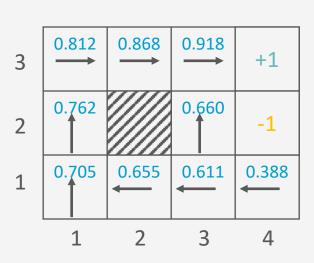
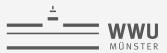


Automated Planning and Acting

Standard Decision Making





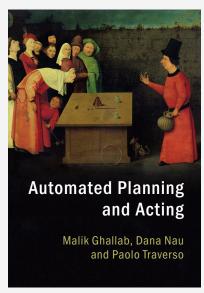
Content

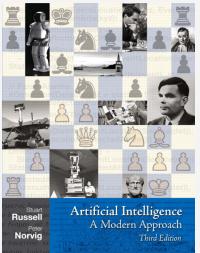
- Planning and Acting with Deterministic Models
- Planning and Acting with Refinement Methods
- Planning and Acting with Temporal Models
- Planning and Acting with Nondeterministic Models
- 5. Standard Decision Making
 - a. Utility Theory
 - b. Markov Decision Process / Problem (MDP)

- 6. Planning and Acting with **Probabilistic** Models
- 7. **Advanced** Decision Making
- 8. Human-aware Planning

Literature

- We now switch from
 - Automated Planning and Acting
 - Malik Ghallab, Dana Nau, Paolo Traverso
 - Main source
- to
 - Artificial Intelligence:
 A Modern Approach (3rd ed.)
 - Stuart Russell, Peter Norvig
 - Decision theory
 - Ch. 16 + 17



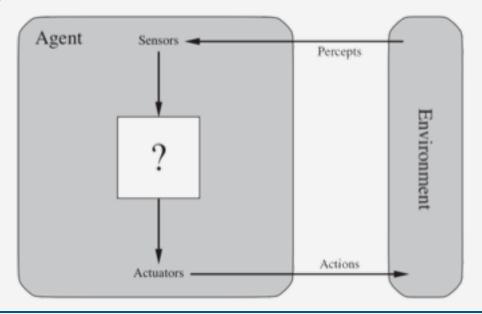


Acknowledgements

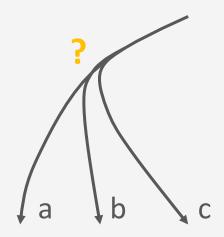
- Material from Lise Getoor, Jean-Claude Latombe, Daphne Koller, and Stuart Russell
- Compiled by Ralf Möller

Decision Making under Uncertainty

- Many environments have multiple possible outcomes
- Some of these outcomes may be good; others may be bad
- Some may be very likely; others unlikely

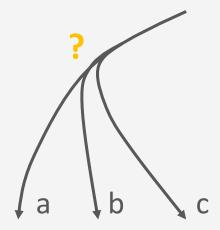


Nondeterministic vs. Probabilistic Uncertainty



Nondeterministic model

- $\{a, b, c\}$
- Decision that is best for worst case



Probabilistic model

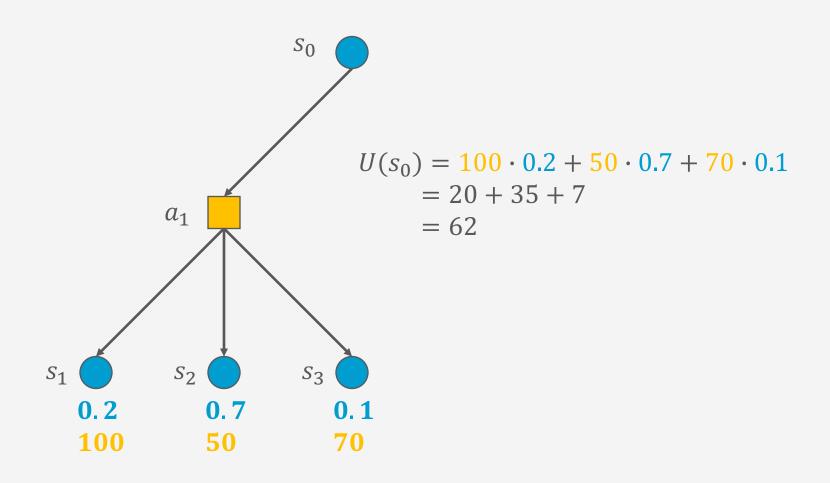
- $\{a(p_a), b(p_b), c(p_c)\}$
- Decision that
 maximises expected
 utility value

Expected Utility

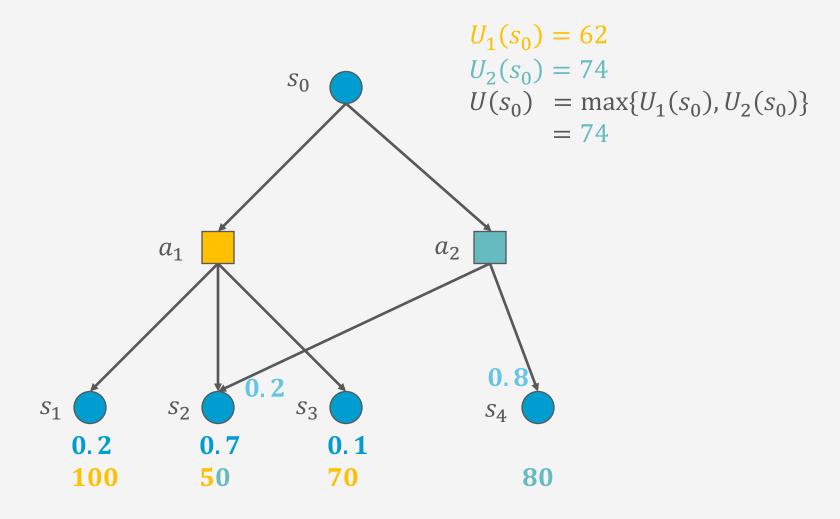
- Random variable X with n range values x_1, \ldots, x_n and probability distribution (p_1, \ldots, p_n)
 - E.g.: X is the state reached after doing an action A=a under uncertainty with n possible outcomes
- Function *U* of *X*
 - E.g., *U* is the utility of a state
- The expected utility of A = a is

$$EU[A = a] = \sum_{i=1}^{n} P(X = x_i | A = a) \cdot U(X = x_i)$$

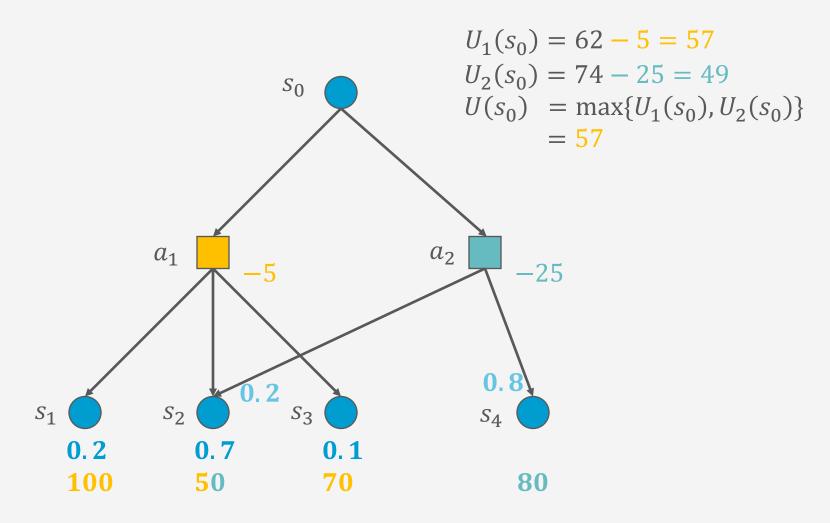
One State/One Action Example



One State/Two Actions Example



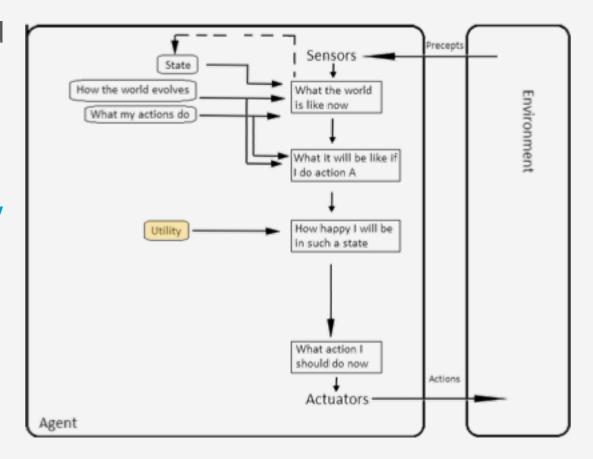
Introducing Action Costs



MEU Principle

- A rational agent should choose the action that maximizes agent's expected utility
- This is the basis of the field of decision theory
- The MEU principle provides a normative criterion for rational choice of action

Al solved?



Not quite...

- Must have complete model of:
 - Actions
 - Utilities
 - States
- Even if you have a complete model, it might be computationally intractable
- In fact, a truly rational agent takes into account the utility of reasoning as well – bounded rationality
- Nevertheless, great progress has been made in this area, and we are able to solve much more complex decision-theoretic problems than ever before

Setting

- Agent can perform actions in an environment
 - Environment
 - Time: episodic or sequential
 - Episodic: Next episode does not depend on the previous episode
 - Sequential: Next episode depends on previous episodes
 - Non-deterministic
 - Outcomes of actions not unique
 - Associated with probabilities (→ probabilistic model)
 - Partially observable (treated formally as part of Topic 7 Advanced Decision Making)
 - Latent, i.e., not observable, random variables
 - Agent has preferences over states/action outcomes
 - Encoded in utility or utility function → Utility theory
- "Decision theory = Utility theory + Probability theory"
 - Model the world with a probabilistic model
 - Model preferences with a utility (function)
 - Find action that leads to the maximum expected utility, also called decision making

Outline

Utility Theory - mainly Ch. 16.1-16.4

- Preferences
- Utilities
- Dominance
- Preference structure

Markov Decision Process / Problem (MDP)

- Markov property
- Sequence of actions, history, policy
- Value iteration, policy iteration

Preferences

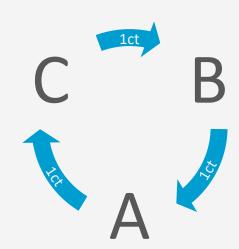
- An agent chooses among prizes (A, B, etc.) and lotteries, i.e., situations with uncertain prizes
 - Outcome of a nondeterministic action is a lottery
- Lottery L = [p, A; (1 p), B]
 - A and B can be lotteries again
 - Prizes are special lotteries: [1, R; 0, not R]
 - More than two outcomes:
 - $L = [p_1, S_1; p_2, S_2; \dots; p_n, S_n], \sum_{i=1}^n p_i = 1$
- Notation
 - A > B A preferred to B
 - $A \sim B$ indifference between A and B
 - $A \gtrsim B$ B not preferred to A

Rational Preferences

- Idea: preferences of a rational agent must obey constraints
- Rational preferences ⇒ behaviour describable as maximisation of expected utility

Rational Preferences (contd.)

- Violating constraints leads to self-evident irrationality
- Example
 - Constraint: Preferences are transitive
 - An agent with intransitive preferences can be induced to give away all its money
 - If B > C, then an agent who has C would pay (say) 1 cent to get B
 - If A > B, then an agent who has B would pay (say) 1 cent to get A
 - If C > A, then an agent who has A would pay (say) 1 cent to get C



Axioms of Utility Theory

1. Orderability

- $(A > B) \lor (A < B) \lor (A \sim B)$
 - $\{\langle, \rangle, \sim\}$ jointly exhaustive, pairwise disjoint

2. Transitivity

•
$$(A > B) \land (B > C) \Rightarrow (A > C)$$

3. Continuity

•
$$A > B > C \Rightarrow \exists p [p, A; 1-p, C] \sim B$$

4. Substitutability

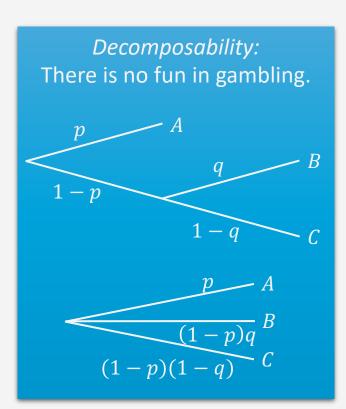
- $A \sim B \Rightarrow [p, A; 1 p, C] \sim [p, B; 1 p, C]$
 - Also holds if replacing ~ with >

5. Monotonicity

•
$$A > B \Rightarrow (p \ge q \Leftrightarrow [p, A; 1 - p, B] \ge [q, A; 1 - q, B])$$

6. Decomposability

•
$$[p,A; 1-p,[q,B; 1-q,C]] \sim [p,A; (1-p)q,B; (1-p)(1-q),C]$$



And Then There Was Utility

- Theorem (Ramsey, 1931; von Neumann and Morgenstern, 1944):
 - Given preferences satisfying the constraints, there exists a real-valued function *U* such that

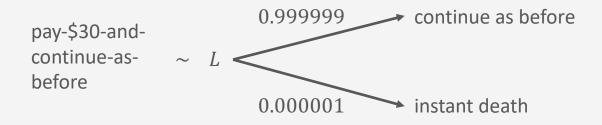
$$U(A) \ge U(B) \Leftrightarrow A \gtrsim B$$

$$U([p_1, S_1; ...; p_n, S_n]) = \sum_i p_i U(S_i)$$

- MEU principle
 - Choose the action that maximises expected utility
- Note: an agent can be entirely rational (consistent with MEU) without ever representing or manipulating utilities and probabilities
 - E.g., a lookup table for perfect tictactoe

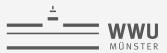
Utilities

- Utilities map states to real numbers.
 Which numbers?
- Standard approach to assessment of human utilities:
 - Compare a given state A to a standard lottery $L_{\mathcal{P}}$ that has
 - "best possible outcome" T with probability p
 - "worst possible catastrophe" \perp with probability (1-p)
 - Adjust lottery probability p until $A{\sim}L_p$



Utility Scales

- Normalised utilities: $u_{\rm T}=1.0$, $u_{\rm \perp}=0.0$
 - Utility of lottery $L\sim$ (pay-\$30-and-continue-as-before): $U(L)=u_{\rm T}\cdot 0.999999+u_{\perp}\cdot 0.000001=0.999999$
- Micromorts: one-millionth chance of death
 - Useful for Russian roulette, paying to reduce product risks, etc.
- QALYs: quality-adjusted life years
 - Useful for medical decisions involving substantial risk
- Behaviour is invariant w.r.t. positive linear transformation $U'(r) = k_1 U(r) + k_2$
 - No unique utility function; U'(r) and U(r) yield same behaviour

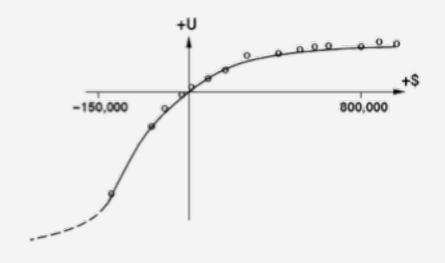


Ordinal Utility Functions

- With deterministic prizes only (no lottery choices), only ordinal utility can be determined, i.e., total order on prizes
 - Ordinal utility function also called value function
 - Provides a ranking of alternatives (states), but not a meaningful metric scale (numbers do not matter)

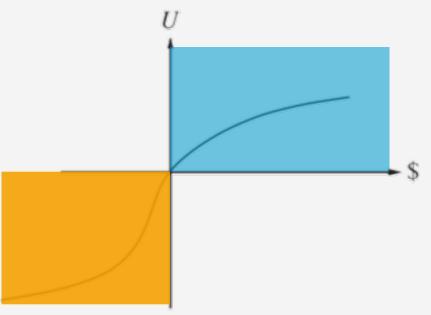
Money

- Money does not behave as a utility function
- Given a lottery L with expected monetary value EMV(L), usually $U(L) < U(S_{EMV(L)})$, i.e., people are risk-averse
 - S_M : state of possessing total wealth \$M
 - Utility curve
 - For what probability p am I indifferent between a prize x and a lottery [p, M; (1-p), 0] for large M?
 - Right: Typical empirical data, extrapolated with risk-prone behaviour for negative wealth



Money Versus Utility

- Money ≠ Utility
 - More money is better, but not always in a linear relationship to the amount of money
- Expected Monetary Value
 - Risk-averse
 - $U(L) < U(S_{EMV(L)})$
 - Risk-seeking
 - $U(L) > U(S_{EMV(L)})$
 - Risk-neutral
 - $U(L) = U(S_{EMV(L)})$
 - Linear curve
 - For small changes in wealth relative to current wealth



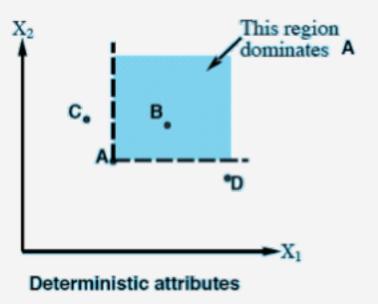
Multi-attribute Utility Theory

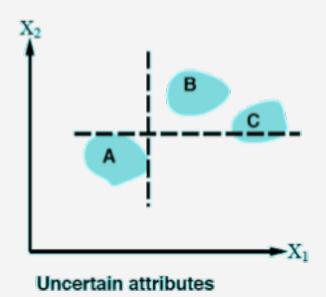
- A given state may have multiple utilities
 - ...because of multiple evaluation criteria
 - ...because of multiple agents (interested parties) with different utility functions
- We will look at
 - Cases in which decisions can be made without combining the attribute values into a single utility value
 - Strict dominance
 - Stochastic dominance
 - Cases in which the utilities of attribute combinations can be specified very concisely
 - Preference structure

Strict Dominance

- ullet Typically define attributes such that U is monotonic in each dimension
- Strict dominance
 - Choice B strictly dominates choice A iff

$$\forall i: X_i(B) \geq X_i(A)$$
 (and hence $U(B) \geq U(A)$)



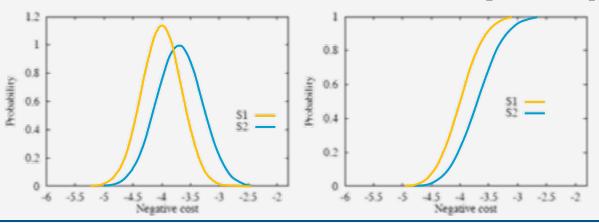


Stochastic Dominance

• Cumulative distribution p_1 first-order stochastically dominates distribution p_2 iff

$$\forall x: p_2(x) \le p_1(x)$$

- With a strict inequality for some interval
- Then, $E_{p_1} > E_{p_2}$ (E referring to expected value)
 - The reverse is not necessarily true
- Does not imply that every possible return of the superior distribution is larger than every possible return of the inferior distribution
- Example:
 - As we have *negative costs*, S2 dominates S1 with $\forall x: p_{S_2}(x) \leq p_{S_1}(x)$



Example

Product P

Profit (\$m)	Probability
0 to under 5	0.2
5 to under 10	0.3
10 to under 15	0.4
15 to under 20	0.1

Product Q

Profit (\$m)	Probability
0 to under 5	0.0
5 to under 10	0.1
10 to under 15	0.5
15 to under 20	0.3
20 to under 25	0.1

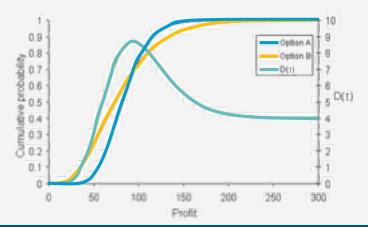
P first-order stochastically dominates Q

Stochastic Dominance

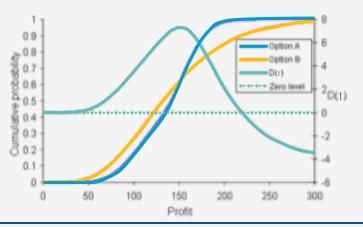
• Cumulative distribution p_1 second-order stochastically dominates distribution p_2 iff

$$\forall t: \int_{-\infty}^{t} p_2(x) \, dx \le \int_{-\infty}^{t} p_1(x) \, dx$$

- Or: $D(t) = \int_{-\infty}^{t} p_1(x) p_2(x) dx \ge 0$
- With a strict inequality for some interval
- Then, $E_{p_1} \ge E_{p_2}$ (E referring to expected value)
- Example:
 - A second-order stoch. dominates B



• No dominance of either A or B



Preference Structure

- To specify the complete utility function $U(r_1, ..., r_n)$, we need d^n values in the worst case
 - *n* attributes
 - Each attribute with *d* distinct possible values
 - Worst case meaning: Agent's preferences have no regularity at all
- Supposition in multi-attribute utility theory
 - Preferences of typical agents have much more structure
- Approach
 - Identify regularities in the preference behaviour
 - Use so-called representation theorems to show that an agent with a certain kind of preference structure has a utility function

$$U(r_1, ..., r_n) = F[f_1(r_1), ..., f_n(r_n)]$$

where F is hopefully a simple function such as addition

Preference Structure: Deterministic

- R_1 and R_2 preferentially independent (PI) of R_3 iff
 - Preference between $\langle r_1, r_2, r_3 \rangle$ and $\langle r'_1, r'_2, r_3 \rangle$ does not depend on r_3
 - E.g., (Noise, Cost, Safety)
 - (20,000 suffer, \$4.6 billion, 0.06 deaths/month)
 - (70,000 suffer, \$4.2 billion, 0.06 deaths/month)
- Theorem (Leontief, 1947)
 - If every pair of attributes is PI of its complement, then every subset of attributes is PI of its complement
 - Called mutual PI (MPI)
- Theorem (Debreu, 1960):
 - MPI ⇒ ∃ additive value function

$$V(r_1, \dots, r_n) = \sum_{i} V_i(r_i)$$

- Hence assess n single-attribute functions
- Often a good approximation

Preference Structure: Stochastic

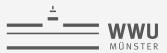
- Need to consider preferences over lotteries
- R is utility-independent (UI) of S iff
 - Preferences over lotteries in R do not depend on s
- Mutual UI (Keeney, 1974):
 Each subset is UI of its complement
 ⇒ ∃ multiplicative utility function
 - For n = 3:

$$U = k_1 U_1 + k_2 U_2 + k_3 U_3 + k_1 k_2 U_1 U_2 + k_2 k_3 U_2 U_3 + k_3 k_1 U_3 U_1 + k_1 k_2 k_3 U_1 U_2 U_3$$

• I.e., requires only n single-attribute utility functions and n constants

Intermediate Summary

- Preferences
 - Preferences of a rational agent must obey constraints
- Utilities
 - Rational preferences = describable as maximisation of expected utility
 - Utility axioms
 - MEU principle
- Dominance
 - Strict dominance
 - First-order + second-order stochastic dominance
- Preference structure
 - (Mutual) preferential independence
 - (Mutual) utility independence



Outline

Utility Theory

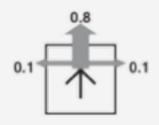
- Preferences
- Utilities
- Dominance
- Preference structure

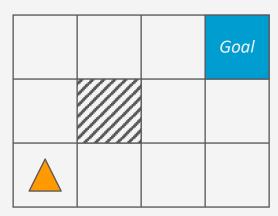
Markov Decision Process/Problem (MDP) – Ch. 17.1-17.3

- Markov property
- Sequence of actions, history, policy
- Value iteration, policy iteration

Simple Robot Navigation Problem

- In each state, the possible actions are U, D, R, and L
- The effect of action U is as follows (transition model):
 - With probability 0.8, move up one square
 - If already in top row or blocked, no move
 - With probability 0.1, move right one square
 - If already in rightmost row or blocked, no move
 - With probability 0.1, move left one square
 - If already in leftmost row or blocked, no move
- Same transition model holds for D, R, and L and their respective directions





Markov Property

The transition properties depend only on the current state, not on previous history (how that state was reached).

- Also known as Markov-k with k=1
 - $k \le t$

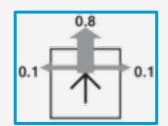
$$P(x_{t+1} | x_t, ..., x_0) = P(x_{t+1} | x_t, ..., x_{t-k+1})$$

• k = 1

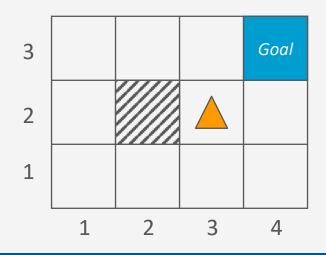
$$P(x_{t+1} \mid x_t, ..., x_0) = P(x_{t+1} \mid x_t)$$

Sequence of Actions

• In each state, the possible actions are U, D, R, and L; the transition model for each action is (pictured):



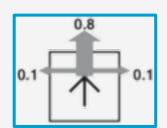
- Current position: [3,2]
- Planned sequence of actions: (U, R)



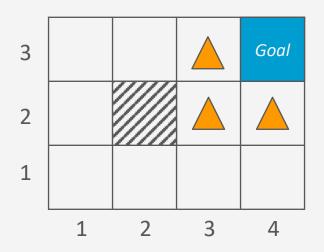
[3,2]

Sequence of Actions

• In each state, the possible actions are U, D, R, and L; the transition model for each action is (pictured):



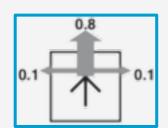
- Current position: [3,2]
- Planned sequence of actions: (U, R)
 - U is executed



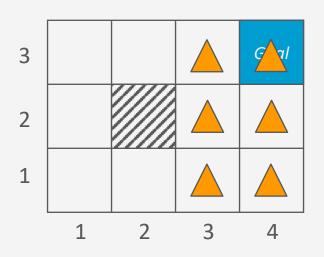


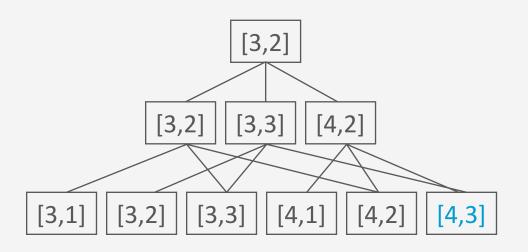
Sequence of Actions

• In each state, the possible actions are U, D, R, and L; the transition model for each action is (pictured):



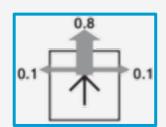
- Current position: [3,2]
- Planned sequence of actions: (U, R)
 - U has been executed
 - R is executed





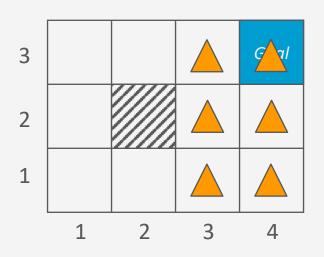
Histories

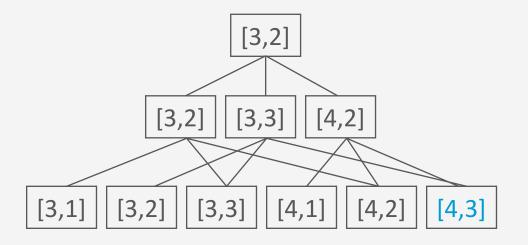
• In each state, the possible actions are U, D, R, and L; the transition model for each action is (pictured):



- Current position: [3,2]
- Planned sequence of actions: (U, R)
 - U has been executed
 - R is executed

9 possible sequences of states, called histories, and 6 possible final states





Probability of Reaching the Goal

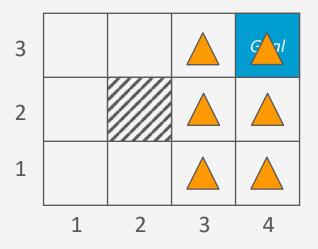
• In each state: possible actions U, D, R, L; trans. model:

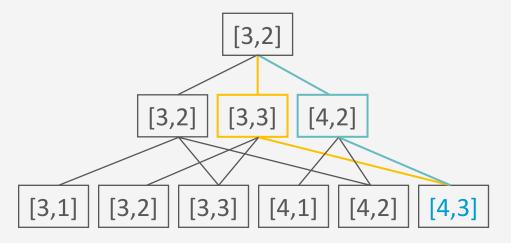
$$P([4,3] | (U,R).[3,2]) =$$
 $P([4,3] | R.[3,3]) \cdot P([3,3] | U.[3,2])$
 $+P([4,3] | R.[4,2]) \cdot P([4,2] | U.[3,2])$
 $P([4,3] | R.[3,3]) = 0.8$ $P([3,3] | U.[3,2]) = 0.8$
 $P([4,3] | R.[4,2]) = 0.1$ $P([4,2] | U.[3,2]) = 0.1$

0.1

Note importance of Markov property in this derivation

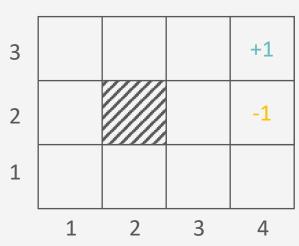
$$P([4,3] \mid (U,R).[3,2]) = 0.8 \cdot 0.8 + 0.1 \cdot 0.1 = 0.65$$





Utility Function

- [4,3] : power supply
- [4,2] : sand area the robot cannot escape (stops the run)
- Goal: robot needs to recharge its batteries
- [4,3] and [4,2] are terminal states
- In this example, we define the utility of a history by
 - The utility of the last state (+1 or -1) minus $0.04 \cdot n$
 - *n* is the number of moves
 - I.e., each move costs 0.04, which provides an incentive to reach the goal fast



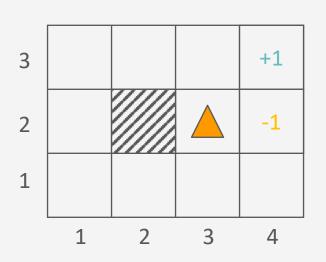


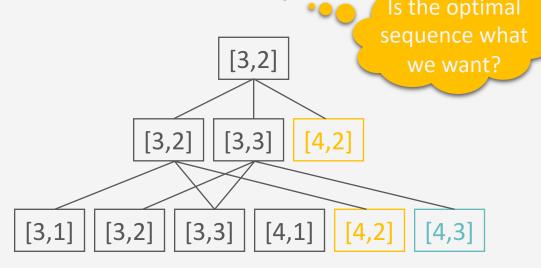
Utility of an Action Sequence

- Consider the action sequence a = (U,R) from [3,2]
- A run produces one of 7 possible histories, each with a probability
- Utility of the sequence is the expected utility of histories *h*:

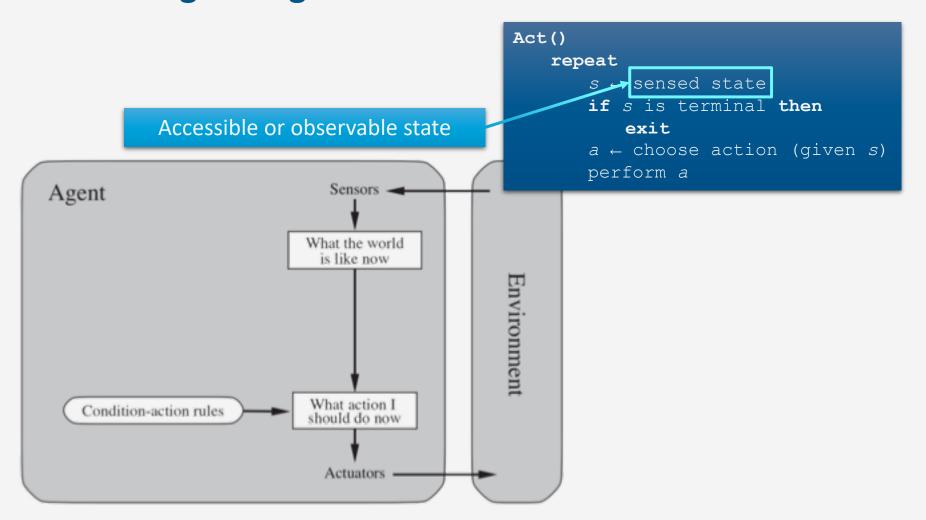
$$U(a) = \sum_{h} U_h P(h)$$

Optimal sequence = the one with maximum utility





Reactive Agent Algorithm



Policy (Reactive/Closed-loop Strategy)

- Policy π
 - Complete mapping from states to actions
- Optimal policy π^*
 - Always yields a history (ending at terminal state) with maximum expected utility
 - Due to Markov property

```
Act()

repeat

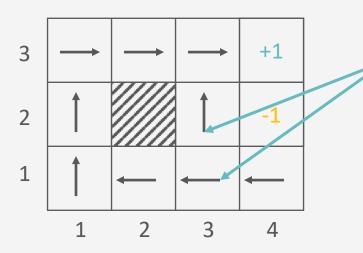
s \leftarrow \text{ sensed state}

if s is terminal then

exit

a \leftarrow \pi(s)

perform a
```



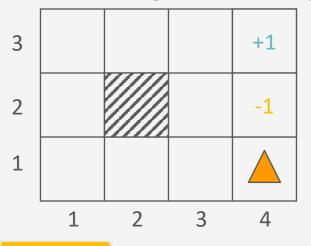
Note that [3,2] is a "dangerous" state that the optimal policy tries to avoid

How to compute π^* ?
Solving a Markov Decision Process

Markov Decision Process / Problem (MDP)

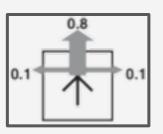
- Sequential decision problem for a fully observable, stochastic environment with a Markovian transition model and additive rewards (next slide)
- Model components
 - a set of states S (with an initial state s_0)
 - a set A(s) of actions in each state
 - a transition model P(s'|s,a)
 - a reward function R(s)

Robot navigation example:



U, D, L, R

each move costs 0.04



Additive Utility

- History $H = (s_0, s_1, ..., s_n)$
- In each state s, agent receives reward R(s)
- Utility of H is additive iff

$$U(s_0, s_1, ..., s_n)$$

$$= R(s_0) + U(s_1, ..., s_n)$$

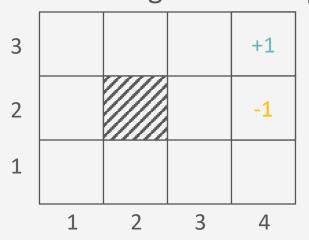
$$= \sum_{i=0}^{n} R(s_i)$$

• Discount factor $\gamma \in]0,1]$:

$$U(s_0, s_1, ..., s_n) = \sum_{i=0}^{n} \gamma^i R(s_i)$$

- Close to 0: future rewards insignificant
- Corresponds to interest rate $^{1-\gamma}/_{\gamma}$

• Robot navigation example:



- $R(s_n) = +1 \text{ if } s_n = [4,3]$
- $R(s_n) = -1 \text{ if } s_n = [4,2]$
- $R(s_i) = -0.04$ if i = 0, ..., n 1
- $\gamma = 1$

Principle of MEU

- History $h = (s_0, s_1, ..., s_n)$
 - Utility of *h*:

$$U(s_0, s_1, ..., s_n) = \sum_{i=0}^{n} R(s_i)$$

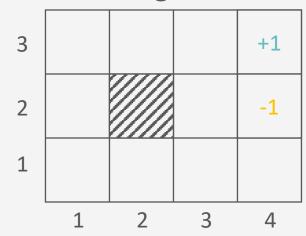
Bellman equation:

$$U(s_i)$$
= $R(s_i)$
+ $\gamma \max_{a} \sum_{s_j} P(s_j | a.s_i) U(s_j)$

Optimal policy:

$$\pi^*(s_i) = \underset{a}{\operatorname{argmax}} \sum_{s_j} P(s_j | a.s_i) U(s_j)$$

Robot navigation example:



- Bellman equation for [1,1]
 - with $\gamma = 1$ as discount factor

•
$$U(1,1) = -0.04 + \gamma \max_{U,L,D,R}$$

$$\{0.8U(1,2) + 0.1U(2,1) + 0.1U(1,1), (U)\}$$

$$0.8U(1,1) + 0.1U(1,1) + 0.1U(1,2),$$
 (L)

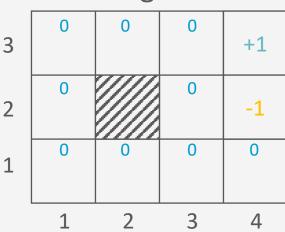
$$0.8U(1,1) + 0.1U(2,1) + 0.1U(1,1),$$
 (D)

$$0.8U(2,1) + 0.1U(1,2) + 0.1U(1,1)$$
 (R)

Value Iteration

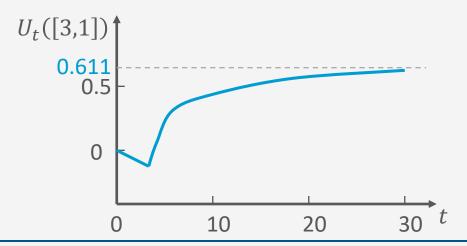
- Initialise the utility of each non-terminal state s_i to $U_0(s_i) = 0$
- For t = 0, 1, 2, ..., do
 - $U_{t+1}(s_i) \leftarrow R(s_i) +$ $\gamma \max_{a} \sum_{s_j} P(s_j | a. s_i) U_t(s_j)$
 - So called Bellman update

Robot navigation example:

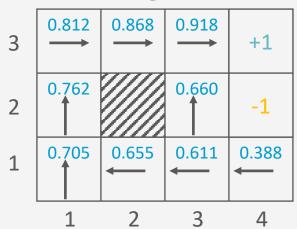


Value Iteration

- Initialise the utility of each non-terminal state s_i to $U_0(s_i) = 0$
- For t = 0, 1, 2, ..., do
 - $U_{t+1}(s_i) \leftarrow R(s_i) +$ $\gamma \max_{a} \sum_{s_j} P(s_j | a.s_i) U_t(s_j)$
 - So called Bellman update



Robot navigation example



Note the importance of terminal states and connectivity of the state-transition graph

Value Iteration: Algorithm

- Returns a policy π that is optimal
- Inputs
 - MDP:
 - States S
 - For all $s \in S$
 - Actions A(s)
 - Transition model P(s'|a.s)
 - Rewards R(s)
 - Discount γ
 - Maximum error allowed ϵ
- Local variables
 - *U*, *U'* vectors of utilities for states in *S*, initially 0
 - δ maximum change in utility of any state in an iteration

```
function value-iteration (mdp, \epsilon)

U' \leftarrow 0, \pi \leftarrow \langle \rangle

repeat

U \leftarrow U'
\delta \leftarrow 0

for each state s \in S do

U'[s] \leftarrow R(s) + \gamma \max_{a \in A(s)} \Sigma_{s'} P(s' | a.s) U[s']

if |U'[s] - U[s]| > \delta then

\delta \leftarrow |U'[s] - U[s]|

until \delta < \epsilon(1-\gamma)/\gamma

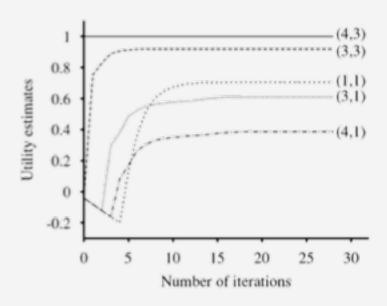
for each state s \in S do

\pi(s) \leftarrow \arg\max_{a \in A(s)} \Sigma_{s'} P(s' | a.s) U[s']

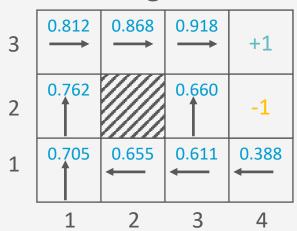
return \pi
```


Evolution of Utilities

- For t = 0, 1, 2, ..., do
 - $U_{t+1}(s_i) \leftarrow R(s_i) +$ $\gamma \max_{a} \sum_{s_j} P(s_j | a. s_i) U_t(s_j)$
- Value iteration ≈ information propagation

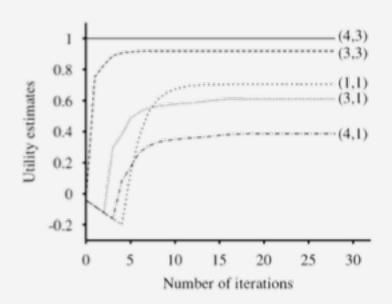


Robot navigation example

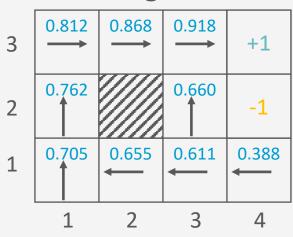


Argmax Action

- For t = 0, 1, 2, ..., do
 - $U_{t+1}(s_i) \leftarrow R(s_i) +$ $\gamma \max_{a} \sum_{s_j} P(s_j | a. s_i) U_t(s_j)$
- Argmax action may change over iterations



Robot navigation example:



- Bellman equation for [1,1]
 - with $\gamma = 1$ as discount factor
 - $U(1,1) = -0.04 + \gamma \max_{U,L,D,R}$

$$\{ 0.8U(1,2) + 0.1U(2,1) + 0.1U(1,1), \quad (U) \\ 0.8U(1,1) + 0.1U(1,1) + 0.1U(1,2), \quad (L)$$

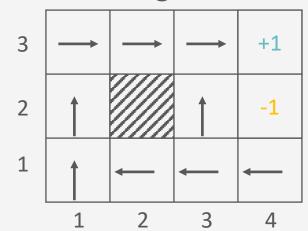
$$0.8U(1,1) + 0.1U(2,1) + 0.1U(1,1),$$
 (D)

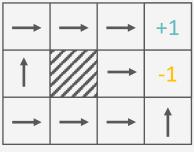
$$0.8U(2,1) + 0.1U(1,2) + 0.1U(1,1)$$
 (R)

Effect of Rewards

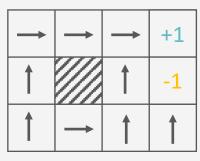
- For t = 0, 1, 2, ..., do
 - $U_{t+1}(s_i) \leftarrow R(s_i) +$ $\gamma \max_{a} \sum_{s_j} P(s_j | a.s_i) U_t(s_j)$
- Optimal policies for different rewards:
 - For R(s) = -0.04, see right \rightarrow

Robot navigation example

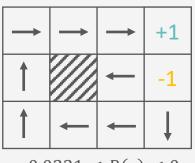




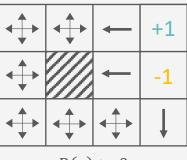
$$R(s) < -1.6284$$



$$-0.4278 < R(s) < -0.0850$$



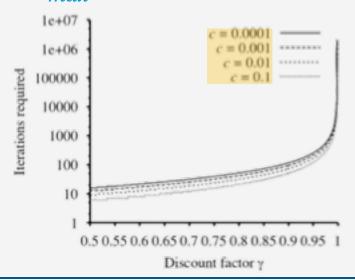
$$-0.0221 < R(s) < 0$$



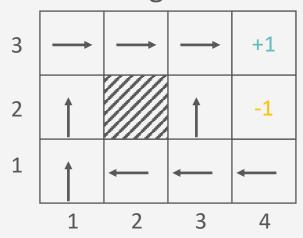
R(s) > 0

Effect of Allowed Error & Discount

- For t = 0, 1, 2, ..., do
 - $U_{t+1}(s_i) \leftarrow R(s_i) +$ $\gamma \max_{a} \sum_{s_j} P(s_j | a. s_i) U_t(s_j)$
- Iterations required to ensure a maximum error of $\varepsilon = c \cdot R_{max}$
 - R_{max} maximum reward



Robot navigation example



•
$$R_{max} = +1$$

Policy Iteration

- Pick a policy π_0 at random
- Repeat:
 - Policy evaluation: Compute the utility of each state for π_t

•
$$U_t(s_i) = R(s_i) + \gamma \sum_{s_j} P(s_j | \pi_t(s_i).s_i) U_t(s_j)$$

- ullet No longer involves a max operation as action is determined by π_t
- Policy improvement: Compute the policy π_{t+1} given U_t

•
$$\pi_{t+1}(s_i) = \underset{a}{\operatorname{argmax}} \sum_{s_j} P(s_j | \pi_t(s_i).s_i) U_t(s_j)$$

• If $\pi_{t+1} = \pi_t$, then return π_t

Solve the set of linear equations:

$$U(s_i) = R(s_i) + \gamma \sum_{s_j} P(s_j | \pi(s_i).s_i) U(s_j)$$

(often a sparse system)

Policy Iteration: Algorithm

```
function policy-iteration(mdp)

repeat

U \leftarrow \text{policy-evaluation}(\pi, U, mdp)

unchanged \leftarrow true

for each state s \in S do

if \max_{a \in A(s)} \Sigma_s, P(s' \mid a.s) U[s'] > \Sigma_s, P(s' \mid \pi[s].s) U[s'] then

\pi[s] \leftarrow \operatorname{argmax}_{a \in A(s)} \Sigma_s, P(s' \mid a.s) U[s']

unchanged \leftarrow false

until unchanged

return \pi
```

- Returns a policy π that is optimal
- Inputs: MDP
 - States S
 - For all $s \in S$, actions A(s), transition model P(s' | a.s), rewards R(s)
- Local variables
 - U vectors of utilities for states in S, initially 0
 - π a policy vector indexed by state, initially random

Policy Evaluation

- ullet Compute the utility of each state for π
 - $U_t(s_i) = R(s_i) + \gamma \sum_{s_j} P(s_j | \pi_t(s_i).s_i) U_t(s_j)$
- Complexity of policy evaluation: $O(n^3)$
 - For n states, n linear equations with n unknowns
 - Prohibitive for large n
- Approximation of utilities
 - Perform k value iteration steps with fixed policy π_t , return utilities
 - Simplified Bellman update: $U_{t+1}(s_i) = R(s_i) + \gamma \sum_{s_j} P(s_j | \pi(s_i). s_i) U_t(s_j)$
 - Asynchronous policy iteration (next slide)
 - Pick any subset of states

Asynchronous Policy Iteration

- Further approximation of policy iteration
 - Pick any subset of states and do one of the following
 - Update utilities
 - Using simplified value iteration as described on previous slide
 - Update the policy
 - Policy improvement as before
- Is not guaranteed to converge to an optimal policy
 - Possible if each state is still visited infinitely often, knowledge about unimportant states, etc.
- Freedom to work on any states allows for design of domainspecific heuristics
 - Update states that are likely to be reached by a good policy

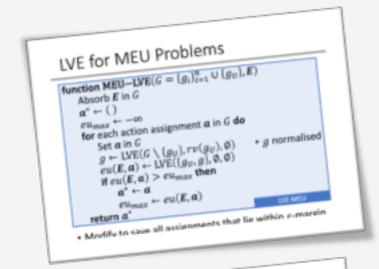
Intermediate Summary

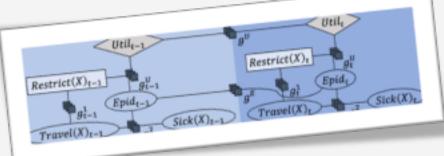
- MDP
 - Markov property
 - Current state depends only on previous state
 - Sequence of actions, history, policy
 - Sequence of actions may yield multiple histories, i.e., sequences of states, with a utility
 - Policy: complete mapping of states to actions
 - Optimal policy: policy with maximum expected utility
 - Value iteration, policy iteration
 - Algorithms for calculating an optimal policy for an MDP

Online Decision Making

- Decision making based on probabilistic graphical models (PGMs)
 - Do not precompute a policy beforehand but decide on an action (sequence) online given current observations
- Static case (episodic, without effects on next state)
 - PGMs extended with action and utility nodes
 - MEU query (problem): Calculate expected utility for each action, decide to execute action with highest expected utility
- Dynamic case (temporal, with effects on next state)
 - Dynamic PGMs extended with action and utility nodes
 - MEU query (problem): Calculate expected utility for sequence of actions, decide to execute action sequence with highest expected utility

Lecture next winter term (WiSe 2022/23) on *Relational Inference* and Online Decision Making





Outline

Utility Theory

- Preferences
- Utilities
- Dominance
- Preference structure

Markov Decision Process / Problem (MDP)

- Markov property
- Sequence of actions, history, policy
- Value iteration, policy iteration

⇒ Next: Probabilistic Models