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Literature

•We now switch from 
• Automated Planning and Acting
• Malik Ghallab, Dana Nau, Paolo Traverso

• Main source

• to
• Artificial Intelligence: 

A Modern Approach (3rd ed.)
• Stuart Russell, Peter Norvig
• Decision theory

• Ch. 16 + 17
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Decision Making under Uncertainty

•Many environments have multiple possible outcomes
• Some of these outcomes may be good; 

others may be bad
• Some may be very likely; 

others unlikely

APA - Standard Dec.
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Nondeterministic vs. Probabilistic Uncertainty

• !, #, $
• Decision that is

best for worst case

• ! %& , # %' , $ %(
• Decision that

maximises expected 
utility value

6
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Expected Utility

• Random variable ! with " range values #$, … , #' and probability 
distribution ($,… , ('
• E.g.: ! is the state reached after doing an action ) = + under uncertainty 

with " possible outcomes
• Function , of !
• E.g., , is the utility of a state

• The expected utility of ) = + is

-,[) = +] =0
12$

'
3 ! = #1 ) = + 4 , ! = #1
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!#!$!%

&%

'. ) '. * '. +
+'' ,' *'

-(!") = 100 3 0.2 + 50 3 0.7 + 70 3 0.1
= 20 + 35 + 7
= 62

One State/One Action Example
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One State/Two Actions Example
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/" #) = 74
/ #) = max{/+ #) , /" #) }
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/+ #) = 62
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Introducing Action Costs
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#)

#*#"#+

!+

%. ' %. , %. -
-%% .% ,%

/" #) = 74 − 25 = 49
/ #) = max{/+ #) , /" #) }

= 57

/+ #) = 62 − 5 = 57

−5 −25
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MEU Principle

• A rational agent should 
choose the action that 
maximizes agent’s 
expected utility
• This is the basis of the 

field of decision theory
• The MEU principle 

provides a normative 
criterion for rational 
choice of action 

AI solved?

11
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Not quite…

•Must have complete model of:
• Actions
• Utilities
• States

• Even if you have a complete model, it might be computationally 
intractable
• In fact, a truly rational agent takes into account the utility of 

reasoning as well – bounded rationality
• Nevertheless, great progress has been made in this area, and we 

are able to solve much more complex decision-theoretic problems 
than ever before

12
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Setting
• Agent can perform actions in an environment
• Environment
• Time: episodic or sequential
• Episodic: Next episode does not depend on the previous episode
• Sequential: Next episode depends on previous episodes

• Non-deterministic
• Outcomes of actions not unique
• Associated with probabilities (➝ probabilistic model)

• Partially observable (treated formally as part of Topic 7 – Advanced Decision Making)
• Latent, i.e., not observable, random variables

• Agent has preferences over states/action outcomes
• Encoded in utility or utility function ➝ Utility theory

• “Decision theory = Utility theory + Probability theory”
• Model the world with a probabilistic model
• Model preferences with a utility (function)
• Find action that leads to the maximum expected utility, also called decision 

making 

13
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Outline

Utility Theory – mainly Ch. 16.1-16.4
• Preferences
• Utilities
• Dominance
• Preference structure

Markov Decision Process / Problem (MDP)
• Markov property
• Sequence of actions, history, policy
• Value iteration, policy iteration

14
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Preferences

• An agent chooses among prizes (!, ", etc.) and lotteries, i.e., 
situations with uncertain prizes
• Outcome of a nondeterministic action is a lottery 

• Lottery # = %, !; 1 − % , "
• ! and " can be lotteries again
• Prizes are special lotteries: 1, *; 0, not *
• More than two outcomes: 
• # = %/, 0/; %1, 01; ⋯ ; %3, 03 , ∑56/3 %5 = 1

• Notation
• ! ≻ " ! preferred to "
• ! ∼ " indifference between ! and "
• ! ≿ " " not preferred to !

15
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Rational Preferences

• Idea: preferences of a rational agent must obey constraints
• Rational preferences ⇒ behaviour describable as maximisation of 

expected utility

16
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Rational Preferences (contd.)

• Violating constraints leads to self-evident irrationality
• Example
• Constraint: Preferences are transitive
• An agent with intransitive preferences can be induced to give away all its 

money

• If ! ≻ #, then an agent who has #
would pay (say) 1 cent to get !
• If $ ≻ !, then an agent who has !

would pay (say) 1 cent to get $
• If # ≻ $, then an agent who has $

would pay (say) 1 cent to get #

17
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Axioms of Utility Theory
1. Orderability
• ! ≻ # Ú ! ≺ # Ú !~#
• ≺,≻, ~ jointly exhaustive, pairwise disjoint

2. Transitivity
• ! ≻ # Ù # ≻ ' Þ ! ≻ '

3. Continuity
• ! ≻ # ≻ 'Þ$( (, !; 1 − (, ' ~#

4. Substitutability
• !~#Þ (, !; 1 − (, ' ~ (, #; 1 − (, '
• Also holds if replacing ~ with ≻

5. Monotonicity
• ! ≻ #Þ(( ≥ .Û (, !; 1 − (, # ≿ ., !; 1 − ., # )

6. Decomposability
• (, !; 1 − (, ., #; 1 − ., ' ~ (, !; 1 − ( ., #; 1 − ( 1 − . , '

APA - Standard Dec.
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And Then There Was Utility
• Theorem (Ramsey, 1931; von Neumann and Morgenstern, 1944):
• Given preferences satisfying the constraints, there exists a real-valued 

function ! such that

! " ≥ ! $ ⇔ " ≿ $
! '(, *(;… ; '-, *- = /

0
'0! *0

•MEU principle
• Choose the action that maximises expected utility

• Note: an agent can be entirely rational (consistent with MEU) 
without ever representing or manipulating utilities and 
probabilities
• E.g., a lookup table for perfect tictactoe

19
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Utilities

• Utilities map states to real numbers. 
Which numbers?

• Standard approach to assessment of human utilities:
• Compare a given state ! to a standard lottery "# that has 
• “best possible outcome” ⊤ with probability %
• ”worst possible catastrophe” ⊥ with probability 1 − %

• Adjust lottery probability % until !~"#

APA - Standard Dec.
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~ "
continue as before

instant death

pay-$30-and-
continue-as-
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0.999999

0.000001



Utility Scales

• Normalised utilities: !" = 1.0, !( = 0.0
• Utility of lottery ) ~ (pay-$30-and-continue-as-before): + ) = !" ,
0.999999 + !( , 0.000001 = 0.999999

•Micromorts: one-millionth chance of death
• Useful for Russian roulette, paying to reduce product risks, etc.

• QALYs: quality-adjusted life years
• Useful for medical decisions involving substantial risk

• Behaviour is invariant w.r.t. positive linear transformation
+/ 0 = 12+ 0 + 13

• No unique utility function; +/ 0 and + 0 yield same behaviour

21
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Ordinal Utility Functions

•With deterministic prizes only (no lottery choices), only ordinal
utility can be determined, i.e., total order on prizes
• Ordinal utility function also called value function
• Provides a ranking of alternatives (states), but not a meaningful metric scale 

(numbers do not matter)

22
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Money

•Money does not behave as a utility function
• Given a lottery ! with expected monetary value "#$ ! , usually 
% ! < % '()* + , i.e., people are risk-averse
• '): state of possessing total wealth $#
• Utility curve
• For what probability , am I indifferent 

between a prize - and a lottery 
,, $#; 1 − , , $0 for large #?

• Right: Typical empirical 
data, extrapolated with
risk-prone behaviour 
for negative wealth

23
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Money Versus Utility

•Money ≠ Utility
• More money is better, but not always in a linear relationship to the amount 

of money
• Expected Monetary Value
• Risk-averse 
• " # < " %&'( )

• Risk-seeking
• " # > " %&'( )

• Risk-neutral
• " # = " %&'( )
• Linear curve
• For small changes in wealth 

relative to current wealth

24
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Multi-attribute Utility Theory

• A given state may have multiple utilities
• ...because of multiple evaluation criteria
• ...because of multiple agents (interested parties) with different utility 

functions

•We will look at 
• Cases in which decisions can be made without combining the attribute values 

into a single utility value
• Strict dominance 
• Stochastic dominance

• Cases in which the utilities of attribute combinations can be specified very 
concisely
• Preference structure

25
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Strict Dominance

• Typically define attributes such that ! is monotonic in each 
dimension
• Strict dominance
• Choice " strictly dominates choice # iff

∀ % ∶ '( " ≥ '( # (and hence ! " ≥ ! # )

26

APA - Standard Dec.



Stochastic Dominance
• Cumulative distribution !" first-order stochastically dominates

distribution !# iff

∀% ∶ !# % ≤ !" %
• With a strict inequality for some interval

• Then, ()* > (), (( referring to expected value)

• The reverse is not necessarily true

• Does not imply that every possible return of the superior distribution is larger 
than every possible return of the inferior distribution

• Example:

• As we have negative costs, S2 dominates S1 with ∀% ∶ !-, % ≤ !-* %

APA - Standard Dec.
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Example

• Product P

• Product Q

28

Profit ($m) Probability
0 to under 5 0.2
5 to under 10 0.3
10 to under 15 0.4
15 to under 20 0.1

Profit ($m) Probability
0 to under 5 0.0
5 to under 10 0.1
10 to under 15 0.5
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Stochastic Dominance
• Cumulative distribution !" second-order stochastically dominates

distribution !# iff

∀ % ∶ '
()

*
!# + ,+ ≤ '

()

*
!" + ,+

• Or: . % = ∫()
* !" + − !# + ,+ ≥ 0

• With a strict inequality for some interval
• Then, 456 ≥ 457 (4 referring to expected value)

• Example:
• 8 second-order stoch. dominates 9 • No dominance of either 8 or 9

APA - Standard Dec.
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Preference Structure

• To specify the complete utility function ! "#,… , "& , we need '&
values in the worst case
• ( attributes
• Each attribute with ' distinct possible values
• Worst case meaning: Agent’s preferences have no regularity at all 

• Supposition in multi-attribute utility theory 
• Preferences of typical agents have much more structure

• Approach
• Identify regularities in the preference behaviour
• Use so-called representation theorems to show that an agent with a certain 

kind of preference structure has a utility function 
! "#, … , "& = * +# "# , … , +& "&

• where * is hopefully a simple function such as addition

30
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Preference Structure: Deterministic
• !" and !# preferentially independent (PI) of !$ iff
• Preference between %", %#, %$ and %"', %#', %$ does not depend on %$
• E.g., ()*+,, -)+., /01,.2
• 20,000 +511,%, $4.6 :*;;*)<, 0.06 =,0.ℎ+/@)<.ℎ
• 70,000 +511,%, $4.2 :*;;*)<, 0.06 =,0.ℎ+/@)<.ℎ

• Theorem (Leontief, 1947)
• If every pair of attributes is PI of its complement, then every subset of attributes 

is PI of its complement
• Called mutual PI (MPI)

• Theorem (Debreu, 1960):
• MPI ⇒ ∃ additive value function 

D %", … , %F =H
I
DI %I

• Hence assess < single-attribute functions
• Often a good approximation

31
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Preference Structure: Stochastic

• Need to consider preferences over lotteries
• ! is utility-independent (UI) of " iff
• Preferences over lotteries in ! do not depend on #

•Mutual UI (Keeney, 1974): 
Each subset is UI of its complement 
⇒ ∃multiplicative utility function
• For & = 3:

) = *+)+ + *-)- + *.).
+*+*-)+)- + *-*.)-). + *.*+).)+
+*+*-*.)+)-).

• I.e., requires only & single-attribute utility functions and & constants

32
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Intermediate Summary

• Preferences
• Preferences of a rational agent must obey constraints 

• Utilities
• Rational preferences = describable as maximisation of expected utility
• Utility axioms
• MEU principle

• Dominance
• Strict dominance
• First-order + second-order stochastic dominance

• Preference structure
• (Mutual) preferential independence
• (Mutual) utility independence

33
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Outline

Utility Theory
• Preferences
• Utilities
• Dominance
• Preference structure

Markov Decision Process/Problem (MDP) – Ch. 17.1-17.3
• Markov property
• Sequence of actions, history, policy
• Value iteration, policy iteration

34
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Simple Robot Navigation Problem

• In each state, the possible actions are U, D, R, and L
• The effect of action U is as follows (transition model):
• With probability 0.8, move up one square 
• If already in top row or blocked, no move

• With probability 0.1, move right one square 
• If already in rightmost row or blocked, no move

• With probability 0.1, move left one square
• If already in leftmost row or blocked, no move

• Same transition model holds for D, R, and L
and their respective directions

APA - Standard Dec.
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Markov Property

• Also known as Markov-! with ! = 1
• ! ≤ %

& '()* | '(, … , '. = &('()*| '(, … , '(01)*)

• ! = 1
& '()* | '(, … , '. = & '()* | '(

36

The transition properties depend only 
on the current state, not on previous 
history (how that state was reached).
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Sequence of Actions

• In each state, the possible actions are U, D, R, and L; 
the transition model for each action is (pictured):
• Current position: [3,2]
• Planned sequence of actions: (U, R)

APA - Standard Dec.
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Sequence of Actions

• In each state, the possible actions are U, D, R, and L; 
the transition model for each action is (pictured):
• Current position: [3,2]
• Planned sequence of actions: (U, R)
• U is executed

APA - Standard Dec.
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Sequence of Actions

• In each state, the possible actions are U, D, R, and L; 
the transition model for each action is (pictured):
• Current position: [3,2]
• Planned sequence of actions: (U, R)
• U has been executed
• R is executed

APA - Standard Dec.
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Histories

• In each state, the possible actions are U, D, R, and L; 
the transition model for each action is (pictured):
• Current position: [3,2]
• Planned sequence of actions: (U, R)
• U has been executed
• R is executed

APA - Standard Dec.
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[3,2]

9 possible sequences of states, called 
histories, and 6 possible final states



Probability of Reaching the Goal

• In each state: possible actions U, D, R, L; trans. model:

APA - Standard Dec.
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! 4,3 | &, ' . 3,2 =
! 4,3 | '. 3,3 + ! 3,3 | &. 3,2
+! 4,3 | '. 4,2 + ! 4,2 | &. 3,2

! 4,3 | '. 3,3 = 0.8 ! 3,3 | &. 3,2 = 0.8
! 4,3 | '. 4,2 = 0.1 ! 4,2 | &. 3,2 = 0.1

! 4,3 | &, ' . 3,2 = 0.8 + 0.8 + 0.1 + 0.1 = 0.65

Note importance of Markov 
property in this derivation

[4,2][3,3][3,2]

[3,3][3,2] [4,1] [4,2] [4,3][3,1]

[3,2]



Utility Function

• [4,3] : power supply

• [4,2] : sand area the robot cannot escape (stops the run)

• Goal: robot needs to recharge its batteries

• [4,3] and [4,2] are terminal states

• In this example, we define the utility of a history by 

• The utility of the last state (+1 or –1) minus 0.04 $ %
• % is the number of moves

• I.e., each move costs 0.04, 
which provides an incentive 
to reach the goal fast

42
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Utility of an Action Sequence

• Consider the action sequence ! = (U,R) from [3,2]
• A run produces one of 7 possible histories, each with a probability
• Utility of the sequence is the expected utility of histories ℎ:

$(!) ='
(
$() ℎ

• Optimal sequence = the one with maximum utility

APA - Standard Dec.

43

+1

2

3

1

4321

-1

Is the optimal 
sequence what 

we want?

[4,2][3,3][3,2]

[3,3][3,2] [4,1] [4,2] [4,3][3,1]

[3,2]



Act()
repeat

s ← sensed state
if s is terminal then

exit
a ← choose action (given s)
perform a

Reactive Agent Algorithm

44

Accessible or observable state

Figure: AIMA, Russell/Norvig
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Policy (Reactive/Closed-loop Strategy)

• Policy !
• Complete mapping from states to actions

• Optimal policy !∗
• Always yields a history (ending at terminal 

state) with maximum expected utility
• Due to Markov property

APA - Standard Dec.

45

+1

2

3

1

4321

-1

Note that [3,2] is a “dangerous” state 
that the optimal policy tries to avoid

How to compute !∗?
Solving a Markov Decision Process

Act()
repeat

s ← sensed state
if s is terminal then

exit
a ← !(s)
perform a



Markov Decision Process / Problem (MDP)

• Sequential decision problem 
for a fully observable, 
stochastic environment with a 
Markovian transition model 
and additive rewards (next 
slide)
•Model components
• a set of states ! (with an initial 

state "#)
• a set $ " of actions in each state
• a transition model % "& ", (
• a reward function )(")

• Robot navigation example:

46
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Additive Utility

• History ! = ($%, $', … , $))
• In each state $, agent receives 

reward + $
• Utility of ! is additive iff 

= , $%, $', … , $)= + $% + , $',… , $)
=.

/0%

)
+ $/

• Discount factor 1 ∈]0,1]: 
, $%, $', … , $) =.

/0%

)
1/+ $/

• Close to 0: future rewards 
insignificant

• Corresponds to interest rate 6'78 8

• Robot navigation example:

• + $) = +1 if $) = 4,3
• + $) = −1 if $) = 4,2
• + $/ = −0.04 if > = 0,… , ? − 1
• 1 = 1

47
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Principle of MEU

• History ℎ = ($%, $', … , $))
• Utility of ℎ: 

+ $%, $', … , $) =,
-.%

)
/ $-

• Bellman equation: 
+ $-
= / $-
+ 1max

5
,
67

8 $9| ;. $- + $9

• Optimal policy: 
=∗ $-
= argmax

5
,
67

8 $9| ;. $- + $9

• Robot navigation example:

• Bellman equation for 1,1
• with 1 = 1 as discount factor

• + 1,1 = −0.04 + 1 max
E,F,G,H

48
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Value Iteration

• Initialise the utility of each 
non-terminal state !" to 
#$ !" = 0
• For ' = 0, 1, 2, …, do
• #,-. !" ← 0 !" +
2max

6
∑89 : !;| =. !" #, !;

• So called Bellman update

• Robot navigation example:

49
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Value Iteration

• Initialise the utility of each 
non-terminal state !" to 
#$ !" = 0
• For ' = 0, 1, 2, …, do
• #,-. !" ← 0 !" +
2max

6
∑89 : !;| =. !" #, !;

• So called Bellman update

• Robot navigation example

50
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Note the importance 
of terminal states and 

connectivity of the 
state-transition graph



Value Iteration: Algorithm
• Returns a policy !

that is optimal
• Inputs
• MDP:
• States "
• For all # ∈ "
• Actions % #
• Transition model 
& #'| ). #

• Rewards + #
• Discount ,

• Maximum error allowed -
• Local variables
• .,.' vectors of utilities for states in ", initially 0
• 1 maximum change in utility of any state in an iteration

APA - Standard Dec.
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function value-iteration(mdp,-)
U’ ← 0, π ←〈〉
repeat

U ← U’
1 ← 0
for each state s ∈ S do

U’[s] ← R(s) + , maxa∈A(s)Σs’P(s’|a.s)U[s’]
if |U’[s] - U[s]| > 1 then

1 ← |U’[s] - U[s]|
until 1 < -(1-,)/,
for each state s ∈ S do

π(s) ← argmaxa∈A(s)Σs’P(s’|a.s)U[s’]
return π



Evolution of Utilities

• For ! = 0, 1, 2, …, do
• ()*+ ,- ← / ,- +
1max

5
∑78 9 ,:| <. ,- () ,:

• Value iteration ≈ information 
propagation

• Robot navigation example

52
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Argmax Action

• For ! = 0, 1, 2, …, do
• ()*+ ,- ← / ,- +
1max

5
∑78 9 ,:| <. ,- () ,:

• Argmax action may change 
over iterations

• Robot navigation example:

• Bellman equation for 1,1
• with 1 = 1 as discount factor
• ( 1,1 = −0.04 + 1 max

@,A,B,C

53
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Effect of Rewards

• For ! = 0, 1, 2, …, do
• ()*+ ,- ← / ,- +
1max

5
∑78 9 ,:| <. ,- () ,:

• Optimal policies for different 
rewards:
• For / , = −0.04, see right ⇢

• Robot navigation example
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Data for figures: AIMA, Russell/Norvig

/ , < −1.6284

+1

-1

−0.4278 < / , < −0.0850

+1

-1

−0.0221 < / , < 0

+1

-1

/ , > 0

+1

-1

+1

2

3

1

4321
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Effect of Allowed Error & Discount

• For ! = 0, 1, 2, …, do
• ()*+ ,- ← / ,- +
1max

5
∑78 9 ,:| <. ,- () ,:

• Iterations required to ensure a 
maximum error of > = ? · /A5B
• /A5B maximum reward

• Robot navigation example

• /A5B = +1
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Figure right: AIMA, Russell/Norvig
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Policy Iteration

• Pick a policy !" at random
• Repeat:
• Policy evaluation: Compute the utility of each state for !#
• $# %& = ( %& + * ∑,- . %/|!# %& . %& $# %/
• No longer involves a max operation as action is determined by !#

• Policy improvement: Compute the policy !#56 given $#
• !#56 %& = argmax

9
∑,- . %/|!# %& . %& $# %/

• If !#56 = !#, then return !#

APA - Standard Dec.

56

Solve the set of linear equations:

$ %& = ( %& + *:
,-
. %/|! %& . %& $ %/

(often a sparse system)



Policy Iteration: Algorithm

• Returns a policy ! that is optimal
• Inputs: MDP
• States "
• For all # ∈ ", actions % # , transition model & #'| ). # , rewards + #

• Local variables
• , vectors of utilities for states in ", initially 0
• ! a policy vector indexed by state, initially random

57

function policy-iteration(mdp)
repeat

U ← policy-evaluation(!,U,mdp)
unchanged ← true
for each state s ∈ S do

if maxa∈A(s)Σs’P(s’|a.s)U[s’] > Σs’P(s’|![s].s)U[s’] then
![s] ← argmaxa∈A(s)Σs’P(s’|a.s)U[s’]
unchanged ← false

until unchanged
return !
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Policy Evaluation

• Compute the utility of each state for !
• "# $% = ' $% + ) ∑+, - $.|!# $% . $% "# $.

• Complexity of policy evaluation: 1 23
• For 2 states, 2 linear equations with 2 unknowns
• Prohibitive for large 2

• Approximation of utilities
• Perform 4 value iteration steps with fixed policy !#, return utilities
• Simplified Bellman update: "#56 $% = ' $% + ) ∑+, - $.|! $% . $% "# $.

• Asynchronous policy iteration (next slide)
• Pick any subset of states
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Asynchronous Policy Iteration

• Further approximation of policy iteration
• Pick any subset of states and do one of the following 
• Update utilities 
• Using simplified value iteration as described on previous slide

• Update the policy 
• Policy improvement as before

• Is not guaranteed to converge to an optimal policy
• Possible if each state is still visited infinitely often, knowledge about 

unimportant states, etc.
• Freedom to work on any states allows for design of domain-

specific heuristics
• Update states that are likely to be reached by a good policy
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Intermediate Summary

•MDP
• Markov property
• Current state depends only on previous state

• Sequence of actions, history, policy
• Sequence of actions may yield multiple histories, i.e., sequences of states, with a 

utility
• Policy: complete mapping of states to actions
• Optimal policy: policy with maximum expected utility

• Value iteration, policy iteration
• Algorithms for calculating an optimal policy for an MDP
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Online Decision Making
• Decision making based on probabilistic 

graphical models (PGMs)
• Do not precompute a policy beforehand but 

decide on an action (sequence) online given 
current observations

• Static case (episodic, without effects on 
next state)
• PGMs extended with action and utility nodes
• MEU query (problem): Calculate expected 

utility for each action, decide to execute 
action with highest expected utility

• Dynamic case (temporal, with effects 
on next state)
• Dynamic PGMs extended with action 

and utility nodes
• MEU query (problem): Calculate 

expected utility for sequence of actions, 
decide to execute action sequence with 
highest expected utility
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61
https://www.ifis.uni-luebeck.de/index.php?id=703&L=0

Lecture next winter term (WiSe

2022/23) on Relational Inference 
and Online Decision Making

https://www.ifis.uni-luebeck.de/index.php?id=703&L=0


Outline

Utility Theory
• Preferences
• Utilities
• Dominance
• Preference structure

Markov Decision Process / Problem (MDP)
• Markov property
• Sequence of actions, history, policy
• Value iteration, policy iteration

⟹ Next: Probabilistic Models

62

APA - Standard Dec.


