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Probabilistic Graphical Models (PGMs)

1. Recap: Propositional
modelling

* Factor model, Bayesian
network, Markov network

* Semantics, inference tasks
+ algorithms + complexity

2. Probabilistic relational
models (PRMs)

* Parameterised models, Markov
logic networks

* Semantics, inference tasks

3. Lifted inference
e LVE, LT, FOKC
* Theoretical analysis

4. Lifted learning
e Recap: propositional learning

* From ground to lifted models
* Direct lifted learning
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5. Approximate Inference:

Sampling
* Importance sampling
e MCMC methods

Sequential models &
inference

* Dynamic PRMs

* Semantics, inference tasks
+ algorithms + complexity,
learning

Decision making

e (Dynamic) Decision PRMs

 Semantics, inference tasks
+ algorithms, acting

Continuous Space

* Gaussian distributions

* Probabilistic soft logic



Setting: Agent with Utilities
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Outline: 7. Decision Making

A. Static decision making
 Utility theory
* Parameterised decision models (PDecM)

* Modelling, semantics, inference tasks
* Inference algorithm: LVE as an example

e Value of information

B. Sequential decision making
e Parameterised dynamic decision models (PDDecM)
 Temporal MEU problem, inference
* Acting




Expected Utility

* Randvar R with n range values ry, ..., 15, and
distribution (pq, ..., ;)

* E.g.: R encodes the state reached after doing an action
A = a under uncertainty

* Function U of R
e E.g., U is the utility of a state

* The expected utility of A = a is

EU[A = a] =ZP(R =r|A=a) -UR =r1;)

R
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MEU Principle

* A rational agent should choose the action that
maximises agent’s expected utility

* This is the basis of the field of decision theory

* The MEU principle provides a normative criterion
for rational choice of action

Al is solved!!!



Not quite...

* Must have complete model of:
* Actions
 Utilities
e States

* Even if you have a complete model, it might be
computationally intractable

* In fact, a truly rational agent takes into account the
utility of reasoning as well — bounded rationality

* Nevertheless, great progress has been made in this
area, and we are able to solve much more complex
decision-theoretic problems than ever before




Setting

e Agent can perform actions in an environment

* Environment
* Episodic, i.e., not sequential
* Next episode does not depend on the previous episode
* So called static models (vs. dynamic/temporal, next lecture)
* Non-deterministic
* Qutcomes of actions not unique
* Associated with probabilities (— probabilistic model)
* Partially observable
e Latent, i.e., not observable, random variables
« Agent has preferences over states/action outcomes

* Encoded in utility or utility function — Utility theory

e “Decision theory = Utility theory + Probability theory”
* Model the world with a probabilistic model
* Model preferences with a utility (function)

* Find action that leads to the maximum expected utility, also
called decision making
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Utility Theory

Preferences, Utilities, Dominance, Preference structure




Preferences

* An agent chooses among prizes (4, B, etc.) and
lotteries, i.e., situations with uncertain prizes

e Outcome of a nondeterministic action is a lottery

* Lottery L = [p,4; (1 — p), B]
* A and B can be lotteries again
* Prizes are special lotteries: [1, R; 0, not R]

* More than two outcomes:
* L= [P1;51}P2;52} "°;pann]r 7i1=1pi =1

 Notation
e A>B ApreferredtoB
e A ~ B indifference between A and B

e AZ B B notpreferredto A
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Rational preferences

* |dea: preferences of a rational agent must obey
constraints

e Rational preferences = behaviour describable as
maximisation of expected utility
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Rational preferences contd.

* Violating constraints leads to self-evident
irrationality

* Example
* An agent with intransitive preferences can be induced to

give away all its money

* If B > C, then an agent who has C A
would pay (say) 1 cent to get B . .
* If A > B, then an agent who has B

would pay (say) 1 cent to get A y

* If C > A, then an agent who has A4 B\
would pay (say) 1 cent to get C N
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Axioms of Utility Theory

1. Orderability 6. Decomposability
* (A> B)v(4 < B)v(A~B) * |p.4;1-p,1q,B; 1—¢q,Cl]~
- {<,>, ~}(jpi_n’gly exhaustive, [p,4; 1—p)q,B;(1—p)(1—-q),C]
palrwise ISjOInt

2. Transitivity
e A>BA(B>C)=(A>=0C)

3. Continuity

e A>B>(C=
dp[p, A 1—p,Cl~B

4. Substitutability

- ANB=>
[p,4;1—=p,Cl~[p,B; 1 —p, (] p__ A
e Also holds if replacing ~ with >
5. Monotonicity A-p) g
e A>B=
> q <
bal—p8 a-pa-o ¢

z [q,4;1—q,B)])

Decomposability: There is no fun in gambling.



And Then There Was Utility

* Theorem (Ramsey, 1931; von Neumann and
Morgenstern, 1944):

* Given preferences satisfying the constraints, there exists a
real-valued function U such that

UA)>UB)=AZB
U([p1, Si5 -3PnSaD) = ) piU(S)

* MEU principle

* Choose the action that maximises expected utility

* Note: an agent can be entirely rational (consistent with
MEU) without ever representing or manipulating
utilities and probabilities

* E.g., alookup table for perfect tictactoe
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Utilities

 Utilities map states to real numbers.
Which numbers?

e Standard approach to assessment of human utilities:

* Compare a given state A to a standard lottery L,, that has

* “best possible outcome” T with probability p
 ”worst possible catastrophe” L with probability (1 — p)

* Adjust lottery probability p until A~L,,

0.999999 continue as before

pay-$30-and-
continue-as- ~
before

0.000001 instant death
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Utility scales

* Normalised utilities: u+ = 1.0,u; = 0.0
 Utility of lottery L ~ (pay-$30-and-continue-as-before):
U(L) = ut+0.999999 + u, - 0.000001 = 0.999999
* Micromorts: one-millionth chance of death
e Useful for Russian roulette, paying to reduce product
risks, etc.
* QALYs: quality-adjusted life years

e Useful for medical decisions involving substantial risk

* Behaviour is invariant w.r.t. positive linear
transformation
U,(T) — klU(T') + kz
* No unique utility function; U'(r) and U(r) yield same
behaviour
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Ordinal Utility Functions

* With deterministic prizes only (no lottery choices),
only ordinal utility can be determined, i.e., total
order on prizes

* Ordinal utility function also called value function

* Provides a ranking of alternatives (states), but not a
meaningful metric scale (numbers do not matter)
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Money

* Money does not behave as a utility function

* Given a lottery L with expected monetary value
EMV (L), usually U(L) < U(SEMV(L)), i.e., people
are risk-averse

e §,,: state of possessing total wealth Sn

 Utility curve

* For what probability p am | indifferent between a prize x and a
lottery [p, $M; (1 — p), $0] for large M?

e Right: Typical empirical +k’ .
data, extrapolated with o
risk-prone behaviour aas

for negative wealth ~150,000 800,000
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Money Versus Utility

* Money # Utility
* More money is better, but not always in a linear
relationship to the amount of money
* Expected Monetary Value
* Risk-averse
« U(L) < U(Semvy)
* Risk-seeking
« U(L) > U(Semvy)
* Risk-neutral

« U(L) = U(Semvy)
* Linear curve

* For small changes in wealth
relative to current wealth




Multi-attribute Utility Theory

* A given state may have multiple utilities
* ...because of multiple evaluation criteria

e ...because of multiple agents (interested parties) with
different utility functions

 We will look at

e Cases in which decisions can be made without
combining the attribute values into a single utility value

e Strict dominance

e Cases in which the utilities of attribute combinations can
be specified very concisely
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Strict dominance

» Typically define attributes such that U is monotonic
in each —

e Strict dominance
e Choice B strictly dominates choice A iff
Vi:X;(B) = X;(A) (and hence U(B) = U(A))

X5 This region X5
dominates A A |

Deterministic attributes Uncertain attributes

D) e
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Stochastic dominance

* Cumulative distribution p; first-order stochastically dominates
distribution p, iff
Vx i pp(x) < py(x)
* With a strict inequality for some interval
* Then, E,, > E, (E referring to expected value)

* The reverse is not necessarily true

* Does not imply that every possible return of the superior distribution is
larger than every possible return of the inferior distribution

* Example:
* As we have negative costs, S2 dominates S1 with Vx : pg (x) < ps, (x)

12 T ! L] T T T T T 1
Lr 08 |
. 08 r .
2 Z 06
g 06 | . E
£ b — | £ 04}
04 + S2 —
02 02
1 1 1 1 0 1 1 1 1 1 1
S5 45 4 35 -3 25 -2 6 55 -5 45 4 35 -3 -25 -2
Negative cost Negative cost
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https://people.duke.edu/~dgraham/ECO_463/Handouts/StochasticDominance.pdf

Example

* Product P

ot 5

ok
]

0 to under 5 0.2
5tounder10 0.3 ZZ:
10 tounder 15 0.4 £ o7 Product P
15 tounder 20 0.1 ‘é 0.6/

g 0.5

* Product Q E ) o
0 to under 5 0.0 0'(‘)[“ 1 1 1 |
0 5 10 15 50 25

5tounder10 0.1
10 tounder 15 0.5
15tounder20 0.3
20tounder 25 0.1

Profit ($ millions)

P first-order stochastically dominates Q.




Stochastic dominance

* Cumulative distribution p; second-order stochastically dominates
distribution p, iff

Vit: jt pz(x)dxsft p1(x) dx

— 00 — 00

t

c or:D(t) = J__p1(x) —pp(x)dx =0

* With a strict inequality for some interval

* Then, E,, = E, (E referring to expected value)

* Example:

* Second-order stochastic dominance * No dominance
14 10 1 - 8
09 —optiona|T @ 091 /c:tio:_" ]
ED.El 1 —— optionB|T 8 =08 Option B
8077 —Dw |17 07 it 4
© o] Dit)
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S0 Lo 205 D(t)
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0 ¢ ' . . . 0 0 : : ; ; ' i
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https://www.vosesoftware.com/riskwiki/Stochasticdominancetests.php
https://people.duke.edu/~dgraham/ECO_463/Handouts/StochasticDominance.pdf

Preference Structure

* To specify the complete utility function U(r, ..., 13,), we
need d™ values in the worst case
e n attributes
* each attribute with d distinct possible values

* Worst case meaning: Agent’s preferences have no regularity
at all

* Supposition in multi-attribute utility theory
* Preferences of typical agents have much more structure

e Approach
* Identify regularities in the preference behaviour

* Use so-called representation theorems to show that an agent
with a certain kind of preference structure has a utility
function

U(rlr )T'Tl) — F[fl(rl)) ;fn(rn)]
* where F is hopefully a simple function such as addition
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Preference structure: Deterministic

* Ry and R, preferentially independent (PI) of Ry iff

* Preference between (ry, 1y, 73) and (r{, 15, r3) does not
depend on ;3

* E.g.,(Noise, Cost,Safety)
* (20,000 suffer,$4.6 billion, 0.06 deaths/month)
* (70,000 suffer,$4.2 billion, 0.06 deaths/month)

* Theorem (Leontief, 1947)

* If every pair of attributes is Pl of its complement, then every
subset of attributes is Pl of its complement

* Called mutual PI (MPI)

* Theorem (Debreu, 1960):
* MPI = 3 additive value function

V(ry, e, m) = Z-Vi(ri)

* Hence assess n single-attribute functions
* Often a good approximation




Preference structure: Stochastic

* Need to consider preferences over lotteries
* R is utility-independent (Ul) of S iff

e Preferences over lotteries in R do not depend on s

* Mutual Ul (Keeney, 1974): each subset is Ul of its
complement = 3 multiplicative utility function

* Forn = 3:
U — k1U1 + kZUZ + k3U3
* |.e., requires only n single-attribute utility functions and
n constants
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Interim Summary

* Preferences

* Preferences of a rational agent must obey constraints
* Utilities

* Rational preferences = describable as maximisation of

expected utility

 Utility axioms

 MEU principle
* Dominance

* Strict dominance
* First-order + second-order stochastic dominance

* Preference structure
e (Mutual) preferential independence
e (Mutual) utility independence

:::::
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Parameterised Decision
Models (PDecMs)

Modelling, Semantics, Inference Tasks

Inference with LVE




GERST
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Decision Networks/Models

 Extend a PGM to handle actions and utilities
e Decision variables
 Utility variables

* Also called influence diagrams

* Use an inference method of one’s choosing
to find actions that lead to the highest expected
utility

* Also allows to perform so-called
Value of Information calculations

* |s it worth it to spend resources on getting more
information (in the form of evidence)?
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Decision PRVs & Utility PRVs

e Action and utility PRVs follow the same syntax as
normal PRVs

* Decision PRV A:
range R(A) = {a;}{=, set of possible actions
* Actions a; mutually exclusive (consistent with range def.)
» Depicted by a rectangle in a graphical representation
 E.g., possible travel restrictions for people X: Restrict(X)

* Range values: ban, free Restrict(X)

Utility PRV U:
range R(U) = R
e QOutput variable, i.e., gets assigned a value by utility function
* Therefore, always a leaf

* Depicted by a diamond in a graphical representation

R
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Decision PRVs in Parfactors

* As arguments of a parfactor
* Parfactor ¢ (A)c

* May now also contain decision PRVs in its arguments A
* E.g., ¢ (Restrict(X), Travel(X))

Restrict(X) | Travel(X) Restrict(X) @

free false 1 Ju
free true 1
ban false 1
ban true 0

rSI
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Utility PRVs in Parfactors

 Utility PRVs get assigned value by potential function

 Utility parfactor ¢U(‘A)|C

* Arguments A = (44, ..., A,,,) a sequence of (decision) PRVs
U a utility PRV that receives the output value

¢:xi=1R(4;) » R(U)

C a constraint for logvars [v(A) U lv(U)

Set of PRVs: rv(qbu(cﬂ)w) = {44, ..., A, } (without U)

E.g., ¢y:i1(Restrict(X), Epid)

Restrict(X) @
free false 10 Ju

free true —10

ban false =20

ban true 5

aaaa
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PDecMs

* PDecM = PM that allows decision PRVs in the
arguments in its parfactors as well as utility
parfactors

* For simplicity, let us consider models with one utility
parfactor mapping to one utility randvar
— Strict dominance by one utility

* Formally, PDecM
G ={gi}i=1 Y {gu}

o Restrict(X Util
E.g., &) 9u <>

G =191, 92 93 9u}

e T constraints




PDecMs: Action Assignments

* Let A = {4y, ..., Ay }c be the set of decision PRVs occurring
in G with a constraint C for the logvarsin A

* Then, a is a compound event for A4 that assigns each
decision PRV 4; a range value q;

e Refer to a as an action assignment

e E.g., without evidence in G (E = @, T constraints)
* Action Restrict(X) with range {ban, free}
 a, = {ban}
* a; = {free}
* Given another action A with range {a’,a"’,a"""}
 a, = {ban,a’}

* a, ={ban,a'"’} Restrict(X) @
* a; = {ban,a'"} Ju

e a, ={free,a'}
+ =1{f

* as ={free,a'}

* ag = {free,a'"}

,,,,,
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PDecMs: Setting Decisions

* Given a PDecM G and an action

assignment a free

* Let G, refer to G with a set, i.e., frpe
G = absorb(G, a) bgn

ban

* In each g with decision PRV 4;,

* Drop the lines where A; # a; and

1 _ _
Jawse

J.
false 1
0

true

the column of 4;
. E.g,seta, = { } false false —20
in G =191, 92, 93, 9u} true Tue | 8
° E — @
 Absorb a, in g; and g,y |Restrict(X) 9 @

* Gq, ={91,92,93 9u}
g1 = gbi(Travel(X))
* gy = $yn(Epid)




PDecMs: Semantics

* Semantics of PDecM G = {g; ?:1 U{gy}

* Given an action assignment a for the grounded set of
decision PRVs A = {4y, ..., Ay }|c occurring in G

* Then, the semantics is given by grounding and building a
full joint distribution for the non-utility parfactors

PG [a] = = f Semantics multiplicative with
FEGrG\{gy)) an inner product and outer
sum: Multiply parfactors,

7 = f then sum out PRVs.
— Sum-product algorithms

T ER(Ry) TNER(Ry) fEgr(Ga\lgu})

 Utility parfactors irrelevant for probabilistic behaviour




e PdecM
G =191, 92 93 9u}

* T constraints

o G witha, = {1} set
Ga, =191, 92,93 9u}
g1 = qbi(Travel(X))
* gu = by (Epid)

* Model relevant for
guery answering:

G =1{91,92 93}

R
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PDecMs: Expected Utility Queries

* Given a PDecM G = {g;}i=; U{gy}
* One can ask queries for (conditional) marginal
distributions or events as before given an action
assighment a based on the semantics, P;|a]

* New query type: query for an expected utility (EU)
 What is the expected utility of decisions ain G?

B, @)= ) P(rEa)- ¢y()

reR(rv(gy))
* If a gy contains decision PRVs or is affected by E, then, of
course, gy nheeds to be modified accordingly

« P(r|E, a) means that the PRVs not occurring in this expression
need to be eliminated accordingly

39
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PDecMs: EU Query — Example

* Expected utility of a, = {/a11}
inG =1{91,92 93 9u}
eu(a) = ) P(Epid = elay) - y(Epid = e)
eeR(Epid)
e WithE =0
* Compute P(Epid = ela,) inG
* By computing P(Epid = e) in

Ga, =191, 92,93, 9u}
* Depicted on the right

aaaa
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PDecMs: EU Query — Example

* Compute P(Epid = e) in Gq, = {91, 92, 93, 9u}
* Using LVE, eliminate all other terms in G _:
e Eliminate Treat(X, M)
 Eliminate Travel(X)
* Eliminate Sick(X)
* Normalise result to get P(Epid = e) in G, : ¢(Epid)
* Corresponds to P(Epid = ela,) in G

false 1 false —20

true 0 true 5

The parfactors g; and gy, would look
differently, had we set a, = {free}.
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PDecMs: EU Query — Example

e Calculations with |D(M)| = 2,|D(X)]| = 3:
 Sum out Treat(X M), exponentiate result for M

e Do ool Dol

false false false false false (9+1)* =100
false true (5+46)?=121
true false (3+4)? =49
true true (4+5)? =81

false false true
false true false

false true true

true false true

1
5
6
true false  false 3
4
true true false 4

5

true true true

JERST
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PDecMs: EU Query — Example

e Calculations with |D(M)| = 2, |D(X)]| = 3:
* Multiply g{,gz, sum out Travel(X)

_E SO0 [ TID | 9p i

false false false 10-1=10 false false 10+ 0 =10
false false true -0=0 false true 44+0=4
-1=4 true false 8+0=28

false true true -0=0 true true 5+0=5

9
4
2
true false false 8-1=38
3 @
5
1

false true false

-0=0
+1=5
-0=0

true false true
true true false

true true true

false 1
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PDecMs: EU Query — Example

e Calculations with |D(M)| = 2, |D(X)]| = 3:
* Multiply g12, 93, sum out Sick(X), exponentiate for X,
normalise

S(X)
false false 10-100 = 1000 false (1000 + 484)3 = 3,268,147,904
false true 4.121 = 484 true (392 + 405)3 = 506,261,573

true false 8-49 = 392
/ @
Ju
false 0.87

true true 5-81 = 405
true 0.13 ‘
912 g3
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* Result ¢ (Epid) for _ ‘
P(Epid = ela;) in G = _—(Epid) rgb@

* Expected utility of a; = {1}
in G =1{91,92, 93 9u}

eu(a,)

P(Epid = e|la,) - ¢y (Epid = e) Y
i

false 0.87-(—-20) =—-17.4

— Z true 0.13-5 = 0.65

e€R(Epid)

= z ¢y (Epid = e) gu' @

ecR(Epid) AT

=¢!'() . =174+ 0.65 = —16.75

false 0.87 false —20
true 0.13 true 5




Answering EU-Queries (with LVE)

* Given a PDecM G = {g;};—; U {gy}, evidence E, and
an action assignment a (*) (*) We need to talk about evidence

e Absorb E in G andsetain G

* Calculate the posterior, P(R|E, a), of the Markov blanket
of the utility node

* le.,, R =rv(gy) \ rv(a) \ rv(E) (remaining PRVs in gy after
previous step)

e Using LVE: With R as the query terms, eliminate all non-query
termsin G, i.e., call LVE(G \ {gy}, R, ©)

* Evidence already absorbed, decisions made — E = @ in the call
* Calculate the expected utility by summing over the range
values of R: eu(E, a) = X ;.cx(r) P(T|E, @) - ¢y (1)

e Using LVE: Eliminate remaining PRVs in G,
* Result: parfactor mapping empty argument to a single value (U)

and action assignments later.

& %
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PDecMs: MEU Problem

 Given a PDecM G and evidence E

 Maximum Expected Utility (MEU) problem

* Find the action assighment that yields the highest
expected utility in G

* Formally, il ——
itive semantics wi
meu(G |E) — (a*, BU(E, a*)) inner sum and outer
. max: Sum up utilities,
a = argmax QU(E, Cl) then pick maximum

acR(A4) — Max-sum algorithms

* For an exact solution, meu(G|E) requires an algorithm
to go through all a € R(A)

 Size of R(A) exponential in |A]

Alternative specification
meu(G|E) = (argmax eu(E,a), arer}eaé) eu(E, a))

acR(A)




PDecMs: MEU — Example

* Problem instance with G = {94, 95,93, 9y}, E=0:

meu(G) = (a*,eu(a*)) a* = argmax eu(a)
acf{aq,a;}

* a, = {ban},a, = {free}

* Expected utilityof a; = {/an}: eu(a,;) = —16.75

* Expected utility of a, = { }: eu(a,) = 8.8

e Solution

 a* = argmax eu(a) = a,
acfai,a;}

c meu(G) = (ay,8.8)  [Restrict(D L
e Decision that leads to
maximum EU:
No travel restrictions




meu(G|E) = (a*, eu(E, a"))

Lifted MEU @’ = argmax eu(E, @

acR(A)

* In terms of semantics, a € R(A) means
* Grounding A and going through all possible combinations of
assignments to gr(A)
e But: grounding is a bad idea

* Combinatorial explosion: number of action assignments to
test exponential in size of gr(A)

* Grounds any parfactor in G containing a logvar of A

e Also: Grounding to full extent often unnecessary

* Within groups of indistinguishable constants, the same
decision will lead to its maximum influence in the MEU
solution

* Only need to test each assignment for complete group

* Therefore: Test out all possible combinations of
assignments w.r.t. the groups occurring in G

* No longer exponential in the size of gr(A4)!




meu(G|E) = (a*, eu(E, a"))

Litted MEU: Groups a’ = argmax cu(E, )

acR(A)

* In parameterised models without evidence (or
evidence for complete domains), a € R(A) means

* Going through all possible combinations of assignments
toA

* One group per logvar

* In parameterised models with evidence affecting
parfactors containing decision PRVs, a € R(A)
means

* Going through all possible combinations of assignments
for each group resulting after evidence handling

* Specifically, after shattering
* Effect: size exponential in number of groups

(*) Now is later.
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Lifted MEU: Groups — Example

* PDecM G =1{91, 92, 93, gy} * Action assignments

* T constraints * a; = {Restrict(X") = ban,

e Ev. E = {Sick(X") = true} Restrict(X') = ban}
C DX = [x %10) * a, = {Restrict(X'") = ban,
. _1""’ 10 . Restrict(X') = free}

* Action Restrict(X) with . a; = {Restrict(X") = free,
range {ban, free} Restrict(X') = ban}

* DX) ={xq1, ..., xp} « a, = {Restrict(X"") = free,
« Overlap in Restrict(X') = free}

domain/constraint meu(G|E) = (a*, eu(E,a*))

e Shattering of G = argmax eu(E, a)
* Duplicates all parfactors for

e DX") ={xq4, ..., %10}

s DX") ={x10) .0, X}

e Could also restrict constraints w W
9> g3

: i T-
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Answering EU-Queries for MEU

* Given a PDecM G = {g;};—; U{gy}, evidence E, and
an action assignment a for groups in G after
shattering

 Absorb E in G andsetainG
* Calculate the posterior, P(R|E, a), of the Markov blanket

of the utility node

* le.,, R =rv(gy) \ rv(a) \ rv(E) (remaining PRVs in g,’s after
previous step)

e Using LVE: With R as the query terms, eliminate all non-query
termsin G, i.e., call LVE(G \ {gy}, R, @)

* Evidence already absorbed, decisions made — E = @ in the call
e Calculate the expected utility by summing over the range
values of R: eu(E, a) = X ,.cx(r) P(T|E, @) - ¢y (1)
* Using LVE: Eliminate remaining PRVs in G,
* Result: parfactor mapping empty argument to a single value (U)

(*) Now is later.
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LVE for MEU Problems

function MEU-LVE(G = {g;}}-, U {gy}, E)
Absorb E in G
a < ()

— —00

eumax
for each action assignment a in G do

Setain G

g < LVE(G \ {gy}, rv(gy), D) > g normalised
eu(E,a) < LVE({gy, g}, 0, 9)
if eu(E, a) > eu,,,, then

a < a
eUmax < eu(E,a)
return a’

* Modify to save all assignments that lie within e-margin

SV T
LX) \ 3
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(Sets of) Utilities and Logvars

Let us consider four cases:

1. Set of utility parfactors mapping to the same utility
randvar
* G ={gi}iz1 V{guhi=1
* Each g,, mapping to the same utility randvar U

2. Logvars in the Markov blanket of the utility randvar

* Possible given a single utility parfactor mapping to a utility
randvar
* |In example so far logvars only in decision PRV, which is always set

* Grounding the parfactor leads to a set of utility factors
mapping to the same utility randvar U

3. Logvars in the utility PRV

* A set of utility randvars in the ground case, but with
indistinguishable behaviour from the model side

.. 4. Aset of utility PRVs



1. Set of Utility Parfactors

* Set of utility parfactors, all map to a utility randvar U
* G ={9:i}i=1 Y {gulu=1, each gy, mapping to U
* Refer to set of utility parfactors of G by Gy = {gy}u=1

* Since all g, map to U, g,,’s are partial descriptions of an
overall utility function gy

* Can combine GU into one utility parfactor Ju
= {gi}i=1 Y {9u}i=1 ={9i}i=1 Y {gu)}

. where

gu = Z 2 du\Trv(g, )(T))

rER rv({gu}

* Additive semantics: Sum over the utilities that r maps to in the
different g,, (join of arguments, addition of utilities)

Compare combining parfactors with potentials (multiplicative
semantics): Join of arguments, multiplication of potentials




1. Set of Utility Parfactors: Example

* Two utility factors mapping * Resulting gy

to utility randvar Util " E | R | s | ¢

* qbbtil(E;R) false false  false 5+ 8
’ (rbb’til(E» S) false false true 5+ 3

false true false 0+8

false false 5 false false 8 true false  false -54+0

false true 0 false true 3 true false true —5+1
true false =5 true false 0 true true false —10—-0
true true —10 true true 1 true true true —10+1

gbgb’ @ gu@
<> <>




1. Set of Utility Parfactors

* Combination into one utility parfactor g; in terms
of semantics yields for EU queries:

eu(E,a) = 2 P(r|E,a) - z du (T[rv(gu) (T))
rER(rv({gu}gﬂ)) u=1

* Caution: Expected utility requires marginal distribution
over the Markov blanket of U

* Even though utility function specified over a set of parfactors,
which may have only few arguments, query for P(r|E, a) will
combine all PRVs in {g,, };,= into one parfactor g

e Changesin LVE: R =rv({g,},=1) \rv(a) \ rv(E)
e Changes in MEU-LVE:

g < LVE(G \ {gu}u=1,7v({gu }1=1), D) > g normalised
eu(E,a) < LVE({g, };=1 U {g}, @, D)

g, -
2 WUAYT & UNIVERSITAT ZU LUBECK
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1. Set of Utility Parfactors: EU

 Two utility factors g;;, gy  * LVE result g of P(E,R,S)
£ | R | ¢ £ | R | S | ¢

false false 5 false false 8 false false  false 0.01
false true 0 false true 3 false false true 0.02
true false =5 true false 0 false true false 0.03
true true —10 true  true 1 false true true 0.04
true false  false 0.10
true false true 0.20
true true false 0.25
true true true 0.35

Not computing g, may reduce the size

of some multiplications but does not
reduce overall space requirements.
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2. Logvars in the Markov Blanket

* Logvars in Markov blanket of utility randvar

* |.e., in arguments of utility parfactors that are not
decision PRVs

* E.g., gu = Puri(Restrict(X), Epid, Sick(X))
* Lifted version of the previous case
* Grounding leads to a set of utility parfactors mapping to the

same utility randvar
@
9u

* |n terms of calculations,
P(r|E, a) now contains
parameterised query
terms in EU query

 Effect: logvars counted
(or grounded) in result

Restrict(X)

To get a distribution over all constants represented by logvars,

counting (or, if counting not possible, grounding) unavoidable.
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2. Logvars in the Markov Blanket
» Computing P(Epid, Sick(X)|a) in

example model false false 10
* Assume elimination result as depicted false true 4
on the right above true false 8
* To normalise, take true  true
into account that -n
DX =3, e, false 03] 4°-10% =1000 0.202
* CountX false [1,2 41.10% = 400 0.081
) :\r']‘zm?:geﬂ%l 0 false [21]  42-10' =160 0.032
in Z false  [3,0 43.10° =64 0.013

Restrict(X)

true [1,2 51.82 =320 0.065
true [2,1 52.81 =200 0.040

]
]
]
true [0,3] 50.83 =512 0.104
]
]
true [3,0] 53.80 =125 0.025

JERST
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2. Logvars in the Markov Blanket

* Possible mismatch in representation
of logvars between result of P(r|E,a) false false 5

and utility parfactors false true 0
* Utility parfactor gy under a: true false =5
¢Utll(Epld ka(X)) true true —

* Result of P(Epid, Sick(X)|a) given --
by ¢ (Epid, #x|Sick(X)]) false  [0,3]  0.202
* X counted in elimination result but  false  [12]  0.081
uncounted in utility parfactor false  [2,1]  0.032
false [3,0] 0.013
Restrict(X) true [0,3] 0.104
true [1,2] 0.065
true [2,1] 0.040
true [3,0] 0.025



2. Logvars in the Markov Blanket

* Ensure logvars occur in same form -

* Count or ground logvars in g,,’s to match false false

description in result of P(r|E, a) false true 0
* |If logvar not countablein a g,, true false -5
grounding of logvar in result necessary e D irue =10

* In example, #x[S(0)]

e X counted in elimination result but  false 03] 0.202
uncounted in utility parfactor false , 0.081
— Count logvar in gy false , 0.032
 Fulfils counting preconditions false , 0.013

|
[1,2]
[2,1]
3,0]
[03]  0.104
[1,2]
[2,1]
3,0]

e true
estric
But: Counting with true ’ 0.065
utilities and additive
. true , 0.040
semantics!
true 0.025

)
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2. Logvars in the Markov Blanket
e Count conversion with utilities -

» Additive semantics: Add up utilities false false

* Instead of multiplicate semantics: false true 0
Multiply, leading to exponentiation true false =5
true true —10

* Given histogram [ny,..,n, ] and utilities uy, .., u,
* New utility: nq - uq + ...+ np - Uy

* Instead of: p,t « -+ pr¥
* Formally,
qb;](---;ai—l;h; Ai+1, ) — 2 h(ai) ) d)U('--iai—llai' Ait+1, )
aiER(Ai)

 Compare with grounding and combining resulting set of utility
factors

& INSTITUT FUR INFORMATIONSSYSTEME



Counting with Utilities

false false 10 false false 5

false true 4 false true 0
true false 8 true false —5
true true true true —

-_ -

false [0,3] 49.103 =1000 false [0 0-0+3-5=15
false [1,2] 41.10%2 =400 false [ 1-0+2-5=10
false [2,1] 42.10' =160  false [ 2:-0+1-5=5
false [3,0] 43 .10° = 64 false [ 3:0+40-5= 0

| |

| |

| |

| |

1,2]
2,1]
3,0]
0,3] 50.83 =512  true 0,3] .—10+3--5=—15
1,2] 51.82 =320  true 1,2] .—1042--5=-20
2,1] 52.81 =200  true 2,1] .—104+1--5=—25
3,0]

53.89 =125 true .—10+0:--5=-30

true

true

)

true

)

w NN =k O

)




2. Logvars in the Markov Blanket

* With identical forms for all logvars, proceed with EU

* In terms of MEU-LVE, proceed as before but when calling LVE
for computing eu(E, a) utility-count conversion needed

g < LVE(G \ {gu}i=1, mv{guti=1), ©) > g normalised
eu(E, a) « LVE({gu}y=q1 U{g}, @, 0)

EERENGO ¢ eu(@) =

false [O 3] 0.202 3.03 3.03-1
false  [1,2] 10  0.081 0.81 3 +0.81-3
false [2,1] 5 0.032 0.16 3 +0.16-3
false [3,0] 0 0.013 0 1 +0.00-1
true [0,3] —15 0.104 —1.56 1 —156-1
true [1,2] —20 0.065 —1.3 3 —1.30-3
true [2,1] —25 0.040 —1 3 —1.00-3
true [3,0] —30 0.025 —0.75 1 —0.75-1

QERST
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3. Logvars in Utility PRVs

* Logvars in a utility PRV: < E.g., utility PRV Ut(X)

U(Xl) ;Xn) * Ground:

* No longer only a Ut(a), Ut(b),Ut(c)

propositional randvar  Utility parfactor:

— In terms of semantics: Ju = dutco (S(X))
set of propositional « dura(S(@)
utility randvars

* durin)(SB))
gr(U(Xl, v X))
e Compare mult| attribute ) ¢Ut(c)(5(c))
utility theory  Utility parfactor:
 Generalisation: Ju = Pue(x) (E)
set of utility PRVs * but)(E)
* dutw)(E)
¢Ut(c)(E)

aaaa
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4. Set of Utility PRVs

* Given a PDecM G = {g;};=1 U {gu}i=1

» Utility parfactors g,, = ¢y, (A)|c map argument values
to utility PRV Uy,

* Different g,, may map to the same utility PRV
* ( contains a set of utility PRVs, referred to as rvy (G)
* Do not confuse with rv(Gy ), the set of PRVs in Gy = {gu}i=4
* Requires a specification of how to combine rv;(G) into
one utility value U: combination function ¢, (rv;,(G))

* |f considered MPI/mutually Ul: specify an additive/
multiplicative function as seen earlier

* Simplest case: additive function (as seen during Case 1)

QDU(TUU(G)) = z z ¢Uu (T[rv(gu) (T))

reR(rv(Gy)) JuEGU
* Approximation: Assume independence

 Specify/learn a more complex function

aaaa
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4. Set ot Utility PRVs: ¢y

* Given a PDecM G = {g;}i=; U {g,}0-, and a
combination function @y

* Query for an expected utility (EU)
* What is the expected utility of decisions a in G?

wB,@) = ) PEIE@ - 0y (Tr0)0)

reR(rv(Gy)) m
= z P(r|E,a) - Z Pu (ﬂrv(gu) ("))
reR(rv(Gy)) u=1

e Multiplication with P(r|E, a) brings about the same
problems as discussed previously (combines all R(rU(GU))
into one parfactor, R(TU(GU)) might be parameterised)




3. Logvars in Utility PRVs Treated as 4.

* Ju = butx) (S(X)) * Ju = Puriix) (E)
* Result of P(S(X)|a) * Result of P(E|a)
* p(Hx[SX)]) * ¢(E)
* Count X in gy * Multiply ¢(E) and
e Multiply d(#,[SX])  Pueen(SXK))
and ¢y x)(#Hx[S(X)])  « Add up all entries

* Add up all entries * Multiply with |D(X)|
* Given T constraints

g 'gu@ &> 'gu@

R
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4. Set of Utility PRVs: Approximate U

* Approximation
* Move P(r|E, a) into the inner sum:

eu(E' a) ~ Z Z P (T[rv(guu) (T)lE, a) ’ (.qu (T[rv(Uu) (T)) (1)

reR(rv(Gy)) Uu€rvy(G)

Z Z P(T[rv(gu) (T)|E, a) ) ¢u (T[rv(gu) (1‘)) (2)

reR(rv(Gy)) u=1

Q

What's the

* Instead of asking one query with all rv(Gy) difference?
as query terms p
1. Either ask |rv;(G)| queries with rv(gUu) as query terms
where gy, = ¢y, (nrv(Uu) (r)) refers to the combination of
all utility parfactors that map to utility PRV U,,
2. Orask m queries with rv(g,) as query terms

Can be exact if independence given between sets of query terms
(Compare Boyen-Koller algorithm for sequential inference)




4. Set of Utility PRVs: Approximate U

e Two parfactors mapping to (E )
same utility PRV, dependent
n OF: G2
* Markov blanket of Util: E,R, S
« P(E,R,S) exact @

« P(E,R),P(E,S) approximate

e Two parfactors mapping to
same utility PRV, independent

+ Markov blanket of Util: R,S (R D)7 D
« P(R,S) exact
« P(R),P(S) alsoexactasR,S @
independent

e Same holds if logvars occur in PRVs




MEU-LJT
Claims about FO jtree construction

* Answer MEU query, prObab”ity 1. Ignore decision PRVs as they
and aSS|gnment queries are always set before any

calculations occur
. Ignore utility parfactors as they
do not carry information

e Build an FO jtree for PDecM relevant for messages

e Assuming an additive
combination function

* Can add a helper parfactor g over the union of Markov
blankets of the utility PRVs for computing P(r|E, a)
« Without g, use subgraph that covers r for each P(r|E, a)
e Parclusters may be smaller — better for other queries
* With g, r contained in one parcluster — easier for P(r|E, a)
e But parclusters may be larger overall = worse for other queries

* |f using one of the approximations: either g may be over the
Markov blanket of each utility PRV or no g necessary

* To compute overall EU query, need to ask set of EU queries either
for each of the utility PRVs or for each utility PRV in each utility

parfactor and add results up
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Some References

* MEU in PDecMs
* Warning: not as detailed as in these slides

* Markov logic decision networks (MLDNs)

 MLN + parameterised decisions + utility weights
* Probability + utility weights per first-order formula
* Use weighted model counting to solve MEU problem

* Decision-theoretic Probabilistic Prolog (DTProbLog)

 Utilities of DTProbLog programs combined into EU over
theory defined by programs

GERST
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Interim Summary

* Decision networks

* Probabilistic graphical model extended with decision
and utility variables

e Parameterised version: PDecM
* Decision PRVs, utility PRVs, utility parfactors
» Collective decisions for groups of indistinguishable constants

* EU queries, MEU problem
* Find set of actions (decisions) that lead to maximum expect
utility
* MEU-LVE using calls to LVE and LVE operators to answer EU
queries

 Combination function necessary if using a set of utility
PRVs

— Multi-attribute utility theory

:::::
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Value of Information

Value of perfect information

Information-gathering agent

rSI
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Decision Making in Decision Nets

* Assumes that all available information provided to
agent before it makes its decision
* Hardly ever the case
 Know what questions to ask!

* Information value theory
e Choose what information to acquire

e Assume that prior to selecting an action represented by
a decision PRV, the agent can acquire the value of any of
the potentially observable PRVs/randvars

» Simplified version of sequential decision making (next section)

* Observation actions affect only agent’s belief state, not the
external physical state

* Sequential decision making: actions have effect on surroundings

,,,,,
\\\\\
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Value of information

* |dea: Compute value of acquiring each possible piece of
evidence

e Can be done directly from decision network

* Example: Buying oil drilling rights
* Two blocks A and B, exactly one has oil, worth k
 Prior probabilities 0.5 each, mutually exclusive
e Current price of each block is ¥/,
e “Consultant” offers accurate survey of A
* Fair price for survey?

e Solution: Compute expected value of information

» = expected value of best action given the information
minus expected value of best action without information

e Survey may say “oil in A” or “no oil in A”, probability 0.5 each
(given!)
= [0.5 - value of “buy A” given “oil in A”
+ 0.5 - value of “buy B” given “no oilin A”] — 0
=(0.5-%/,)+(0.5-%/,) =0 =¥/,

aaaa
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General formula

e Current evidence E, current best action «, possible action
outcomes §;, potentlal new evidence E;

EU(a|E) = maxz U(S)P(S; | E, a)

* Suppose we knew E; = eji, then we would choose a;, such
that

U (e | B2 By = &) = max ) UGSDP(S:1 B0,y = eje)

* Ej is arandom variable whose value is currently unknown
: must compute expected gain over all possible values:

VPIg(E;)

— (zk P(E; | E)EU (ae,, | E, Ej = ejk)> — EU(a,E)

e VPI = value of perfect information

5 QAP © UNIVERSITAT ZU LUBECK
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Properties of VPI

* Non-negative —in expectation
Vj,E : VPIg(E;) = 0
* Non-additive — consider, e.g., obtaining E; twice
VPIg(E;, Ex) # VPIg(E;) + VPIg(Ey)

e Order-independent

VPIg(Ej, Ex) = VPIg(E;) + VPIg g, (Ex)

= VPIg(Ey) + VPIg g, (E;)
* Note: When more than one piece of evidence can be

gathered, maximising VPI for each to select one is not
always optimal

— Evidence-gathering becomes a sequential decision problem

R
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Qualitative behaviors

P(UIE,) P(UIE,) |
|

P(UIE;)
A

(|

||'
L
I H.
I - -1 FERRN U
- = T i )J.II- -]

T T
T, J U, U, U, U,
(a) (b) (c)

a) Choice is obvious, information worth little
b) Choice is non-obvious, information worth a lot
c) Choice is non-obvious, information worth little

* Information has value to the extent that it is likely to
cause a change of plan and to the extent that the new
plan will be significantly better than the old plan
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Information Gathering Agent

function INFORMATION-GATHERING-AGENT (percept)
returns: an action
persistent: D, a decision network

integrate percept into D
j <« the value that maximises VPI(E;)/Cost (E;)
if VPI(E;) > Cost(E5) then

return Request (E;)

else
return the best action from D

* Ask questions Request(E;) in a reasonable order

* Avoid irrelevant questions

* Take into account importance of piece of
information j in relation to Cost(E;)




Interim Summary

* Value of information

 How much does it cost to obtain a new piece of
information?

* Will that piece of information change the current best
plan?

* How much more utility can one expect from the new
best plan?

e |sit worth it?

* Information-gathering agent

* Request piece of evidence if the expected utility of
action/plan outweighs the cost

5 RUIT & UNIVERSIT,
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Outline: 7. Decision Making

A. Static decision making
 Utility theory
* Parameterised decision models (PDecM)

* Modelling, semantics, inference tasks
* Inference algorithm: LVE as an example

e Value of Information

B. Sequential decision making
* Parameterised dynamic decision models (PDDecM)
 Temporal MEU problem, inference
* Acting

g, -
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Decision Making over Time

So far:

* Calculate the expected utility of a decision and its effect
on the (current) state

With time
* Decisions need to be made at each time step
e Each time step yields a utility

* Decisions/actions have an effect not only on the
current state/utility but also on the future and
therefore, future decisions

— Need to consider a temporal sequence of decisions
and project its effect into the future

— Requires calculating the expected utility over a
seguence

aaaa
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Recap: PDM

* Assumptions: Markov-1, stationary process
* PDM G = (Gy, G_,) where

* (g isaPM describing the intra-slice behaviour for t = 0:
GO - {g(l)}izl
* G_ isa PM describing the intra- and inter-slice behaviour fort > 0
G, =G UG UGeqy

n
* Gt = {gf}kif Ge1 = Gt|t replaced by t—1
Gere =10} 97 = ¢ (A,T, ...,Aﬂ)lc,n ef{t—1,t)

* Semantics: Unrolling G for a given maximum step T,
grounding, and building a full joint distribution




Recap: Inference with PDMs

* Inference tasks:
Query P(R|E..),
T the current step

* Filtering:m =1
* Prediction:mT > 7
 Hindsight: mt < 7

e Algorithm: LDJT

* Two FO jtrees (Jo,/-)
with interfaces for separation
between past and present

e LJT as a subroutine for query
answering

* Forward/backward messages
to move in time

[Travel (X))o J [

96, 9%
Treat(X,M),
g5

SRs22 5  INSTITUT FUR INFORMATIONSSYSTEME
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Treat(X,M);
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Decision Making over Time

* Basis: a dynamic model such as a PDM (G, G_,)
e Describe behaviour over time using interslice parfactors
* Within a slice, describe intra-slice (static) behaviour

— Extend intra-slice parts with decision + utility PRVs
* Extending PMs for decision making
 PDMs allow for predicting effect of sequence of decisions

Restrict(X);_4

Time slices

Restrict(X);




A First Version of a PDDecM

* G = (Gy, G_) is a PDM where the two static models
Gy, G_, are PDecMs, i.e.,

* (o is a PDecM describing the intra-time slice behaviour
fort =0

Go = {gb},2, U lab 12,
* (G is a PDecM describing the intra- and inter-slice
behaviour fort > 0
G, =G UG UGe_q
+ G ={gi} 5 uigtht,
* Gi—1 = G|t replaced by t—1
* Gio1t = {gj};l:l




Assumptions about Actions

e Assumptions in terms of time
* Discrete time steps
* Markov-1
e Stationary process

* Lead to assumptions/ constraints on decisions

e Actions can be carried out from one time step to the
next (no duration)

 Effect/outcome of actions immediately captured in the
next time step

* Actions do not affect the stationary process

:::::
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Actions over Time

e Given a set of decision PRVs So far, we used utilities to
. . 1 k determine “the best”. How
A = {A ey At} can we use them with time?

* Temporal sequence of decisions
= temporal action assignment

* Compound event for a sequence of steps t;: t,
* |.e,

Q¢ .t, = (atl'at1+1» vy A, -1, atz)
*ap = {A%i = al, ...,A’t‘i = ak}

* Decision making over time usually involves
calculating the best sequence starting at current
step 7, making decisions for k steps

* l.e., finding the best a,.;,




Utilities over Time

* One has to iterate over temporal action
assignments and pick the one that yields the
maximum expected utility

* Each individual slice has a utility (or reward)
— Multi-attribute utility theory
» All individual utilities need to be combined into one expected
utility of the complete sequence
* Assumption: Preference of one sequence over the other

does not depend on time — preferences are stationary
* Formally, if two state sequences (ry, 1,75, ... ) and
(Sg, S1, S, ... ) have the same starting state (ry = sg), then the

two sequences (1{, 75, ...) and (S84, S, ... ) should be
preference-ordered in the same way as (1, ry,75, ... ) and

(50,51, 82, -.+)
— Preference independence between the different slices

— Use additive combination function
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Temporal Combination Functions

e Actually, two approaches to combine utilities
e Additive
 Sum over individual utilities
U(rg, 11,7, ...) =Urg) +UG) +UGS) + -
* Discounted

 Using a discount factor y € [0,1]
 Reward now may be more important than one in t steps
e Ify = 1: additive
 Utility of a sequence = sum over discounted individual
utilities
Ulre,11,12,..) =y° - U@rg) +y - U@y +y*-UG) ..
* Model for dynamic decision making needs to
include a function to combine utilities over time

SRs22 5  INSTITUT FUR INFORMATIONSSYSTEME
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EU Query over Time: Exact

* EU query at step 7 in a PDM with PDecMs
eu(El:T' aT:T+K) K

— Z P(rlEl:T; aT:T+K) ) z yT,¢g+T' (TUU(GT'HJ))
rER(rv(G‘Ll'{T+K)) v

. q)g, combination function for utility PRVs at step 7’
* Additive/discounted combination over time

Restrict(X),_4 Restrict(X),




EU Query over Time: Exact

* EU query at step 7 in a PDM with PDecMs

eU(E 1.7, Qrpq)

K
ru
— z P(rlEl:T' ar:r+rc) ) z VT QDH.T’ (TUU(GT+T’))
rER(rv(GT ok ) =0
* Problem: query involves query terms from all slices

T: T + K, which also means unrolling the model
. Unlikelv th ind q Realistically
nlikely that query terms are independent not computable!

gr+1 gr+2 gr+x

B

= i <
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EU Query over Time: Approximate

* Move the probability query into the sum

eu(El:'n ar:r+rc) ”

= Z Z YT P (T[rv(GU ’)(r)lEm, am+x) o7 (rvU(GHT,))

T+7T
rEKR(Tv(G’Ll':]T+K ) v'=0

— Z yT Z P(rlEl:‘w aT:T+K)§0$+T' (TUU(GH'T,))

Restrict(X),




EU Query over Time: Approximate

* Temporal EU query sums over individual EU queries
BU(ELT; o ——y

!

— z )/T Z P(rlEl:T' aT:T+K)(p’£']+T’ (rUU(GT‘l'T,))

T,;O rER(rv(GTUH,))

— z VT eu(El 1) A T+KI)

@@@ T

gr+1 gr+2 gr+x

N, -
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Utility Transfer Function

* Transfer (expected) utility at slicet — 1 to slice t

* Simple case: single utility PRV per slice U;

* Parfactor as utility transfer function takes U;_, and U; as
arguments and assigns the (discounted) sum to U; again

o g¥ = ¢V (Ur-1,Up)c = Up—q +vEU,
* Inter-slice parfactor as PRVs from both t — 1 and t occur

* ¢ depends on how far in the temporal action assignment we are
* May only be calculated once U; is set by answering the EU query

Restrict(X);_4




Utility Transfer Function

* Transfer (expected) utility at slicet — 1 to slice t

* General case: set of utility PRVs per slice {U} }e
* Two approaches

u=1

1. Use a combination function ¢f to combine {U# u 1

into one utility U; and use a single utility transfer
function gY as seen on previous slide




Utility Transfer Function

* Transfer (expected) utility at slicet — 1 to slice t

* General case: set of utility PRVs per slice {U}‘}ﬁl

* Two approaches

2. Use a set of utility transfer functions gV« for (sets of)
utility PRVs {U%‘}letl and only combine them at the
end using a combination function ¢V




A Complete PDDecM

* APDDecM G = (G, G_,) is a PDM where the two
static models G, G_, are PDecMs, i.e.,

* (g is a PDecM describing the intra-time slice behaviour
fort =0

Go = {go}l Y (963021 U {00}
. .G_> is a PDecM dgscrlblng the mtra— CIAS I o5 roach 2 requires &
inter-slice behaviour fort > 0 combination function
G_, = Gt 1 U Gt U Gt—l,t @Y for computing an
N EU query at the end
« Gy ={gt}.l, Ulgtht, v (0!} L

« @Y combination functlon, may be omitted (in Approach 2)

* Gt—1 = G¢|t replaced by t—1
N
* Geo1t = {91}j=1 U{g"h

« g utility transfer function, may be singleton (in Approach 1)

= ol =
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Temporal MEU Problem

* Given a PDDecM G, evidence E.;, and a number k

* Temporal MEU problem

* Find the temporal action assignment that yields the
highest expected utility in G

* Formally,

meu(G |E1:t1 K) — (a;:tﬂc: eu(El:t' a>tk:t+lc))

* —
At = argmax  eu(Eq.;, Qp.piy)
At.t 41 ER(At.t41c)

* Size of R(A;.;1,) exponential in number of groups (as with
static decision making) and

D) k)

ez, =

2 TR i‘; UUUUUUUUUUUUUUUUUUU
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Example

ban

S
.
=

Q[
ISR EN
NSO NN

e Given no evidence, current time
stept=2,andk =2

Q
N W
NN

oy
Q
=

(ai2:4)* = argmax BU,(G,%A)
i€{1,...,8}

Restrict(X);_4

ban  ban
ban free i
free ban
free free
ban ban
ban free
free ban

free free
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Solving a Temporal MEU Problem

* Answering temporal MEU queries using LDJT

 But: utility transfers/EU queries per step have to be
dealt with = Bookkeeping

* Two approaches:

|. In parallel to FO jtree, keep counters for each utility
transfer function and add the current, possibly
discounted, EU value to the existing counter

Il. After message passing, calculate all necessary EU
qgueries at corresponding parclusters, perform a utility
message pass that sends the EU results to the
outcluster to be sent over to the next step with the
forward message and be distributed to the
corresponding parclusters during message passing

GERST
GERSIZ,



l\\UOI

yroceaure L) s |
guild 1.5-slice modgl G - oy s
Construct FO jtree UorJ-

* Build two FO jtrees for for 7in 0 .. Tq 80 7> 0

tiate J

P D D ecC M \23?2, 1 tofinc\ustgr of I+
Enter evidence .E, into J«
pass Messages in Jq

* Proceed step-wise (1) answer queries Qs s

. Calculate &~
* Answer probability/
assignment queries as before

* Given an MEU query with k,

e Calculate the set of temporal action assignments a based on
groups in G; and k

* For each a, proceed for k steps

* Set actions at each step
* Calculate EU queries + bookkeeping (Approach | or Il)

MEU-LDJT

* For ease of computation, include helper parfactors during
construction according to the EU queries

e Returna’

D) )
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Acting

* After computing a temporal action assignment,
assignment is acted out, including:

* Actuators get commands to carry out the action behind
a current assignment,

* Internal state is updated: Decision PRVs are set,
(messages are passed,) and then time moves on

* Agent can then continue to act according to the
temporal assignment or recalculate as new
evidence comes in

* Recalculate each step
* Recalculate once

,,,,,
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Using Decision Making in Acting

* Receding horizon: Run-MEU (G, k)
* Call meu, obtain a temporal while E — new evidence do
action assignment m, perform absorb E in G
15t action, call meu again ... T — meu (G, k)
* Like iame-tree search (chess, a — pop-first (m)
checkers, etc.) perform a

* Useful when unpredictable upcale © will o
things are likely to happen

* Re-plans immediately

* Potential problem:

* May pause repeatedly while
waiting for meu to return Decision making stage

Q ] Acting stage

& UNIVERSITAT ZU LUBECK
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Using Decision Making in Acting

* Call meu, execute the Run-Lazy-MEU (G, k)
temporal action assignment while E « new evidence do
as far as possible, do not call absorb E in G
meu again unless necessary T — meu (G, k)

» Simulate tests whether the e e e
assignment will execute S i iue

ailure do
correctly .
a « pop-first (m)

* Lower-level refinement,
physics-based simulation,
prediction accuracy < some
threshold

* Potential problems

* May might miss
opportunities to replace
with a better assignment

* Without Simulate, may not
detect problems until it is too

late

perform a
update G with a

S A

il
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Using Decision Making in Acting

* May detect
opportunities earlier
than Run-Lazy-MEU

* But may miss some that
Run-MEU would find

e Without Simulate, may
fail to detect problems
until it is too late

 Not as bad at this as
Run-Lazy-MEU

Run-Concurrent-MEU (G, K)
T — ()
// thread 1 + 2 run
concurrently
thread 1:
while F — new evidence do
absorb E in G

T — meu (G, K)
thread 2:

while F — new evidence do
absorb E in G
if T # () and
Simulate (G, m)
# falilure then
a « pop-first (m)
perform a
update G with a
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Offline vs. Online Decision Making

* Online decision making: Depends on how far one looks
into the future

e Can extend the look-ahead further and further, propagating
future effects back to present to see if the current best
decision still holds

e Extending the look-ahead to infinity, one will eventually reach
a fix point: offline decision making

e Offline decision making

* Solving a partially observable Markov decision process
(POMDP) — Ch. 17 in Russell/Norvig’s AIMA3
* Basically find the steady state in terms of actions that leads to the
maximum expected utility
* Look-up table, fast during acting, huge overhead beforehand
* Reacting to extreme situations/evidence no possible
* No longer factorised model but a transition function over
complete state space
* Part of the lecture: Advances in Data Science and Al (Summer
Term) — Automated Planning and Acting
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Interim Summary

* PDDecMs as a combination of
 PDMs for temporal aspect
* PDecMs for decision making

* Temporal expected utilities
* Additive or discounted utilities
e Exact solution virtually impossible to compute
e Approximation by summing over EU query result for
each step
* Inference based on LDJT
* Interface again for sequential independence
* Bookkeeping of EU results

:::::
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Setting: Agent with Utilities

Precepts

DIDLET\V/ES

* Uncertainty by
probabilities
Relational aspect by
parameterisation

JUSWUOIIAUT

Temporal aspect by
time indexing
Decisions and effects
by actions & utilities
in a temporal model

Actions

‘‘‘‘‘
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Outline: 7. Decision Making

A. Static decision making
 Utility theory
* Parameterised decision models (PDecM)

* Modelling, semantics, inference tasks
* Inference algorithm: LVE as an example

e Value of Information

B. Sequential decision making
e Parameterised dynamic decision models (PDDecM)
 Temporal MEU problem, inference
* Acting

— Next: Continuous Space
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