
Intelligent Agents:
Web-mining Agents

Probabilistic Graphical Models

Decision Making

Tanya Braun

Probabilistic Graphical Models (PGMs)
1. Recap: Propositional

modelling
• Factor model, Bayesian

network, Markov network
• Semantics, inference tasks

+ algorithms + complexity
2. Probabilistic relational

models (PRMs)
• Parameterised models, Markov

logic networks
• Semantics, inference tasks

3. Lifted inference
• LVE, LJT, FOKC
• Theoretical analysis

4. Lifted learning
• Recap: propositional learning
• From ground to lifted models
• Direct lifted learning

5. Approximate Inference:
Sampling
• Importance sampling
• MCMC methods

6. Sequential models &
inference
• Dynamic PRMs
• Semantics, inference tasks

+ algorithms + complexity,
learning

7. Decision making
• (Dynamic) Decision PRMs
• Semantics, inference tasks

+ algorithms, acting
8. Continuous Space

• Gaussian distributions
• Probabilistic soft logic

2

Setting: Agent with Utilities

3AIMA, Russell/Norvig

Outline: 7. Decision Making
A. Static decision making
• Utility theory
• Parameterised decision models (PDecM)

• Modelling, semantics, inference tasks
• Inference algorithm: LVE as an example

• Value of information
B. Sequential decision making
• Parameterised dynamic decision models (PDDecM)
• Temporal MEU problem, inference
• Acting

4

Expected Utility
• Randvar ! with " range values #$, … , #' and

distribution ($, … , ('
• E.g.: ! encodes the state reached after doing an action
) = + under uncertainty

• Function , of !
• E.g., , is the utility of a state

• The expected utility of) = + is

-,[) = +] =0
12$

'
3 ! = #1) = + 4 , ! = #1

5

MEU Principle
• A rational agent should choose the action that

maximises agent’s expected utility
• This is the basis of the field of decision theory
• The MEU principle provides a normative criterion

for rational choice of action

AI is solved!!!

6

Not quite…
• Must have complete model of:
• Actions
• Utilities
• States

• Even if you have a complete model, it might be
computationally intractable
• In fact, a truly rational agent takes into account the

utility of reasoning as well – bounded rationality
• Nevertheless, great progress has been made in this

area, and we are able to solve much more complex
decision-theoretic problems than ever before

7

Setting
• Agent can perform actions in an environment

• Environment
• Episodic, i.e., not sequential

• Next episode does not depend on the previous episode
• So called static models (vs. dynamic/temporal, next lecture)

• Non-deterministic
• Outcomes of actions not unique
• Associated with probabilities (➝ probabilistic model)

• Partially observable
• Latent, i.e., not observable, random variables

• Agent has preferences over states/action outcomes
• Encoded in utility or utility function ➝ Utility theory

• “Decision theory = Utility theory + Probability theory”
• Model the world with a probabilistic model
• Model preferences with a utility (function)
• Find action that leads to the maximum expected utility, also

called decision making

8

Utility Theory
Preferences, U+li+es, Dominance, Preference structure

9

Preferences
• An agent chooses among prizes (!, ", etc.) and

lotteries, i.e., situations with uncertain prizes
• Outcome of a nondeterministic action is a lottery

• Lottery # = %, !; 1 − % , "
• ! and " can be lotteries again
• Prizes are special lotteries: 1, *; 0, not *
• More than two outcomes:

• # = %/, 0/; %1, 01; ⋯ ; %3, 03 , ∑56/3 %5 = 1
• Notation
• ! ≻ " ! preferred to "
• ! ∼ " indifference between ! and "
• ! ≿ " " not preferred to !

10

Rational preferences
• Idea: preferences of a rational agent must obey

constraints
• Rational preferences ⇒ behaviour describable as

maximisation of expected utility

11

Rational preferences contd.
• Violating constraints leads to self-evident

irrationality
• Example
• An agent with intransitive preferences can be induced to

give away all its money

• If ! ≻ #, then an agent who has #
would pay (say) 1 cent to get !
• If $ ≻ !, then an agent who has !

would pay (say) 1 cent to get $
• If # ≻ $, then an agent who has $

would pay (say) 1 cent to get #

12

Axioms of Utility Theory
1. Orderability

• ! ≻ # Ú ! ≺ # Ú !~#
• ≺,≻, ~ jointly exhaustive,

pairwise disjoint

2. Transitivity
• ! ≻ # Ù # ≻ ' Þ ! ≻ '

3. Continuity
• ! ≻ # ≻ 'Þ
$((, !; 1 − (, ' ~#

4. Substitutability
• !~#Þ

(, !; 1 − (, ' ~ (, #; 1 − (, '
• Also holds if replacing ~ with ≻

5. Monotonicity
• ! ≻ #Þ
((≥ .Û
(, !; 1 − (, #
≿ ., !; 1 − ., #)

6. Decomposability
• (, !; 1 − (, ., #; 1 − ., ' ~

(, !; 1 − (., #; 1 − (1 − . , '

Decomposability: There is no fun in gambling.

13

!

#

'

(

1 − (
.

1 − .

!

#

'

(

1 − (.

1 − (1 − .

And Then There Was Utility
• Theorem (Ramsey, 1931; von Neumann and

Morgenstern, 1944):
• Given preferences satisfying the constraints, there exists a

real-valued function ! such that

! " ≥ ! $ ⇔ " ≿ $
! '(, *(;… ; '-, *- = /

0
'0! *0

• MEU principle
• Choose the action that maximises expected utility

• Note: an agent can be entirely rational (consistent with
MEU) without ever representing or manipulating
utilities and probabilities
• E.g., a lookup table for perfect tictactoe

14

Utilities
• Utilities map states to real numbers.

Which numbers?

• Standard approach to assessment of human utilities:
• Compare a given state ! to a standard lottery "# that has

• “best possible outcome” ⊤ with probability %
• ”worst possible catastrophe” ⊥ with probability 1 − %

• Adjust lottery probability % until !~"#

15

~ "
continue as before

instant death

pay-$30-and-
continue-as-
before

0.999999

0.000001

Utility scales
• Normalised utilities: !" = 1.0, !(= 0.0
• Utility of lottery) ~ (pay-$30-and-continue-as-before):
+) = !" , 0.999999 + !(, 0.000001 = 0.999999

• Micromorts: one-millionth chance of death
• Useful for Russian roulette, paying to reduce product

risks, etc.
• QALYs: quality-adjusted life years
• Useful for medical decisions involving substantial risk

• Behaviour is invariant w.r.t. positive linear
transformation

+/ 0 = 12+ 0 + 13
• No unique utility function; +/ 0 and + 0 yield same

behaviour

16

Ordinal Utility Functions
• With deterministic prizes only (no lottery choices),

only ordinal utility can be determined, i.e., total
order on prizes
• Ordinal utility function also called value function
• Provides a ranking of alternatives (states), but not a

meaningful metric scale (numbers do not matter)

17

Money
• Money does not behave as a utility function
• Given a lottery ! with expected monetary value
"#$! , usually % ! < % '()* + , i.e., people
are risk-averse
• ',: state of possessing total wealth $n
• Utility curve

• For what probability - am I indifferent between a prize . and a
lottery -, $#; 1 − - , $0 for large #?

• Right: Typical empirical
data, extrapolated with
risk-prone behaviour
for negative wealth

18

Money Versus Utility

19

• Money ≠ Utility
• More money is better, but not always in a linear

relationship to the amount of money
• Expected Monetary Value
• Risk-averse

• " # < " %&'()
• Risk-seeking

• " # > " %&'()
• Risk-neutral

• " # = " %&'()
• Linear curve
• For small changes in wealth

relative to current wealth

Multi-attribute Utility Theory
• A given state may have multiple utilities
• ...because of multiple evaluation criteria
• ...because of multiple agents (interested parties) with

different utility functions

• We will look at
• Cases in which decisions can be made without

combining the attribute values into a single utility value
• Strict dominance

• Cases in which the utilities of attribute combinations can
be specified very concisely

20

Strict dominance
• Typically define attributes such that ! is monotonic

in each ➝
• Strict dominance
• Choice " strictly dominates choice # iff

∀ % ∶ '(" ≥ '(# (and hence ! " ≥ ! #)

21

Stochastic dominance

22https://people.duke.edu/~dgraham/ECO_463/Handouts/StochasticDominance.pdf

• Cumulative distribution !" first-order stochastically dominates
distribution !# iff

∀% ∶ !# % ≤ !" %
• With a strict inequality for some interval
• Then, ()* > (), ((referring to expected value)

• The reverse is not necessarily true

• Does not imply that every possible return of the superior distribution is
larger than every possible return of the inferior distribution

• Example:
• As we have negative costs, S2 dominates S1 with ∀% ∶ !-, % ≤ !-* %

https://people.duke.edu/~dgraham/ECO_463/Handouts/StochasticDominance.pdf

Example
• Product P

• Product Q

23

Profit ($m) Probability
0 to under 5 0.2
5 to under 10 0.3
10 to under 15 0.4
15 to under 20 0.1

Profit ($m) Probability
0 to under 5 0.0
5 to under 10 0.1
10 to under 15 0.5
15 to under 20 0.3
20 to under 25 0.1

P first-order stochastically dominates Q.

Stochastic dominance
• Cumulative distribution !" second-order stochastically dominates

distribution !# iff

∀ % ∶ '
()

*
!# + ,+ ≤ '

()

*
!" + ,+

• Or: . % = ∫()
* !" + − !# + ,+ ≥ 0

• With a strict inequality for some interval

• Then, 456 ≥ 457 (4 referring to expected value)

• Example:

• Second-order stochastic dominance

24Figures: https://www.vosesoftware.com/riskwiki/Stochasticdominancetests.php (t=z)

https://people.duke.edu/~dgraham/ECO_463/Handouts/StochasticDominance.pdf

• No dominance

t

t

t

t

https://www.vosesoftware.com/riskwiki/Stochasticdominancetests.php
https://people.duke.edu/~dgraham/ECO_463/Handouts/StochasticDominance.pdf

Preference Structure
• To specify the complete utility function ! "#, … , "& , we

need '& values in the worst case
• (attributes
• each attribute with ' distinct possible values
• Worst case meaning: Agent’s preferences have no regularity

at all
• Supposition in multi-attribute utility theory

• Preferences of typical agents have much more structure
• Approach

• Identify regularities in the preference behaviour
• Use so-called representation theorems to show that an agent

with a certain kind of preference structure has a utility
function

! "#, … , "& = * +# "# , … , +& "&
• where * is hopefully a simple function such as addition

25

Preference structure: Deterministic
• !" and !# preferentially independent (PI) of !$ iff

• Preference between %", %#, %$ and %"
', %#

', %$ does not
depend on %$

• E.g., ()*+,, -)+., /01,.2
• 20,000 +511,%, $4.6 :*;;*)<, 0.06 =,0.ℎ+/@)<.ℎ
• 70,000 +511,%, $4.2 :*;;*)<, 0.06 =,0.ℎ+/@)<.ℎ

• Theorem (Leontief, 1947)
• If every pair of attributes is PI of its complement, then every

subset of attributes is PI of its complement
• Called mutual PI (MPI)

• Theorem (Debreu, 1960):
• MPI ⇒ ∃ additive value function

D %", … , %F =H
I
DI %I

• Hence assess < single-attribute functions
• Often a good approximation

26

Preference structure: Stochastic
• Need to consider preferences over lotteries
• ! is utility-independent (UI) of " iff
• Preferences over lotteries in ! do not depend on #

• Mutual UI (Keeney, 1974): each subset is UI of its
complement ⇒ ∃multiplicative utility function
• For & = 3:

) = *+)+ + *-)- + *.).
+*+*-)+)- + *-*.)-). + *.*+).)+
+*+*-*.)+)-).

• I.e., requires only & single-attribute utility functions and
& constants

27

Interim Summary
• Preferences
• Preferences of a rational agent must obey constraints

• Utilities
• Rational preferences = describable as maximisation of

expected utility
• Utility axioms
• MEU principle

• Dominance
• Strict dominance
• First-order + second-order stochastic dominance

• Preference structure
• (Mutual) preferential independence
• (Mutual) utility independence

28

Parameterised Decision
Models (PDecMs)
Modelling, Semantics, Inference Tasks
Inference with LVE

29

!"#$
%&'()#*(+ ,(#-

.)/0&- +
1#*2 +

34

35

36

Decision Networks/Models
• Extend a PGM to handle actions and utilities
• Decision variables
• Utility variables

• Also called influence diagrams
• Use an inference method of one’s choosing

to find actions that lead to the highest expected
utility
• Also allows to perform so-called

Value of Information calculations
• Is it worth it to spend resources on getting more

information (in the form of evidence)?

30

Decision PRVs & Utility PRVs
• Action and utility PRVs follow the same syntax as

normal PRVs
• Decision PRV !:

range ℛ ! = $% %&'(set of possible actions
• Actions $% mutually exclusive (consistent with range def.)
• Depicted by a rectangle in a graphical representation
• E.g., possible travel restrictions for people): *+,-./0-)

• Range values: 1$2, 4.++
• Utility PRV 5:

range ℛ 5 = ℝ
• Output variable, i.e., gets assigned a value by utility function

• Therefore, always a leaf
• Depicted by a diamond in a graphical representation

31

*+,-./0-)

5-/7

Decision PRVs in Parfactors
• As arguments of a parfactor
• Parfactor ! " |$
• May now also contain decision PRVs in its arguments "
• E.g., !% &'()*+,) - , /*01'2 -

32

34+5

&'()*+,) - 6)+2

/*01'2 -

7+,8 -

/*'0) -,9

:;

:< :=

:%

&'()*+,) - /*01'2(-) !%
@*'' @02(' 1
@*'')*B' 1
C0D @02(' 1
C0D)*B' 0

Utility PRVs in Parfactors
• Utility PRVs get assigned value by potential function
• Utility parfactor !" # |%

• Arguments # = '(,… , '+ a sequence of (decision) PRVs
• , a utility PRV that receives the output value
• !:×/0(+ ℛ '/ ↦ ℛ ,
• 3 a constraint for logvars 45 # ∪ 45 ,
• Set of PRVs: 75 !" # |% = '(,… , '+ (without ,)
• E.g., !"8/9 :;<=7>?= @ , AB>C

33

AB>C

:;<=7>?= @ ,=>4

D7E5;4 @

F>?G @

D7;E= @,H

I"

IJ IK

I(

:;<=7>?= @ AB>C ,=>4

L7;; LE4<; 10

L7;; =7O; −10

QER LE4<; −20

QER =7O; 5

PDecMs
• PDecM = PM that allows decision PRVs in the

arguments in its parfactors as well as utility
parfactors
• For simplicity, let us consider models with one utility

parfactor mapping to one utility randvar
➝ Strict dominance by one utility
• Formally, PDecM

! = #$ $%&
' ∪ #)

• E.g.,
! = #&, #+, #,, #)
• ⊤ constraints

34

./01

23456075 8 950:

;6<=3: 8

>07? 8

;63<5 8,@

#)

#+ #,

#&

PDecMs: Action Assignments
• Let ! = #$,… , #' |) be the set of decision PRVs occurring

in * with a constraint + for the logvars in !
• Then, , is a compound event for ! that assigns each

decision PRV #- a range value .-
• Refer to , as an action assignment

• E.g., without evidence in * (/ = ∅, ⊤ constraints)
• Action 23456785 9 with range :.;, <633

• ,$ = :.;
• ,= = <633

• Given another action # with range .>, .>>, .>>>
• ,$ = :.;, .>

• ,= = :.;, .>>

• ,? = :.;, .>>>

• ,@ = <633, .>

• ,A = <633, .>>

• ,B = <633, .>>>

35

CD7E

23456785 9 F57G

H6.I3G 9

J78K 9

H63.5 9,L

MN

M= M?

M$

PDecMs: Setting Decisions
• Given a PDecM ! and an action

assignment "
• Let !" refer to ! with " set, i.e.,

!" = absorb !, "
• In each * with decision PRV +,,

• Drop the lines where +, ≠ ., and
the column of +,

• E.g., set "/ = 0.1
in ! = */, *2, *3, *4
• 5 = ∅
• Absorb "/ in */ and *4
• !"7 = */8 , *2, *3, *48

• */8 = 9/8 :;.<=> ?
• *48 = 94@,A

8 BCDE

36

BCDE

F=GH;DIH ? JHD>

:;.<=> ?

KDIL ?

:;=.H ?,M

*4

*2 *3

*/

F=GH;DIH ? :;.<=>(?) 9/
P;== P.>G= 1
P;== H;R= 1
0.1 P.>G= 1
0.1 H;R= 0

:;.<=>(?) 9/8

P.>G= 1
H;R= 0

BCDE JHD>
P.>G= −20
H;R= 5

PDecMs: Semantics
• Semantics of PDecM ! = #$ $%&

' ∪ #)
• Given an action assignment * for the grounded set of

decision PRVs + = ,&,… , ,/ |1 occurring in !
• Then, the semantics is given by grounding and building a

full joint distribution for the non-utility parfactors

• Utility parfactors irrelevant for probabilistic behaviour

37

23 * = 1
5 6
7∈9: 3*∖ 9<

=

5 = >
:?∈ℛ(B?)

… >
:D∈ℛ(BD)

6
7∈9: 3*∖ 9<

=

Semantics multiplicative with
an inner product and outer
sum: Multiply parfactors,
then sum out PRVs.
➝ Sum-product algorithms

38

• PdecM
! = #$, #&, #', #(
• ⊤ constraints

• ! with *$ = +,- set
!*. = #$/ , #&, #', #(/
• #$/ = 0$/ 12,345 6
• #(/ = 0(789/ :;<=

• Model relevant for
query answering:
! = #$/ , #&, #'

:;<=

>4?@2<A@ 6 B@<5

12,345 6

C<AD 6

124,@ 6,E

#(

#& #'

#$

:;<=

B@<5

12,345 6

C<AD 6

124,@ 6,E

#(/

#& #'

#$/

:;<=

12,345 6

C<AD 6

124,@ 6,E#& #'

#$

PDecMs: Expected Utility Queries
• Given a PDecM ! = #$ $%&

' ∪ #)
• One can ask queries for (conditional) marginal

distributions or events as before given an action
assignment * based on the semantics, +, *
• New query type: query for an expected utility (EU)

• What is the expected utility of decisions * in !?

-. /, * = 1
2∈ℛ 56 78

+ 2|/, * : ;) 2

• If a #) contains decision PRVs or is affected by /, then, of
course, #) needs to be modified accordingly

• + 2|/, * means that the PRVs not occurring in this expression
need to be eliminated accordingly

39

PDecMs: EU Query – Example
• Expected utility of !" = $%&

in ' = (", (*, (+, (,
-. !" = /

0∈ℛ 3456

7 89:; = - !" < =, 89:; = -

• With > = ∅
• Compute 7 89:; = - !" in '
• By computing 7 89:; = - in
'!@ = ("A , (*, (+, (,A
• Depicted on the right

40

89:;

BC:D

EF%G-D H

I:JK H

EF-%C H,L

(,A

(* (+

("A

PDecMs: EU Query – Example
• Compute ! "#$% = ' in ()* = +,- , +/, +0, +1-
• Using LVE, eliminate all other terms in ()*:

• Eliminate 23'45 6,7
• Eliminate 2348'9 6
• Eliminate :$;< 6
• Normalise result to get ! "#$% = ' in ()*: = "#$%

• Corresponds to ! "#$% = '), in (

41

"#$%

>5$9

2348'9 6

:$;< 6

23'45 6,7

+1-

+/ +0

+,-

"#$% >5$9
?49@' −20
53D' 5

2348'9(6) =,-

?49@' 1
53D' 0

The parfactors +,- and +1- would look
differently, had we set)/ = ?3'' .

PDecMs: EU Query – Example
• Calcula&ons with ! " = 2, ! & = 3:
• Sum out ()*+, &," , exponen&ate result for "

42

-./0

1,/2

()+3*2 &

4/56 &

()*+, &,"

789

7: 7;

7<9

- 4 & (, &," =;
>+2?* >+2?* >+2?* 9
>+2?* >+2?* ,)A* 1
>+2?* ,)A* >+2?* 5
>+2?* ,)A* ,)A* 6
,)A* >+2?* >+2?* 3
,)A* >+2?* ,)A* 4
,)A* ,)A* >+2?* 4
,)A* ,)A* ,)A* 5

- 4 & =;9

>+2?* >+2?* 9 + 1 : = 100
>+2?* ,)A* 5 + 6 : = 121
,)A* >+2?* 3 + 4 : = 49
,)A* ,)A* 4 + 5 : = 81

PDecMs: EU Query – Example
• Calculations with ! " = 2, ! & = 3:
• Multiply ()* , (+, sum out ,-./01 &

43

2345

6741

,-./01 &

849: &

(;*

(+ (<*

()*

2 8 & ,1 & =+ > =)*

?.1@0 ?.1@0 ?.1@0 10 > 1 = 10

?.1@0 ?.1@0 7-C0 9 > 0 = 0

?.1@0 7-C0 ?.1@0 4 > 1 = 4

?.1@0 7-C0 7-C0 2 > 0 = 0

7-C0 ?.1@0 ?.1@0 8 > 1 = 8

7-C0 ?.1@0 7-C0 3 > 0 = 0

7-C0 7-C0 ?.1@0 5 > 1 = 5

7-C0 7-C0 7-C0 1 > 0 = 0

2 8 & =)+*

?.1@0 ?.1@0 10 + 0 = 10

?.1@0 7-C0 4 + 0 = 4

7-C0 ?.1@0 8 + 0 = 8

7-C0 7-C0 5 + 0 = 5

,-./01(&) =)*

?.1@0 1

7-C0 0

PDecMs: EU Query – Example
• Calculations with ! " = 2, ! & = 3:
• Multiply ()*+ , (,+ , sum out -./0 & , exponentiate for &,

normalise

44

12.3

45.6

-./0 &

(7+

()*+ (,+

1 - & 8)*+ 9 8,+

:;6<= :;6<= 10 9 100 = 1000
:;6<= 5@A= 4 9 121 = 484
5@A= :;6<= 8 9 49 = 392

5@A= 5@A= 5 9 81 = 405

1 8+

:;6<= 1000 + 484 , = 3,268,147,904

5@A= 392 + 405 , = 506,261,573

12.3 8

:;6<= 0.87
5@A= 0.13

12.3 45.6(7+(

Result after
normalising:
(= 8 12.3

45

• Result ! "#$% for
& "#$% = ()* in +
• Expected utility of)* = ,-.

in + = /*, /1, /2, /3

"#$% 45$6/377

45$6/3777

. 45$6

. −17.4 + 0.65 = −16.75

"#$% 45$6
A-6B(0.87 D −20 = −17.4
5FG(0.13 D 5 = 0.65

"#$% 45$6/37/

"#$% !
A-6B(0.87
5FG(0.13

"#$% 45$6
A-6B(−20
5FG(5

(G)*

= I
J∈ℛ MNOP

& "#$% = ()* D !37 "#$% = (

= I
J∈ℛ MNOP

! "#$% = (D !37 "#$% = (

= I
J∈ℛ MNOP

!377 "#$% = (

= !3777 .

Answering EU-Queries (with LVE)
• Given a PDecM ! = #$ $%&

' ∪ #) , evidence *, and
an action assignment + (*)
• Absorb * in ! and set + in !
• Calculate the posterior, , -|*, + , of the Markov blanket

of the utility node
• I.e., - = 01 #) ∖ 01 + ∖ 01 * (remaining PRVs in #) after

previous step)
• Using LVE: With - as the query terms, eliminate all non-query

terms in !, i.e., call LVE ! ∖ #) , -, ∅
• Evidence already absorbed, decisions made ➝ * = ∅ in the call

• Calculate the expected utility by summing over the range
values of -: 78 *, + = ∑:∈ℛ - , :|*, + = >) :
• Using LVE: Eliminate remaining PRVs in !,

• Result: parfactor mapping empty argument to a single value (?)

46

(*) We need to talk about evidence
and action assignments later.

PDecMs: MEU Problem
• Given a PDecM ! and evidence "
• Maximum Expected U4lity (MEU) problem
• Find the ac4on assignment that yields the highest

expected u4lity in !
• Formally,

• For an exact solu4on, meu !|" requires an algorithm
to go through all ' ∈ ℛ *
• Size of ℛ * exponen4al in *

47

Alternative specification
meu !|+ = argmax

'∈ℛ *
12 ", ' , max

'∈ℛ *
12 ", '

meu !|" = '∗, 12 ", '∗
'∗ = argmax

'∈ℛ *
12 ", '

Additive semantics with
inner sum and outer
max: Sum up utilities,
then pick maximum
➝ Max-sum algorithms

PDecMs: MEU – Example
• Problem instance with ! = #$, #&, #', #(,) = ∅ :
meu ! = .∗, 01 .∗ .∗ = argmax

.∈ .7,.8
01 .

• .$ = 9:; , .& = <=00
• Expected utility of .$ = 9:; : 01 .$ = −16.75
• Expected utility of .& = <=00 : 01 .& = 8.8

• Solution
• .∗ = argmax

.∈ .7,.8
01 . = .&

• meu ! = .&, 8.8
• Decision that leads to

maximum EU:
No travel restrictions

48

EFGH

I0JK=GLK M NKGO

P=:Q0O M

RGLS M

P=0:K M,T

#(

#& #'

#$

Lifted MEU
• In terms of semantics, ! ∈ ℛ $ means

• Grounding $ and going through all possible combinations of
assignments to %& $

• But: grounding is a bad idea
• Combinatorial explosion: number of action assignments to

test exponential in size of %& $
• Grounds any parfactor in G containing a logvar of $

• Also: Grounding to full extent often unnecessary
• Within groups of indistinguishable constants, the same

decision will lead to its maximum influence in the MEU
solution
• Only need to test each assignment for complete group

• Therefore: Test out all possible combinations of
assignments w.r.t. the groups occurring in '
• No longer exponential in the size of %& $!

49

meu '|, = !∗, 01 ,, !∗
!∗ = argmax

!∈ℛ $
01 ,, !

Lifted MEU: Groups
• In parameterised models without evidence (or

evidence for complete domains), ! ∈ ℛ $ means
• Going through all possible combinations of assignments

to $
• One group per logvar

• In parameterised models with evidence affecting
parfactors containing decision PRVs, ! ∈ ℛ $
means
• Going through all possible combinations of assignments

for each group resulting after evidence handling
• Specifically, after shattering

• Effect: size exponential in number of groups

50

meu (|* = !∗, ./ *, !∗
!∗ = argmax

!∈ℛ $
./ *, !

(*) Now is later.

Lifted MEU: Groups – Example
• PDecM ! = #$, #&, #', #(

• ⊤ constraints
• Ev. * = +,-. /0 = 1234

• 5 /0 = 6$, … , 6$8
• Action 94:12,-1 / with

range ;<=, >244
• 5 / = 6$, … , 6?

• Overlap in
domain/constraint
• Shattering of !

• Duplicates all parfactors for
• 5 /0 = 6$, … , 6$8
• 5 /00 = 6$8, … , 6?

• Could also restrict constraints

• Action assignments
• @$ = {

}
94:12,-1 /′′ = ;<=,
94:12,-1 /0 = ;<=

• @& = {
}

94:12,-1 /′′ = ;<=,
94:12,-1 /0 = >244

• @' = {
}

94:12,-1 /′′ = >244,
94:12,-1 /0 = ;<=

• @D = {
}

94:12,-1 /′′ = >244,
94:12,-1 /0 = >244

51

EF,G

94:12,-1 / H1,I

J2<K4I /

+,-. /

J24<1 /,L

#(

#& #'

#$

meu !|* = @∗, 43 *, @∗

@∗ = argmax
@V,@W,@X,@Y

43 *, @

Answering EU-Queries for MEU
• Given a PDecM ! = #$ $%&

' ∪ #) , evidence *, and
an action assignment + for groups in ! after
shattering
• Absorb * in ! and set + in !
• Calculate the posterior, , -|*, + , of the Markov blanket

of the utility node
• I.e., - = 01 #) ∖ 01 + ∖ 01 * (remaining PRVs in #3’s after

previous step)
• Using LVE: With - as the query terms, eliminate all non-query

terms in !, i.e., call LVE ! ∖ #) , -, ∅
• Evidence already absorbed, decisions made ➝ * = ∅ in the call

• Calculate the expected utility by summing over the range
values of -: 89 *, + = ∑;∈ℛ - , ;|*, + > ?) ;
• Using LVE: Eliminate remaining PRVs in !,

• Result: parfactor mapping empty argument to a single value (@)

52

(*) Now is later.

LVE for MEU Problems
functionMEU−LVE ' =)* *+,- ∪)/ , 1

Absorb 1 in '
2∗ ←
56789 ← −∞
for each action assignment 2 in ' do

Set 2 in '
) ← LVE ' ∖)/ , <=)/ , ∅ ▹) normalised
56 1, 2 ← LVE)/,) , ∅, ∅
if 56 1, 2 > 56789 then

2∗ ← 2
56789 ← 56 1, 2

return 2∗
• Modify to save all assignments that lie within @-margin

53

LVE-MEU

(Sets of) Utilities and Logvars
Let us consider four cases:
1. Set of utility parfactors mapping to the same utility

randvar
• ! = #$ $%&' ∪ #))%&

*

• Each #) mapping to the same utility randvar +
2. Logvars in the Markov blanket of the utility randvar

• Possible given a single utility parfactor mapping to a utility
randvar
• In example so far logvars only in decision PRV, which is always set

• Grounding the parfactor leads to a set of utility factors
mapping to the same utility randvar +

3. Logvars in the utility PRV
• A set of utility randvars in the ground case, but with

indistinguishable behaviour from the model side
4. A set of utility PRVs

54

1. Set of Utility Parfactors
• Set of utility parfactors, all map to a utility randvar !

• " = $% %&'(∪ $* *&'
+ , each $* mapping to !

• Refer to set of utility parfactors of " by ", = $* *&'
+

• Since all $* map to !, $*’s are partial descriptions of an
overall utility function $,

• Can combine ", into one utility parfactor $,
" = $% %&'(∪ $* *&'+ = $% %&'(∪ $,

• where

$, = -
.∈ℛ 12 34 4567

-
*&'

+
8* 912 34 .

• Additive semantics: Sum over the utilities that . maps to in the
different $* (join of arguments, addition of utilities)

55

Compare combining parfactors with potenBals (mulBplicaBve
semanBcs): Join of arguments, mulBplicaBon of potenBals

1. Set of Utility Parfactors: Example
• Two utility factors mapping

to utility randvar !"#$
• %&'()* +, -
• %&'()** +, .

• Resulting /&'()

56

+ - %*
01$23 01$23 5
01$23 "563 0
"563 01$23 −5
"563 "563 −10

+ . %**
01$23 01$23 8
01$23 "563 3
"563 01$23 0
"563 "563 1

+ - . %
01$23 01$23 01$23 5 + 8
01$23 01$23 "563 5 + 3
01$23 "563 01$23 0 + 8
01$23 "563 "563 0 + 3
"563 01$23 01$23 −5 + 0
"563 01$23 "563 −5 + 1
"563 "563 01$23 −10 − 0
"563 "563 "563 −10 + 1

-

!"#$
/&* ./&**

+
-

!"#$
/& .

+

1. Set of Utility Parfactors
• Combination into one utility parfactor !" in terms

of semantics yields for EU queries:

#$ %, ' =)
*∈ℛ -. /0 012

3

4 *|%, ' 6)
789

:

;7 <-. /0 *

• Caution: Expected utility requires marginal distribution
over the Markov blanket of =
• Even though utility function specified over a set of parfactors,

which may have only few arguments, query for 4 *|%, ' will
combine all PRVs in !7 789

: into one parfactor !
• Changes in LVE: > = ?@ !7 789

: ∖ ?@ ' ∖ ?@ %
• Changes in MEU-LVE:

57

! ← LVE F ∖ !7 789
: , ?@ !7 789

: , ∅ ▹! normalised
#$ %, ' ← LVE !7 789

: ∪ ! , ∅, ∅

1. Set of Utility Parfactors: EU
• Two utility factors !"# , !"## • LVE result ! of $ %, ', (

58

% ')#
*+,-. *+,-. 5
*+,-. 012. 0
012. *+,-. −5
012. 012. −10

% ()##
*+,-. *+,-. 8
*+,-. 012. 3
012. *+,-. 0
012. 012. 1

% ' ()
*+,-. *+,-. *+,-. 0.01
*+,-. *+,-. 012. 0.02
*+,-. 012. *+,-. 0.03
*+,-. 012. 012. 0.04
012. *+,-. *+,-. 0.10
012. *+,-. 012. 0.20
012. 012. *+,-. 0.25
012. 012. 012. 0.35

'

;0<,
!"# (!"##

%
!

To get EU, multiply, e.g., !"## into ! and
sum out (, then multiply !"# into the
result and sum out ' and %.

Not computing !" may reduce the size
of some multiplications but does not
reduce overall space requirements.

2. Logvars in the Markov Blanket
• Logvars in Markov blanket of utility randvar
• I.e., in arguments of utility parfactors that are not

decision PRVs
• E.g., !" = $"%&' ()*+,-.+ / , 12-3, 4-.5 /
• Lifted version of the previous case

• Grounding leads to a set of utility parfactors mapping to the
same utility randvar

• In terms of calculations,
6 7|9, : now contains
parameterised query
terms in EU query
• Effect: logvars counted

(or grounded) in result

59

12-3

()*+,-.+ / ;+-<

=,>?)< /

4-.5 /

!"

!@

!A

To get a distribution over all constants represented by logvars,
counting (or, if counting not possible, grounding) unavoidable.

2. Logvars in the Markov Blanket
• Computing ! "#$%, '$() * |, in

example model
• Assume elimination result as depicted

on the right above
• To normalise, take

into account that
- * = 3, i.e.,
• Count *
• Normalise by

including 012 ℎ
in 4

60

" ' * 567
8

9:2;< 9:2;< 10

9:2;< ?@1< 4

?@1< 9:2;< 8

?@1< ?@1< 5

" #E ' * 5# 5

9:2;< 0,3 4F G 10H = 1000 0.202

9:2;< 1,2 46 G 107 = 400 0.081

9:2;< 2,1 47 G 106 = 160 0.032

9:2;< 3,0 4H G 10F = 64 0.013

?@1< 0,3 5F G 8H = 512 0.104

?@1< 1,2 56 G 87 = 320 0.065

?@1< 2,1 57 G 86 = 200 0.040

?@1< 3,0 5H G 8F = 125 0.025

"#$%

L<;?@$(? * M?$2

N@:O<2 *

'$() *

PQ

P7

P6

2. Logvars in the Markov Blanket
• Possible mismatch in representation

of logvars between result of ! "|$, &
and utility parfactors
• Utility parfactor '(under &:
)(*+, -./0, 1/23 4

• Result of ! -./0, 1/23 4 |& given
by) -./0, #6 1/23 4

• 4 counted in elimination result but
uncounted in utility parfactor

61

- #6 1 4)

789:; 0,3 0.202

789:; 1,2 0.081

789:; 2,1 0.032

789:; 3,0 0.013

BCD; 0,3 0.104

BCD; 1,2 0.065

BCD; 2,1 0.040

BCD; 3,0 0.025

- 1 4)(*+,

789:; 789:; 5

789:; BCD; 0

BCD; 789:; −5

BCD; BCD; −10

-./0

I;:BC/2B 4 JB/9

KC8L;9 4

1/23 4

'(

'M

'N

2. Logvars in the Markov Blanket
• Ensure logvars occur in same form
• Count or ground logvars in !"’s to match

description in result of # $|&, (
• If logvar not countable in a !",

grounding of logvar in result necessary

• In example,
•) counted in elimination result but

uncounted in utility parfactor
➝Count logvar in !*

• Fulfils counting preconditions

62

+ #- .) /
01234 0,3 0.202
01234 1,2 0.081
01234 2,1 0.032
01234 3,0 0.013

;<=4 0,3 0.104
;<=4 1,2 0.065
;<=4 2,1 0.040
;<=4 3,0 0.025

+ .) /*ABC
01234 01234 5
01234 ;<=4 0

;<=4 01234 −5
;<=4 ;<=4 −10

+EFG

H43;<FI;) J;F2

K<1L42)

.FIM)

!*

!N

!O
But: Counting with
utilities and additive
semantics!

2. Logvars in the Markov Blanket
• Count conversion with utilities
• Additive semantics: Add up utilities

• Instead of multiplicate semantics:
Multiply, leading to exponentiation

• Given histogram !", . . , !% and utilities &", . . , &%
• New utility: !" ' &" + …+ !% ' &%

• Instead of: *"
+, ' ⋯ ' *%

+.

• Formally,
/01 … , 234", ℎ, 236", … = 8

9:∈ℛ =:

ℎ 23 ' /0 … , 234", 23, 236", …

• Compare with grounding and combining resulting set of utility
factors

63

> ? @ /0A3B
C2DEF C2DEF 5

C2DEF HI&F 0

HI&F C2DEF −5

HI&F HI&F −10

Counting with Utilities

64

! ## $ % &'()*
+

,-./0 0,3 0 4 0 + 3 4 5 = 15

,-./0 1,2 1 4 0 + 2 4 5 = 10

,-./0 2,1 2 4 0 + 1 4 5 = 5

,-./0 3,0 3 4 0 + 0 4 5 = 0

:;<0 0,3 0 4 −10 + 3 4 −5 = −15

:;<0 1,2 1 4 −10 + 2 4 −5 = −20

:;<0 2,1 2 4 −10 + 1 4 −5 = −25

:;<0 3,0 3 4 −10 + 0 4 −5 = −30

! $ % &'()*

,-./0 ,-./0 5

,-./0 :;<0 0

:;<0 ,-./0 −5

:;<0 :;<0 −10

! $ % &>?
+

,-./0 ,-./0 10

,-./0 :;<0 4

:;<0 ,-./0 8

:;<0 :;<0 5

! ## $ % &#

,-./0 0,3 4B 4 10C = 1000

,-./0 1,2 4> 4 10? = 400

,-./0 2,1 4? 4 10> = 160

,-./0 3,0 4C 4 10B = 64

:;<0 0,3 5B 4 8C = 512

:;<0 1,2 5> 4 8? = 320

:;<0 2,1 5? 4 8> = 200

:;<0 3,0 5C 4 8B = 125

E>
FG 4 ⋯ 4 EI

FJ

vs.
K> 4 <> + …+ KI 4 <I

2. Logvars in the Markov Blanket
• With identical forms for all logvars, proceed with EU

• In terms of MEU-LVE, proceed as before but when calling LVE
for computing !" #, % utility-count conversion needed

65

& #() *

+,-.! 0,3

+,-.! 1,2

+,-.! 2,1

+,-.! 3,0

34"! 0,3

34"! 1,2

34"! 2,1

34"! 3,0

5

0.202

0.081

0.032

0.013

0.104

0.065

0.040

0.025

5;<=>
? @ 5

3.03

0.81

0.16

0

−1.56

−1.3

−1

−0.75

5;<=>
?

15

10

5

0

−15

−20

−25

−30

C"- ℎ

1

3

3

1

1

3

3

1

!" % =

+3.03 @ 1

+ 0.81 @ 3

+ 0.16 @ 3

+ 0.00 @ 1

− 1.56 @ 1

− 1.30 @ 3

− 1.00 @ 3

− 0.75 @ 1

= −3.27

G ← LVE L ∖ GN NOP
Q , 4R GN NOP

Q , ∅ ▹G normalised
!" #, % ← LVE GN NOP

Q ∪ G , ∅, ∅

3. Logvars in Utility PRVs
• Logvars in a utility PRV:
! "#,… , "&
• No longer only a

propositional randvar
➝ In terms of semantics:

set of propositional
utility randvars
'(! "#,… , "&
• Compare multi-attribute

utility theory

• Generalisation:
set of utility PRVs

• E.g., utility PRV !) "
• Ground:
!) * , !) + , !) ,
• Utility parfactor:
'- = /-0 1 2 "
• /-0 3 2 *
• /-0 4 2 +
• /-0 5 2 ,

• Utility parfactor:
'- = /-0 1 6
• /-0 3 6
• /-0 4 6
• /-0 5 6

66

2 " !) "'-' 6 !) "'-'

4. Set of Utility PRVs
• Given a PDecM ! = #$ $%&

' ∪ #))%&
*

• Utility parfactors #) = +,- . |0 map argument values
to utility PRV 1)
• Different #) may map to the same utility PRV
• ! contains a set of utility PRVs, referred to as 23, !

• Do not confuse with 23 !, , the set of PRVs in !, = #))%&
*

• Requires a specification of how to combine 23, ! into
one utility value 1: combination function 4, 23, !
• If considered MPI/mutually UI: specify an additive/

multiplicative function as seen earlier
• Simplest case: additive function (as seen during Case 1)

4, 23, ! = 5
6∈ℛ 9: ;-

5
<-∈;=

+,- >9: <- 6

• Approximation: Assume independence
• Specify/learn a more complex function

67

4. Set of Utility PRVs: !"
• Given a PDecM # = %& &'() ∪ %+ +'(, and a

combination function !"
• Query for an expected utility (EU)

• What is the expected utility of decisions - in #?

./ 0, - = 2
3∈ℛ 67 89

: 3|0, - < !" =679 8 3

= 2
3∈ℛ 67 89

: 3|0, - < 2
+'(

,
>+ =67 ?@ 3

• Multiplication with : 3|0, - brings about the same
problems as discussed previously (combines all ℛ AB #"
into one parfactor, ℛ AB #" might be parameterised)

68

3. Logvars in Utility PRVs Treated as 4.
• !" = $"% & ' (
• Result of) ' (|+
• $ #& ' (

• Count (in !"
• Multiply $ #& ' (

and $"% & #& ' (
• Add up all entries

• !" = $"%-. & /
• Result of) /|+
• $ /

• Multiply $ / and
$"% & ' (
• Add up all entries
• Multiply with 0 (
• Given ⊤ constraints

69

' (23 (!"! / 23 (!"!

4. Set of Utility PRVs: Approximate !
• Approximation
• Move " #|%, ' into the inner sum:

• Instead of asking one query with all () *+
as query terms

1. Either ask ()+ * queries with () ,+- as query terms
where ,+- = /+- 012 +- # refers to the combination of
all utility parfactors that map to utility PRV !3

2. Or ask 4 queries with () ,3 as query terms

70

What’s the
difference?

Can be exact if independence given between sets of query terms
(Compare Boyen-Koller algorithm for sequential inference)

56 %, ' ≈ 8
#∈ℛ 12 ;<

8
+-∈12< ;

" 012 =<- # |%, ' > /+- 012 +- #

≈ 8
#∈ℛ 12 ;<

8
3?@

A
" 012 =- # |%, ' > /3 012 =- #

(1)

(2)

4. Set of Utility PRVs: Approximate !
• Two parfactors mapping to

same utility PRV, dependent
• Markov blanket of !"#$: %, ', (

•) %, ', (exact
•) %, ' ,) %, (approximate

• Two parfactors mapping to
same utility PRV, independent
• Markov blanket of !"#$: ', (

•) ', (exact
•) ' ,) (also exact as ', (

independent

• Same holds if logvars occur in PRVs
71

'

!"#$
+, (+,,

%

'

!"#$
+, (+,,

MEU-LJT
• Answer MEU query, probability

and assignment queries

• Assuming an additive
combination function

• Build an FO jtree for PDecM

• Can add a helper parfactor ! over the union of Markov

blankets of the utility PRVs for computing " #|%, '
• Without !, use subgraph that covers # for each " #|%, '

• Parclusters may be smaller ➝ better for other queries

• With !, # contained in one parcluster ➝ easier for " #|%, '
• But parclusters may be larger overall ➝ worse for other queries

• If using one of the approximations: either ! may be over the

Markov blanket of each utility PRV or no ! necessary

• To compute overall EU query, need to ask set of EU queries either

for each of the utility PRVs or for each utility PRV in each utility

parfactor and add results up
72

Claims about FO jtree construction

1. Ignore decision PRVs as they

are always set before any

calculations occur

2. Ignore utility parfactors as they

do not carry information

relevant for messages

Some References
• MEU in PDecMs

• Warning: not as detailed as in these slides

• Markov logic decision networks (MLDNs)
• MLN + parameterised decisions + utility weights

• Probability + utility weights per first-order formula
• Use weighted model counting to solve MEU problem

• Decision-theoretic Probabilistic Prolog (DTProbLog)
• Utilities of DTProbLog programs combined into EU over

theory defined by programs

73

Version using an early version of LVE, mashing early parfactor graphs and MLNs:
Udi Apsel and Ronan I. Brafman. Extended LiPed Inference with Joint Formulas. In: UAI-11 Proceedings of the
27th Conference on Uncertainty in Ar9ficial Intelligence, 2011.

PDecMs: Marcel Gehrke, Tanya Braun, Ralf Möller, Alexander Waschkau, Christoph Strumann, and Jost Steinhäuser.
Towards LiPed Maximum Expected U[lity. In: Proceedings of the First Joint Workshop on Ar9ficial Intelligence in
Health in Conjunc9on with the 27th IJCAI, the 23rd ECAI, the 17th AAMAS, and the 35th ICML, 2018.
Marcel Gehrke, Tanya Braun, Ralf Möller, Alexander Waschkau, Christoph Strumann, and Jost Steinhäuser.
LiPed Maximum Expected U[lity. In: Ar9ficial Intelligence in Health, 2019.

MLDNs: Aniruddh Nath and Pedro Domingos. A Language for Relational Decision Theory. In: Proceedings of the
International Workshop on Statistical Relational Learning, 2009.

MLDNs + WMC: Udi Apsel and Ronan I. Brafman. Lifted MEU by Weighted Model Counting. In: AAAI-12 Proceedings of
the 26th AAAI Conference on Artificial Intelligence, 2012.

DTProbLog: Guy Van den Broeck, Ingo Thon, Martijn van Otterlo, and Luc De Raedt. DTProbLog: A Decision-Theoretic
Probabilistic Prolog. In: AAAI-10 Proceedings of the 24th AAAI Conference on Artificial Intelligence, 2010.

Interim Summary
• Decision networks
• Probabilistic graphical model extended with decision

and utility variables
• Parameterised version: PDecM

• Decision PRVs, utility PRVs, utility parfactors
• Collective decisions for groups of indistinguishable constants

• EU queries, MEU problem
• Find set of actions (decisions) that lead to maximum expect

utility
• MEU-LVE using calls to LVE and LVE operators to answer EU

queries
• Combination function necessary if using a set of utility

PRVs
➝Multi-attribute utility theory

74

Value of Information
Value of perfect information
Information-gathering agent

75

Decision Making in Decision Nets
• Assumes that all available information provided to

agent before it makes its decision
• Hardly ever the case
• Know what questions to ask!

• Information value theory
• Choose what information to acquire
• Assume that prior to selecting an action represented by

a decision PRV, the agent can acquire the value of any of
the potentially observable PRVs/randvars
• Simplified version of sequential decision making (next section)

• Observation actions affect only agent’s belief state, not the
external physical state

• Sequential decision making: actions have effect on surroundings

76

Value of information
• Idea: Compute value of acquiring each possible piece of

evidence
• Can be done directly from decision network

• Example: Buying oil drilling rights
• Two blocks ! and ", exactly one has oil, worth #
• Prior probabilities 0.5 each, mutually exclusive
• Current price of each block is ⁄()
• “Consultant” offers accurate survey of !
• Fair price for survey?
• Solution: Compute expected value of information

• = expected value of best action given the information
minus expected value of best action without information

• Survey may say “oil in A” or “no oil in A”, probability 0.5 each
(given!)
= [0.5 , value of “buy A” given “oil in A”

+ 0.5 , value of “buy B” given “no oil in A”] − 0
= 0.5 , ⁄() + 0.5 , ⁄() − 0 = ⁄()

77

General formula
• Current evidence !, current best ac0on ", possible ac0on

outcomes #$, poten0al new evidence !%
!& " !) = max, -

$
& #$. #$ | !, 1

• Suppose we knew !% = 2%3, then we would choose 1%3 such
that
!& "456 | !, !% = 2%3 = max, -

$
& #$. #$ | !, 1, !% = 2%3

• !% is a random variable whose value is currently unknown
⇒ must compute expected gain over all possible values:
8.9: !%
= -

3
. !% | ! !& "456 | !, !% = 2%3 − !& ", !

• VPI = value of perfect informa0on

78

Properties of VPI
• Non-negative – in expectation

∀", $ ∶ &'() $* ≥ 0
• Non-additive – consider, e.g., obtaining $* twice

&'() $*, $- ≠ &'() $* + &'() $-
• Order-independent

&'() $*, $- = &'() $* + &'(),)1 $-
= &'() $- + &'(),)2 $*

• Note: When more than one piece of evidence can be
gathered, maximising VPI for each to select one is not
always optimal
➝ Evidence-gathering becomes a sequential decision problem

79

Qualitative behaviors

a) Choice is obvious, information worth little
b) Choice is non-obvious, information worth a lot
c) Choice is non-obvious, information worth little
• Information has value to the extent that it is likely to

cause a change of plan and to the extent that the new
plan will be significantly better than the old plan

80

Informa(on Gathering Agent

• Ask questions !"#$"%&(()) in a reasonable order
• Avoid irrelevant questions
• Take into account importance of piece of

information + in relation to ,-%&(())
81

function INFORMATION-GATHERING-AGENT(percept)
returns: an action
persistent: D, a decision network

integrate percept into D
j ← the value that maximises VPI(Ej)/Cost(Ej)
if VPI(Ej) > Cost(Ej) then

return Request(Ej)
else

return the best action from D

Interim Summary
• Value of information
• How much does it cost to obtain a new piece of

information?
• Will that piece of information change the current best

plan?
• How much more utility can one expect from the new

best plan?
• Is it worth it?

• Information-gathering agent
• Request piece of evidence if the expected utility of

action/plan outweighs the cost

82

Outline: 7. Decision Making
A. Sta&c decision making
• U"lity theory
• Parameterised decision models (PDecM)

• Modelling, seman"cs, inference tasks
• Inference algorithm: LVE as an example

• Value of Informa"on
B. Sequen(al decision making
• Parameterised dynamic decision models (PDDecM)
• Temporal MEU problem, inference
• Ac"ng

83

Decision Making over Time
So far:
• Calculate the expected utility of a decision and its effect

on the (current) state
With time
• Decisions need to be made at each time step
• Each time step yields a utility
• Decisions/actions have an effect not only on the

current state/utility but also on the future and
therefore, future decisions

➝Need to consider a temporal sequence of decisions
and project its effect into the future

➝Requires calculating the expected utility over a
sequence

84

Recap: PDM
• Assumptions: Markov-1, stationary process
• PDM ! = !#, !→ where

• !# is a PM describing the intra-slice behaviour for & = 0:
!# = (#))*+

,-

• !→ is a PM describing the intra- and inter-slice behaviour for & > 0
!→ = !/0+ ∪ !/ ∪ !/0+,/

• !/ = (/2 2*+
,3 , !/0+ = !/|/ 56789:6; <= /0+

• !/0+,/ = (> >*+
, , (> = ? @A+ , … , @A

8C

|D
, E ∈ & − 1, &

• Semantics: Unrolling ! for a given maximum step I,
grounding, and building a full joint distribution

85
Marcel Gehrke, Tanya Braun, and Ralf Möller. LiMed Dynamic JuncOon Tree Algorithm. In ICCS-18 Proceedings of the
Interna6onal Conference on Conceptual Structures, 2018.

IJKLMN O #

IJMK& O,P #

QRST#

USVW O #

(#X(#Y

(#+

IJKLMN O +

IJMK& O,P +

QRST+

USVW O +

(/X(/Y

(Z

IJKLMN O Y

IJMK& O,P Y

QRSTY

USVW O Y

(/X(/Y

(Z

Recap: Inference with PDMs
• Inference tasks:

Query ! "#|%&:(,
) the current step
• Filtering: * =)
• Prediction: * >)
• Hindsight: * <)

• Algorithm: LDJT
• Two FO jtrees .&, .→

with interfaces for separaDon
between past and present
• LJT as a subrouDne for query

answering
• Forward/backward messages

to move in Dme

86

123

124

56782 97:; < 2
=>?@AB < 2

56782 97:; < 2
=>A?C <,D 2

56782EF 97:; < 2EF
56782

1G
H2IJ2

H2F

H2KL

1&F, 1&3

1&4

5678& 97:; < &
=>?@AB < &

5678& 97:; < &
=>A?C <,D &

H&IJ2

H&F

Decision Making over Time
• Basis: a dynamic model such as a PDM !", !→
• Describe behaviour over time using interslice parfactors
• Within a slice, describe intra-slice (static) behaviour

➝Extend intra-slice parts with decision + utility PRVs
• Extending PMs for decision making
• PDMs allow for predicting effect of sequence of decisions

87

%&'()*+

,-./0'1/ 2)*+

3/'4)*+

5067-4 2)*+ 8'19 2)*+

:)*+;

:)*+<

:)*++ %&'()

,-./0'1/ 2)

3/'4)

5067-4 2) 8'19 2)

:);

:)<
:)+:=

Time slices

A First Version of a PDDecM
• ! = !#, !→ is a PDM where the two static models
!#, !→ are PDecMs, i.e.,
• !# is a PDecM describing the intra-time slice behaviour

for & = 0
!# = (#))*+

,- ∪ (#/ /*+
0-

• !→ is a PDecM describing the intra- and inter-slice
behaviour for & > 0

!→ = !23+ ∪ !2 ∪ !23+,2
• !2 = (2))*+

,4 ∪ (2/ /*+
04

• !23+ = !2|2 6789:;7< => 23+
• !23+,2 = (? ?*+

,

88

Assumptions about Actions
• Assumptions in terms of time
• Discrete time steps
• Markov-1
• Stationary process

• Lead to assumptions/ constraints on decisions
• Actions can be carried out from one time step to the

next (no duration)
• Effect/outcome of actions immediately captured in the

next time step
• Actions do not affect the stationary process

89

Actions over Time
• Given a set of decision PRVs
• !" = $"%, … , $"(

• Temporal sequence of decisions
= temporal action assignment
• Compound event for a sequence of steps)%:)+
• I.e.,

,"-:". = ,"-, ,"-/%, … , ,".0%, ,".
• ,"1 = $"1% = 2%, … , $"1(= 2(

• Decision making over time usually involves
calculating the best sequence starting at current
step 3, making decisions for 4 steps
• I.e., finding the best ,5:5/6

90

So far, we used utilities to
determine “the best”. How
can we use them with time?

U"li"es over Time
• One has to iterate over temporal action

assignments and pick the one that yields the
maximum expected utility
• Each individual slice has a utility (or reward)

➝ Multi-attribute utility theory
• All individual utilities need to be combined into one expected

utility of the complete sequence
• Assumption: Preference of one sequence over the other

does not depend on time ➝ preferences are stationary
• Formally, if two state sequences !", !$, !%, … and
'", '$, '%, … have the same starting state (!" = '"), then the

two sequences !$, !%, … and '$, '%, … should be
preference-ordered in the same way as !", !$, !%, … and
'", '$, '%, …➝Preference independence between the different slices

➝Use additive combination function

91

Temporal Combination Functions
• Actually, two approaches to combine utilities
• Additive
• Sum over individual utilities
! "#, "%, "&, … = ! "# + ! "% + ! "& +⋯

• Discounted
• Using a discount factor + ∈ 0,1

• Reward now may be more important than one in / steps
• If + = 1: additive

• Utility of a sequence = sum over discounted individual
utilities

! "#, "%, "&, … = +# 0 ! "# + +% 0 ! "% + +& 0 ! "& …
• Model for dynamic decision making needs to

include a function to combine utilities over time

92

EU Query over Time: Exact
• EU query at step ! in a PDM with PDecMs
"# $%:',)':'*+

= -
.∈ℛ 12 34:4567

8 .|$%:',)':'*+ : -
';<=

+

>';?'*';
@ AB@ C'*';

• ?';
@ combination function for utility PRVs at step !D

• Additive/discounted combination over time

93

EFGHIJ%

K"LMAGNM O IJ%

PMGQIJ%

RASB"Q O IJ% TGNU O IJ%

VIJ%@

VIJ%W

VIJ%% EFGHI

K"LMAGNM O I

PMGQI

RASB"Q O I TGNU O I

VI@

VIW

VI%VX

EU Query over Time: Exact
• EU query at step ! in a PDM with PDecMs
"# $%:',)':'*+

= -
.∈ℛ 12 34:456

7

8 .|$%:',)':'*+ : -
';<=

+

>';?'*';
@ AB@ C'*';

• Problem: query involves query terms from all slices
!: ! + E, which also means unrolling the model
• Unlikely that query terms are independent

94

FGHI'*%

JKHL'*%

M'*%@;

FGHI'

JKHL'

M'@
;

FGHI'*N

JKHL'*N

M'*N@;

FGHI'*+

JKHL'*+

M'*+@;

…

Realistically
not computable!

EU Query over Time: Approximate
• Move the probability query into the sum
!" #$:&, (&:&)*

= ,

-∈ℛ 01 23:345
6

,

&789

*

:&
7
; <

01 2
3437
6 - |#$:&, (&:&)* >&)&7

? @A? B&)&7

= ,

&789

*

:&
7

,

-∈ℛ 01 2
3437
6

; -|#$:&, (&:&)* >&)&7
? @A? B&)&7

95

CDEFGH$

I!JK@ELK M GH$

NKEOGH$

P@QA!O M GH$ RELS M GH$

TGH$
?

TGH$
U

TGH$
$ CDEFG

I!JK@ELK M G

NKEOG

P@QA!O M G RELS M G

TG
?

TG
U

TG
$TV

EU Query over Time: Approximate
• Temporal EU query sums over individual EU queries
!" #$:&, (&:&)*

= ,
&-./

*

0&
-

,

1∈ℛ 45 6
787-
9

: 1|#$:&, (&:&)* <&)&-
= >?= @&)&-

= ,
&-./

*

0&
-
!" #$:&, (&:&)*

96

ABCD&)$

EFCG&)$

H&)$
=-

ABCD&

EFCG&

H&=
-

ABCD&)I

EFCG&)I

H&)I
=-

ABCD&)*

EFCG&)*

H&)*
=-

…

Utility Transfer Function
• Transfer (expected) u1lity at slice ! − 1 to slice !
• Simple case: single u1lity PRV per slice $%

• Parfactor as u1lity transfer func1on takes $%&' and $% as
arguments and assigns the (discounted) sum to $% again

• () = +), $%&', $% |/ = $%&' + 12$%
• Inter-slice parfactor as PRVs from both ! − 1 and ! occur
• 3 depends on how far in the temporal ac1on assignment we are
• May only be calculated once $% is set by answering the EU query

97

4567%&'

89:!;63! < %&'

$!6=%&'

>;?@9= < %&' A63B < %&'

(%&')

(%&'C

(%&'' 4567%

89:!;63! < %

$!6=%

>;?@9= < % A63B < %

(%)

(%C
(%'(D

()

Marcel Gehrke, Tanya Braun, and Ralf Möller. LiOed Temporal Maximum Expected U1lity. In: CAI-19 Proceedings of
the 32nd Canadian Conference on Ar8ficial Intelligence, 2019.

Utility Transfer Function
• Transfer (expected) utility at slice ! − 1 to slice !
• General case: set of utility PRVs per slice $%& &'(

)*

• Two approaches
1. Use a combination function +%, to combine $%& &'(

)*

into one utility $% and use a single utility transfer
function -, as seen on previous slide

98

-,

.%/((

$%/((

-%/(,0

.%1

$%1

-%,
2

.%/(1

$%/(1

-%/(,2

.%(

$%(

-%,
0

$%$%/(

+%/(, +%,

Utility Transfer Function
• Transfer (expected) utility at slice ! − 1 to slice !
• General case: set of utility PRVs per slice $%& &'(

)*

• Two approaches
2. Use a set of utility transfer functions +,- for (sets of)

utility PRVs $%& &'(
)* and only combine them at the

end using a combination function .,

99

/%0((

$%0((

+%0(,1

/%2

$%2

+%,
3

/%0(2

$%0(2

+%0(,3

/%(

$%(

+%,
1

.%0(,

.%,

A Complete PDDecM
• A PDDecM ! = !#, !→ is a PDM where the two

static models !#, !→ are PDecMs, i.e.,
• !# is a PDecM describing the intra-time slice behaviour

for & = 0
!# = (#))*+

,- ∪ (#/ /*+
0- ∪ 1#2

• !→ is a PDecM describing the intra- and
inter-slice behaviour for & > 0

!→ = !45+ ∪ !4 ∪ !45+,4
• !4 = (4))*+

,6 ∪ (4/ /*+
06 ∪ 142

• 142 combination function, may be omitted (in Approach 2)
• !45+ = !4|4 89:;<=9> ?@ 45+
• !45+,4 = (A A*+

, ∪ (/ /*+0

• (/ utility transfer function, may be singleton (in Approach 1)

100

Approach 2 requires a
combination function
12 for computing an
EU query at the end

Temporal MEU Problem
• Given a PDDecM !, evidence "#:%, and a number &
• Temporal MEU problem
• Find the temporal action assignment that yields the

highest expected utility in !
• Formally,

• Size of ℛ (%:%)* exponential in number of groups (as with
static decision making) and &

101

meu !|"#:%, & = 1%:%)*∗ , 34 "#:%, 1%:%)*∗

1%:%)*∗ = argmax
19:9:;∈ℛ (9:9:;

34 "#:%, 1%:%)*

Example
• Given no evidence, current .me

step ! = 2, and $ = 2

%&:(
) ∗

= argmax
)∈ 1,…,4

56 %&:(
)

102

789:;<1

=5>?@9A? B ;<1

C?9D;<1

E@FG5D B ;<1 H9AI B ;<1

J;<1
K

J;<1
&

J;<1
1 789:;

=5>?@9A? B ;

C?9D;

E@FG5D B ; H9AI B ;

J;
K

J;
&

J;1JL

JK

%&
) %M

) %(
)

%&:(
1 NFO NFO NFO

%&:(
& NFO NFO P@55

%&:(
M NFO P@55 NFO

%&:(
(NFO P@55 P@55

%&:(
Q P@55 NFO NFO

%&:(
R P@55 NFO P@55

%&:(
S P@55 P@55 NFO

%&:(
4 P@55 P@55 P@55

Solving a Temporal MEU Problem
• Answering temporal MEU queries using LDJT
• But: utility transfers/EU queries per step have to be

dealt with ➝ Bookkeeping
• Two approaches:

I. In parallel to FO jtree, keep counters for each utility
transfer function and add the current, possibly
discounted, EU value to the existing counter

II. After message passing, calculate all necessary EU
queries at corresponding parclusters, perform a utility
message pass that sends the EU results to the
outcluster to be sent over to the next step with the
forward message and be distributed to the
corresponding parclusters during message passing

103

MEU-LDJT
• Build two FO jtrees for

PDDecM
• Proceed step-wise (!)
• Answer probability/

assignment queries as before
• Given an MEU query with ",

• Calculate the set of temporal acIon assignments # based on
groups in $% and "

• For each #, proceed for " steps
• Set acIons at each step
• Calculate EU queries + bookkeeping (Approach I or II)

• For ease of computaIon, include helper parfactors during
construcIon according to the EU queries

• Return #∗

104
Marcel Gehrke, Tanya Braun, and Ralf Möller. LiVed Temporal Maximum Expected UIlity. In: CAI-19 Proceedings of
the 32nd Canadian Conference on Ar8ficial Intelligence, 2019.

Acting
• After computing a temporal action assignment,

assignment is acted out, including:
• Actuators get commands to carry out the action behind

a current assignment,
• Internal state is updated: Decision PRVs are set,

(messages are passed,) and then time moves on
• Agent can then continue to act according to the

temporal assignment or recalculate as new
evidence comes in
• Recalculate each step
• Recalculate once

105
Next three slides adapted from material provided by Dana Nau,

http://www.laas.fr/planning

http://www.laas.fr/planning

Using Decision Making in Acting
• Receding horizon:

• Call meu, obtain a temporal
ac6on assignment $, perform
1st ac6on, call meu again …

• Like game-tree search (chess,
checkers, etc.)

• Useful when unpredictable
things are likely to happen
• Re-plans immediately

• Poten6al problem:
• May pause repeatedly while

wai6ng for meu to return

106

Decision making stage
Ac6ng stage

Run-MEU(G,%)
while E ← new evidence do

absorb E in G
$ ← meu(G,%)
a ← pop-first($)
perform a
update G with a

Using Decision Making in Acting
• Call meu, execute the

temporal action assignment
as far as possible, do not call
meu again unless necessary
• Simulate tests whether the

assignment will execute
correctly
• Lower-level refinement,

physics-based simulation,
prediction accuracy < some
threshold

• Potential problems
• May might miss

opportunities to replace)
with a better assignment

• Without Simulate, may not
detect problems until it is too
late

107

Run-Lazy-MEU(G,*)
while E ← new evidence do

absorb E in G
) ← meu(G,*)
while) ≠ () and

Simulate(G,))
≠ failure do

a ← pop-first())
perform a
update G with a

Using Decision Making in Ac/ng
• May detect

opportunities earlier
than Run-Lazy-MEU
• But may miss some that

Run-MEU would find
• Without Simulate, may

fail to detect problems
until it is too late
• Not as bad at this as

Run-Lazy-MEU

108

Run-Concurrent-MEU(G,))
* ← ⟨⟩
// thread 1 + 2 run

concurrently
thread 1:

while E ← new evidence do
absorb E in G
* ← meu(G,))

thread 2:
while E ← new evidence do

absorb E in G
if * ≠ () and

Simulate(G,*)
≠ failure then

a ← pop-first(*)
perform a
update G with a

Offline vs. Online Decision Making
• Online decision making: Depends on how far one looks

into the future
• Can extend the look-ahead further and further, propagating

future effects back to present to see if the current best
decision still holds

• Extending the look-ahead to infinity, one will eventually reach
a fix point: offline decision making

• Offline decision making
• Solving a partially observable Markov decision process

(POMDP) – Ch. 17 in Russell/Norvig’s AIMA3
• Basically find the steady state in terms of actions that leads to the

maximum expected utility
• Look-up table, fast during acting, huge overhead beforehand
• Reacting to extreme situations/evidence no possible

• No longer factorised model but a transition function over
complete state space

• Part of the lecture: Advances in Data Science and AI (Summer
Term) – Automated Planning and Acting

109

Interim Summary
• PDDecMs as a combina.on of
• PDMs for temporal aspect
• PDecMs for decision making

• Temporal expected u.li.es
• Addi.ve or discounted u.li.es
• Exact solu.on virtually impossible to compute
• Approxima.on by summing over EU query result for

each step
• Inference based on LDJT
• Interface again for sequen.al independence
• Bookkeeping of EU results

110

Se#ng: Agent with U.li.es

111AIMA, Russell/Norvig

PDDecMs
• Uncertainty by

probabilities
• Relational aspect by

parameterisation
• Temporal aspect by

time indexing
• Decisions and effects

by actions & utilities
in a temporal model

Outline: 7. Decision Making
A. Static decision making
• Utility theory
• Parameterised decision models (PDecM)

• Modelling, semantics, inference tasks
• Inference algorithm: LVE as an example

• Value of Information

B. Sequential decision making
• Parameterised dynamic decision models (PDDecM)
• Temporal MEU problem, inference
• Acting

⟹ Next: Continuous Space

112

