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Probabilistic Graphical Models (PGMs)

1. Recap: Propositional 5. Approximate Inference:
modelling Sampling
* Factor model, Bayesian * Importance sampling
network, Markov network e MCMC methods
* Semantics, inference tasks ial del
+ algorithms + complexity 6 .Sefquentla models &
cps _ae . interence
2. Probabilistic relational - Dynamic PRMs
models (PRMs) C
. * Semantics, inference tasks
* Parameterised models, Markov + algorithms + complexity,
logic networks learning ’

* Semantics, inference tasks . . .
7. Decision making

3. Lifted inference » (Dynamic) Decision PRMs
* LVE, LJT, FOKC * Semantics, inference tasks
* Theoretical analysis + algorithms, learning

4. Lifted learning 8. Continuous Space
* Recap: propositional learning * Gaussian distributions and
* From ground to lifted models Bayesian networks

« Direct lifted learning * Probabilistic soft logic
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Models with Continuous Variables

e Discretisation of continuous variables
* Discrete model again

* Own set of problems
* Hard to find good discretisation

* High granularity might be necessary
— large ranges — large factors
* Lose characteristics of variable
* Not each value necessarily associated with a probability

* Nearby values have similar probabilities — hard to capture in a
discrete distribution (no notion of closeness between range
values)

* Therefore, use models with continuous variables
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Outline: 8. Continuous Space

A. Basics

e Continuous variables, probability density function,
cumulative probability distribution

 Joint distribution, marginal density, conditional density

B. Gaussian models
e (Multivariate) Gaussian distribution
e (Parameterised) Gaussian Bayesian networks

C. Probabilistic Soft Logic (PSL)

* Modelling, semantics, inference task
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Probability Density Function

e Continuous randvar R
e Range R(R) =10,1]

* Functionp : R — Ris a probability density function
(PDF) for R if it is a non-negative, integrable function
S.t.

p(r)dr =1
R(R)
 Foranya (andab) in event space ,
P(R<a)= jp(r)dr Pla<R<b)= fp(r)dr

 Function P is a cumulative distribution for R

* Intuitively, value of p(r) at point r is the incremental amount
that r adds to the cumulative distribution during integration




PDFs: Uniform Distribution

e Continuous randva
over |a, b], denote
PDF

p(r) =

r R has a uniform distribution
d R ~ Unifl|a, b], if it has the

(1
b—a

b>r=>a
otherwise

. 0

* Density can be largerthan1ifb—a <1
e Can be legal if the total area under the pdfis 1

PDF Cumulative Distribution
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Joint/Multivariate Distribution

* Let P be a joint distribution over continuous
randvars R4, ..., R,

* Function p(ry, ..., 13,) is a joint density function of
Ry, .., R, if
e p(ry, ..., 1) = 0 for all values 1y, ..., 1, of R4, ..., Ry,

* pis an integrable function
* For any choice a4, ..., a,, and by, ..., by,

P(a1 SRl Sbl,...,anSRnSbn)
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Marginal Density

* Given a joint density, integrate out the non-query
randvars

* E.g., givenp(r,s) a jolrno’g density for randvars R, S, then

p(r) = f p(r,s)ds

— 00

* Shorthand notations
* pr = p(r) marginal density
* prs = p(r,s) joint density
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Conditional Density Function
: . _ __ P(S,R=r)
* Discrete case: P(S|R =71) = P(Ror)

* Problem in continuous case: P(R=1) =0
— P(S|R = r) undefined

* To avoid problem, condition on event
r—€ <R <1+ €andconsider limit whene — 0

P(S|r)=eli_r)r%)P(S|r—6SRSr+e)

* If a continuous joint density p(r, s) exists, derive form
of this expression:

p(r,s)
p(s|r) = o

* If p(r) = 0, conditional density undefined
e Chain rule and Bayes’ rule hold as well:

: _p)p(ris)
p(r,s) = p(p(slr) psir) = =3
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Outline: 8. Continuous Space

A. Basics

e Continuous variables, probability density function,
cumulative probability distribution

 Joint distribution, marginal density, conditional density

B. Gaussian models
e (Multivariate) Gaussian distribution
e (Parameterised) Gaussian Bayesian networks

C. Probabilistic Soft Logic (PSL)

* Modelling, semantics, inference task
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Models with Continuous Variables

* Problem: Space of possible parameterisation
essentially unbounded

e Special case: (Multivariate) Gaussian distributions
* Two parameters per variable: mean, variance

* Strong assumptions, e.g.,
* Exponential decay away from its mean
* Linearity of interactions between randvars

— Assumptions often invalid but still work as a good
approximation for many real-world distributions

* Many generalisations exist which use Gaussians as a
foundation
* Non-linear interactions
* Mixture of Gaussians

R
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PDFs: Gaussian/Normal Distribution

e Continuous randvar R has a Gaussian distribution
with mean u and variance o2, denoted

R ~ ]\[‘('u’ 0-2)’ if it has the PDF Standard Gaussian R ~
1 _(T—Ii)z Nu=0,0%=1):

—_ 2
p(r) = e 20
V2no
* Expected value and variance of R given by u and ¢
e Standard deviation: o

PDF Cumulative Distribution
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Multivariate Gaussian

* Univariate Gaussian: two parameters
e Mean u and variance g2

e Multivariate Gaussian distribution over continuous
randvars R4, ..., R,, characterised by

* n-dimensional mean vector u Standard multivariate Gaussian

e Symmetric nXn covariance matrix X B Gaid

. le., N(ﬂ; Z)  u = 0 (all-zero vector)
X = I (identity matrix)

* Density functloln defined as
— Ty—1
p(r) = exp[ S - - )
J @m)n 3|

e r =00, ..., 1)7
e |X| determinant of X

* To induce a well-defined density, ¥ must be positive-definite
« Foranyr e R*st.r=0:r'Xr >0
* Guaranteed to be non-singular = non-zero determinant




Example

e Joint Standard Gaussian

. . . p(ry,13) \
distribution over two
randvars R, R,, i.e., / A\

.au=(0 O)T’Zzlz

* Joint Gaussian distribution r 2

over three randvars R{, R,, R;
* Mean vector, covariance matrix:

1 4 2 =2
U = (—3) Y = ( 2 5 —5)
4 —2 -5 8

 Covariances Cov|Rq; R3] and Cov[R,; R3] negative, i.e.,
R; negatively correlated with R4 (and R,)
* When R4 (R,) goes up, R; goes down
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Marginalisation

* Trivial with covariance matrix:

 Compute pairwise covariances, i.e., generating the
distribution in its covariance form

* Given covariance form X: Read off from u, 2

e Assume a joint Gaussian distribution over {R, T} where
ReR"andT € R™

* One can decompose mean and covariance:
_ MR\ [ZRR ZRT]
p(rl t) - N <(”T) ) ZTR ZTT

 where

* HUR € ]RnluT € ]Rm
* Xpgran an matrix, Xpr an nXm matrix,
Yrr = Zhr an mXn matrix, Zpp @ mXm matrix

* Then, marginal distribution over T given by Gaussian
distribution of NV (uz; Zr1)
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3Rs22 %  INSTITUT FUR INFORMATIONSSYSTEME



Example

* Given joint Gaussian distribution over three
randvars R{,R,, R,

* Mean vector, covariance matrix:

1 4 2 =2
U= (—3) X = ( 2 5 —5)
4 -2 -5 8

* p(R{, R,) given by Gaussian distribution with
(1 (4 2
K= (—3) 2= (2 5)




Dual: Information/Precision Form

* Rewrite exp [— % (r—p)'zt(r- u)] by setting
[ = 2~ ' and multiplying out:

1 1
—S =@ —p) =S "Tr—2r'Tp+ p'Tp]

e u'Tu is constant over the different r, therefore,

p(1) « exp (— % [r'Tr — ZrTFu])

= exp

DATTzA

= exp
! > (AB)T= BT AT

1>ATT:A

> kT =k, k a scalar



Dual: Information/Precision Form

* For a decomposition {R, T} where R € R"and T € R™:
[=y-1o— XRR ZRT]_l _ [Trr FRT]
XTR 2TT It Irr
* Gettingto X

* 2rr = (Trg — Trrly7 FTR)
 2rr = (Trr — TrrlRe FRT)

- ~1 T
* rr = —TrrTrr(Trr — CreTRrTrr) ~ = I7R

* Xrp = —Irr FTR(FRR Tprlrr FTR) = Zhr
* Gettingto I’

* Trr = (Zrr — Zprirr ZTR)
« Tpr = (Spp — ZTRZRRZRT)
* Tpr = —ZgeZrr(Crr — ZrrZrRZRr) = [iR

* Trp = —Z712r(Zre — ZRTZTTZTR) = Tgr
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Conditioning

* Conditioning a Gaussian on observations E = e easy to

perform in the information form by setting E to e in
one of the following

r 1
p(r) o< exp |~ 5 (r = T - )

X exp | — ErTFr + (Fu)Tr]

e Assuming a decompositioninto Rand E, i.e.,
p(r,e)

(G

e e (AR N R (W R o)
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1
p(r) < exp |5 (r = 175 (r = 1)

HO-G) [ B(O-Go) L_=ewlaemmrmen)

In the exponential function:

__1 (" ~ HR)T Trr FRE] (1‘ - MR)

_E € — UE Ier Tppl\€— Ug

1 1 1
= - 5 (r— ﬂR)TFRR(T — UR) — P 2(r - ﬂR)TFRE(e — Ug) — 5(3 — ME)TFEE(e — Ug)
J
1 [
o« —=(r — pp) Trr( — pg) — (r — pp) " Trp(e — pg) Does not depend on 1

2

1
==3 (r— ) Tpr(r —ug) — (r — pg) ' Trp(e —pp) — A+ A

Use —A to get expression into
the form (r — 1)TT'(rr — 11)
by factoring out I'gg

1 _ _
A= > (e — ug)TerTrr TrrTrr TrE(€ — ME)

- ; ]
exp | =5 ((r — Ug + Trpler(e — HE)) [rR (T — ug + TrpTre(e — ME))) exp[A]
- . _
X exp —5 ((7‘ — pg + Trrler(e — HE)) [RR (7' — pg + Trrler(e — ﬂE)))
! —_ —— _

Z* — FRR

ST G
LX) 3
3 vl - ]
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Conditioning

* Conditioning a Gaussian on observations E = e
with remaining randvars R

* Result:
RIE = e ~N(u*,2%)
* Information form: e Covariance form:
° ‘u* - o‘u* =
* X" =Tgrp * X" = Xgp — EREZEELER

* Mean moved from /i, according to correlation and
variance on observations

e Covariance does not depend on observations
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Query Answering: Summary

* For marginalisation, read off parameters in
covariance form

« Marginal query for T: N (ur; 277)

* For conditioning, one needs to invert the
covariance matrix to obtain the information form
* Conditioningon E = e:
RIE = e ~ N (u*, %)
* |In covariance form

« p* =upg+Ipeipp(e — ug)
* ¥* =3Xpr — ZREZEELER

* Matrix inversion can be very costly!
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Linear Gaussian Model

* Let S be a continuous randvar with continuous parents
R4, ..., Ry

* S has alinear Gau55|an model if there are parameters
Bo, ..., B and o2 such that

P(5|7"1; 1) = N (o + ,317"1 + 4 Bli; 0%)
= N(,BO + ﬁ r,o ) (vector notation)
* p(S|ry, ..., 1) a conditional probability distribution (CPD)
* |Interpretations

. is an initial mean at is moved according to the influences by
ol initial Uo that i d ding to the infl b
the parents

e Sisalinear function of Ry, ..., R, with the addition of Gaussian
noise: S = o + Py + -+ P T €
* € a Gaussian randvar with mean 0 and variance o2, representing the
noise in the system

* Does not allow g2 to depend on parent values
* But can be a useful approximation

SRR & un
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Independencies in Gaussians

* Let randvars R4, ..., R,, have a joint distribution
N(u; %)
* Then, R;, R; independent iff 2;; = 0

e Joint distribution needs to be Gaussian for this
equivalence to hold

* If the distribution is not Gaussian, Z;; = 0 might be the case
and there still might be a dependence between R;, R;

* Conditional independence can be read of in the
inverse of the covariance matrix, X1

* Given a Gaussian distribution p(ry, ..., 7,) = N (u; X)
* Then,2;;' = 0iffp = (R; L Rj|{Ry, .., Rn} \ {Ri R;})

:::::
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Example

e Joint Standard Gaussian
distribution over two

randvars R, R, i.e., / A\
u=0 0),z=1,
* R{, R, independent
aSZi]’ :Zji =0 18
* Gaussian for R{, R,, R; from before
e Covariance and inverse covariance matrix:

4 2 =2 0.3125 —0.125 0
=2 5 =5]| 21=(-0.125 05833 0.3333

p(rlt rZ)

-2 -5 8 0 0.3333 0.3333
* R, R; conditionally independent given R,
¢ 21_31 = 0 iff

p & (Ry L R3|{R1, Ry, R3} \ {R1,R3}) = (R L R3|R;)

IIIIIIIIIIIIIIIIII
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Gaussian Bayesian Network (GBN)

* Factorisation of a joint distribution into factors also
possible with linear Gaussians as local CPDs

 ABN is a directed acyclic graph G whose nodes are
discrete randvars {R1, ..., R,,} and whose full joint P,
factorises according to the local CPTs, i.e.,

P, = nP(Ri|parentS(Ri))
i

* Gaussian BN is a BN where
* R; are continuous randvars
e All CPDs are linear Gaussians
* E.g., T = T, = T3 (also depicted right)

(D
Cp(T) = N(1;4) (D

e (T,|Ty) = N'(=3.5 + 0.5 - Ty; 4)
* p(T3|T,) = N1+ (=1) - Ty;3)

5 QAP © UNIVERSITAT ZU LUBECK
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Connection to Multivariate Gaussian

* Linear GBN an alternative representation to
multivariate Gaussian distribution

* Alinear Gaussian BN always defines a joint multivariate
Gaussian distribution

* Let S be a linear Gaussian of its parents Ry, ..., Ry
* N(Bo+B'1r;0%) = N(Bo + Pars + -+ + BiTk; 0°)
* R4, ..., Ry jointly Gaussian with V' (u; X)
« Distribution of S is a Gaussian p(S) = N (us; &) with

Us = o+ B'r
ol =02+ BTEpB

e Joint distribution over {R1, s R,, S} is a Gaussian with

Cov|[R; S| = Z BiZij
=1




General Procedure for Conversion

* Let (R4, ..., R,,) be the randvars of a GBN
* Each R; is a Gaussian N'(By + B 1; 0%) conditional on
its parents parents(R;)
* (R4, ..., R,) follows a topological ordering 0 s.t.
VR; E{Ry,...,Ry} : VR; € parentS(Rj) : R; <g R;
* Build a matrix B™*™ that has a non-zero entry f3;; if

there exists a parent-child relation R; — R; with §;;
being the factor for R; in the B of R;

0 ,812 lgln
p=(0 .0 P
0 0 = 0

* i chooses the row(s), j chooses the column(s)

* B is upper-triangular because no loops allowed in BNs
* Including self-loops — B;; = 0 as well




General Procedure for Conversion

* Joint distribution p(ry, ..., 13,) given by N (i, X)
* Means
U= (.UL,BO,Z + BT, ..., Bon + ﬂ%T)T

 Covariance (recursive rules): j € {2, ...,n},i=1...j—1
211 J12
Zij < XiiBij
%ji < Zij
%jj < of + ;B

* First index chooses the row(s), second index chooses the column(s)

 given B filling 2 layer-wise:
0 Bz  bPin 211 212 2ip
B = 0 0 ,BZn Y — 221 Z:22 Z"Zn

o - 0 ln1 Znz ot Igg




GBN: Conversion Example

* GBN  Matrix B
. ¢ B12:T1—)T2,ﬁ1:(),5
(1) p() =N (154 e Lt
! * Rest: zeroes
(TD p(T,|T)) = N(=3.5+0.5-T;;4) * Result:
0 05 O
v * B= (0 0 —1)
_ . 0 0 0
(1) p(TIT) = N1+ (1) - T3 3)
* Means
* Goal: Joint distribution P
p(ty, ty,t3) = N (1 2) * U =-35+05-p =-3
M s uz3=1+0C1)-pu, =4
K= <M2> « Result:
U3 1
211 212 213 * U= (—3)
Y= <221 2s) 2:23> 4
231 z:32 Z:33

,,,,,
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GBN: Conversion Example

* Filling X: * %, = 012 — 4 4 %, Zq3
211 212 213 . i — 2 . 221 §22 §23
2= 221 222 223 ] - ) l’ - 31 32 33
Y31 X3z X33 * X5
* Need B and the = ¥,1B1, 24 22 213
recursive rules =4.05 221 222 223
(O 0.5 0 ) — 31 32 33
B={0 0 -1
0 0 0 y Z21T
— D
= 2%2 ( 2 Xy 223>
— 231 X232 233
* Ly
* First index: = 05 + £51B1 4 2 X
row(s) _ =44+2-05 2.5 2y
* Second index: _ Y31 232 X33

column(s)




GBN: Conversion Example

* Remaining goal:  «j =13 =12 4 2 Iz
X 2 > 2 5 X3
Z—<211 212 213> * 212)3 231 23z 233
- 21 22 23 — Z B
Y31 232 233 &12)%2) 12)3
* Need B and the = (2 5) (_1) b2 =2
recursive rules _ (2 22 25 —25
0 05 O —5 31 432 483
B=\{0 0 —1 ¢ 23 12
(12)
0O O 0 =Z{12)3
~2)" (‘5 é Ié)
B (—5) -2 =5 X3
= (-2 -5)
* 233
. First(ir)wdex: = 0§ + 23(12)3(12)30 < 421 g —§>
row(s _ o _
* Second index: =3+(=2 -5) (_1) -2 -5 8

column(s) —345=8




Inference in GBNSs

* Inference in linear Gaussians with
Variable Elimination

* Representation through linear Gaussian
CPDs instead of CPTs/factors

* Modified operations for multiply/sum-out

* Message passing formulation
* Approximate belief propagation

* Sampling in the continuous space
* Rejection sampling, importance sampling,
MCMC methods for GBNs
e Actually using the full joint
* Marginalisation, conditioning as sketched in Basics
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Lifting the Full Joint

* Lifting conversion approach by Shachter  [FFs
and Kenley for parameterised GBNs % < 2By
e GBN with PRVs 4y, ..., A,,, as nodes Zji < I
» PDF for each A; applies to each R € gr(4;) X e sz + 2By
e m«&n,n=|U;gr(4;,)l
» Semantics: grounding and forming full joint p(U; gr(4;))
* Simple case for GBNs (general case under review):

For all parent-child relations R(X) — S(Y),
itholdsthat XNY =0

* Each child instance has the same parent instances as its siblings

N g
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Lifting the Full Joint: Simple Case

 With PRVs, matrix B and
covariance matrix have
liftable blocks for each PRV

* Given the case of no overlaps
in logvars: B

R(X) SY)
/0 i 0 Briss = PBrsm 0 .. 0 \
RXO[: =~ P ; P
0 .. 0 Brs, = Prs, 0 .. 0
.0 0 .. 0 Pst o Py
Sl : - : : : :
0 .. 0 0 .. 0 PBst; - Bs,t
O .. 0 0 .. 0

Vo T o0 L /

,,,,,
\\\\\\\\

R
SXRSS2 Y INSTITUT FUR INFORMATIONSSYSTEME
o 8



Lifting the Full Joint: Simple Case

 With PRVs, matrix B and
covariance matrix have
liftable blocks for each PRV

e Given the case of no overlaps
in logvars: B

R(X) S(Y)
0O .. O Brlsl ,Brlsm 0 0 \ Lifted B’
A : : : : 0 G O
0O .. O ,Brnsl .Brnsm 0 0 0 0 By
). '851t1 :851tl

Each R(x;) has the same influence on each S(yj

Given P(s(V)|r(X)) = N (Bo + B1r(X); 02), :
ﬂrl-sj = p1 'Bsmt1 ,Bsmtl

Lifted B’

0 05 O
0O 0 -1

foralli € {1,...,n},j € {1,...,m}.
/ 0O O 0

The same holds for S(yj) and T (z;) (as well as

36

' R(x;) and T (2¢), which has B¢, = 0)



Lifting the Full Joint: Simple Case

 With PRVs, matrix B and
covariance matrix have
liftable blocks for each PRV

* Given the case of no overlaps
in logvars: X

R(X) S5()
/27’17”1 o Dpipn Zpysy e Bppsm ety e Bt \
R(X) : : : " : : " :
Yoy e Dy By e Bpie Zpppy e Dpog
S171 e Zslrn 25151 e Zslsm ZSltl " ZSltl
S(Y) : : : : : :
z:sm7‘1 Zsmrn Z“sms z:smsm z:smtl z:smtn
Ztlrl e Ztlrn Ztlsl e Ztlsm

\Ztm Ztlrn Etlsl thsm /

,,,,,
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Lifting the Full Joint: Simple Case

/Zrm o Zpp Zpsy e Zpsn Zpgty e Epg
Zrnrl Zrn'rn 27'11_51 b zTnSm zrntl ZTntl
S11q S1Tn S18¢ S1Sm Zsltl Zsltl
2:smrl 2:smrn 2:sms z:smsm z:smtl 2:smtn
_ 2
z:7'17”1 = OR(X)
2 _ 2 r 2 _
Zrlrz - UR(X)Brlrz - UR(X)Bll = ORp(x) * 0=0
Zryr, =0
— 2 _ 2 _ 2
2r,ry = ORx) T Zryry Bryr, = Opexy + 0= OR(X)
R(X)
2 Lifted B’
OR(x) - 0 4 ... 0 . 2
, _ LT on-diagonal: og(x) 0 Bs O
R(X) : 3 =1 > _ 0 0 p
0 o2 0 4 off-diagonal: 0 st
R(X) 0O O 0

;;;;;
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Lifting the Full Joint: Simple Case

2

O—R(X) e 0 Zrlsl e Zrlsm Zrltl e Zrltl
2

0 s O'R(X) Z-rnsl ™ Zrnsm Zrntl s Z-rntl
Zslrl aen Zslrn Zslsl aen Zslsm 251t1 en Zsltl
Zsmrl ey Zsmrn Zsms e Zsmsm Zsmtl e Zsmtn
Etlrl Iy Ztlr'l’l Ztlsl e Ztlsm
Ztlrl Iy Etlr‘l’l Ztlsl e Ztlsm )

z:(r1 .Tn)S1

— Z(n ) (r1..mm) B(Tl ~Tn)S1

Orcxy - O <ﬁrs> Oicx)Brs (4-0.5) (2)
0 O-I%(X) ﬁrs O-I%(X)BT'S 4.0.5 2

S$151

- O-.S?(Y) + Zsl(rl...rn)B(Tl...Tn)Sl Lifted B,

Brs 0 Brs O
- A
0 O 0

2
- O-S?(Y) + (O-Ig(x)ﬁrs . O-R(X)ﬁTS)< .

rs

> = O-SZ(Y) + no—}%(x)ﬁwgs

=44+n-4:-05%2=4+n




Lifting the Full Joint: Simple Case

Z Zrlsl an Zrlsm Zrltl e Zrltl
(Tl...Tnsl)Sz : : . . .
— hX oo hX e X
— Z(rl...rnsl)(rl...rnsl)B (1r1..7Tn51)S2 Tn1 nSm | “Taly "t
2 2 Z:5151 z:Slsm 2:51’:1 z:511:1
O-R(X) ann O O-R(X)Brs BTS 8 % 8 : :
. . . . . 2:sms Zsmsm Zsmtl Zsmtn
— ' ) : ’ : T >
- 2 2 t1S1 t1Sm
O e O-R(X) O-R(X)BT'S BTS . . 5 )
2 2 2 2 2 tis1 tiSm
ORx)Brs - OrRx)Brs Osiyy T NOgx)Prs 0
2
R (x)Prs 4.0.5 2
= 2 = = )
O-R(X)Brs 4.0.5 2
2 2 .4 . 2
Nogx)Prs n-4-0.5 n
ZSzSz

2
= 05(y) T Zs,(ry.rns1) By sy s

Brs
zag(y)-l'(o-I%(X):Brs O-I%(X):Brs no-}%(X):B?gs) ,Brs

0

2
= O5(y) T NOR(x)Brs = 4+




Lifting the Full Joint: Simple Case

2 2
o 0 o e O
R:(X) ) : on-diagonal: ag(x) R(X:)'BTS . R(X)'BTS

.2
. off-diagonal: 0 — all: o) frs
0 :

U}%(x) O-I%(X):Brs O-I%(X):Brs
USZ(Y) + nU}%(X)ﬂrzs nUz%(x)ﬁrzs : I g2 2 2
: . . . on-diagonal: gy + Nogz ) Brs
' . ' off-diagonal: noZ 32
TlOﬁ(X)ﬁgs 0-5?(1/) + TlO}%(X)ﬁﬁs g R(X)ﬁrs
R(X) S(Y)
/2711”1 o Lo Lpisy e Zpysm Bty e 2y \
R(X) : : : . : : . :
Yot e Dy Bpsy e Dppsn Zppty e Sty
S171 e S1T™n 5181 e S1Sm ZSltl e ESltl
ZS"rn‘r:]_ ZSan ZS‘rnS e ZS'rnSrn ZSmt]_ e ZSmtn
Ztlrl e Ztlrn Zt]_sl tlsm
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Lifting the Full Joint: Simple Case

mo—}%(x)ﬁrsﬂst mo_}%(X)ﬁrSﬂSt

R(X) : : — all: Mo BrsPse =m -4 0.5 (=1) = —2m
mo_}%(x)ﬁrsﬁrs mo-}%(X):Brs:Brs
(O-SZ(Y) + mno_]%(x)ﬁﬁs)ﬁst (O-SZ(Y) + mno—}%(x)ﬁﬁs)ﬁst

S(Y) ' - : — all: (0gy) + mMnogx Bis)Bst

(08 + mMnofonBE)Bse - (05 + MNog ) BEs)Bse = —4 —mn




Lifted Joint

* Only two structures required for covariance matrix

* A matrix
R(X) S(Y)
R(X) 0 O}%(x)ﬂrs ma}%(X):BrsBst
S| %5x)Brs nog x)Brs (080ry + mnog x)BE ) Bst

mo_lg(X):Brs,Bst (O-SZ(Y) + mno_}%(x)ﬁﬁs)ﬁst

4 2 —2m
= 2 n —4 —mn
—-2m —4 —mn

* A vector for on-diagonal covariance

: R(X) [0}
entries IS O'RZ(X) ) j
* Individual variances S(Y)

* Have to be stored anyway

R
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Lifted Joint

* Only two structures required for covariance matrix

* Depend only on the number of PRVs, not the
domain sizes!

~ 1751 ¢ ~&— Ufted
4 —a Grounded
= 150 4
w
© 1254
H
_B 100 4
g 751
§ S0 4
z 25 1 A
G ,
S /
(100000 PPttt PtPPPPPPPIPIIIISIYSY
2' 2’ 2;: 2'13 210 )3! 2}1

UNIVERSITAT 2U LUBECK Mattis Hartwig and Ralf Méller. Lifted Query Answering in Gaussian Bayesian Networks. In: PGM-20 Proceedings of
§ INSTITUT FOR INFORMATIONSSYSTEME +he 10th International Conference on Probabilistic Graphical Models, 2020. 44




Lifted Query Answering

* Marginal queries
* Read off values in (lifted) covariance representation

* Conditional queriesR|E = e ~ N (u*,X*)

* W = pg + ZreZpg(e — pg)
* 3% = Ygr — ZREZEELER
e Matrix multiplication, inversion required

* Possible to compute them in a lifted manner due to block
structure

* Proof in paper by
* Evidence is ground
* Probably no symmetries in observations

with real numbers as range values
— unlikely to get identical observations

* Fig.: 50% of ground instances get
random values assigned as evidence seesssssrieseessrserereees ;




Interim Summary

* Linear Gaussian models
* Linear dependency between child and parent randvars

 Full joint given by vector of means and covariance
matrix
* |Information form as inverse of covariance form

* Query answering

* Marginal using covariance matrix
e Conditional using information form

* Gaussian BNs

* Explicitly encode independencies in network structure
e Conditional linear Gaussian
 GBN = multivariate Gaussian distribution

e Lifting for PRVs without an overlap in logvars between
parent and child

,,,,,
\\\\\
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Hybrid Models

* Models that contain discrete (D; infig.) @) @)
and continuous randvars (X; in fig.) [ I
* Some general results (%) {;}}

* Even representing the correct marginal
distribution in a hybrid network can
require space that is exponential in
the size of the network

* Query answering problem is NP-hard
even if the GBN is a polytree where all
discrete randvars are Boolean-valued
and where every continuous randvar
has at most one discrete ancestor

* There are not even approximate algorithms to solve the

problem in polynomial time with a useful error bound
without further restrictions

Joint marginal of X1, X,

R
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Outline: 8. Continuous Space

A. Basics

e Continuous variables, probability density function,
cumulative probability distribution

 Joint distribution, marginal density, conditional density

B. Gaussian models
e (Multivariate) Gaussian distribution
e (Parameterised) Gaussian Bayesian networks

C. Probabilistic Soft Logic (PSL)

* Modelling, semantics, inference task




Probabilistic Soft Logic (PSL)

* Logic-based approach

e Probabilistic programming language
* Predicate = relationship or property
e Atom = continuous randvar
* Rule = dependency or constraint
e Set = define aggregates

* PSL program = rules + input database

* Implementation: - &
https://psl.lings.org o

S( al)&' eCl ve Inte e e
' d "
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"J' R'C' \‘A“‘ S. UC.U‘QQ dea



https://psl.linqs.org/

Syntax & Semantics

* Let R be a set of weighted logical rules, each R; has the

form
we [\m=\/x

lEI lEI

° Wj >0
* Sets Ij_,1j+ index conjuncted/disjuncted literals
* Equivalent clausal form:

Xi Vv X
(V)Y )
+ Probability distribution (compare: MLNs)

PG <exp ) w (\/ xl-) v (\/ ﬂxi>

R;ER ie[}f iEIj_

:::::
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MPE Inference

* MPE: Find the most probable assignment to the
unobserved randvars

* |.e., given a model ground over an input database,
argmax z W; \/ x; |V <\/ —|xi>
*  RjeR iert i€l;
e Combinatorial, NP-hard

* Approximation:
View as optimising rounding probabilities

:::::
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Expected Score

* Expected score of a clause is the  [aaERtle “_tera'tﬂ{ek_
weight times the probability that or-semantics -3 trick:

Instead of computing

at least one literal is true: P(AV B)
— P(A) + P(B) — P(AAB)
w; [ 1— 1_[ 1— 1—[ compute
j (I-p)| |pi D v )
lEI+ i€l

=1—P(—=AAN-B)

* Then, expected total score is

w= w(i-]]a-wm] [»

RjER lEI lEI

* But, argmax W highly non-convex due to product




Approximate Inference

* Instead: Optimise a linear program that bounds
expected score

(e [Jam o)== G+ Yo

Rj€ER iert LEI R;€ER ielrt 1€l

: 1 : . :
e Can give (1 — g)—optlmal discrete solution

D) K

A, =

B A‘ﬁ?; UUUUUUUUUUUUUUUUUUU
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Scalable Approximate Inference

* Linear programming algorithms do not scale well to
big probabilistic models

R R R

@F/NE z ©)

R R R

@

* Instead of solving the problem as one big
optimisation, decompose the problem based on its
graphical structure

* Compare: cliques/clusters




Consensus Optimisation

 Decompose problem and solve P
. . d N\
sub-problems independently (in = o™\
parallel), then merge results :
* Sub-problems are ground rules \ /

* Auxiliary variables enforce consensus
across sub-problems

* Framework:
Alternating direction method of multipliers

(ADMM) ( )

e Guaranteed to converge for convex problems
* Inference with ADMM fast, scalable, straightforward to

implement ( )

2 WUAYT & UNIVERSITAT ZU LUBE
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Local Consistency Relaxation

* Relax search over consistent marginals to simpler
set

\
argmax 2 W; mm{z: u; + 2 (1—u),1
pelo,1]m

RJER lEI lEI J

Vo

a\;
|
/ @




Continuous Variables & Similarity

* Continuous values interpreted as similarities

* E.g., multiple ontologies — alighment
 Match/Don’t match — similar to what extent?

l provides Organization J¢

Service & Productsf——{Customersj——

¥ develops | helps fT‘ sells to
[ [ ] [ |
Software | |Hardware] | IT Services loper HSales Person

work for

Vi

l_l Company

[Products & Servic Customer Employee
sell

helps
Software Dev| [Hardware| | Consulting | Technician||_Sales ] [Accountant

= Soft logic




Soft Logic

* Logical operators defined for continuous values in
the [0,1] interval

* Interpret as similarities or degree of truth

* tukasiewicz logic
* pAq =max{p +q— 1,0}
* pVq=min{p + q,1}
*p=1-p
* PSL: Use tukasiewicz logic to interpret rules

* Hinge-loss MNs (or Markov random fields as called in
the publications by the PSL team) formalise this

:::::
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Hinge-loss MINs

* Relaxed, logic-based MNs can reason about both
discrete and continuous graph data scalably and
accurately

* General objective

argmaXP(y)

ye[0,1]"

= ar maxzwj min Z:yl + z(l—yl) 1
ye[0,1]" lEI+ lEI_

= ar manW]maX 1-— Eyl 2(1—%) 0
ye[0,1]™ lEI+ lEI

 Notion of distance to satlsfactlon

59



Distance to Satisfaction

\
argmmZW max 1— Z:yl 2(1—yi),0
ye[0,1]"

lEI lEI )

N~

 Maximum value of any unweighted term is 1
* Term is satisfied

 Unsatisfied term — distance to satisfaction
 How far it is from achieving its maximum value

e Each unweighted objective term measures how far the
linear constraint is away from being satisfied:

1—2% Z(l—y1)<0

lEI+ lEI

D) K

A, =

B A‘ﬁ?; UUUUUUUUUUUUUUUUUUU
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Relaxed Linear Constraints

* Instead of requiring logical clauses, each term can
be defined using any function Z;(y) linear in y

argmme max{f (y), O}

ye[0,1]"

* Each term represents the distance to satisfaction of a
linear constraint £;(y) < 0

* Can use logical clauses or something else based on domain
knowledge

* Also called hinge losses

 Sometimes max{f (y), 0} gets squared to better trade off
conflicting obJectlve terms
* Weight indicates how important it is to satisfy a
constraint relative to others by scaling the distance to
satisfaction

,,,,,
\\\\\
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Hinge-loss MINs

e lety = (v, ..., V,,) bea vector of n randvars and x =
(X1, ey Xy1) be a vector of n’ randvars with joint range

D = [O 1]n+n

* Let ¢p = (¢4, ..., P,) be a vector of m continuous
potentials of the form

¢;(y,x) = (max{¢;(y, x), O})pj
* £;(y,x) linear function of y, x
- pj € {1,2}

* For(y,x) € D and given a vector of m weights w =
(wq, ..., W), constrained hinge-loss energy function f,,
is defined as

fw(y: x) — Z W]¢](y, .X')
j=1




Hinge-loss MINs

* Let ¢ = (¢4, ..., ¢,-) be a vector of linear constraint
functions which further restrict the domain D to D’

* Hinge-loss MN over randvars y and conditioned on
randvars x is a PDF defined as follows
« if (y,x) € D', then P(y|x) =0
* if (y,x) € D', then

1
POYIx) = 5o — exp(~u (3, )
 where
zwn = | ew(-fn)dy
y|(yx)ED’

* Define hinge-loss MNs using PSL




Application: E.g., Entity Resolution

* Goal: Identify references that Gomsen ) [Gsomn)
denote the same person rame name

* Use model to express dependencies . 6 |
* “If A=B and B=C, then A and C must [ o
also denote the same person” c]J(Lo] LG

* “If two people have similar names, E | l]

they are probably the same”

* “If two people have similar friends,
they are probably the same”

| A.name =, ... B.name =>A=~B : 0.8

A] B me A

g o AR g s ( Aw (8]
= [y pal 45 &

N

= B 2® o e
John Smith ). Smith e fame

B
F G

H

&ULJL [C @ﬂ E

-

A=B N B=C => A=C : o ~

{A.friends) =, {B.friends} => A=B : 0.6

S
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=T = universiTAT Zu LoBECK
SES22 Y INSTITUT FUR INFORMATIONSSYSTEME 64
J“\' “Q”

§.518]




Interim Summary

* PSL
* Logic programming language
* Approximations

* Linear program that bounds MPE solution from below

* Decomposition of PGM to optimise set of subproblems
(consensus optimisation)

* Local consistency relaxation
* Soft logic: tukasiewicz logic

* Interpret continuous values as similarities/degree of truth
* Hinge-loss MNs
* Notion of distance to satisfaction
* Define using PSL

:::::
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Outline: 8. Continuous Space

A. Basics

e Continuous variables, probability density function,
cumulative probability distribution

 Joint distribution, marginal density, conditional density

B. Gaussian models
e (Multivariate) Gaussian distribution
e (Parameterised) Gaussian Bayesian networks

C. Probabilistic Soft Logic (PSL)

* Modelling, semantics, inference task

The Exd
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