S(X)s | (RO S(X)4
R(X); TI(X), @ . L R(X),
3

ang mgut,in g§ m;n,olugut gE
my’
R(X)3 S(X)3 Without any new evidence,
Tt(X,M)3 the model would become
ggmgut,l fully lifted again!

Marcel Gehrke, Tanya Braun, and Ralf Mdller. Lifted Taming Reasoning in Temporal Probabilistic Relational Models
Explanation. In Proceedings of the ECAl 2020, 2020. 94




Interim Summary

* Need to undo splits to
keep reasoning polynomial w.r.t. domain sizes

1. Where can splits be undone efficiently?
* Undo splits in a forward message

2. How to undo splits?
* Find approximate symmetries
* Merge based on groundings

3. Isit reasonable to undo splits?

* Yes, due to the temporal model behaviour
(indefinitely bounded error)

* Achieve fully lifted model again without new evidence




Outlook

* Changing domains over time/sequences
* Towards open-world assumption

* Non-stationarity
* Outside forces change the distributions
e C.f., reinforcement learning

 Markov-k

* Influence might be further in the future than just the
next step — Something that will be even more apparent
during next topic, decision making, where actions might
only have an effect after c steps

* OngoingResearch@IFIS




Outline: 6. Sequential Models & Inf.

A. Lifted modelling of sequences
* Parameterised dynamic models (PDMs)
* Modelling, semantics

B. Lifted dynamic inference
* Inference tasks
* Interfaces
* Lifted dynamic junction tree algorithm (LDJT)
* Theoretical analysis: complexity

C. Keeping inference polynomial
* Problem of evidence over time in lifted models
* Temporal approximate merging (TAMe)

= Next: Decision Making
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